小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教學設計 >

初中數學教案設計電子版

時間: 新華 教學設計

通過編寫教案,教師可以明確教學目標、教學內容和教學計劃,從而更好地組織教學,提高教學質量和效率。寫好初中數學教案設計電子版是有技巧的,接下來給大家分享初中數學教案設計電子版,方便大家學習。

初中數學教案設計電子版篇1

一、一次函數

1、問題導入:

問題1:小明暑假第一次去北京、汽車駛上A地的高速公路后,小明觀察里程碑,發現汽車的平均速度是95千米/時、己知A地直達北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時間有什么關系,以便根據時間估計自己和北京的距離、

問題2:小張準備將平時的零用錢節約一些儲存起來、他己存有50元,從現在起每個月節存12元、試寫出小張的存款與從現在開始的月份數之間的函數關系式、

請同學們思考后回答:

(1)找出問題中的變量并用字母表示,列出函數關系式、

(2)這兩個函數關系式有什么共同點?自變量的取值范圍各有什么限制?

以上這些問題,請各小組討論一下,派代表回答、引出課題(板書課題)教師最后總結一次函數的概念、(板書)

2、引導學生觀察這兩個函數關系式的結構特征,引出一次函數的一般形式(學生回答,且互相補充)老師最后歸納:一次函數通常可以表示為的形式,其中為常數,特別地,當時,一次函數(常數)也叫做正比例函數、

二、一次函數的圖象是什么形狀呢?

1、做一做:

我們已經學習了用描點法畫函數的圖象,請同學運用描點法畫出下列函數的圖象(老師用多媒體打出題目)。根據學生的動手實踐、觀察與討論,得出結論:一次函數的圖象是一條直線、特別地,正比例函數的圖象是經過原點的一條直線。

2、接下來教師提問:

(1)觀察所畫出的四個一次函數的圖象,比較各對一次函數的圖象有什么共同點,有什么不同點。

(2)能否從中了現一些規律?對于直線(是常數),常數的取值對于直線的位置各有什么影響?

3、組織學生分小組討論,相互交流、相互補充,最后總結出規律:當一樣,不一樣時,直線方向相同(平行),但沒有相同點;當不一樣,一樣時,都經過(0,)點(相交),但直線方向不同、

4、鞏固訓練:

(1)在同一平面直角坐標系中畫出下列函數的圖象

教師提出問題:①畫出圖象,看看是否與上面的討論結果一樣;②你取的是哪幾個點?和同學比較一下,怎樣取比較簡便?

(2)將直線向下平移2個單位,得到直線_______________________、

將直線向上平移5個單位,得到直線_______________________、

(由學生到前板演)、

5、對于教材中第42頁例2處理,教師先用多媒體打出,并提出問題:平面直角坐標系中坐標軸上點的坐標有什么特征?在坐標軸上取點有什么好處?組織學生結合問題去分析,動手嘗試,小組討論交流,最后達成共識、對于教材第43頁例3處理,教師可以提出以下幾個問題討論同學們討論:①這里取的數懸殊較大怎么辦?②這個函數是不是一次函數?③這個函數中自變量的取值范圍是什么?函數的圖象是什么?④在實際問題中,一次函數的圖象除了直線和本題的圖形外,還有沒有其他情形?你能不能找出幾個例子加以說明?

三、一次函數的性質

函數反映了客觀世界中量的變化規律,那么一次函數又有什么性質呢?

1、請同學們來一起觀察大屏幕上函數圖象(教師用多媒體演示函數的圖象),并回答:當一個點在直線上從左右移動時,它的位置如何變化?你能從中得到函數值的變化與自變量的變化規律嗎?(教師運用現代化的教學手段來演示點的移動情況,進一步促進了學生對一次函數的變化規律理解)由學生討論出結果:也就是說,函數值隨自變量的增大而增大、(教師板書)

2、請同學們畫出函數的圖象,然后教師可以提出問題:觀察它們是否也有相應的性質,有什么不同你能否發現什么規律?讓學生帶著老師提出的問題進行分組討論,相互交流,最后歸納出一次函數如下性質:(1)當時,隨的增大而增大,這時函數的圖象從左到右上升;(2)當時,隨的增大而減小,這時函數的圖象從左到右下降;

3、補充性質:(3)時,一次函數的圖象經過一、二、三象限;(4)時,一次函數的圖象經過一、三、四象限;(5)時,一次函數的圖象經過一、二、四象限;(6)時,一次函數的圖象經過二、三、四象限、

4、對于教材中第45頁做一做處理,可以作為例題,引導學生動手操作,分組討論,由學生自己得出結論,教師起著指導作用;對于教材中第45頁例4的處理,教師可以先組織學生審題分析找出題中的己知量,并提示學生:要想求一次函數的關系式,關鍵是要確定和的值,那么,結合題中所給的己知條件,又怎樣來確定和的值呢?組織學生討論,結合學生得出的結論,教師再給出待定系數法的概念,這樣學生馬上就會理解,從而難點得以突破、在這里教師要提醒學生,注意實際問題有關函數的自變量的范圍限制、

初中數學教案設計電子版篇2

一、教學目標:

知識與技能:理解掌握有理數的減法法則,會將有理數的減法運算轉化為加法運算。

過程與方法:通過把減法運算轉化為加法運算,向學生滲透轉化思想,通過有理數的減法運算,培養學生的運算能力。

情感態度與價值觀:通過揭示有理數的減法法則,滲透事物間普遍聯系、相互轉化的辯證唯物主義思想。

二、教學重點:運用有理數的減法法則,熟練進行減法運算。

三、教學難點:理解有理數減法法則。

四、教材分析:本節是在學習了正負數、相反數、有理數加法運算之后,以初中代數第一冊第53頁的有理數減法法則及有理數減法運算的例1、例2為課堂教學內容。有理數的減法運算是一種基本的有理數運算,對今后正確熟練地進行有理數的混合運算,并對解決實際問題都有十分重要的作用。

五、教學方法:師生互動法

六、教具:幻燈片

七、課時:1課時

八、教學過程:

1、計算(口答):

(1)1+(-2)

(2)-10+(+3)

(3)+10+(-3)

2、出示幻燈片二:

如圖:

這是20__年11月某天北京的溫度為-3~3℃,它的確切含義是什么?這一天北京的溫差是多少?

教師引導觀察

教師總結:這就是我們今天要學習的內容(引入新課,板書課題)

1、師:誰能把10-3=7這個式子中的性質符號補出來呢?

(+10)-(+3)=7

再計算:(+10)+(-3),師讓學生觀察兩式結果,由此得到:

(+10)-(+3)=(+10)+(-3)

觀察減法是否可以轉化為加法計算呢?是如何轉化的呢?

(教師發揮主導作用,注意學生的參與意識)

2、再看一題:

計算:(-10)-(-3)

教師啟發:要解決這個問題,根據有理數減法的意義,這就是要求一個數使它與-3相加會得到-10,那么這個數是多少?

問題:計算:(-10)+(+3)

教師引導,學生觀察上述兩題結果,由此得到

(-10)-(-3)=(-10)+(+3)

教師進一步引導學生觀察式子,你能得到什么結論呢?

教師總結:由以上兩式可以看出減法運算可以轉化成加法運算。

教師提問:通過以上的學習,同學們想一想兩個有理數相減的法則是什么?

教師對學生回答給予點評,總結有理數減法法則:減去一個數,等于加上這個數的相反數。

強調法則:(1)減法轉化為加法,減數要變成相反數(2)法則適用于任何兩個有理數相減(3)用字母表示一般形式為a-b=a+(-b)

3、例題講解:

出示幻燈片三(例1和例2)

例1計算:

(1)6-(-8)

(2)(-2)-3

(3)(-2.8)-(-1.7)

(4)0-4

(5)5+(-3)-(-2)

(6)(-5)-(-2.4)+(-1)

教師板書做示范,強調解題的規范性,然后師生共同總結解題步驟,(1)轉化(2)進行加法運算。

例2:小明家蔬菜大棚的氣溫是24℃,此時棚外的氣溫是-13℃,棚內氣溫比棚外氣溫高多少攝氏度?

師巡視指導,最后師生講評兩個學生的解題過程。

課后練習1、2

教師巡視指導

師組織學生自己編題

1、談談本節課你有哪些收獲和體會?[

2、本節課涉及的數學思想和數學方法是什么

教師點評:有理數減法法則是一個轉化法則,要求同學們掌握并能應用進行計算。

課堂檢測(包括基礎題和能力提高題)

1、-9-(-11)

2、3-15

3、-37-12

4、水銀的凝固點是-38.87℃,酒精的凝固點是-117.3℃。水銀的凝固點比酒精的凝固點高多少攝氏度?

學生思考后搶答,盡量照顧不同層次的學生參與的積極性。

學生觀察思考如何計算

學生觀察思考

互相討論

學生口述解題過程

由兩個學生板演,其他學生在練習本上做

第1小題學生搶答

第2小題找兩個學生板演。

學生回答

學生相互交流自己的收獲和體會,教師參與互動并給予鼓勵性評價。

綜合考查學以致用

既復習鞏固有理數加法法則,同時為進行有理數減法運算打下基礎

創設問題情境,激發學生的認知興趣。

讓學生通過嘗試,自己認識減法可以轉化為加法計算。

學生通過一個問題易于充分發揮學習的主動性,同時也培養了學生分析問題的能力

可以培養學生嚴謹的學風和良好的學習習慣,同時鍛煉學生的表達能力

可以照顧不層次的學生,調動學生學習積極性。

通過練習讓學生進一步鞏固新知,體驗知識的應用性。

能增強學生學習的&39;主動性和參與意識。

學生嘗試小結,疏理知識,自由發表學習心得,能鍛煉學生的語言表達能力和歸納概括能力。

鍛煉學生綜合運用知識,獨立解題的能力

板書設計:

2.6有理數的減法

有理數減法法則:

(+10)-(+3)=(+10)+(-3)

(-10)-(-3)=(-10)+(+3)

減去一個數等于加上這個數的相反數.例1:

例2:

練習:

教學反思:

本節課我在問題探索過程中,以提問的形式展現新問題,激發學生的好奇心,學生學習的積極性很高,討論交流的氣氛很熱烈,解決問題后有一種成就感,從而使學生更積極主動的學習,并且營造了良好的學習氛圍,從而收到較好的學習效果。

初中數學教案設計電子版篇3

一、教學目標知識與技能目標。

1、能熟練作出一次函數的圖像,掌握一次函數及其圖像的簡單性質;

2、初步了解函數表達式與圖像之間的關系。

過程與方法目標。

1、經歷作圖過程中由一般到特殊方法的轉變過程,讓學生體會研究問題的基本方法。

2、經歷對一次函數性質的探索過程,增強學生數形結合的意識,培養學生識圖能力;

3、經歷對一次函數性質的探索過程,培養學生的觀察力、語言表達能力。情感與態度目標

1、在作圖的過程中,體會數學的美;

2、經歷作圖過程,培養學生尊重科學,實事求是的作風。

二、教材分析。

本節課是在學習了一次函數解析式的基礎上,從圖像這個角度對一次函數進行近一步的研究。教材先介紹了作函數圖像的一般方法:列表、描點、連線法,再進一步總結出作一次函數圖像的特殊方法——兩點連線法。結合一次函數的圖像,對一次函數的單調性作了探討;對一次函數的幾何意義也有涉及。在教學中要結合學生的認識情況,循序漸進,逐層深入,對教材內容可作適當增加,但不宜太難。為進一步學習圖像及性質奠定了基礎。教學重點:結合一次函數的圖像,研究一次函數的簡單性質教學難點:一次函數性質的應用

三、學情分析函數的圖像的概念及作法對學生而言都是較為陌生的。

教材從作函數圖像的一般步驟開始介紹,得出一次函數圖像是條直線。在此基礎上介紹用兩點連線得一次函數的圖像,學生就容易接受了。在函數解析式與圖像二者之間的探討這部分內容上,不要作更高要求,學生能回答書中的問題就可以了。教學中盡可能的多作幾個一次函數的圖像,讓學生直觀感受到一次函數的圖像是條直線。

四、教學流程(一)、復習引入

1、什么叫做一次函數?

2、你能說說正比例函數y=kx(k≠0)的性質嗎?

3、針對函數y=kx+b,要研究什么?怎樣研究?

(二)做一做

例1、畫出函數y1=2x與y2=2x+3,y3=2x-2的圖像二、新課講解把一個函數的自變量和對應的因變量的值分別作為點的橫坐標和縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖像。下面我們來作一次函數y1=2x與y2=2x+3,y3=2x-2的圖像分析:根據定義,需要在直角坐標系中描出許多點,因此我們應先計算這些點的橫、縱坐標,即x與對應的y的值。我們可借助一個表格來列出每一對x,y的值。因為一次函數的自變量X可以取一切實數,所以X一般在0附近取值。解:列表:x…-2-1012…y1=2x…0…y2=2x+3y3=2x-2描點:以表中各組對應值作為點的坐標,在直角坐標系內描出相應的點。連線:把這些點依次連接起來,得到圖像(如圖)它們是一條直線。

觀察圖像回答下列問題:

(1)這三個一次函數圖像的形狀都是,并且傾斜程度,即互相。

(2)y1=2x的圖像經過。

(3)y2=2x+3的圖像與y1=2x圖像,且與y軸交于,即y2可以看作由y1向平移個單位長度得到,圖像經過第象限,k,b的符號如何?()(4)y3=2x-2的圖像與y1=2x圖像,且與y軸交于,即y3可以看作由y1向平移個單位長度得到,圖像經過第象限,k,b的符號如何?

結論:

1、一次函數y=kx+b(k≠0)的圖像可以由直線y=kx平移個單位長度得到。(上加下減)

2、一次函數y=kx+b(k≠0)的圖像是一條直線,我們稱它為直線y=kx+b。

3、平行的直線k相等。

三、做一做。

(1)利用兩點確定一條直線(兩點畫法)畫出y=-x+3和y=-x及y=-x-4的圖象的圖像。

師:回顧剛才的作圖過程,經歷了幾個步驟?

生:經歷了列表、描點、連線這三個步驟。

師:回答得很好。作函數圖像的一般步驟是列表、描點、連線。今后我們可以用這個方法去作出更多函數的圖像。

師:從剛才同學們作出的一次函數的圖像中我們可以觀察到一次函數圖像是一條直線。

(2)在所作的圖像上取幾個點,找出它們的橫、縱坐標

四、議一議觀察圖像思考:

(1)一次函數的圖像從左往右是上升還是下降,由圖像怎么看函數的增減性(y隨x的變化),你認為決定條件是什么?

(2)圖像經過哪些象限?k,b的符號如何?

(3)y=-x+3和y=-x-4是由y=-x怎樣平移得到的?一次函數y=kx+b的圖像是一條直線,因此作一次函數的圖像時,只要確定兩個點,再過這兩個點作直線就可以了。一次函數y=kx+b的圖像也稱為直線y=kx+b

例1做出下列函數的圖像

(1)y=x+3

(2)y=-x+3

(3)y=2x-4

(4)y=-2x-4

五、課堂小結。

這節課我們學習了一次函數的圖像。一次函數的圖像是一條直線,正比例函數的圖像是經過原點的一條直線。在作圖時,只需確定直線上兩點的位置,就可得到一次函數的圖像。一般地,作函數圖像的三個步驟是:列表、描點、連線。

六、課后練習。

書上93頁練習五、教學反思本節課主要介紹作函數圖像的一般方法,通過對一次函數圖像的認識,得到作一次函數及正比例函數的圖像的特殊方法(兩點確定一條直線)。讓學生能夠迅速找到直線與坐標軸的交點,這是本節課的難點。數形結合,找準這兩個特殊點坐標的特點(x=0或y=0),讓學生理解的記憶才能收到較好的效果。

初中數學教案設計電子版篇4

一、說教材

本節內容是人民教育出版社的義務教育數學課程標準實驗教科書《數學》初二下冊第16章第二節第二課時《分式的加減法》,屬于數與代數領域的知識。它是代數運算的基礎,分兩課時完成,我所設計的是第一課時的教學,主要內容是同分母的分式相加減及簡單的異分母的分式相加減。

在此之前,學生已經學習了分數的加減法運算,同時也學習過分式的基本性質,這為本節課的學習打下了基礎。而掌握好本節課的知識,將為《分式的加減法》第二課時以及《分式方程》的學習做好必備的知識儲備。因此,在分式的學習中,占據重要的地位。本節課中掌握分式的加減運算法則是重點,運用法則計算分式的加減是難點,掌握計算的一般解題步驟是解決問題是關鍵。基于以上對教材的認識,考慮到學生已有的認識和結構與心理特征,我制定如下的教學目標。

二、說目標

根據學生已有的認識基礎及本課教材的.地位和作用,依據新課程標準制定如下:知識與技能:會進行簡單的分式加減運算,具有一定解決問題計算的能力;過程與方法:使學生經歷探索分式加減運算法則的過程,理解其算理;情感態度與價值觀:培養學生大膽猜想,積極探究的學習態度,發展學生有條理思考及代數表達能力,體會其價值。為突出重點,突破難點,抓住關鍵使學生能達到本節設定的教學目標,我載從教法和學法上談談設計思路。

三、說教學方法

教法選擇與手段:本課我主要以“復習舊知,導入新知,例題講解,拓展延伸”為主線,啟發和引導貫穿教學始終,通過師生共同研究探討,體現以教為主導、學為主體、練為主線的教學過程。學法指導:根據學生的認知水平,我設計了“觀察思考、猜想歸納、例題學習和鞏固提高”四個層次的學法。最后,我來具體談一談本節課的教學過程。

四、說教學過程

在分析教材、確定教學目標、合理選擇教法與學法的基礎上,我預設的教學過程是:觀察導入、例題示范、習題鞏固、歸納小結和作業布置。

五、分層作業

各位老師,以上所說只是我預設的一種方案,但課堂是千變萬化的,會隨著學生和教師的靈活發揮而隨機生成的,預設效果如何,最終還有待于課堂教學實踐的檢驗。

初中數學教案設計電子版篇5

說教學目標

一、知識與技能

1、了解全等形和全等三角形的概念,掌握全等三角形的性質。

2、能正確表示兩個全等三角形,能找出全等三角形的對應元素。

二、過程與方法

通過觀察、拼圖以及三角形的平移、旋轉和翻折等活動,來感知兩個三角形全等,以及全等三角形的性質。

三、情感態度與價值觀

通過全等形和全等三角形的學習,認識和熟悉生活中的全等圖形,認識生活和數學的關系,激發學生學習數學的興趣。

說教學重點

1、全等三角形的性質。

2、在通過觀察、實際操作來感知全等形和全等三角形的基礎上,形成理性認識,理解并掌握全等三角形的對應邊相等,對應角相等。

說教學難點

正確尋找全等三角形的對應元素

難點突破

通過拼圖、對三角形進行平移、旋轉、翻折等活動,讓學生在動手操作的過程中,感知全等三角形圖形變換中的對應元素的變化規律,以尋找全等三角形的對應點、對應邊、對應角。

說課前準備:

課件、三角形紙片

說教學過程

一、出示學習目標

1、知道什么是全等形、全等三角形及全等三角形的對應元素。

2、知道全等三角形的性質,能用符號正確地表示兩個三角形全等。

二、直觀感知,導入新課

教師演示一些全等的圖形的課件,讓學生直觀感知圖片并尋找每組圖片的特點。二、合作探究,學習新知

1.全等形

我們給這樣的圖形起個名稱----全等形。[板書:全等形]

教師讓學生們想生活中還有那些圖形是全等形.

2.全等三角形及相關對應元素的定義

教師用多媒體動態演示兩個能完全重合地三角形。定義全等三角形:能夠完全重合的兩個三角形,叫全等三角形。

[板書課題:12.1全等三角形]

2.全等三角形的對應元素及表示

把三角形平移、翻折、旋轉后,什么發生了變化,什么沒有變?

歸納:旋轉前后的兩個三角形,位置變化了,但形狀大小都沒有變,它們依然全等。

以多媒體上的圖形為例,全等三角形中的對應元素

(1)對應的頂點(三個)---重合的頂點

(2)對應邊(三條)---重合的邊

(3)對應角(三個)---重合的角

歸納:方法一---全等三角形對應角所對的邊是對應邊,兩個對應角所夾的&39;邊是對應邊;方法二:全等三角形對應邊所對的角是對應角,兩條對應邊所夾的角是對應角。

另外:有公共邊的,公共邊一定是對應邊;有對頂角的,對頂角一定是對應角。

.用符號表示全等三角形

抽學生表示圖一、圖二、三的全等三角形。

3.全等三角形的性質

思考:全等三角形的對應邊、對應角有什么關系?為什么?

歸納:全等三角形的對應邊相等、對應角相等。

4.小組活動合作升華

學生分小組動手操作擺圖形

小組合作完成位置不同的三角形,寫出它們的對應邊,對應角。強調其他小組學生說的時候,自己一定要注意傾聽,能夠分辨出對錯來。

三、鞏固練習

四、教師用多媒體展示習題,學生做鞏固練習。

五、小結:本節課都學到了什么

六、作業:

必做題課本33頁習題第1題、2題.

選做題課本第34頁第6題。

初中數學教案設計電子版篇6

12.6 一元二次方程的應用(二)

一、素質教育目標

(一)知識教學點:使學生會用列一元二次方程的方法解有關面積、體積方面的應用問題.

(二)能力訓練點:進一步培養學生化實際問題為數學問題的能力和分析問題解決問題的能力,培養用數學的意識.

二、教學重點、難點

1.教學重點:會用列一元二次方程的方法解有關面積、體積方面的應用題.

2.教學難點 :找等量關系.列一元二次方程解應用題時,應注意是方程的解,但不一定符合題意,因此求解后一定要檢驗,以確定適合題意的解.例如線段的長度不為負值,人的個數不能為分數等.

三、教學步驟 

(一)明確目標.

(二)整體感知

(三)重點、難點的學習和目標完成過程

1.復習提問

(1)列方程解應用題的步驟?

(2)長方形的周長、面積?長方體的體積?

2.例1 現有長方形紙片一張,長19cm,寬15cm,需要剪去邊長是多少的小正方形才能做成底面積為77cm2的無蓋長方體型的紙盒?

解:設需要剪去的小正方形邊長為xcm,則盒底面長方形的長為(19-2x)cm,寬為(15-2x)cm,

據題意:(19-2x)(15-2x)=77.

整理后,得x2-17x+52=0,

解得x1=4,x2=13.

∴ 當x=13時,15-2x=-11(不合題意,舍去.)

答:截取的小正方形邊長應為4cm,可制成符合要求的無蓋盒子.

練習1.章節前引例.

學生筆答、板書、評價.

練習2.教材P.42中4.

學生筆答、板書、評價.

注意:全面積=各部分面積之和.

剩余面積=原面積-截取面積.

例2 要做一個容積為750cm3,高是6cm,底面的長比寬多5cm的長方形匣子,底面的長及寬應該各是多少(精確到0.1cm)?

分析:底面的長和寬均可用含未知數的代數式表示,則長×寬×高=體積,這樣便可得到含有未知數的等式——方程.

解:長方體底面的寬為xcm,則長為(x+5)cm,

解:長方體底面的寬為xcm,則長為(x+5)cm,

據題意,6x(x+5)=750,

整理后,得x2+5x-125=0.

解這個方程x1=9.0,x2=-14.0(不合題意,舍去).

當x=9.0時,x+17=26.0,x+12=21.0.

答:可以選用寬為21cm,長為26cm的長方形鐵皮.

教師引導,學生板書,筆答,評價.

(四)總結、擴展

1.有關面積和體積的應用題均可借助圖示加以分析,便于理解題意,搞清已知量與未知量的相互關系.

2.要深刻理解題意中的已知條件,正確決定一元二次方程的取舍問題,例如線段的長不能為負.

3.進一步體會數字在實踐中的應用,培養學生分析問題、解決問題的能力.

四、布置作業 

教材P.42中A3、6、7.

教材P.41中3.4

五、板書設計 

12.6 一元二次方程的應用(二)

例1.略

例2.略

解:設……… 解:…………

………… …………

12.6 一元二次方程的應用(二)

一、素質教育目標

(一)知識教學點:使學生會用列一元二次方程的方法解有關面積、體積方面的應用問題.

(二)能力訓練點:進一步培養學生化實際問題為數學問題的能力和分析問題解決問題的能力,培養用數學的意識.

二、教學重點、難點

1.教學重點:會用列一元二次方程的方法解有關面積、體積方面的應用題.

2.教學難點 :找等量關系.列一元二次方程解應用題時,應注意是方程的解,但不一定符合題意,因此求解后一定要檢驗,以確定適合題意的解.例如線段的長度不為負值,人的個數不能為分數等.

三、教學步驟 

(一)明確目標.

(二)整體感知

(三)重點、難點的學習和目標完成過程

1.復習提問

(1)列方程解應用題的步驟?

(2)長方形的周長、面積?長方體的體積?

2.例1 現有長方形紙片一張,長19cm,寬15cm,需要剪去邊長是多少的小正方形才能做成底面積為77cm2的無蓋長方體型的紙盒?

解:設需要剪去的小正方形邊長為xcm,則盒底面長方形的長為(19-2x)cm,寬為(15-2x)cm,

據題意:(19-2x)(15-2x)=77.

整理后,得x2-17x+52=0,

解得x1=4,x2=13.

∴ 當x=13時,15-2x=-11(不合題意,舍去.)

答:截取的小正方形邊長應為4cm,可制成符合要求的無蓋盒子.

練習1.章節前引例.

學生筆答、板書、評價.

練習2.教材P.42中4.

學生筆答、板書、評價.

注意:全面積=各部分面積之和.

剩余面積=原面積-截取面積.

例2 要做一個容積為750cm3,高是6cm,底面的長比寬多5cm的長方形匣子,底面的長及寬應該各是多少(精確到0.1cm)?

分析:底面的長和寬均可用含未知數的代數式表示,則長×寬×高=體積,這樣便可得到含有未知數的等式——方程.

解:長方體底面的寬為xcm,則長為(x+5)cm,

解:長方體底面的寬為xcm,則長為(x+5)cm,

據題意,6x(x+5)=750,

整理后,得x2+5x-125=0.

解這個方程x1=9.0,x2=-14.0(不合題意,舍去).

當x=9.0時,x+17=26.0,x+12=21.0.

答:可以選用寬為21cm,長為26cm的長方形鐵皮.

教師引導,學生板書,筆答,評價.

(四)總結、擴展

1.有關面積和體積的應用題均可借助圖示加以分析,便于理解題意,搞清已知量與未知量的相互關系.

2.要深刻理解題意中的已知條件,正確決定一元二次方程的取舍問題,例如線段的長不能為負.

3.進一步體會數字在實踐中的應用,培養學生分析問題、解決問題的能力.

四、布置作業 

教材P.42中A3、6、7.

教材P.41中3.4

五、板書設計 

12.6 一元二次方程的應用(二)

例1.略

例2.略

解:設……… 解:…………

………… …………

初中數學教案設計電子版篇7

學習目標:

1、能用不同的方法探索并了解三角形3個內角之間的關系;;

2、會利用三角形的內角和定理解決問題;

3、知道直角三角形的兩個銳角互余的關系;

4、通過觀察、想象、推理、交流等活動,發展空間觀念、推理能力和有條理地表達能力。

學習重點:

三角形的內角和定理

學習難點:

三角形內角和定理推理和應用

教學過程:

一、情境創設,感悟新知

1、三角形藍和三角形紅見面了,藍炫耀的說:“我的面積比你大,所以我的內角和也比你大!”

紅不服氣的說:“那可不好說噢,你自己量量看!”

藍用量角器量了量自己和紅,就不再說話了!

同學們,你們知道其中的道理嗎?

三角形三個內角的和等于180°

2、你有什么方法可以驗證呢?

方法一:度量法。

方法二:剪拼法。

3、你還有其他說明方法嗎?

二、探索規律,揭示新知

1、議一議:如,3根木條相交得∠1、∠2.若a∥b,則∠1+∠2=。

理由:。

2、操作:把木條a繞點A轉動,使它與木條b相交于點C.根據形,你能說明“三角形3個內角的和等于1800”的理由嗎?

3、說理:

(補充說明:也可以轉化為平角進行說明。)

4、方法小結:在這里,為了說明的需要,在原來的形上添畫的線叫做輔助線。在平面幾何里,輔助線通常畫成虛線。

5、你還有其他方法說明“三角形3個內角的和等于1800”嗎?

(1)

(2)

6、思路總結:為了說明三個角的和為1800,轉化為一個平角或同旁內角互補,這種轉化思想是數學中的常用思想方法。

三、嘗試反饋,領悟新知

例1:如,AC、BD相交于點O,∠A與∠B的和等于∠C與∠D的和嗎?為什么?

例2.如右,在△ABC中,∠A=3∠C,∠B=2∠C求三個內角的度數。

若將條件改為∠A:∠B:∠C=2:3:4,又如何解呢?

四、拓展延伸,運用新知

1、隨堂練習

2、結論:直角三角形的兩個銳角互余。

3、鞏固練習:

①、△ABC中,若∠A+∠B=∠C,則△ABC是()

A、銳角三角形B、直角三角形

C、鈍角三角形D、等腰三角形

②、在一個三角形的3個內角中,最多能有幾個直角?最多能有幾個鈍角呢?為什么?

③、如△ABC中,CD平分∠ACB,∠A=70度,∠B=50度,求∠BDC的度數。

五、課堂小結,內化新知

1本節課你有哪些收獲?

2你還有什么疑問?

六、布置作業,鞏固新知

1、必做題:

習題7.5第1、2、3、4題。

2、選做題。

如右:試求出中∠1+∠2+∠3的度數

七、教學寄語,拓寬課堂

老師寄語:

如果你想學會游泳,你必須下水;

如果你想成為解題能手,你必須解題。

初中數學教案設計電子版篇8

一、教材的地位與作用

《二元一次方程》是九年義務教育人教版教材七年級下冊第四章《二元一次方程組》的第一節。在此之前學生已經學習了一元一次方程,這為本節的學習起了鋪墊的作用。本節內容是二元一次方程的起始部分,因此,在本章的教學中,起著承上啟下的地位。

二、教學目標

(一)知識與技能:

1.了解二元一次方程概念;

2.了解二元一次方程的解的概念和解的不唯一性;

3.會將一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式。

(二)數學思考:

體會學習二元一次方程的必要性,學會獨立思考,體會數學的轉化思想和主元思想。

(三)問題解決:

初步學會利用二元一次方程來解決實際問題,感受二元一次方程解的不唯一性。獲得求二元一次方程解的思路方法。

(四)情感態度:

培養學生發現意識和能力,使其具有強烈的好奇心和求知欲。

三、教學重點與難點

教學重點:二元一次方程及其解的概念。

教學難點:二元一次方程的概念里“含未知數的項的次數”的理解;把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式。

四、教法與學法分析

教法:情境教學法、比較教學法、閱讀教學法。

學法:閱讀、比較、探究的學習方式。

五、教學過程

1.創設情境,引入新課

從學生熟悉的姚明受傷事件引入。

師:火箭隊最近取得了20連勝,姚明參加了前面的12場比賽,是球隊的頂梁柱。

(1)連勝的第12場,火箭對公牛,在這場比賽中,姚明得了12分,其中罰球得了2分,你知道姚明投中了幾個兩分球?(本場比賽姚明沒投中三分球)師:能用方程解決嗎?列出來的方程是什么方程?

(2)連勝的第1場,火箭對勇士,在這場比賽中,姚明得了36分,你知道姚明投中了幾個兩分球,罰進了幾個球嗎?(罰進1球得1分,本場比賽姚明沒投中三分球)師:這個問題能用一元一次方程解決嗎?,你能列出方程嗎?

設姚明投進了x個兩分球,罰進了y個球,可列出方程。

(3)在雄鹿隊與火箭隊的比賽中易建聯全場總共得了19分,其中罰球得了3分。你知道他分別投進幾個兩分球、幾個三分球嗎?

設易建聯投進了x個兩分球,y個三分球,可列出方程。

師:對于所列出來的三個方程,后面兩個你覺的是一元一次方程嗎?那這兩個方程有什么相同點嗎?你能給它們命一個名稱嗎?

從而揭示課題。

(設計意圖:第一個問題主要是讓學生體會一元一次方程是解決實際問題的數學模型,從而回顧一元一次方程的概念;第二、三問題設置的主要目的是讓學生體會到當實際問題不能用一元一次方程來解決的時候,我們可以試著列出二元一次方程,滲透方程模型的通用性。另外,數學來源于生活,又應用于生活,通過創設輕松的問題情境,點燃學習新知識的“導火索”,引起學生的學習興趣,以“我要學”的主人翁姿態投入學習,而且“會學”“樂學”。)

2.探索交流,汲取新知

概念思辨,歸納二元一次方程的特征

師:那到底什么叫二元一次方程?(學生思考后回答)

師:翻開書本,請同學們把這個概念劃起來,想一想,你覺得和我們自己歸納出來的概念有什么區別嗎?(同學們思考后回答)

師:根據概念,你覺得二元一次方程應具備哪幾個特征?

活動:你自己構造一個二元一次方程。

快速判斷:下列式子中哪些是二元一次方程?

①x2+y=0②y=2x+

4③2x+1=2x④ab+b=4

(設計意圖:這一環節是本課設計的重點,為加深學生對“含有未知數的項的次數”的內涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學生的認知沖突,激發學生對“項的次數”的.思考,進而完善學生對二元一次方程概念的理解,通過學生自己舉例子的活動去把“項的次數”形象化。)

二元一次方程解的概念

師:前面列的兩個方程2x+y=36,2x+3y=16真的是二元一次方程嗎?通過方程2x+3y=16,你知道易建聯可能投中幾個兩分球,幾個三分球嗎?

師:你是怎么考慮的?(讓學生說說他是如何得到x和y的值的,怎么證明自己的這對未知數的取值是對的)利用一個學生合理的解釋,引導學生類比一元一次方程的解的概念,讓學生歸納出二元一次方程的解的概念及其記法。(學生看書本上的記法)

使二元一次方程兩邊的值相等的一對未知數的值,叫做二元一次方程的一個解。(設計意圖:通過引導學生自主取值,猜x和y的值,從而更深刻的體會二元一次方程解的本質:使方程左右兩邊相等的一對未知數的取值。引導學生看書本,目的是讓學生在記法上體會“一對未知數的取值”的真正含義。)

二元一次方程解的不唯一性

對于2x+3y=16,你覺得這個方程還有其它的解嗎?你能試著寫幾個嗎?師:這些解你們是如何算出來的?

(設計意圖:設計此環節,目的有三個:首先,是讓學生學會如何檢驗一對未知數的取值是二元一次方程的解;其次是讓學生體會到二元一次方程的解的不唯一性;最后讓學生感受如何得到一個正確的解:只要取定一個未知數的取值,就可以代入方程算出另一個未知數的值,這也就是求二元一次方程的解的方法。)如何去求二元一次方程的解

例:已知方程3x+2y=10,

(1)當x=2時,求所對應的y的值;

(2)取一個你自己喜歡的數作為x的值,求所對應的y的值;

(3)用含x的代數式表示y;

(4)用含y的代數式表示x;

(5)當x=負2,0時,所對應的y的值是多少?

(6)寫出方程3x+2y=10的三個解.

(設計意圖:此處設計主要是想讓學生形成求二元一次方程的解的一般方法,先讓學生展示他們的思維過程,再從他們解一元一次方程的重復步驟中提煉出用一個未知數的代數式表示另一個未知數,然后把它與原方程比較,把一個未知數的值代入哪一個方程計算會更簡單,形成“正遷移”,引導學生體會“用關于一個未知數的代數式表示另一個未知數”的過程,實質是解一個關于y的一元一次方程,滲透數學的主元思想。以此突破本節課的難點。)

大顯身手:

課內練習第2題

梳理知識,課堂升華

本節課你有收獲嗎?能和大家說說你的感想嗎?3.作業布置

必做題:書本作業題1、2、3、4。

選做題:書本作業題5、6。

設計說明

本節授課內容屬于概念課教學。數學學科的內容有其固有的組成規律和邏輯結構,它總是由一些最基本的數學概念作為核心和邏輯起點,形成系統的數學知識,所以數學概念是數學課程的核心。只有真正理解數學概念,才能理解數學。二元一次方程作為初中階段接觸的第二類方程,形成概念并不難,關鍵如何理解它的概念,因此本節課采用先讓同學自己試著下定義,然后與教材中的完整定義相互比較,發現不同點,進而理解“含有未知數的項的次數都是一次”這句話的內涵。在二元一次方程的解的教學過程中,采用的是讓學生體會“一個解、不止一個解、無數個解”的漸進過程,感受到用一個二元一次方程并不能求出一對確定的未知數的取值,從而讓學生產生有后續學習的愿望。

在講授用含一個未知數的代數式表示另一個未知數的時候,采用“特殊、一般、特殊”的教學流程,以期突破難點。首先拋出問題“這幾個解你是如何求的”,

此時注意的聚焦點是二元一次方程;其次學生歸納先定一個未知數的取值,代入原方程求另一個未知數的值,此時注意的聚焦點是一元一次方程;然后教師引導回到二元一次方程,假如x是一個常數,那么這個方程可以看成是一個關于誰的一元一次方程,此時注意的聚焦點是原來的二元一次方程;最后代入求值,此時注意的聚焦點是等號右邊的那個算式,體會“用含一個未知數的代數式表示另一個未知數”在求值過程中的簡潔性,強化這種代數形式。另外,在引導學生推導“用含一個未知數的代數式表示另一個未知數”的過程中,滲透數學的主元思想和轉化思想。

初中數學教案設計電子版篇9

一、說教材

(五)教材的地位和作用

《絕對值》是選自人教版初一數學第一章第二節第四部分的內容。這部分內容之前已經學習了有理數、數軸、相反數的內容,這是本節課學習的基礎。絕對值的內容主要包括含義及有理數之間的大小比較,這也為后面學習有理數的加減法奠定了基礎。

(六)教學目標

根據對教材內容的分析,以及在新課改理念的指導下,制定了如下三維目標:

(一)知識與技能

理解、掌握絕對值的含義,并且會比較有理數之間的大小。

(二)過程與方法

運用數軸來推理數的絕對值,并在推理的過程中清晰的闡述自己的觀點,從而逐步發展發生的抽象思維。

(三)情感態度與價值觀

體驗數學活動的探索性和創造性,感受數學的嚴謹性以及數學結論的確定性。

教學重難點

通過以上對教材內容及教學目標的分析,以及學生已有的知識水平,本節課的教學重難點如下:

重點:絕對值的理解以及有理數的比較

難點:負數的絕對值的理解及比較

二、說學情

以上就是我對教材的分析,由于教學目標及重難點的確定也是在學生情況的基礎上進行的,所以下面我對學情進行分析。

初一學生的抽象思維開始有了一定的發展,但還需一定的感性材料作支撐,同時思維比較活躍和積極,所以教學過程中會注重直觀材料的運用,然后引導學生自主思考并理解知識,以激發學生的學習興趣,調動學生的積極性和主動性。

三、說教材

基于以上對教材、學情的分析,以及新課改的要求,我在本課中采用的教法有:講授法、演示法和引導歸納法。演示法中需要的教具有多媒體和溫度計。

四、說教法

新課改理念告訴我們,學生不僅要學到具體的知識,更重要的是學生要學會怎樣自己學習,為終身學習奠定扎實的基礎。所以本課中我將引導學生通過自主探究、合作交流的學法來更好的掌握本節課的內容。

五、說教學程序

為了更好的實現三維目標、突破重難點,我將本課的教學程序設計為以下五個環節:

(一)情境導入

出示溫度計,"北方某一城市的溫度是零下15攝氏度,南方某一城市的溫度是15攝氏度",學生在稿紙上畫一條數軸,標出這兩個溫度,并請一位學生畫在黑板上。

數軸的兩個數值是相反數,是上節課的內容,0到-15°和0到15°的變化溫度分別是15°,那么兩個相同的變化溫度,怎么用數學符號表示出來呢?

(二)新授

1、從上面的問題中,我引出今天的"絕對值"概念,然后和學生一起從數軸上推導出絕對值。

2、使用多媒體呈現一組數字,包括幾個正數,幾個負數。讓大家在數軸上畫出,并寫出每個數字的絕對值。然后學生來依次說出每個絕對值,以鞏固概念的掌握。

3、和大家一起寫出這些絕對值,把負數、正數、0的絕對值分別寫在三個地方,引導學生觀察這些絕對值,并思考其中的規律,然后和學生一起得出結論,即正數的絕對值是本身,負數的絕對值是它的相反數,0的絕對值的0、得出這個結論后順勢提問:數a的絕對值是多少?進行分組討論,在討論一段時間后提醒學生剛剛的結論。

4、在每組的回答后,和學生一起總結出數a的絕對值,分三種情況,當a大于0,絕對值為a;等于0時,為0;小于0時,為-a、這三種情況的分析后,學生就充分理解了絕對值的含義。

5、回到大家畫的數軸,大家很容易比較出原點0右邊的正數的大小,那么左邊的.負數的大小怎么比較呢?提出這個問題后不急于讓學生回答,而是把學生引入一個情境,即把數軸上的數都看成是溫度,比較溫度的大小就比較容易,然后回到數的比較。在這個引導后,得出的結論是:離0越遠的數,越小;也可以說絕對值越大的負數越小。

(三)鞏固練習

在PPT上呈現一些數的絕對值,以及一些負數、正數、絕對值之間的比較的題。

(四)小結

引導學生總結出今天的學習內容,培養學生的歸納以及邏輯思維能力。

(五)布置作業

布置作業不是目的,目的是學生能夠更好的掌握并運用本節課的內容。所以我會布置這樣一個作業:請學生回家可以在父母的幫助下,找出南方和北方分別三個城市的溫度,比較這些溫度的大小,并寫出每個溫度的絕對值并進行比較。

(六)說板書設計

為了學生能夠更清晰的掌握內容,我用寫關鍵詞的方式來有邏輯性的呈現我的板書。

以上就是我說課的全部內容,謝謝!

初中數學教案設計電子版篇10

教材分析:

一元二次方程根與系數的關系的知識內容主要是以前一單元中的求根公式為基礎的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根與系數的關系,以及以數x1、x2為根的一元二次方程的求方程模型。然后通過4個例題介紹了利用根與系數的關系簡化一些計算的知識。

學情分析:

1.學生已學習用求根公式法解一元二次方程。

2.本課的教學對象是九年級學生,學生對事物的認識多是直觀、形象的,他們所注意的多是事物外部的、直接的、具體形象的特征。

3.在教學初始,出示一些學生所熟悉和感興趣的東西,結合一元二次方程求根公式使他們在現代化的教學模式和傳統的教學模式相結合的基礎上掌握一元二次方程根與系數的關系。

教學目標:

1、知識目標:要求學生在理解的基礎上掌握一元二次方程根與系數的關系式,能運用根與系數的關系由已知一元二次方程的一個根求出另一個根與未知數,會求一元二次方程兩個根的倒數和與平方數,兩根之差。

2、能力目標:通過韋達定理的教學過程,使學生經歷觀察、實驗、猜想、證明等數學活動過程,發展推理能力,能有條理地、清晰地闡述自己的觀點,進一步培養學生的創新意識和創新精神。

3、情感目標:通過情境教學過程,激發學生的求知欲望,培養學生積極學習數學的態度。體驗數學活動中充滿著探索與創造,體驗數學活動中的成功感,建立自信心。

教學重難點:

1、重點:一元二次方程根與系數的關系。

2、難點:讓學生從具體方程的根發現一元二次方程根與系數之間的關系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關系,比較抽象,學生真正掌握有一定的難度,是教學的難點。

板書設計:

一元二次方程根與系數的關系如果ax+bx+c=0(a≠0)的兩根是x1,x2,那么x1+x2=,x1x2=。

問題6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用嗎?①二次項系數a是否為零,決定著方程是否為二次方程;②當a≠0時,b=0,a、c異號,方程兩根互為相反數;③當a≠0時,△=b-4ac可判定根的情況;④當a≠0,b-4ac≥0時,x1+x2=,x1x2=。⑤當a≠0,c=0時,方程必有一根為0。

學生學習活動評價設計:

本節課充分讓學生分析、觀察、提高了學生的歸納能力及推理論證的能力。

教學反思:

1.一元二次方程根與系數的關系的推導是在求根公式的基礎上進行。它深化了兩根的和與積同系數之間的關系,是我們今后繼續研究一元二次方程根的情況的主要工具,必須熟記,為進一步使用打下基礎。

2.以一元二次方程根與系數的關系的探索與推導,向學生展示認識事物的一般規律,提倡積極思維,勇于探索的精神,借此鍛煉學生分析、觀察、歸納的能力及推理論證的能力。

3.一元二次方程的根與系數的關系,在中考中多以填空,選擇,解答題的形式出現,考查的頻率較高,也常與幾何、二次函數等問題結合考查,是考試的熱點,它是方程理論的重要組成部分。

4.使學生體會解題方法的多樣性,開闊解題思路,優化解題方法,增強擇優能力。力求讓學生在自主探索和合作交流的過程中進行學習,獲得數學活動經驗,教師應注意引導。

初中數學教案設計電子版篇11

教學目標

1、知識與技能

能應用所學的函數知識解決現實生活中的問題,會建構函數“模型”。

2、過程與方法

經歷探索一次函數的應用問題,發展抽象思維。

3、情感、態度與價值觀

培養變量與對應的思想,形成良好的函數觀點,體會一次函數的應用價值。

重、難點與關鍵

1、重點:一次函數的應用。

2、難點:一次函數的應用。

3、關鍵:從數形結合分析思路入手,提升應用思維。

教學方法

采用“講練結合”的教學方法,讓學生逐步地熟悉一次函數的.應用。

教學過程

一、范例點擊,應用所學

【例5】小芳以200米/分的速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫出這段時間里她的跑步速度y(單位:米/分)隨跑步時間x(單位:分)變化的函數關系式,并畫出函數圖象。

y=

【例6】A城有肥料200噸,B城有肥料300噸,現要把這些肥料全部運往C、D兩鄉。從A城往C、D兩鄉運肥料的費用分別為每噸20元和25元;從B城往C、D兩鄉運肥料的費用分別為每噸15元和24元,現C鄉需要肥料240噸,D鄉需要肥料260噸,怎樣調運總運費最少?

解:設總運費為y元,A城往運C鄉的肥料量為x噸,則運往D鄉的肥料量為(200—x)噸。B城運往C、D鄉的肥料量分別為(240—x)噸與(60+x)噸。y與x的關系式為:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。

由圖象可看出:當x=0時,y有最小值10040,因此,從A城運往C鄉0噸,運往D鄉200噸;從B城運往C鄉240噸,運往D鄉60噸,此時總運費最少,總運費最小值為10040元。

拓展:若A城有肥料300噸,B城有肥料200噸,其他條件不變,又應怎樣調運?

二、隨堂練習,鞏固深化

課本P119練習。

三、課堂總結,發展潛能

由學生自我評價本節課的表現。

四、布置作業,專題突破

課本P120習題14.2第9,10,11題。

板書設計

1、一次函數的應用例:

初中數學教案設計電子版篇12

教學目標

知識與技能:

了解勾股定理的一些證明方法,會簡單應用勾股定理解決問題

過程與方法:

在充分觀察、歸納、猜想的基礎上,探究勾股定理,在探究的過程中,發展合情推理,體會數形結合、從特殊到一般等數學思想。

情感態度價值觀:

通過對我國古代研究勾股定理的成就介紹,培養學生的民族自豪感。

教學過程

1、創設情境

問題1國際數學家大會是最高水平的全球性數學學科學術會議,被譽為數學界的“奧運會”。2002年在北京召開了第24屆國際數學家大會。下圖就是大會會徽的圖案。你見過這個圖案嗎?它由哪些我們學習過的基本圖形組成?這個圖案有什么特別的含義?

師生活動:教師引導學生尋找圖形中的直角三角形和正方形等,并引導學生發現直角三角形的全等關系,指出通過今天的學習,就能理解會徽圖案的含義。

設計意圖:本節課是本章的起始課,重視引言教學,從國際數學家大會的會徽說起,設置懸念,引入課題。

2、探究勾股定理

觀看洋蔥數學中關于勾股定理引入的視頻,讓我們一起走進神奇的數學世界

問題2相傳2500多年前,畢達哥拉斯有一次在朋友家作客時,發現朋友家用轉鋪成的地面圖案反應了直角三角形三邊的某種數量關系,請你觀察下圖,你從中發現了什么數量關系?

師生活動:學生先獨立觀察思考一分鐘后,小組交流合作分析圖形中兩個藍色正方形與橙色正方形有哪些數量關系,教師參與學生的討論

追問:由這三個正方形的邊長構成的等腰直角三角形三條邊長之間又有怎么樣的關系?

師生活動:教師引導學生發現正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。

設計意圖:從最特殊的等腰直角三角形入手,便于學生觀察得到結論

問題3:數學研究遵循從特殊到一般的數學思想,既然我們得到了等腰直角三角形三邊的這種特殊的數量關系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數量關系也同樣成立。

師生活動:學生獨立思考后小組討論,難點是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結得出可以通過割、補兩種方法,求出其面積。

初中數學教案設計電子版篇13

一、教學目標:

1、理解二元一次方程及二元一次方程的解的概念;

2、學會求出某二元一次方程的幾個解和檢驗某對數值是否為二元一次方程的解;

3、學會把二元一次方程中的一個未知數用另一個未知數的一次式來表示;

4、在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。

二、教學重點、難點:

重點:二元一次方程的意義及二元一次方程的解的概念。

難點:把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程。

三、教學方法與教學手段:

通過與一元一次方程的比較,加強學生的類比的思想方法;通過“合作學習”,使學生認識數學是根據實際的需要而產生發展的觀點。

四、教學過程:

1、情景導入:

新聞鏈接:x70歲以上老人可領取生活補助。

得到方程:80a+150b=902880、

2、新課教學:

引導學生觀察方程80a+150b=902880與一元一次方程有異同?

得出二元一次方程的概念:含有兩個未知數,并且所含未知數的項的次數都是1次的方程叫做二元一次方程。

做一做:

(1)根據題意列出方程:

①小明去看望奶奶,買了5kg蘋果和3kg梨共花去23元,分別求蘋果和梨的單價、設蘋果的單價x元/kg,梨的單價y元/kg;

②在高速公路上,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米,如果設轎車的速度是a千米/小時,卡車的速度是b千米/小時,可得方程:

(2)課本P80練習2、判定哪些式子是二元一次方程方程。

合作學習:

活動背景愛心滿人間——記求是中學“學雷鋒、關愛老人”志愿者活動。

問題:參加活動的36名志愿者,分為勞動組和文藝組,其中勞動組每組3人,文藝組每組6人、團支書擬安排8個勞動組,2個文藝組,單從人數上考慮,此方案是否可行?為什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右兩邊有沒有相等?由學生檢驗得出代入方程后,能使方程兩邊相等、得出二元一次方程的解的概念:使二元一次方程兩邊的值相等的&39;一對未知數的值叫做二元一次方程的一個解。

并提出注意二元一次方程解的書寫方法。

3、合作學習:

給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數)的值,女同學馬上給出對應的x的值;接下來男女同學互換、(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法、提問:給出x的值,計算y的值時,y的系數為多少時,計算y最為簡便?

出示例題:已知二元一次方程x+2y=8。

(1)用關于y的代數式表示x;

(2)用關于x的代數式表示y;

(3)求當x=2,0,—3時,對應的y的值,并寫出方程x+2y=8的三個解。

(當用含x的一次式來表示y后,再請同學做游戲,讓同學體會一下計算的速度是否要快)

4、課堂練習:

(1)已知:5xm—2yn=4是二元一次方程,則m+n=;

(2)二元一次方程2x—y=3中,方程可變形為y=當x=2時,y=;

5、你能解決嗎?

小紅到郵局給遠在農村的爺爺寄掛號信,需要郵資3元8角、小紅有票額為6角和8角的郵票若干張,問各需要多少張這兩種面額的郵票?說說你的方案。

6、課堂小結:

(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);

(2)二元一次方程解的不定性和相關性;

(3)會把二元一次方程化為用一個未知數的代數式表示另一個未知數的形式。

7、布置作業:

初中數學教案設計電子版篇14

學習目標

1、學會用公式法因式法分解

2、綜合運用提取公式法、公式法分解因式

學習重難點重點:

完全平方公式分解因式.

難點:綜合運用兩種公式法因式分解

自學過程設計

完全平方公式:

完全平方公式的逆運用:

做一做:

1.(1)16x2-8x+_______=(4x-1)2;

(2)_______+6x+9=(x+3)2;

(3)16x2+_______+9y2=(4x+3y)2;

(4)(a-b)2-2(a-b)+1=(______-1)2.

2.在代數式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號)

3.下列因式分解正確的是()

A.x2+y2=(x+y)2B.x2-xy+x2=(x-y)2

C.1+4x-4x2=(1-2x)2D.4-4x+x2=(x-2)2

4.分解因式:(1)x2-22x+121(2)-y2-14y-49(3)(a+b)2+2(a+b)+1

5.計算:20062-40102006+20052=___________________.

6.若x+y=1,則x2+xy+y2的值是_________________.

想一想

你還有哪些地方不是很懂?請寫出來。

____________________________________________________________________________________預習展示一:

1.判別下列各式是不是完全平方式.

2、把下列各式因式分解:

(1)-x2+4xy-4y2

(2)3ax2+6axy+3ay2

(3)(2x+y)2-6(2x+y)+9

應用探究:

1、用簡便方法計算

49.92+9.98+0.12

拓展提高:

(1)(a2+b2)(a2+b210)+25=0求a2+b2

(2)4x2+y2-4xy-12x+6y+9=0

求x、y關系

(3)分解因式:m4+4

教后反思 考察利用公式法因式分解的題目不會很難,但是需要學生記住公式的形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的,但是這里有用到實際中去的例子,對學生來說會難一些。

初中數學教案設計電子版篇15

相反數

一、學習目標

1了解相反數的概念。

2給一個數,能求出它的相反數。

3根據a的相反數是-a,能把多重符號化成單一符號。

二、教學過程

師:請同學們畫一條數軸,在數軸上找出表示+6和-6的點,看一看表示這兩個數的點有什么特點,這兩個數本身有什么特點。先獨立思考,然后在小組里交流。

生:人人動用手畫數軸,獨立思考后,在小組內進行交流。

師:深入了解各小組的交流情況,討論結束后,提問1、2人,幫助全班同學理清思考問題的思路。

師:請同學們閱讀課本,知道什么叫相反數,給出一個數能求出它的相反數。

生:閱讀課本第59頁,并完成練習一第(1)~(4)題。

師:提問檢查學生的學習情況,強調“0的相反數是0”也是相反數定義的`一部分。

師:請同學們先想一想,a可以表示一個什么數,a與-a有什么關系。然后閱讀課本第60頁,并完成剩余的練習題,由小組長負責檢查練習情況。

師:認真了解各小組的學習情況,特別是對簡化符號的題和學習困難的學生,要重點對待。

生:認真思考,閱讀課本,完成練習。小組長、教師對學習困難生及時進行輔導。

師:請同學們先小結一下本節課的學習內容。然后,看一看習題2.3中,哪些題你能不動筆說出結果,請在四人小組里互相說一說。(除A組第2題外都可以直接說出結果)

生:小結。完成習題1.3中的有關練習。

練習

1在下列各式中分別填上適當的符號,使等號左右兩端的數相等;

-(+19)=____________19;

____________10.2=+(+10.2);

____________(+12)=-12;

____________(-25)=+25。

2把下面的多重符號化成單一符號:

-[-(-0.3)]=____________;

-[-(+4)]=____________;

+[+(+5)]=____________;

-[+(-50)]=____________。

3根據a+(-a)=0,那么(-8)+x=0可得x=________________________;由y+(+3.75)=0,可得y=____________。

4下面的說法對不對?請舉列說明。

(1)一個有理數的相反數的相反數就是這個有理數本身。

(2)一個有理數的相反數一定比原來的有理數小。

(3)-a是一個負數。

作業

在數軸上記出2,-4.5,0各數與它們的相反數,并指出表示這些數的點離開原點的距離是多少。

初中數學教案設計電子版篇16

活動目標:

1、通過觀察、操作認識三角形的特征,認識三角形。

2、培養幼兒的觀察能力和操作能力。

活動準備:

1、三角形圖形、畫點的底圖、水筆、三角形組合的掛圖、教室周圍布置三角形的實物。

2、正方形的蠟光紙、剪刀、膠水、圖畫紙。

活動過程:

1、導入:有個圖形寶寶來我們班做客,你們想知道是什么圖形寶寶嗎?

2、出示三角形,讓幼兒說出三角形的名稱,然后讓幼兒找出教室周圍與三角形相似的實物。

3、提出問題:“你怎么知道它們是和三角形寶寶一樣的圖形?”引導幼兒用手摸摸三角形的角和邊,體會三角形的外形——三個角,三條邊。

4、出示三角形組合的掛圖:

1)引導幼兒找出掛圖的圖案都是三角形組成的。

2)請幼兒說說怎么知道是三角形組成的。

5、出示左圖,請幼兒用直線與點連接起來成三角形。

6、老師與小朋友一起講評連接三角形的情況。

7、剪貼花:

1)出示范例:引導幼兒觀察老師的花是用什么圖形粘貼的。

2)提出問題:沒有三角形的`蠟光紙怎么辦?(引導幼兒用正方形折剪成三角形進行粘貼。

初中數學教案設計電子版篇17

一元二次方程的應用(一)

一、素質教育目標

(-)知識教學點:使學生會用列一元二次方程的方法解有關數與數字之間關系的應用題.

(二)能力訓練點:通過列方程解應用問題,進一步提高分析問題、解決問題的能力.

二、教學重點、難點

1.教學重點:會用列一元二次方程的方法解有關數與數字之間的關系的應用題.

2.教學難點 :根據數與數字關系找等量關系.

三、教學步驟 

(一)明確目標

(二)整體感知:

(三)重點、難點的學習和目標完成過程

1.復習提問

(1)列方程解應用問題的步驟?

①審題,②設未知數,③列方程,④解方程,⑤答.

(2)兩個連續奇數的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整數).

2.例1 兩個連續奇數的積是323,求這兩個數.

分析:(1)兩個連續奇數中較大的奇數與較小奇數之差為2,(2)設元(幾種設法) .設較小的奇數為x,則另一奇數為x+2, 設較小的奇數為x-1,則另一奇數為x+1; 設較小的奇數為2x-1,則另一個奇數2x+1.

以上分析是在教師的引導下,學生回答,有三種設法,就有三種列法,找三位學生使用三種方法,然后進行比較、鑒別,選出最簡單解法.

解法(一)

設較小奇數為x,另一個為x+2,

據題意,得x(x+2)=323.

整理后,得x2+2x-323=0.

解這個方程,得x1=17,x2=-19.

由x=17得x+2=19,由x=-19得x+2=-17,

答:這兩個奇數是17,19或者-19,-17.

解法(二)

設較小的奇數為x-1,則較大的奇數為x+1.

據題意,得(x-1)(x+1)=323.

整理后,得x2=324.

解這個方程,得x1=18,x2=-18.

當x=18時,18-1=17,18+1=19.

當x=-18時,-18-1=-19,-18+1=-17.

答:兩個奇數分別為17,19;或者-19,-17.

解法(三)

設較小的奇數為2x-1,則另一個奇數為2x+1.

據題意,得(2x-1)(2x+1)=323.

整理后,得4x2=324.

解得,2x=18,或2x=-18.

當2x=18時,2x-1=18-1=17;2x+1=18+1=19.

當2x=-18時,2x-1=-18-1=-19;2x+1=-18+1=-17

答:兩個奇數分別為17,19;-19,-17.

引導學生觀察、比較、分析解決下面三個問題:

1.三種不同的設元,列出三種不同的方程,得出不同的x值,影響最后的結果嗎?

2.解題中的x出現了負值,為什么不舍去?

答:奇數、偶數是在整數范圍內討論,而整數包括正整數、零、負整數.3.選出三種方法中最簡單的一種.

練習

1.兩個連續整數的積是210,求這兩個數.

2.三個連續奇數的和是321,求這三個數.

3.已知兩個數的和是12,積為23,求這兩個數.

學生板書,練習,回答,評價,深刻體會方程的思想方法.例2 有一個兩位數等于其數字之積的3倍,其十位數字比個位數字小2,求這兩位數.

分析:數與數字的關系是:

兩位數=十位數字×10+個位數字.

三位數=百位數字×100+十位數字×10+個位數字.

解:設個位數字為x,則十位數字為x-2,這個兩位數是10(x-2)+x.

據題意,得10(x-2)+x=3x(x-2),

整理,得3x2-17x+20=0,

當x=4時,x-2=2,10(x-2)+x=24.

答:這個兩位數是24.

練習1 有一個兩位數,它們的十位數字與個位數字之和為8,如果把十位數字與個位數字調換后,所得的兩位數乘以原來的兩位數就得1855,求原來的兩位數.(35,53)

2.一個兩位數,其兩位數字的差為5,把個位數字與十位數字調換后所得的數與原數之積為976,求這個兩位數.

教師引導,啟發,學生筆答,板書,評價,體會.

(四)總結,擴展

1奇數的表示方法為2n+1,2n-1,……(n為整數)偶數的表示方法是2n(n是整數),連續奇數(偶數)中,較大的與較小的差為2,偶數、奇數可以是正數,也可以是負數.

數與數字的關系

兩位數=(十位數字×10)+個位數字.

三位數=(百位數字×100)+(十位數字×10)+個位數字.

……

2.通過本節課內容的比較、鑒別、分析、綜合,進一步提高分析問題、解決問題的能力,深刻體會方程的思想方法在解應用問題中的用途.

四、布置作業 

教材P.42中A1、2、

一元二次方程的應用(一)

一、素質教育目標

(-)知識教學點:使學生會用列一元二次方程的方法解有關數與數字之間關系的應用題.

(二)能力訓練點:通過列方程解應用問題,進一步提高分析問題、解決問題的能力.

二、教學重點、難點

1.教學重點:會用列一元二次方程的方法解有關數與數字之間的關系的應用題.

2.教學難點 :根據數與數字關系找等量關系.

三、教學步驟 

(一)明確目標

(二)整體感知:

(三)重點、難點的學習和目標完成過程

1.復習提問

(1)列方程解應用問題的步驟?

①審題,②設未知數,③列方程,④解方程,⑤答.

(2)兩個連續奇數的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整數).

2.例1 兩個連續奇數的積是323,求這兩個數.

分析:(1)兩個連續奇數中較大的奇數與較小奇數之差為2,(2)設元(幾種設法) .設較小的奇數為x,則另一奇數為x+2, 設較小的奇數為x-1,則另一奇數為x+1; 設較小的奇數為2x-1,則另一個奇數2x+1.

以上分析是在教師的引導下,學生回答,有三種設法,就有三種列法,找三位學生使用三種方法,然后進行比較、鑒別,選出最簡單解法.

解法(一)

設較小奇數為x,另一個為x+2,

據題意,得x(x+2)=323.

整理后,得x2+2x-323=0.

解這個方程,得x1=17,x2=-19.

由x=17得x+2=19,由x=-19得x+2=-17,

答:這兩個奇數是17,19或者-19,-17.

解法(二)

設較小的奇數為x-1,則較大的奇數為x+1.

據題意,得(x-1)(x+1)=323.

整理后,得x2=324.

解這個方程,得x1=18,x2=-18.

當x=18時,18-1=17,18+1=19.

當x=-18時,-18-1=-19,-18+1=-17.

答:兩個奇數分別為17,19;或者-19,-17.

解法(三)

設較小的奇數為2x-1,則另一個奇數為2x+1.

據題意,得(2x-1)(2x+1)=323.

整理后,得4x2=324.

解得,2x=18,或2x=-18.

當2x=18時,2x-1=18-1=17;2x+1=18+1=19.

當2x=-18時,2x-1=-18-1=-19;2x+1=-18+1=-17

答:兩個奇數分別為17,19;-19,-17.

引導學生觀察、比較、分析解決下面三個問題:

1.三種不同的設元,列出三種不同的方程,得出不同的x值,影響最后的結果嗎?

2.解題中的x出現了負值,為什么不舍去?

答:奇數、偶數是在整數范圍內討論,而整數包括正整數、零、負整數.3.選出三種方法中最簡單的一種.

練習

1.兩個連續整數的積是210,求這兩個數.

2.三個連續奇數的和是321,求這三個數.

3.已知兩個數的和是12,積為23,求這兩個數.

學生板書,練習,回答,評價,深刻體會方程的思想方法.例2 有一個兩位數等于其數字之積的3倍,其十位數字比個位數字小2,求這兩位數.

分析:數與數字的關系是:

兩位數=十位數字×10+個位數字.

三位數=百位數字×100+十位數字×10+個位數字.

解:設個位數字為x,則十位數字為x-2,這個兩位數是10(x-2)+x.

據題意,得10(x-2)+x=3x(x-2),

整理,得3x2-17x+20=0,

當x=4時,x-2=2,10(x-2)+x=24.

答:這個兩位數是24.

練習1 有一個兩位數,它們的十位數字與個位數字之和為8,如果把十位數字與個位數字調換后,所得的兩位數乘以原來的兩位數就得1855,求原來的兩位數.(35,53)

2.一個兩位數,其兩位數字的差為5,把個位數字與十位數字調換后所得的數與原數之積為976,求這個兩位數.

教師引導,啟發,學生筆答,板書,評價,體會.

(四)總結,擴展

1奇數的表示方法為2n+1,2n-1,……(n為整數)偶數的表示方法是2n(n是整數),連續奇數(偶數)中,較大的與較小的差為2,偶數、奇數可以是正數,也可以是負數.

數與數字的關系

兩位數=(十位數字×10)+個位數字.

三位數=(百位數字×100)+(十位數字×10)+個位數字.

……

2.通過本節課內容的比較、鑒別、分析、綜合,進一步提高分析問題、解決問題的能力,深刻體會方程的思想方法在解應用問題中的用途.

四、布置作業 

教材P.42中A1、2、

初中數學教案設計電子版篇18

教學目標

1.了解代數和的概念,理解有理數加減法可以互相轉化,會進行加減混合運算;

2.通過學習一切加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想;

3.通過加法運算練習,培養學生的運算能力。

教學建議

(一)重點、難點分析

本節課的重點是依據運算法則和運算律準確迅速地進行有理數的加減混合運算,難點是省略加號與括號的代數和的計算.

由于減法運算可以轉化為加法運算,所以加減混合運算實際上就是有理數的加法運算。了解運算符號和性質符號之間的關系,把任何一個含有有理數加、減混合運算的算式都看成和式,這是因為有理數加、減混合算式都看成和式,就可靈活運用加法運算律,簡化計算.

(二)知識結構

(三)教法建議

1.通過習題,復習、鞏固有理數的加、減運算以及加減混合運算的法則與技能,講課前教師要認真總結、分析學生在進行有理數加、減混合運算時常犯的錯誤,以便在這節課分析習題時,有意識地幫助學生改正.

2.關于“去括號法則”,只要學生了解,并不要求追究所以然.

3.任意含加法、減法的算式,都可把運算符號理解為數的性質符號,看成省略加號的和式。這時,稱這個和式為代數和。再例如

-3-4表示-3、-4兩數的代數和,

-4+3表示-4、+3兩數的代數和,

3+4表示3和+4的代數和

等。代數和概念是掌握有理數運算的一個重要概念,請老師務必給予充分注意。

4.先把正數與負數分別相加,可以使運算簡便。

5.在交換加數的位置時,要連同前面的符號一起交換。如

12-5+7應變成12+7-5,而不能變成12-7+5。

教學設計示例一

有理數的加減混合運算(一)

一、素質教育目標

(一)知識教學點

1.了解:代數和的概念.

2.理解:有理數加減法可以互相轉化.

3.應用:會進行加減混合運算.

(二)能力訓練點

培養學生的口頭表達能力及計算的準確能力.

(三)德育滲透點

通過學習一切加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想.

(四)美育滲透點

學習了本節課就知道一切加減法運算都可以統一成加法運算.體現了數學的統一美.

二、學法引導

1.教學方法:采用嘗試指導法,體現學生主體地位,每一環節,設置一定題目進行鞏固練

習,步步為營,分散難點,解決關鍵問題.

2.學生寫法:練習→尋找簡單的一般性的方法→練習鞏固.

三、重點、難點、疑點及解決辦法

1.重點:把加減混合運算算式理解為加法算式.

2.難點:把省略括號和的形式直接按有理數加法進行計算.

四、課時安排

1課時

五、教具學具準備

投影儀或電腦、自制膠片.

六、師生互動活動設計

教師提出問題學生練習討論,總結歸納加減混合運算的一般步驟,教師出示練習題,學生練習反饋.

七、教學步驟

(一)創設情境,復習引入

師:前面我們學習了有理數的加法和減法,同學們學得都很好!請同學們看以下題目:-9+(+6);(-11)-7.

師:(1)讀出這兩個算式.

(2)“+、-”讀作什么?是哪種符號?

“+、-”又讀作什么?是什么符號?

學生活動:口答教師提出的問題.

師繼續提問:(1)這兩個題目運算結果是多少?

(2)(-11)-7這題你根據什么運算法則計算的?

學生活動:口答以上兩題(教師訂正).

師小結:減法往往通過轉化成加法后來運算.

【教法說明】為了進行有理數的`加減混合運算,必須先對有理數加法,特別是有理數減法的題目進行復習,為進一步學習加減混合運算奠定基礎.這里特別指出“+、-”有時表示性質符號,有時是運算符號,為在混合運算時省略加號、括號時做必要的準備工作.

師:把兩個算式-9+(+6)與(-11)-7之間加上減號就成了一個題目,這個題目中既有加法又有減法,就是我們今天學習的有理數的加減混合運算.(板書課題2.7有理數的加減混合運算(1))

教學說明:由復習的題目巧妙地填“-”號,就變成了今天將學的加減混合運算內容,使學生更形象、更深刻地明白了有理數加減混合運算題目組成.

(二)探索新知,講授新課

1.講評(-9)+(-6)-(-11)-7.

(1)省略括號和的形式

師:看到這個題你想怎樣做?

學生活動:自己在練習本上計算.

教師針對學生所做的方法區別優劣.

【教法說明】題目出示后,教師不急于自己講評,而是讓學生嘗試,給了學生一個展示自己的機會,這時,有的學生可能是按從左到右的順序運算,有的同學可能是先把減法都轉化成了加法,然后按加法的計算法則再計算??這樣在不同的方法中,學生自己就會尋找到簡單的、一般性的方法.

師:我們對此類題目經常采用先把減法轉化為加法,這時就成了-9,+6,+11,-7的和,加號通常可以省略,括號也可以省略,即:

原式=(-9)+(+6)+(+11)+(-7)

=-9+6+11-7.

提出問題:雖然加號、括號省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以這個算式可以讀成??

學生活動:先自己練習嘗試用兩種讀法讀,口答(教師糾正).

【教法說明】教師根據學生所做的方法,及時指出最具代表性的方法來給學生指明方向,在把算式寫成省略括號代數和的形式后,通過讓學生練習兩種讀法,可以加深對此算式的理解,以此來訓練學生的觀察能力及口頭表達能力.

鞏固練習:(出示投影1)

1.把下列算式寫成省略括號和的形式,并把結果用兩種讀法讀出來.

(1)(+9)-(+10)+(-2)-(-8)+3;

(2)+()-()-().

2.判斷

式子-7+1-5-9的正確讀法是().

A.負7、正1、負5、負9;

B.減7、加1、減5、減9;

C.負7、加1、負5、減9;

D.負7、加1、減5、減9;

學生活動:1題兩個學生板演,兩個學生用兩種讀法讀出結果,其他同學自行演練,然后同桌讀出互相糾正,2題搶答.

【教法說明】這兩題旨意在鞏固怎樣把加減混合運算題目都轉化成加法運算寫成代數和的形式,這里特別注意了代數和形式的兩種讀法.

2.用加法運算律計算出結果

師:既然算式能看成幾個數的和,我們可以運用加法的運算律進行計算,通常同號兩數放在一起分別相加.

-9+6+11-7

=-9-7+6+11.

學生活動:按教師要求口答并讀出結果.

鞏固練習:(出示投影2)

填空:

1.-4+7-4=-______________-_______________+_______________

2.+6+9-15+3=_____________+_____________+_____________-_____________

3.-9-3+2-4=____________9____________3____________4____________2

4.____________________________________

學生活動:討論后回答.

【教法說明】學生運用加法交換律時,很可能產生“-9+7+11-6”這樣的錯誤,教師先讓學生自己去做,然后糾正,又做一組鞏固練習,使學生牢固掌握運用加法運算律把同號數放在一起時,一定要連同前面的符號一起交換這一知識點.

師:-9-7+6+11怎樣計算?

學生活動:口答

[板書]

-9-7+6+11

=-16+17

=1

鞏固練習:(出示投影3)

1.計算(1)-1+2-3-4+5;

(2).

2.做完前面兩個題目計算:(1)(+9)-(+10)+(-2)-(-8)+3;

(2).

學生活動:四個同學板演,其他同學在練習本上做.

【教法說明】針對一道例題分成三部分,每一部分都有一組相應的鞏固練習,這樣每一步學生都掌握得較牢固,這時教師一定要總結有理數加減混合運算的方法,使分散的知識有相對的集中.

師小結:有理數加減法混合運算的題目的步驟為:

1.減法轉化成加法;

2.省略加號括號;

3.運用加法交換律使同號兩數分別相加;

4.按有理數加法法則計算.

(三)反饋練習

(出示投影4)

計算:(1)12-(-18)+(-7)-15;

(2).

學生活動:可采用同桌互相測驗的方法,以達到糾正錯誤的目的.

【教法說明】這兩個題目是本節課的重點.采用測驗的方式來達到及時反饋.

(四)歸納小結

師:1.怎樣做加減混合運算題目?

2.省略括號和的形式的兩種讀法?

學生活動:口答.

【教法說明】小結不是教師單純的總結,而是讓學生參與回答,在學生思考回答的過程中將本節的重點知識納入知識系統.

八、隨堂練習

1.把下列各式寫成省略括號的和的形式

(1)(-5)+(+7)-(-3)-(+1);

(2)10+(-8)-(+18)-(-5)+(+6).

2.說出式子-3+5-6+1的兩種讀法.

3.計算

(1)0-10-(-8)+(-2);

(2)-4.5+1.8-6.5+3-4;

(3).

九、布置作業

(一)必做題:1.計算:(1)-8+12-16-23;

(2);

(3)-40-28-(-19)+(-24)-(-32);

(4)-2.7+(-3.2)-(1.8)-2.2;

(二)選做題:(1)當時,,,哪個最大,哪個最小?

(2)當時,,,哪個最大,哪個最小?

十、板書設計

初中數學教案設計電子版篇19

【教學目標】

1、了解因式分解的概念和意義;

2、認識因式分解與整式乘法的相互關系——相反變形,并會運用它們之間的相互關系尋求因式分解的方法。

【教學重點、難點】

重點是因式分解的概念,難點是理解因式分解與整式乘法的相互關系,并運用它們之間的相互關系尋求因式分解的方法。

【教學過程】

㈠、情境導入

看誰算得快:(搶答)

(1)若a=101,b=99,則a2-b2=___________;

(2)若a=99,b=-1,則a2-2ab+b2=____________;

(3)若x=-3,則20x2+60x=____________。

㈡、探究新知

1、請每題答得最快的.同學談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

(2)a2-2ab+b2=(a-b)2=(99+1)2=10000;

(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2=(a-b)2,20x2+60x=20x(x+3),找出它們的特點。(等式的左邊是一個什么式子,右邊又是什么形式?)

3、類比小學學過的因數分解概念,得出因式分解概念。(學生概括,老師補充。)

板書課題:§6.1因式分解

因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。

㈢、前進一步

1、讓學生繼續觀察:(a+b)(a-b)=a2-b2,(a-b)2=a2-2ab+b2,20x(x+3)=20x2+60x,它們是什么運算?與因式分解有何關系?它們有何聯系與區別?

2、因式分解與整式乘法的關系:

因式分解

結合:a2-b2(a+b)(a-b)

整式乘法

說明:從左到右是因式分解其特點是:由和差形式(多項式)轉化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉化成和差形式(多項式)。

結論:因式分解與整式乘法的相互關系——相反變形。

㈣、鞏固新知

1、下列代數式變形中,哪些是因式分解?哪些不是?為什么?

(1)x2-3x+1=x(x-3)+1;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

(3)2m(m-n)=2m2-2mn;(4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

(6)x2-4+3x=(x-2)(x+2)+3x;(7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

2、你能寫出整式相乘(其中至少一個是多項式)的兩個例子,并由此得到相應的兩個多項式的因式分解嗎?把結果與你的同伴交流。

㈤、應用解釋

例檢驗下列因式分解是否正確:

(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。

練習計算下列各題,并說明你的算法:(請學生板演)

(1)872+87×13

(2)1012-992

㈥、思維拓展

1.若x2+mx-n能分解成(x-2)(x-5),則m=,n=

2.機動題:(填空)x2-8x+m=(x-4)(),且m=

㈦、課堂回顧

今天這節課,你學到了哪些知識?有哪些收獲與感受?說出來大家分享。

㈧、布置作業

作業本(1),一課一練

(九)教學反思:

初中數學教案設計電子版篇20

絕對值(一)

一、素質教育目標

(一)知識教學點

1.能根據一個數的絕對值表示“距離”,初步理解絕對值的概念.

2.給出一個數,能求它的絕對值.

(二)能力訓練點

在把絕對值的代數定義轉化成數學式子的過程中,培養學生運用數學轉化思想指導思維活動的能力.

(三)德育滲透點

1.通過解釋絕對值的幾何意義,滲透數形結合的思想.

2.從上節課學的相反數到本節的絕對值,使學生感知數學知識具有普遍的聯系性.

(四)美育滲透點

通過數形結合理解絕對值的意義和相反數與絕對值的聯系,使學生進一步領略數學的和諧美.

二、學法引導

1.教學方法:采用引導發現法,輔之以講授,學生討論,力求體現“教為主導,學為主體”的教學要求,注意創設問題情境,使學生自得知識,自覓規律.

2.學生學法:研究+6和-6的不同點和相同點→絕對值概念→鞏固練習→歸納小結(絕對值代數意義)

三、重點、難點、疑點及解決辦法

1.重點:給出一個數會求出它的絕對值.

2.難點:絕對值的幾何意義,代數定義的導出.

3.疑點:負數的絕對值是它的相反數.

四、課時安排

2課時

五、教具學具準備

投影儀(電腦)、三角板、自制膠片.

六、師生互動活動設計

教師提出+6和-6有何相同點和不同點,學生研究討論得出絕對值概念;教師出示練習題,學生討論解答歸納出絕對值代數意義.

七、教學步驟 

(一)創設情境,復習導入  

師:以上我們學習了數軸、相反數.在練習本上畫一個數軸,并標出表示-6,,0及它們的相反數的點.

學生活動:一個學生板演,其他學生在練習本上畫.

【教法說明】絕對值的學習是以相反數為基礎的,在學生動手畫數軸的同時,把相反數的知識進行復習,同時也為絕對值概念的引入奠定了基礎,這里老師不包辦代替,讓學生自己練習.

(二)探索新知,導入  新課

師:同學們做得非常好!-6與6是相反數,它們只有符號不同,它們什么相同呢?

學生活動:思考討論,很難得出答案.

師:在數軸上標出到原點距離是6個單位長度的點.

學生活動:一個學生板演,其他學生在練習本上做.

師:顯然A點(表示6的點)到原點的距離是6,B點(表示-6的點)到原點距離是6個單位長嗎?

學生活動:產生疑問,討論.

師:+6與-6雖然符號不同,但表示這兩個數的點到原點的距離都是6,是相同的.我們把這個距離叫+6與-6的絕對值.

[板書]2.4絕對值(1)

【教法說明】針對“互為相反數的兩數只有符號不同”提出問題:“它們什么相同呢?”在學生頭腦中產生疑問,激發了學生探索知識的欲望,但這時學生很難回答出此問題,這時教師注意引導再提出要求:“找到原點距離是6個單位長度的點”這時學生就有了一個攀登的臺階,自然而然地想到表示+6,-6的點到原點的距離相同,從而引出了絕對值的概念,這樣一環緊扣一環,

絕對值(一)

一、素質教育目標

(一)知識教學點

1.能根據一個數的絕對值表示“距離”,初步理解絕對值的概念.

2.給出一個數,能求它的絕對值.

(二)能力訓練點

在把絕對值的代數定義轉化成數學式子的過程中,培養學生運用數學轉化思想指導思維活動的能力.

(三)德育滲透點

1.通過解釋絕對值的幾何意義,滲透數形結合的思想.

2.從上節課學的相反數到本節的絕對值,使學生感知數學知識具有普遍的聯系性.

(四)美育滲透點

通過數形結合理解絕對值的意義和相反數與絕對值的聯系,使學生進一步領略數學的和諧美.

二、學法引導

1.教學方法:采用引導發現法,輔之以講授,學生討論,力求體現“教為主導,學為主體”的教學要求,注意創設問題情境,使學生自得知識,自覓規律.

2.學生學法:研究+6和-6的不同點和相同點→絕對值概念→鞏固練習→歸納小結(絕對值代數意義)

三、重點、難點、疑點及解決辦法

1.重點:給出一個數會求出它的絕對值.

2.難點:絕對值的幾何意義,代數定義的導出.

3.疑點:負數的絕對值是它的相反數.

四、課時安排

2課時

五、教具學具準備

投影儀(電腦)、三角板、自制膠片.

六、師生互動活動設計

教師提出+6和-6有何相同點和不同點,學生研究討論得出絕對值概念;教師出示練習題,學生討論解答歸納出絕對值代數意義.

七、教學步驟 

(一)創設情境,復習導入  

師:以上我們學習了數軸、相反數.在練習本上畫一個數軸,并標出表示-6,,0及它們的相反數的點.

學生活動:一個學生板演,其他學生在練習本上畫.

【教法說明】絕對值的學習是以相反數為基礎的,在學生動手畫數軸的同時,把相反數的知識進行復習,同時也為絕對值概念的引入奠定了基礎,這里老師不包辦代替,讓學生自己練習.

(二)探索新知,導入  新課

師:同學們做得非常好!-6與6是相反數,它們只有符號不同,它們什么相同呢?

學生活動:思考討論,很難得出答案.

師:在數軸上標出到原點距離是6個單位長度的點.

學生活動:一個學生板演,其他學生在練習本上做.

師:顯然A點(表示6的點)到原點的距離是6,B點(表示-6的點)到原點距離是6個單位長嗎?

學生活動:產生疑問,討論.

師:+6與-6雖然符號不同,但表示這兩個數的點到原點的距離都是6,是相同的.我們把這個距離叫+6與-6的絕對值.

[板書]2.4絕對值(1)

【教法說明】針對“互為相反數的兩數只有符號不同”提出問題:“它們什么相同呢?”在學生頭腦中產生疑問,激發了學生探索知識的欲望,但這時學生很難回答出此問題,這時教師注意引導再提出要求:“找到原點距離是6個單位長度的點”這時學生就有了一個攀登的臺階,自然而然地想到表示+6,-6的點到原點的距離相同,從而引出了絕對值的概念,這樣一環緊扣一環,

102882 主站蜘蛛池模板: 高低温万能试验机_拉力试验机_拉伸试验机-馥勒仪器科技(上海)有限公司 | 广州小程序开发_APP开发公司_分销商城系统定制_小跑科技 | 北京律师事务所_房屋拆迁律师_24小时免费法律咨询_云合专业律师网 | 建大仁科-温湿度变送器|温湿度传感器|温湿度记录仪_厂家_价格-山东仁科 | 服务器之家 - 专注于服务器技术及软件下载分享 | 搜活动房网—活动房_集装箱活动房_集成房屋_活动房屋 | 根系分析仪,大米外观品质检测仪,考种仪,藻类鉴定计数仪,叶面积仪,菌落计数仪,抑菌圈测量仪,抗生素效价测定仪,植物表型仪,冠层分析仪-杭州万深检测仪器网 | 中高频感应加热设备|高频淬火设备|超音频感应加热电源|不锈钢管光亮退火机|真空管烤消设备 - 郑州蓝硕工业炉设备有限公司 | 北京征地律师,征地拆迁律师,专业拆迁律师,北京拆迁律师,征地纠纷律师,征地诉讼律师,征地拆迁补偿,拆迁律师 - 北京凯诺律师事务所 | 北京印刷厂_北京印刷_北京印刷公司_北京印刷厂家_北京东爵盛世印刷有限公司 | 深圳展厅设计_企业展馆设计_展厅设计公司_数字展厅设计_深圳百艺堂 | 全钢实验台,实验室工作台厂家-无锡市辰之航装饰材料有限公司 | 转向助力泵/水泵/发电机皮带轮生产厂家-锦州华一精工有限公司 | 牛皮纸|牛卡纸|进口牛皮纸|食品级牛皮纸|牛皮纸厂家-伽立实业 | 广州展览制作|展台制作工厂|展览设计制作|展览展示制作|搭建制作公司 | 爆破器材运输车|烟花爆竹运输车|1-9类危险品厢式运输车|湖北江南专用特种汽车有限公司 | 防弹玻璃厂家_防爆炸玻璃_电磁屏蔽玻璃-四川大硅特玻科技有限公司 | 冷却塔降噪隔音_冷却塔噪声治理_冷却塔噪音处理厂家-广东康明冷却塔降噪厂家 | 蜘蛛车-登高车-高空作业平台-高空作业车-曲臂剪叉式升降机租赁-重庆海克斯公司 | 档案密集柜_手动密集柜_智能密集柜_内蒙古档案密集柜-盛隆柜业内蒙古密集柜直销中心 | 模具钢_高速钢_不锈钢-万利钢金属材料 | 铝合金线槽_铝型材加工_空调挡水板厂家-江阴炜福金属制品有限公司 | 防火门-专业生产甲级不锈钢钢质防火门厂家资质齐全-广东恒磊安防设备有限公司 | 海南在线 海南一家| 抓斗式清污机|螺杆式|卷扬式启闭机|底轴驱动钢坝|污水处理闸门-方源水利机械 | 广东青藤环境科技有限公司-水质检测 | 蜘蛛车-高空作业平台-升降机-高空作业车租赁-臂式伸缩臂叉装车-登高车出租厂家 - 普雷斯特机械设备(北京)有限公司 | 聚合氯化铝_喷雾聚氯化铝_聚合氯化铝铁厂家_郑州亿升化工有限公司 | 专业甜品培训学校_广东糖水培训_奶茶培训_特色小吃培训_广州烘趣甜品培训机构 | 工业机械三维动画制作 环保设备原理三维演示动画 自动化装配产线三维动画制作公司-南京燃动数字 聚合氯化铝_喷雾聚氯化铝_聚合氯化铝铁厂家_郑州亿升化工有限公司 | 【黄页88网】-B2B电子商务平台,b2b平台免费发布信息网 | PC构件-PC预制构件-构件设计-建筑预制构件-PC构件厂-锦萧新材料科技(浙江)股份有限公司 | 佛山商标注册_商标注册代理|专利注册申请_商标注册公司_鸿邦知识产权 | 高博医疗集团上海阿特蒙医院 | 超声骨密度仪-骨密度检测仪-经颅多普勒-tcd仪_南京科进实业有限公司 | 磁粉制动器|张力控制器|气胀轴|伺服纠偏控制器整套厂家--台灵机电官网 | 中国品牌门窗网_中国十大门窗品牌_著名门窗品牌 | 玻纤土工格栅_钢塑格栅_PP焊接_单双向塑料土工格栅_复合防裂布厂家_山东大庚工程材料科技有限公司 | CE认证_FCC认证_CCC认证_MFI认证_UN38.3认证-微测检测 CNAS实验室 | 安规_综合测试仪,电器安全性能综合测试仪,低压母线槽安规综合测试仪-青岛合众电子有限公司 | 自动螺旋上料机厂家价格-斗式提升机定制-螺杆绞龙输送机-杰凯上料机 |