小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教學設計 >

初中數學教案3000字

時間: 新華 教學設計

教案的編寫應注重簡潔明了、重點突出、條理清晰、可操作性強等特點,以便更好地指導教學工作。要怎么寫初中數學教案3000字呢?下面給大家分享一些初中數學教案3000字,供大家參考。

初中數學教案3000字篇1

教學目標

1.了解代數和的概念,理解有理數加減法可以互相轉化,會進行加減混合運算;

2.通過學習一切加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想;

3.通過加法運算練習,培養學生的運算能力。

教學建議

(一)重點、難點分析

本節課的重點是依據運算法則和運算律準確迅速地進行有理數的加減混合運算,難點是省略加號與括號的代數和的計算.

由于減法運算可以轉化為加法運算,所以加減混合運算實際上就是有理數的加法運算。了解運算符號和性質符號之間的關系,把任何一個含有有理數加、減混合運算的算式都看成和式,這是因為有理數加、減混合算式都看成和式,就可靈活運用加法運算律,簡化計算.

(二)知識結構

(三)教法建議

1.通過習題,復習、鞏固有理數的加、減運算以及加減混合運算的法則與技能,講課前教師要認真總結、分析學生在進行有理數加、減混合運算時常犯的錯誤,以便在這節課分析習題時,有意識地幫助學生改正.

2.關于“去括號法則”,只要學生了解,并不要求追究所以然.

3.任意含加法、減法的算式,都可把運算符號理解為數的性質符號,看成省略加號的和式。這時,稱這個和式為代數和。再例如

-3-4表示-3、-4兩數的代數和,

-4+3表示-4、+3兩數的代數和,

3+4表示3和+4的代數和

等。代數和概念是掌握有理數運算的一個重要概念,請老師務必給予充分注意。

4.先把正數與負數分別相加,可以使運算簡便。

5.在交換加數的位置時,要連同前面的符號一起交換。如

12-5+7應變成12+7-5,而不能變成12-7+5。

教學設計示例

有理數的加減混合運算(一)

一、素質教育目標

(一)知識教學點

1.了解:代數和的概念.

2.理解:有理數加減法可以互相轉化.

3.應用:會進行加減混合運算.

(二)能力訓練點

培養學生的口頭表達能力及計算的準確能力.

(三)德育滲透點

通過學習一切加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想.

(四)美育滲透點

學習了本節課就知道一切加減法運算都可以統一成加法運算.體現了數學的統一美.

二、學法引導

1.教學方法:采用嘗試指導法,體現學生主體地位,每一環節,設置一定題目進行鞏固練

習,步步為營,分散難點,解決關鍵問題.

2.學生寫法:練習→尋找簡單的一般性的方法→練習鞏固.

三、重點、難點、疑點及解決辦法

1.重點:把加減混合運算算式理解為加法算式.

2.難點:把省略括號和的形式直接按有理數加法進行計算.

四、課時安排

1課時

五、教具學具準備

投影儀或電腦、自制膠片.

六、師生互動活動設計

教師提出問題學生練習討論,總結歸納加減混合運算的一般步驟,教師出示練習題,學生練習反饋.

七、教學步驟

(一)創設情境,復習引入

師:前面我們學習了有理數的加法和減法,同學們學得都很好!請同學們看以下題目:-9+(+6);(-11)-7.

師:(1)讀出這兩個算式.

(2)“+、-”讀作什么?是哪種符號?

“+、-”又讀作什么?是什么符號?

學生活動:口答教師提出的問題.

師繼續提問:(1)這兩個題目運算結果是多少?

(2)(-11)-7這題你根據什么運算法則計算的?

學生活動:口答以上兩題(教師訂正).

師小結:減法往往通過轉化成加法后來運算.

【教法說明】為了進行有理數的加減混合運算,必須先對有理數加法,特別是有理數減法的題目進行復習,為進一步學習加減混合運算奠定基礎.這里特別指出“+、-”有時表示性質符號,有時是運算符號,為在混合運算時省略加號、括號時做必要的準備工作.

師:把兩個算式-9+(+6)與(-11)-7之間加上減號就成了一個題目,這個題目中既有加法又有減法,就是我們今天學習的有理數的加減混合運算.(板書課題2.7有理數的加減混合運算(1))

教學說明:由復習的題目巧妙地填“-”號,就變成了今天將學的加減混合運算內容,使學生更形象、更深刻地明白了有理數加減混合運算題目組成.

(二)探索新知,講授新課

1.講評(-9)+(-6)-(-11)-7.

(1)省略括號和的形式

師:看到這個題你想怎樣做?

學生活動:自己在練習本上計算.

教師針對學生所做的方法區別優劣.

【教法說明】題目出示后,教師不急于自己講評,而是讓學生嘗試,給了學生一個展示自己的機會,這時,有的學生可能是按從左到右的順序運算,有的同學可能是先把減法都轉化成了加法,然后按加法的計算法則再計算??這樣在不同的方法中,學生自己就會尋找到簡單的、一般性的方法.

師:我們對此類題目經常采用先把減法轉化為加法,這時就成了-9,+6,+11,-7的和,加號通常可以省略,括號也可以省略,即:

原式=(-9)+(+6)+(+11)+(-7)

=-9+6+11-7.

提出問題:雖然加號、括號省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以這個算式可以讀成??

學生活動:先自己練習嘗試用兩種讀法讀,口答(教師糾正).

【教法說明】教師根據學生所做的方法,及時指出最具代表性的方法來給學生指明方向,在把算式寫成省略括號代數和的形式后,通過讓學生練習兩種讀法,可以加深對此算式的理解,以此來訓練學生的觀察能力及口頭表達能力.

鞏固練習:(出示投影1)

1.把下列算式寫成省略括號和的形式,并把結果用兩種讀法讀出來.

(1)(+9)-(+10)+(-2)-(-8)+3;

(2)+()-()-().

2.判斷

式子-7+1-5-9的正確讀法是().

A.負7、正1、負5、負9;

B.減7、加1、減5、減9;

C.負7、加1、負5、減9;

D.負7、加1、減5、減9;

學生活動:1題兩個學生板演,兩個學生用兩種讀法讀出結果,其他同學自行演練,然后同桌讀出互相糾正,2題搶答.

【教法說明】這兩題旨意在鞏固怎樣把加減混合運算題目都轉化成加法運算寫成代數和的形式,這里特別注意了代數和形式的兩種讀法.

2.用加法運算律計算出結果

師:既然算式能看成幾個數的和,我們可以運用加法的運算律進行計算,通常同號兩數放在一起分別相加.

-9+6+11-7

=-9-7+6+11.

學生活動:按教師要求口答并讀出結果.

鞏固練習:(出示投影2)

填空:

1.-4+7-4=-______________-_______________+_______________

2.+6+9-15+3=_____________+_____________+_____________-_____________

3.-9-3+2-4=____________9____________3____________4____________2

4.____________________________________

學生活動:討論后回答.

【教法說明】學生運用加法交換律時,很可能產生“-9+7+11-6”這樣的錯誤,教師先讓學生自己去做,然后糾正,又做一組鞏固練習,使學生牢固掌握運用加法運算律把同號數放在一起時,一定要連同前面的符號一起交換這一知識點.

師:-9-7+6+11怎樣計算?

學生活動:口答

[板書]

-9-7+6+11

=-16+17

=1

鞏固練習:(出示投影3)

1.計算(1)-1+2-3-4+5;

(2).

2.做完前面兩個題目計算:(1)(+9)-(+10)+(-2)-(-8)+3;

(2).

學生活動:四個同學板演,其他同學在練習本上做.

【教法說明】針對一道例題分成三部分,每一部分都有一組相應的鞏固練習,這樣每一步學生都掌握得較牢固,這時教師一定要總結有理數加減混合運算的方法,使分散的知識有相對的集中.

師小結:有理數加減法混合運算的題目的步驟為:

1.減法轉化成加法;

2.省略加號括號;

3.運用加法交換律使同號兩數分別相加;

4.按有理數加法法則計算.

(三)反饋練習

(出示投影4)

計算:(1)12-(-18)+(-7)-15;

(2).

學生活動:可采用同桌互相測驗的方法,以達到糾正錯誤的目的.

【教法說明】這兩個題目是本節課的重點.采用測驗的方式來達到及時反饋.

(四)歸納小結

師:1.怎樣做加減混合運算題目?

2.省略括號和的形式的兩種讀法?

學生活動:口答.

【教法說明】小結不是教師單純的總結,而是讓學生參與回答,在學生思考回答的過程中將本節的重點知識納入知識系統.

八、隨堂練習

1.把下列各式寫成省略括號的和的形式

(1)(-5)+(+7)-(-3)-(+1);

(2)10+(-8)-(+18)-(-5)+(+6).

2.說出式子-3+5-6+1的兩種讀法.

3.計算

(1)0-10-(-8)+(-2);

(2)-4.5+1.8-6.5+3-4;

(3).

九、布置作業

(一)必做題:1.計算:(1)-8+12-16-23;

(2);

(3)-40-28-(-19)+(-24)-(-32);

(4)-2.7+(-3.2)-(1.8)-2.2;

(二)選做題:(1)當時,,,哪個最大,哪個最小?

(2)當時,,,哪個最大,哪個最小?

十、板書設計

初中數學教案3000字篇2

一、教學目標知識與技能目標。

1、能熟練作出一次函數的圖像,掌握一次函數及其圖像的簡單性質;

2、初步了解函數表達式與圖像之間的關系。

過程與方法目標。

1、經歷作圖過程中由一般到特殊方法的轉變過程,讓學生體會研究問題的基本方法。

2、經歷對一次函數性質的探索過程,增強學生數形結合的意識,培養學生識圖能力;

3、經歷對一次函數性質的探索過程,培養學生的觀察力、語言表達能力。情感與態度目標

1、在作圖的過程中,體會數學的美;

2、經歷作圖過程,培養學生尊重科學,實事求是的作風。

二、教材分析。

本節課是在學習了一次函數解析式的基礎上,從圖像這個角度對一次函數進行近一步的研究。教材先介紹了作函數圖像的一般方法:列表、描點、連線法,再進一步總結出作一次函數圖像的特殊方法——兩點連線法。結合一次函數的圖像,對一次函數的單調性作了探討;對一次函數的幾何意義也有涉及。在教學中要結合學生的認識情況,循序漸進,逐層深入,對教材內容可作適當增加,但不宜太難。為進一步學習圖像及性質奠定了基礎。教學重點:結合一次函數的圖像,研究一次函數的簡單性質教學難點:一次函數性質的應用

三、學情分析函數的圖像的概念及作法對學生而言都是較為陌生的。

教材從作函數圖像的一般步驟開始介紹,得出一次函數圖像是條直線。在此基礎上介紹用兩點連線得一次函數的圖像,學生就容易接受了。在函數解析式與圖像二者之間的探討這部分內容上,不要作更高要求,學生能回答書中的問題就可以了。教學中盡可能的多作幾個一次函數的圖像,讓學生直觀感受到一次函數的圖像是條直線。

四、教學流程(一)、復習引入

1、什么叫做一次函數?

2、你能說說正比例函數y=kx(k≠0)的性質嗎?

3、針對函數y=kx+b,要研究什么?怎樣研究?

(二)做一做

例1、畫出函數y1=2x與y2=2x+3,y3=2x-2的圖像二、新課講解把一個函數的自變量和對應的因變量的值分別作為點的橫坐標和縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖像。下面我們來作一次函數y1=2x與y2=2x+3,y3=2x-2的圖像分析:根據定義,需要在直角坐標系中描出許多點,因此我們應先計算這些點的橫、縱坐標,即x與對應的y的值。我們可借助一個表格來列出每一對x,y的值。因為一次函數的自變量X可以取一切實數,所以X一般在0附近取值。解:列表:x…-2-1012…y1=2x…0…y2=2x+3y3=2x-2描點:以表中各組對應值作為點的坐標,在直角坐標系內描出相應的點。連線:把這些點依次連接起來,得到圖像(如圖)它們是一條直線。

觀察圖像回答下列問題:

(1)這三個一次函數圖像的形狀都是,并且傾斜程度,即互相。

(2)y1=2x的圖像經過。

(3)y2=2x+3的圖像與y1=2x圖像,且與y軸交于,即y2可以看作由y1向平移個單位長度得到,圖像經過第象限,k,b的符號如何?()(4)y3=2x-2的圖像與y1=2x圖像,且與y軸交于,即y3可以看作由y1向平移個單位長度得到,圖像經過第象限,k,b的符號如何?

結論:

1、一次函數y=kx+b(k≠0)的圖像可以由直線y=kx平移個單位長度得到。(上加下減)

2、一次函數y=kx+b(k≠0)的圖像是一條直線,我們稱它為直線y=kx+b。

3、平行的直線k相等。

三、做一做。

(1)利用兩點確定一條直線(兩點畫法)畫出y=-x+3和y=-x及y=-x-4的圖象的圖像。

師:回顧剛才的作圖過程,經歷了幾個步驟?

生:經歷了列表、描點、連線這三個步驟。

師:回答得很好。作函數圖像的一般步驟是列表、描點、連線。今后我們可以用這個方法去作出更多函數的圖像。

師:從剛才同學們作出的一次函數的圖像中我們可以觀察到一次函數圖像是一條直線。

(2)在所作的圖像上取幾個點,找出它們的橫、縱坐標

四、議一議觀察圖像思考:

(1)一次函數的圖像從左往右是上升還是下降,由圖像怎么看函數的增減性(y隨x的變化),你認為決定條件是什么?

(2)圖像經過哪些象限?k,b的符號如何?

(3)y=-x+3和y=-x-4是由y=-x怎樣平移得到的?一次函數y=kx+b的圖像是一條直線,因此作一次函數的圖像時,只要確定兩個點,再過這兩個點作直線就可以了。一次函數y=kx+b的圖像也稱為直線y=kx+b

例1做出下列函數的圖像

(1)y=x+3

(2)y=-x+3

(3)y=2x-4

(4)y=-2x-4

五、課堂小結。

這節課我們學習了一次函數的圖像。一次函數的圖像是一條直線,正比例函數的圖像是經過原點的一條直線。在作圖時,只需確定直線上兩點的位置,就可得到一次函數的圖像。一般地,作函數圖像的三個步驟是:列表、描點、連線。

六、課后練習。

書上93頁練習五、教學反思本節課主要介紹作函數圖像的一般方法,通過對一次函數圖像的認識,得到作一次函數及正比例函數的圖像的特殊方法(兩點確定一條直線)。讓學生能夠迅速找到直線與坐標軸的交點,這是本節課的難點。數形結合,找準這兩個特殊點坐標的特點(x=0或y=0),讓學生理解的記憶才能收到較好的效果。

初中數學教案3000字篇3

總體說明:

完全平方公式則是對多項式乘法中出現的較為特殊的算式的一種歸納、總結.同時,完全平方公式的推導是初中數學中運用推理方法進行代數式恒等變形的開端,通過完全平方公式的學習對簡化某些整式的運算、培養學生的求簡意識有較大好處.而且完全平方公式是后繼學習的必備基礎,不僅對學生提高運算速度、準確率有較大作用,更是以后學習分解因式、分式運算、解一元二次方程以及二次函數的恒等變形的重要基礎,同時也具有培養學生逐漸養成嚴密的邏輯推理能力的作用.因此學好完全平方公式對于代數知識的后繼學習具有相當重要的意義.

本節是北師大版七年級數學下冊第一章《整式的運算》的第8小節,占兩個課時,這是第一課時,它主要讓學生經歷探索與推導完全平方公式的過程,培養學生的符號感與推理能力,讓學生進一步體會數形結合的思想在數學中的作用.

一、學生學情分析

學生的技能基礎:學生通過對本章前幾節課的學習,已經學習了整式的概念、整式的加減、冪的運算、整式的乘法、平方差公式,這些基礎知識的學習為本節課的學習奠定了基礎.

學生活動經驗基礎:在平方差公式一節的學習中,學生已經經歷了探索和應用的過程,獲得了一些數學活動的經驗,培養了一定的符號感和推理能力;同時在相關知識的學習過程中,學生經歷了很多探究學習的過程,具有了一定的獨立探究意識以及與同伴合作交流的能力.

二、教學目標

知識與技能:

(1)讓學生會推導完全平方公式,并能進行簡單的應用.

(2)了解完全平方公式的幾何背景.

數學能力:

(1)由學生經歷探索完全平方公式的過程,進一步發展學生的符號感與推理能力.

(2)發展學生的數形結合的數學思想.

情感與態度:

將學生頭腦中的前概念暴露出來進行分析,避免形成教學上的“相異構想”.

三、教學重難點

教學重點:1、完全平方公式的推導;

2、完全平方公式的應用;

教學難點:1、消除學生頭腦中的前概念,避免形成“相異構想”;

2、完全平方公式結構的認知及正確應用.

四、教學設計分析

本節課設計了十一個教學環節:學生練習、暴露問題——驗證——推廣到一般情況,形成公式——數形結合——進一步拓廣——總結口訣——公式應用——學生反饋——學生PK——學生反思——鞏固練習.

第一環節:學生練習、暴露問題

活動內容:計算:(a+2)2

設想學生的做法有以下幾種可能:

①(a+2)2=a2+22

②(a+2)2=a2+2a+22

③正確做法;

針對這幾種結果都將a=1代入計算,得出①②都是錯誤的,但③的做法是否一定正確呢?怎么驗證?

活動目的:在很多學生的頭腦中,認為兩數和的完全平方與兩數的平方和等同,即:

(a+2)2=a2+22,如果不將這種定式思維,就很難建立起一個正確的概念;這一環節的目的就是讓學生的這種錯誤或其它錯誤充分暴露出來,并讓學生充分認識到自己原有的定式思維是錯誤的,為下一步構建新的思維模式埋下伏筆.

第二環節:驗證(a+2)2=a2–4a+22

活動內容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22

活動目的:在前一環節已經打破了學生的原有的思維定式的基礎上,給學生建立正確的思維方法,避免形成“相異構想”.

第三環節:推廣到一般情況,形成公式

活動內容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

活動目的:讓學生經歷從特殊到一般的探究過程,體驗到發現的快樂.

第四環節:數形結合

活動內容:設問:在多項式的乘法中,很多公式都都可以用幾何圖形進行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?

展示動畫,用幾何圖形詮釋完全平方公式的幾何意義.

學生思考:還有沒有其它的方法來詮釋完全平方公式?(課后思考)

活動目的:讓學生進一步認識到數與形都不是孤立存在的,數與形是可以有機地結合在一起,從而發展學生的數形結合的數學思想.

第五環節:進一步拓廣

活動內容:推導兩數差的完全平方公式:(a–b)2=a2–2ab+b2

方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2

方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2

活動目的:讓學生經歷由兩數和的完全平方公式拓廣到兩數差的完全平方公式的過程,體會到符號差異帶來的結果差異,由第二種推導方法體會到兩數差的完全平方公式是兩數和的完全平方公式的應用.

第六環節:總結口訣、認識特征

活動內容:比較兩個公式的共同點與不同點:(a+b)2=a2+2ab+b2

(a–b)2=a2–2ab+b2

特征:①左邊都是一個二項式的完全平方,兩者僅有一個符號不同;右邊都是二次三項式,其中第一、三項是公式左邊二項式中每一項的平方,中間一項是左邊二項式中兩項乘積的兩倍,兩者也僅一個符號不同;

②公式中的a、b可以是任意一個代數式(數、字母、單項式、多項式)

口訣:首平方,尾平方,首尾相乘的兩倍在中央.

活動目的:認識完全平方公式的特征,總結出完全平方公式的口訣,便于學生理解與記憶,避免學生在應用該公式中出現錯誤.

第七環節:公式應用

活動內容:例:計算:①(2x–3)2;②(4x+)2

解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9

②(4x+)2=(4x)2+2?????(4x)()+()2=16x2+2xy+

活動目的:在前幾個環節中,學生對完全平方公式已經有了感性認識,通過本環節的講解以及下一環節的練習,使學生逐步經歷認識——模仿——再認識.從而上升到理性認識的階段.

第八環節:隨堂練習

活動內容:計算:①;②;③(n+1)2–n2

活動目的:通過學生的反饋練習,使教師能全面了解學生對完全平方公式的理解是否到位,完全平方公式的應用是否得當,以便教師能及時地進行查缺補漏.

第九環節:學生PK

活動內容:每個學生各出五道完全平方公式的計算題給自己的同桌解答,比一比誰的準確性率高,速度快.

活動目的:活躍課堂氣氛,激起學生的好勝心,進一步鞏固學生對完全平方公式的理解與應用.

第十環節:學生反思

活動內容:通過今天這堂課的學習,你有哪些收獲?

收獲1:認識了完全平方公式,并能簡單應用;

收獲2:了解了兩數和與兩數差的完全平方公式之間的差異;

收獲3:感受到數形結合的數學思想在數學中的作用.

活動目的:通過對一堂課的歸納與總結,鞏固學生對完全平方公式的認識,體會數學思想的精妙.

第十一環節:布置作業:

課本P43習題1.13

初中數學教案3000字篇4

教學目標:

1、理解切線的判定定理,并學會運用。

2、知道判定切線常用的方法有兩種,初步掌握方法的選擇。

教學重點:切線的判定定理和切線判定的方法。

教學難點:切線判定定理中所闡述的圓的切線的兩大要素:一是經過半徑外端;二是直線垂直于這條半徑;學生開始時掌握不好并極容易忽視一.

教學過程:

一、復習提問

【教師】問題1.怎樣過直線l上一點P作已知直線的垂線?

問題2.直線和圓有幾種位置關系?

問題3.如何判定直線l是⊙O的切線?

啟發:(1)直線l和⊙O的公共點有幾個?

(2)圓心O到直線L的距離與半徑的數量關系如何?

學生答完后,教師強調(2)是判定直線l是⊙O的切線的常用方法,即:定理:圓心O到直線l的距離OA等于圓的半(如圖1,投影顯示)

再啟發:若把距離OA理解為OA⊥l,OA=r;把點A理解為半徑在圓上的端點,請同學們試將上面定理用新的理解改寫成新的命題,此命題就是這節課要學的“切線的判定定理”(板書課題)

二、引入新課內容

【學生】命題:經過半徑的在圓上的端點且垂直于半徑的直線是圓的切線。

證明定理:啟發學生分清命題的題設和結論,寫出已知、求證,分析證明思路,閱讀課本P60。

定理:經過半徑外端并且垂直于這條半徑的直線是圓的切線.

定理的證明:已知:直線l經過半徑OA的外端點A,直線l⊥OA,

求證:直線l是⊙O的切線

證明:略

定理的符號語言:∵直線l⊥OA,直線l經過半徑OA的外端A

∴直線l為⊙O的切線。

是非題:

(1)垂直于圓的半徑的直線一定是這個圓的切線。()

(2)過圓的半徑的外端的直線一定是這個圓的切線。()

三、例題講解

例1、已知:直線AB經過⊙O上的點C,并且OA=OB,CA=CB。

求證:直線AB是⊙O的切線。

引導學生分析:由于AB過⊙O上的點C,所以連結OC,只要證明AB⊥OC即可。

證明:連結OC.

∵OA=OB,CA=CB,

∴AB⊥OC

又∵直線AB經過半徑OC的外端C

∴直線AB是⊙O的切線。

練習1、如圖,已知⊙O的半徑為R,直線AB經過⊙O上的點A,并且AB=R,∠OBA=45°。求證:直線AB是⊙O的切線。

練習2、如圖,已知AB為⊙O的直徑,C為⊙O上一點,AD⊥CD于點D,AC平分∠BAD。

求證:CD是⊙O的切線。

例2、如圖,已知AB是⊙O的直徑,點D在AB的延長線上,且BD=OB,過點D作射線DE,使∠ADE=30°。

求證:DE是⊙O的切線。

思考題:在Rt△ABC中,∠B=90°,∠A的平分線交BC于D,以D為圓心,BD為半徑作圓,問⊙D的切線有幾條?是哪幾條?為什么?

四、小結

1.切線的判定定理。

2.判定一條直線是圓的切線的方法:

①定義:直線和圓有唯一公共點。

②數量關系:直線到圓心的距離等于該圓半徑(即d=r)。[

③切線的判定定理:經過半徑外端且與這條半徑垂直的直線是圓的切線。

3.證明一條直線是圓的切線的輔助線和證法規律。

凡是已知公共點(如:直線經過圓上的點;直線和圓有一個公共點;)往往是"連結"圓心和公共點,證明"垂直"(直線和半徑);若不知公共點,則過圓心作一條線段垂直于直線,證明所作的線段等于半徑。即已知公共點,“連半徑,證垂直”;不知公共點,則“作垂直,證半徑”。

五、布置作業:略

《切線的判定》教后體會

本課例《切線的判定》作為市考試院調研課型兼區級研討課,我以“教師為引導,學生為主體”的二期課改的理念出發,通過學生自我活動得到數學結論作為教學重點,呈現學生真實的思維過程為教學宗旨,進行教學設計,目的在于讓學生對知識有一個本質的、有效的理解。本節課切實反映了平時的教學情況,為前來調研和研討的老師提供了真實的樣本。反思本節課,有以下幾個成功與不足之處:

成功之處:

一、教材的二度設計順應了學生的認知規律

這批學生習慣于單一知識點的學習,即得出一個知識點,必須由淺入深反復進行練習,鞏固后方能加以提升與綜合,否則就會混淆概念或定理的條件和結論,導致錯誤,久之便會失去學習數學的興趣和信心。本教時課本上將切線判定定理和性質定理的導出作為第一課時,兩個定理的運用和切線的兩種常用的判定方法作為第二課時,學生往往會因第一時間得不到及時的鞏固,對定理本質的東西不能很好地理解,在運用時抓不住關鍵,解題僅僅停留在模仿層次上,接受能力薄弱的學生更是因知識點多不知所措,在云里霧里。二度設計將切線的判定方法作為第一課時,切線的性質定理以及兩個定理的綜合運用作為第二課時,這樣的設計即是對前面所學的“直線與圓相切的判定方法”的復習,又是對后面學習綜合運用兩個定理,合理選擇兩種方法判定切線作了鋪墊,教學呈現了一個循序漸進、溫過知新的過程。從學生的反饋情況判斷,教學效果較為理想。

二、重視學生數感的培養呼應了課改的理念

數感類似與語感、樂感、美感,擁有了感覺,知識便會融會貫通,學習就會輕松。擁有數感,不僅會對數學知識反應靈敏,更會在生活中不知不覺運用數學思維方式解決實際問題。本節課中,兩個例題由教師誘導,學生發現完成的,而三個習題則完全放手讓學生去思考完成,不乏有不會做和做得復雜的學生,但在展示和交流中,撞擊出思維的火花,難以忘懷。讓學生嘗試總結規律,也是對學生能力的培養,在本節課中,輔助線的規律是由學生得出,事實證明,學生有這樣的理解、概括和表達能力。通過思考得出正確的結論,這個結論往往是刻骨銘心的,長此以往,對數和形的感覺會越來越好。

不足之處:

一、這節課沒有“高潮”,沒有讓學生特別興奮激起求知欲的情境,整個教學過程是在一個平靜、和諧的氛圍中完成的。

二、課的引入太直截了當,脫離不了應試教學的味道。

三、教學風格的定勢使所授知識不能很合理地與生活實際相聯系,一定程度上阻礙了學生解決實際問題能力的發展。

通過本節課的教學,我深刻感悟到在教學實踐中,教師要不斷地充實自己,拓寬知識面,努力突破已有的教學形狀,適應現代教育,適應現代學生。課堂教學中,敢于實驗,舍得放手,盡量培養學生主體意識,問題讓學生自己去揭示,方法讓學生自己去探索,規律讓學生自己去發現,知識讓學生自己去獲得,教師只提供給學生現實情境、充足的思考時間和活動空間,給學生表現自我的機會和成功的體驗,培養學生的自我意識,發揮學生的主體作用,來真正實現《數學課程標準》中提出的“學生是數學學習的主人,教師是數學學習的組織者、引導者與合作者”這一教學理念。

初中數學教案3000字篇5

①結合你對一元一次方程中的一次的理解,說一說你對一次函數中的“一次”的理解.②k可以是怎樣的`數?

③你怎樣認識一次函數和正比例函數的關系?

一個常數b的和即Y=kx+b定義:一般地,形

Y=kx+b(k,b是常數,k≠0)的函數,叫做一次函數,當

b=0時,

Y=kx+b即Y=kx,所以說正比例函數是一種特殊的一次函數。

例1、下列函數中,Y是X的一次函數的是()①Y=X-6②Y=3X③Y=X2④Y=7-X

學生獨立

A①②③B①③④C①②④D①②③④

例2、寫出下列各題中x與y之間的關系式,并判

解釋與應用

斷,y是否為x的一次函數?是否為正比例函數?①汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間(時)之間的關系式;②圓的面積y(厘米2)與他的半徑x(厘米)之間的關系:③一棵樹現在高50厘米,每個月長高2厘米,x月后這棵樹的高度y(厘米)之間的關系式

初中數學教案3000字篇6

一、說教學地位和作用

全等三角形是《三角形》這一章的主線,在知識結構上,等腰三角形,直角三角形,線段的垂直平分線,角的平分線等內容都要通過證明兩個三角形全等來加以解決;在能力培養上,無論是邏輯思維能力,推理論證能力,還是分析問題解決問題的能力,都可在全等三角形的教學中得以培養和提高。因此,全等三角形的教學對全章乃至以后的學習都是至關重要的。為此,我在設計這節課的時候,以學生為主體,讓他們全面地參與到學習過程中來,有意識地培養學生的創新意識和實踐能力,增強他們學習的能力,讓他們充分的掌握該知識點,同時盡量擴充他們的知識范疇。在教學中,采用的是“設疑——實驗——發現——總結”的教學方法,并采用“變式練習”方法來提高學習效率。

二、說教學的目標和要求:

1.知識目標:

(1)知道什么是全等三角形及全等三角形的對應元素;

(2)知道全等三角形的性質,能用符號正確地表示兩個三角形全等;

(3)能熟練找出兩個全等三角形的對應角,對應邊。

2.能力目標:

(1)通過全等三角形有關概念的學習,提高學生數學概念的辨析能力;

(2)通過找出全等三角形的對應元素,培養學生的識圖能力。

3.情感目標:

(1)通過感受全等三角形的對應美激發學生熱愛科學勇于探索的精神;

(2)通過自主學習的發展體驗獲取數學知識的感受,培養學生勇于創新,多方位審視問題的創造技巧。

三、說教學重點:

1.能準確地在圖形中識別出對應邊,對應角;

2.全等三角形的性質和利用其基本性質進行一些簡單的推理和計算。

四、說教學難點:

能在全等變換中準確找到對應邊,對應角。(在對應邊,對應角的識別,查找中運用動畫的展示,使學生能直觀認識該知識點,化難為易,從而突破該難點)

五、說教法與學法:

采用直觀,類比的方法,以多媒體為手段輔助教學,引導學生預習教材內容,養成良好的自學習慣,啟發學生發現問題,思考問題,培養學生的邏輯思維能力。逐步設疑,引導學生積極參與討論,肯定成績,使其具有成就感,提高他們學習的興趣和學習的積極性。

六、說教學用具:

多媒體,剪刀,直尺,硬紙,三角板

七、說教學過程:

(一)復習導入方面

從復習全等圖形方面入手,展示一些直觀的圖形,接著創設一個問題情境:如何翻新一個舊的`三角形的紙樣讓學生動手畫圖,實驗嘗試,從而發現其實解決問題的關鍵是畫一個全等的三角形,從而引出課題。通過以上的環節主要是提高學生數學概念的辨析能力和培養學生的動手實踐能力。(此環節約用時5分鐘)

(二)新課講解方面

1.全等三角形的定義

通過動畫的展示,引導學生觀察,分析得出全等三角形的定義(先展示動畫)。目的主要在于培養學生的觀察分析能力。(此環節學生約用2分鐘進行討論分析)

2.全等三角形的性質

以動畫的形式,介紹全等三角形的對應頂點,對應邊,對應角,并引導學生通過觀察分析全等三角形的對應邊,對應角之間分別有怎樣的關系,從而得出全等三角形的性質。在無形中培養了學生的圖形識別能力和直觀判斷能力。(此環節約用時7分鐘)

3.全等三角形的表示法

介紹全等符號,說明表示兩個三角形全等時,通常把表示對應頂點的字母寫在對應的位置上。(此環節用時約2分鐘)

4.議一議

方法:(1)小組活動,展示部分小組的解決方案

(2)動畫展示解決方案

(3)知識點的擴充:動畫展示全等三角形的變換識別中對應邊,對應角的查找。

以上環節主要趨于培養學生的團結合作精神,認識團隊的力量和開拓學生的思維,擴充學生的知識范疇。(此環節約用時8分鐘)

(三)課堂練習(此環節約用時18分鐘)

用多媒體課件逐一展示練習題目,讓學生一一解答。主要是通過練習讓學生鞏固所學的知識并學會用所學的知識進行推理和解決實際問題。

(四)課堂小結(此環節約用時2分鐘)

經過以上的教學環節,為了幫助學生系統的掌握所學的知識,達到預期的效果,在這一步驟中,我準備利用提問的形式,師生共同進行小結和歸納。

(五)作業布置(約用時1分鐘)

(六)板書設置

初中數學教案3000字篇7

一、教學目標

1、了解二次根式的意義;

2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

3、掌握二次根式的性質和,并能靈活應用;

4、通過二次根式的計算培養學生的&39;邏輯思維能力;

5、通過二次根式性質和的介紹滲透對稱性、規律性的數學美。

二、教學重點和難點

重點:

(1)二次根的意義;

(2)二次根式中字母的取值范圍。

難點:確定二次根式中字母的取值范圍。

三、教學方法

啟發式、講練結合。

四、教學過程

(一)復習提問

1、什么叫平方根、算術平方根?

2、說出下列各式的意義,并計算

(二)引入新課

新課:二次根式

定義:式子叫做二次根式。

對于請同學們討論論應注意的問題,引導學生總結:

(1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?呢?

若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。

(2)是二次根式,而,提問學生:2是二次根式嗎?顯然不是,因此二次

根式指的是某種式子的“外在形態”。請學生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據二次根式定義,由學生分析、回答。

例1當a為實數時,下列各式中哪些是二次根式?

例2x是怎樣的實數時,式子在實數范圍有意義?

解:略。

說明:這個問題實質上是在x是什么數時,x—3是非負數,式子有意義。

例3當字母取何值時,下列各式為二次根式:

分析:由二次根式的定義,被開方數必須是非負數,把問題轉化為解不等式。

解:(1)∵a、b為任意實數時,都有a2+b2≥0,∴當a、b為任意實數時,是二次根式。

(2)—3x≥0,x≤0,即x≤0時,是二次根式。

(3),且x≠0,∴x>0,當x>0時,是二次根式。

(4),即,故x—2≥0且x—2≠0,∴x>2。當x>2時,是二次根式。

例4下列各式是二次根式,求式子中的字母所滿足的條件:

分析:這個例題根據二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義,。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數都大于等于零。

解:(1)由2a+3≥0,得。

(2)由,得3a—1>0,解得。

(3)由于x取任何實數時都有x≥0,因此,x+0。1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數。

(4)由—b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。

初中數學教案3000字篇8

一、教材分析:

1、教材所處的地位:

二次函數是滬科版初中數學九年級(上冊)第22章的內容,在此之前,學生在八年級已經學過了函數及一次函數的內容,對于函數已經有了初步的認識。從一次函數的學習來看,學習一種函數大致包括以下內容:通過具體實例認識這種函數;探索這種函數的圖象和性質,利用這種函數解決實際問題;探索這種函數與相應方程不等式的關系。本章“二次函數”的學習也是從以上幾個方面展開的。本節課的主要內容在于使學生認識并了解兩個變量之間的二次函數的關系,為二次函數的后續學習奠定基礎

2、教學目的要求:

(1)學生經歷從實際問題中抽象出兩個變量之間的二次函數關系的過程,進一步體驗如何用數學的方法描述變量之間的數量關系;

(2)讓學生學習了二次函數的定義后,能夠表示簡單變量之間的二次函數關系;

(3)知道實際問題中存在的二次函數關系中,多自變量的取值范圍的要求。

(4)把數學問題和實際問題相聯系,使學生初步體會數學與人類生活的密切聯系及對人類歷史發展的作用。

3、教學重點和難點

本著課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點:

重點:

(1)二次函數的概念

(2)能夠表示簡單變量之間的二次函數關系.

難點:

具體的分析、確定實際問題中函數關系式

二.教法、學法分析:

下面,為了講清重點、難點,使學生能達到本節設定的教學目標,我再從教法和學法上談談:

1、教法研究

教學中教師應當暴露概念的再創造過程,鼓勵學生不但要動口、動腦,而且要動手,學生經過自己親身的實踐活動,形成自己的經驗、猜想,產生對結論的感知,這不僅讓學生對所學內容留下了深刻的印象,而且能力得到培養,素質得以提高,充分地調動學生學習的熱情,讓學生學會主動學習,學會研究問題的方法,培養學生的能力。本節課的設計堅持以學生為主體,充分發揮學生的主觀能動性。教學過程中,注重學生探究能力的培養。還課堂給學生,讓學生去親身體驗知識的產生過程,拓展學生的創造性思維。同時,注意加強對學生的啟發和引導,鼓勵培養學生們大膽猜想,小心求證的科學研究的思想。

2、學法研究

初中學生的思維方式往往還是比較具象的,要讓他們在問題的探究過程中充分體驗問題的發現、解決及最終表述的方式方法,遇到困難可以和同伴、老師進行交流甚至爭論,這樣既可以加深學生對問題的理解又可以讓學生體驗獲得學習的快樂。

3、教學方式

(1)由于本節課的內容是學生在學習了《一次函數》和《正比例函數》的基礎上的加深,所以可以利用學生已有的知識在問題一、二中放手讓學生先去探究探究兩個問題中的變量之間的關系,在得到具體的關系式后,再引導學生觀察關系式都有著什么樣的特點,可以和多項式中的二次三項式或一元二次方程比較認識,并最終得出二次函數的一般式及二次項系數的取值為什么不為零的道理。

(2)要特別提醒學生注意:二次函數是解決實際生活生產的一個很有效的模板,因而對二次函數解析式中自變量的取值范圍一定要從理論上和實際中加以綜合討論和認定。

(3)可以多讓學生解決實際生活中的一些具有二次函數關系的實例來加深和提高學生對這一關系模型的理解。

三.教學流程分析:

這一流程體現了知識發生、形成和發展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想。

1、溫故知新—揭示課題

由回顧所學過的正比例函數,一次函數入手,引入函數大家庭中還會認識那一種函數呢?再由例子打籃球投籃時籃球運動的軌跡如何?何時達到最高點?引入二次函數。

2、自我嘗試、合作探究—探求新知

通過學生自己獨立解決運用函數知識表述變量間關系,即自我探討環節;合作探究環節,學生間互動,集群體力量,共破難關,來自主探究新知,從而通過觀察,歸納得到二次函數的解析式,獲取新知。

3、小試身手—循序漸進

本組題目是對新學的直接應用,目的在于使學生能辨認二次函數,準確指出a、b、c,并應用其定義求字母系數的值,能應用二次函數準確表示具體問題中的變量間關系。本組題目的解決以學生快速解答為主,重點對第2題分析解決方法。這一環節主要由學生處理解決,以檢查學生的掌握程度。

4、課堂回眸—歸納提高

本課小結從內容、應用、數學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結,又有方法的提煉,這樣對于學生學知識,用知識是有很大的促進的。方法以學生暢談收獲為主。

5、課堂檢測—測評反饋

共有6個題目,由學生獨自處理第1、2、3、4、5小題,再發表自己的看法,第6小題可由學生或獨自或同組交流均可。教師多以巡視為主,注意掌握學生對本節的掌握情況。

6、作業布置

作業我選擇“同步作業”里的題目,其中基礎訓練為必做題,全員均做;綜合應用為選做題,可供學有余力的學生能力提升用。

四、對本節課的一點看法

通過引入實例,豐富學生認識,理解新知識的意義,進而擺脫其原型,從而進行更深層次的研究,這種“數學化”的方法是認識事物規律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質的形成有重要作用,對于學生的終身發展也有一定的作用。

初中數學教案3000字篇9

一、教材分析

1、教材的地位和作用

本節教材是初中數學__年級冊的內容,是初中數學的重要內容之一。一方面,這是在學習了__的基礎上,對__的進一步深入和拓展;另一方面,又為學習-__等

知識奠定了基礎,是進一步研究__的工具性內容。因此本節課在教材中具有承上啟下的作用。

2、學情分析

學生在此之前已經學習了__,對__已經有了初步的認識,這為順利完成本節課的教學任務打下了基礎,但對于__的理解,(由于其抽象程度較高,)學生可能會產生一定的困難,所以教學中應予以簡單明白,深入淺出的分析。

3、教學重難點

根據以上對教材的地位和作用,以及學情分析,結合新課標對本節課的要求,我將本節課的重點確定為、

難點確定為、

二、教學目標分析

根據新課標的教學理念,培養學生的數學素養和終身學習的能力,我確立了如下的三維目標

1.知識與技能目標

2.過程與方法目標

3.情感態度與價值目標

三、教學方法分析

本節課我將采用啟發式、討論式結合的教學方法,以問題的提出、問題的解決為主線,倡導學生主動參與教學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題,在引導分析時,給學生流出足夠的思考時間和空間,讓學生去聯想、探索,從真正意義上完成對知識的自我建構。

另外,在教學過程中,采用多媒體輔助教學,以直觀呈現教學素材,從而更好地激發學生的學習興趣,增大教學容量,提高教學效率。

四、教學過程分析

為有序、有效地進行教學,本節課我主要安排以下教學環節、

(1)復習就知,溫故知新

設計意圖、建構主義主張教學應從學生已有的知識體系出發,__是本節課深入研究__的認知基礎,這樣設計有利于引導學生順利地進入學習情境。

(2)創設情境,提出問題

設計意圖、以問題串的形式創設情境,引起學生的認知沖突,使學生對舊知識產生設疑,從而激發學生的學習興趣和求知欲望。

通過情境創設,學生已激發了強烈的求知欲望,產生了強勁的學習動力,此時我把學生帶入下一環節。

(3)發現問題,探求新知

設計意圖、現代數學教學論指出,教學必須在學生自主探索,經驗歸納的基礎上獲得,教學中必須展現思維的過程性,在這里,通過觀察分析、獨立思考、小組交流等活動,引導學生歸納。

(4)分析思考,加深理解

設計意圖、數學教學論指出,數學概念(定理等)要明確其內涵和外延(條件、結論、應用范圍等),通過對定義的幾個重要方面的闡述,使學生的認知結構得到優化,知識體系得到完善,使學生的數學理解又一次突破思維的難點。

通過前面的學習,學生已基本把握了本節課所要學習的內容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學生導入第__環節。

(5)強化訓練,鞏固雙基

設計意圖、幾道例題及練習題由淺入深、由易到難、各有側重,其中例1……例2……體現新課標提出的讓不同的學生在數學上得到不同發展的教學理念。這一環節總的設計意圖是反饋教學,內化知識。

(6)小結歸納,拓展深化

小結歸納不應該僅僅是知識的簡單羅列,而應該是優化認知結構,完善知識體系的一種有效手段,為充分發揮學生的主體地位,讓學生暢談本節課的收獲.

(7)當堂檢測對比反饋

(8)布置作業,提高升華

以作業的鞏固性和發展性為出發點,我設計了必做題和選做題,必做題是對本節課內容的一個反饋,選做題是對本節課知識的一個延伸。總的設計意圖是反饋教學,鞏固提高。

以上是我對本節課的見解,不足之處敬請各位評委諒解!

初中數學教案3000字篇10

教學目標

1、使學生能把簡單的與數量有關的詞語用代數式表示出來;

2、初步培養學生觀察、分析和抽象思維的能力

教學重點和難點

重點:把實際問題中的數量關系列成代數式?

難點:正確理解題意,從中找出數量關系里的運算順序并能準確地寫成代數式???

教學手段

現代課堂教學手段

教學方法

啟發式教學

教學過程

(一)、從學生原有的認知結構提出問題

1、用代數式表示乙數:(投影)

(1)乙數比x大5;(x+5)

(2)乙數比x的2倍小3;(2x-3)

(3)乙數比x的倒數小7;(-7)

(4)乙數比x大16%?((1+16%)x)

(應用引導的方法啟發學生解答本題)

2、在代數里,我們經常需要把用數字或字母敘述的一句話或一些計算關系式,列成代數式,正如上面的練習中的問題一樣,這一點同學們已經比較熟悉了,但在代數式里也常常需要把用文字敘述的一句話或計算關系式(即日常生活語言)列成代數式?本節課我們就來一起學習這個問題?

(二)、講授新課

例1用代數式表示乙數:

(1)乙數比甲數大5;(2)乙數比甲數的2倍小3;

(3)乙數比甲數的倒數小7;(4)乙數比甲數大16%?

分析:要確定的乙數,既然要與甲數做比較,那么就只有明確甲數是什么之后,才能確定乙數,因此寫代數式以前需要把甲數具體設出來,才能解決欲求的乙數?

解:設甲數為x,則乙數的代數式為

(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x?

(本題應由學生口答,教師板書完成)

最后,教師需指出:第4小題的答案也可寫成x+16%x?

例2用代數式表示:

(1)甲乙兩數和的2倍;

(2)甲數的與乙數的的差;

(3)甲乙兩數的平方和;

(4)甲乙兩數的和與甲乙兩數的差的積;

(5)乙甲兩數之和與乙甲兩數的差的積?

分析:本題應首先把甲乙兩數具體設出來,然后依條件寫出代數式?

解:設甲數為a,乙數為b,則

(1)2(a+b);(2)a-b;(3)a2+b2;

(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)?

(本題應由學生口答,教師板書完成)

此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說,用文字語言敘述的句子里應特別注意其運算順序?

例3用代數式表示:

(1)被3整除得n的數;

(2)被5除商m余2的數?

分析本題時,可提出以下問題:

(1)被3整除得2的數是幾?被3整除得3的數是幾?被3整除得n的數如何表示?

(2)被5除商1余2的數是幾?如何表示這個數?商2余2的數呢?商m余2的數呢?

解:(1)3n;(2)5m+2?

(這個例子直接為以后讓學生用代數式表示任意一個偶數或奇數做準備)?

例4設字母a表示一個數,用代數式表示:

(1)這個數與5的和的3倍;(2)這個數與1的差的;

(3)這個數的5倍與7的.和的一半;(4)這個數的平方與這個數的的和?

分析:啟發學生,做分析練習?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數式“a+5”再將“和的3倍”列成代數式“3(a+5)”?

解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a?

(通過本例的講解,應使學生逐步掌握把較復雜的數量關系分解為幾個基本的數量關系,培養學生分析問題和解決問題的能力?)

例5設教室里座位的行數是m,用代數式表示:

(1)教室里每行的座位數比座位的行數多6,教室里總共有多少個座位?

(2)教室里座位的行數是每行座位數的,教室里總共有多少個座位?

分析本題時,可提出如下問題:

(1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

(2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

(3)通過上述問題的解答結果,你能找出其中的規律嗎?(總座位數=每行的座位數×行數)

解:(1)m(m+6)個;(2)(m)m個?

(三)、課堂練習

1?設甲數為x,乙數為y,用代數式表示:(投影)

(1)甲數的2倍,與乙數的的和;(2)甲數的與乙數的3倍的差;

(3)甲乙兩數之積與甲乙兩數之和的差;(4)甲乙的差除以甲乙兩數的積的商?

2?用代數式表示:

(1)比a與b的和小3的數;(2)比a與b的差的一半大1的數;

(3)比a除以b的商的3倍大8的數;(4)比a除b的商的3倍大8的數?

3?用代數式表示:

(1)與a-1的和是25的數;(2)與2b+1的積是9的數;

(3)與2x2的差是x的數;(4)除以(y+3)的商是y的數?

〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕

(四)、師生共同小結

首先,請學生回答:

1?怎樣列代數式?2?列代數式的關鍵是什么?

其次,教師在學生回答上述問題的基礎上,指出:對于較復雜的數量關系,應按下述規律列代數式:

(1)列代數式,要以不改變原題敘述的數量關系為準(代數式的形式不唯一);

(2)要善于把較復雜的數量關系,分解成幾個基本的數量關系;

(3)把用日常生活語言敘述的數量關系,列成代數式,是為今后學習列方程解應用題做準備?要求學生一定要牢固掌握

練習設計

1、用代數式表示:

(1)體校里男生人數占學生總數的60%,女生人數是a,學生總數是多少?

(2)體校里男生人數是x,女生人數是y,教練人數與學生人數之比是1∶10,教練人數是多?

2、已知一個長方形的周長是24厘米,一邊是a厘米,

求:(1)這個長方形另一邊的長;(2)這個長方形的面積?

板書設計

§3.2代數式

(一)知識回顧(三)例題解析(五)課堂小結

例1、例2

(二)觀察發現(四)課堂練習練習設計

教學后記

由于列代數式的內容既是本章的重點,又是本書的重點,同時也是學生學習過程中的一個難點,故在設計其教學過程時,注意所選例題及練習題由易到難,循序漸進,使學生逐步地掌握好這一內容,為今后的學習打下一個良好的基礎?同時,也使學生的抽象思維能力得到初的培養。

初中數學教案3000字篇11

【教學目標】

1、了解因式分解的概念和意義;

2、認識因式分解與整式乘法的相互關系——相反變形,并會運用它們之間的相互關系尋求因式分解的方法。

【教學重點、難點】

重點是因式分解的概念,難點是理解因式分解與整式乘法的相互關系,并運用它們之間的相互關系尋求因式分解的方法。

【教學過程】

㈠、情境導入

看誰算得快:(搶答)

(1)若a=101,b=99,則a2-b2=___________;

(2)若a=99,b=-1,則a2-2ab+b2=____________;

(3)若x=-3,則20x2+60x=____________。

㈡、探究新知

1、請每題答得最快的.同學談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

(2)a2-2ab+b2=(a-b)2=(99+1)2=10000;

(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2=(a-b)2,20x2+60x=20x(x+3),找出它們的特點。(等式的左邊是一個什么式子,右邊又是什么形式?)

3、類比小學學過的因數分解概念,得出因式分解概念。(學生概括,老師補充。)

板書課題:§6.1因式分解

因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。

㈢、前進一步

1、讓學生繼續觀察:(a+b)(a-b)=a2-b2,(a-b)2=a2-2ab+b2,20x(x+3)=20x2+60x,它們是什么運算?與因式分解有何關系?它們有何聯系與區別?

2、因式分解與整式乘法的關系:

因式分解

結合:a2-b2(a+b)(a-b)

整式乘法

說明:從左到右是因式分解其特點是:由和差形式(多項式)轉化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉化成和差形式(多項式)。

結論:因式分解與整式乘法的相互關系——相反變形。

㈣、鞏固新知

1、下列代數式變形中,哪些是因式分解?哪些不是?為什么?

(1)x2-3x+1=x(x-3)+1;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

(3)2m(m-n)=2m2-2mn;(4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

(6)x2-4+3x=(x-2)(x+2)+3x;(7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

2、你能寫出整式相乘(其中至少一個是多項式)的兩個例子,并由此得到相應的兩個多項式的因式分解嗎?把結果與你的同伴交流。

㈤、應用解釋

例檢驗下列因式分解是否正確:

(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。

練習計算下列各題,并說明你的算法:(請學生板演)

(1)872+87×13

(2)1012-992

㈥、思維拓展

1.若x2+mx-n能分解成(x-2)(x-5),則m=,n=

2.機動題:(填空)x2-8x+m=(x-4)(),且m=

㈦、課堂回顧

今天這節課,你學到了哪些知識?有哪些收獲與感受?說出來大家分享。

㈧、布置作業

作業本(1),一課一練

(九)教學反思:

初中數學教案3000字篇12

教學目標

1、了解數軸的概念和數軸的畫法,掌握數軸的三要素;

2、會用數軸上的點表示有理數,會利用數軸比較有理數的大小;

3、使學生初步了解數形結合的思想方法,培養學生相互聯系的觀點。

教學建議

一、重點、難點分析

本節的重點是初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數,并會比較有理數的大小。難點是正確理解有理數與數軸上點的對應關系。數軸的概念包含兩個內容,一是數軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規定的。另外應該明確的是,所有的有理數都可用數軸上的點表示,但數軸上的點所表示的數并不都是有理數。通過學習,使學生初步掌握用數軸解決問題的方法,為今后充分利用“數軸”這個工具打下基礎。

二、知識結構

有了數軸,數和形得到了初步結合,這有利于對數學問題的研究,數形結合是理解數學、學好數學的方法,本課知識要點如下表:

定義三要素應用

數形結合

規定了原點、正方向、單位長度的直線叫數軸原點

正方向

單位長度幫助理解有理數的概念,每個有理數都可用數軸上的點表示,但數軸上的點并非都是有理數比較有理數大小,數軸上右邊的數總比左邊的數要大

在理解并掌握數軸概念的基礎之上,要會畫出數軸,能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數,要知道所有的有理數都可以用數軸上的點表示,會利用數軸比較有理數的大小。

三、教法建議

小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出數軸的概念。數軸是一條具有三個要素(原點、正方向、單位長度)的直線,這三個要素是判斷一條直線是不是數軸的根本依據。數軸與它所在的位置無關,但為了教學上需要,一般水平放置的數軸,規定從原點向右為正方向。要注意原點位置選擇的任意性。

關于有理數與數軸上的點的對應關系,應該明確的是有理數可以用數軸上的點表示,但數軸上的點與有理數并不存在一一對應的關系。根據幾個有理數在數軸上所對應的點的相互位置關系,應該能夠判斷它們之間的大小關系。通過點與有理數的對應關系及其應用,逐步滲透數形結合的思想。

四、數軸的相關知識點

1、數軸的概念

(1)規定了原點、正方向和單位長度的直線叫做數軸。

這里包含兩個內容:一是數軸的三要素:原點、正方向、單位長度缺一不可。二是這三個要素都是規定的。

(2)數軸能形象地表示數,所有的有理數都可用數軸上的點表示,但數軸上的點所表示的數并不都是有理數。

以數軸是理解有理數概念與運算的重要工具。有了數軸,數和形得到初步結合,數與表示數的圖形(如數軸)相結合的思想是學習數學的思想。另外,數軸能直觀地解釋相反數,幫助理解絕對值的意義,還可以比較有理數的大小。因此,應重視對數軸的學習。

2、數軸的畫法

(1)畫直線(一般畫成水平的)、定原點,標出原點“O”。

(2)取原點向右方向為正方向,并標出箭頭。

(3)選適當的長度作為單位長度,并標出…,—3,—2,—1,1,2,3…各點。具體如下圖。

(4)標注數字時,負數的次序不能寫錯,如下圖。

3。用數軸比較有理數的大小

(1)在數軸上表示的兩數,右邊的數總比左邊的數大。

(2)由正、負數在數軸上的位置可知:正數都有大于0,負數都小于0,正數大于一切負數。

(3)比較大小時,用不等號順次連接三個數要防止出現“”的寫法,正確應寫成“”。

五、數軸定義的理解

初中數學教案3000字篇13

一、素質教育目標

(一)知識教學點

使學生知道當直角三角形的銳角固定時,它的對邊、鄰邊與斜邊的比值也都固定這一事實、

(二)能力訓練點

逐步培養學生會觀察、比較、分析、概括等邏輯思維能力、

(三)德育滲透點

引導學生探索、發現,以培養學生獨立思考、勇于創新的精神和良好的學習習慣、

二、教學重點、難點

1、重點:使學生知道當銳角固定時,它的對邊、鄰邊與斜邊的比值也是固定的這一事實、

2、難點:學生很難想到對任意銳角,它的對邊、鄰邊與斜邊的比值也是固定的事實,關鍵在于教師引導學生比較、分析,得出結論、

三、教學步驟

(一)明確目標

1、如圖6—1,長5米的梯子架在高為3米的墻上,則A、B間距離為多少米?

2、長5米的梯子以傾斜角∠CAB為30°靠在墻上,則A、B間的距離為多少?

3、若長5米的梯子以傾斜角40°架在墻上,則A、B間距離為多少?

4、若長5米的梯子靠在墻上,使A、B間距為2米,則傾斜角∠CAB為多少度?

前兩個問題學生很容易回答、這兩個問題的設計主要是引起學生的回憶,并使學生意識到,本章要用到這些知識、但后兩個問題的設計卻使學生感到疑惑,這對初三年級這些好奇、好勝的學生來說,起到激起學生的學習興趣的作用、同時使學生對本章所要學習的內容的特點有一個初步的了解,有些問題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識是不能解決的,解決這類問題,關鍵在于找到一種新方法,求出一條邊或一個未知銳角,只要做到這一點,有關直角三角形的其他未知邊角就可用學過的知識全部求出來、

通過四個例子引出課題、

(二)整體感知

1、請每一位同學拿出自己的三角板,分別測量并計算30°、45°、60°角的對邊、鄰邊與斜邊的比值、

學生很快便會回答結果:無論三角尺大小如何,其比值是一個固定的值、程度較好的學生還會想到,以后在這些特殊直角三角形中,只要知道其中一邊長,就可求出其他未知邊的長、

2、請同學畫一個含40°角的直角三角形,并測量、計算40°角的對邊、鄰邊與斜邊的比值,學生又高興地發現,不論三角形大小如何,所求的比值是固定的大部分學生可能會想到,當銳角取其他固定值時,其對邊、鄰邊與斜邊的比值也是固定的嗎?

這樣做,在培養學生動手能力的同時,也使學生對本節課要研究的知識有了整體感知,喚起學生的求知欲,大膽地探索新知、

(三)重點、難點的學習與目標完成過程

1、通過動手實驗,學生會猜想到“無論直角三角形的銳角為何值,它的對邊、鄰邊與斜邊的比值總是固定不變的”、但是怎樣證明這個命題呢?學生這時的思維很活躍、對于這個問題,部分學生可能能解決它、因此教師此時應讓學生展開討論,獨立完成、

2、學生經過研究,也許能解決這個問題、若不能解決,教師可適當引導:

若一組直角三角形有一個銳角相等,可以把其

頂點A1,A2,A3重合在一起,記作A,并使直角邊AC1,AC2,AC3……落在同一條直線上,則斜邊AB1,AB2,AB3……落在另一條直線上、這樣同學們能解決這個問題嗎?引導學生獨立證明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴

形中,∠A的對邊、鄰邊與斜邊的比值,是一個固定值、

通過引導,使學生自己獨立掌握了重點,達到知識教學目標,同時培養學生能力,進行了德育滲透、

而前面導課中動手實驗的設計,實際上為突破難點而設計、這一設計同時起到培養學生思維能力的作用、

練習題為作了孕伏同時使學生知道任意銳角的對邊與斜邊的比值都能求出來、

(四)總結與擴展

1、引導學生作知識總結:本節課在復習勾股定理及含30°角直角三角形的性質基礎上,通過動手實驗、證明,我們發現,只要直角三角形的銳角固定,它的對邊、鄰邊與斜邊的比值也是固定的教師可適當補充:本節課經過同學們自己動手實驗,大膽猜測和積極思考,我們發現了一個新的結論,相信大家的邏輯思維能力又有所提高,希望大家發揚這種創新精神,變被動學知識為主動發現問題,培養自己的創新意識、

2、擴展:當銳角為30°時,它的對邊與斜邊比值我們知道、今天我們又發現,銳角任意時,它的對邊與斜邊的比值也是固定的如果知道這個比值,已知一邊求其他未知邊的問題就迎刃而解了、看來這個比值很重要,下節課我們就著重研究這個“比值”,有興趣的同學可以提前預習一下、通過這種擴展,不僅對正、余弦概念有了初步印象,同時又激發了學生的興趣、

四、布置作業

本節課內容較少,而且是為正、余弦概念打基礎的,因此課后應要求學生預習正余弦概念、

初中數學教案3000字篇14

教學目標

1.使學生認識字母表示數的意義,了解字母表示數是數學的一大進步;

2.了解代數式的概念,使學生能說出一個代數式所表示的數量關系;

3.通過對用字母表示數的講解,初步培養學生觀察和抽象思維的能力;

4.通過本節課的教學,使學生深刻體會從特殊到一般的的數學思想方法。

教學建議

1.知識結構:本小節先回顧了小學學過的字母表示的兩種實例,一是運算律,二是公式,從中看出字母表示數的優越性,進而引出代數式的概念。

2.教學重點分析:教科書,介紹了小學用字母表示數的實例,一個是運算律,一個是常用公式,上述兩種例子應用廣泛,且能很好地體現用字母表示數所具有的簡明、普遍的優越性,用字母表示是數學從算術到代數的一大進步,是代數的顯著特點。運用算術的方法解決問題,是小學學生的思維方法,現在,從具體的數過渡到用字母表示數,滲透了抽象概括的思維方法,在認識上是一個質的飛躍。對代數式的概念課文沒有直接給出,而是用實例形象地說明了代數式的概念。對代數式的概念可以從三個方面去理解:

(1)從具體的數到用字母表示數,是抽象思維的開始,體現了特殊與一般的辨證關系,用字母表示數具有簡明、普遍的優越性.

(2)代數式中并不要求數和表示數的字母同時出現,單獨的一個數和字母也是代數式.如:2,m都是代數式.

等都不是代數式.

3.教學難點分析:能正確說出一個代數式的數量關系,即用語言表達代數式的意義,一定要理清代數式中含有的各種運算及其順序。用語言表達代數式的意義,具體說法沒有統一規定,以簡明而不引起誤會為出發點。

如:說出代數式7(a-3)的意義。

分析7(a-3)讀成7乘a減3,這樣就產生歧義,究竟是7a-3呢?還是7(a-3)呢?有模棱兩可之感。代數式7(a-3)的最后運算是積,應把a-3作為一個整體。所以,7(a-3)的意義是7與(a-3)的積。

4.書寫代數式的注意事項:

(1)代數式中數字與字母或者字母與字母相乘時,通常把乘號簡寫作“·”或省略不寫,同時要求數字應寫在字母前面.

如3×a,應寫作3.a或寫作3a,a×b應寫作3.a或寫作ab.帶分數與字母相乘,應把帶分數化成假分數,

FormatImgID_0

.數字與數字相乘一般仍用“×”號.

(2)代數式中有除法運算時,一般按照分數的寫法來寫.

(3)含有加減運算的代數式需注明單位時,一定要把整個式子括起來.

5.對本節例題的分析:

例1是用代數式表示幾個比較簡單的數量關系,這些小學都學過.比較復雜一些的數量關系的代數式表示,課文安排在下一節中專門介紹.

例2是說出一些比較簡單的`代數式的意義.因為代數式中用字母表示數,所以把字母也看成數,一種特殊的數,就可以像看待原來比較熟悉的數式一樣,說出一個代數式所表示的數量關系,只是另外還要考慮乘號可能省略等新規定而已.

6.教法建議

(1)因為這一章知識大部分在小學學習過,講授新課之前要先復習小學學過的運算律,在學生原有的認知結構上,提出新的問題。這樣即復習了舊知識,又引出了新知識,能激發學生的學習興趣。在教學中,一定要注意發揮本章承上啟下的作用,搞好小學數學與初中代數的銜接,使學生有一個良好的開端。

(2)在本節的學習過程中,要使學生理解代數式的概念,首先要給學生多舉例子(學生比較熟悉、貼近現實生活的例子),使學生從感性上認識什么是代數式,理清代數式中的運算和運算順序,才能正確說出一個代數式所表示的數量關系,從而認識字母表示數的意義——普遍性、簡明性,也為列代數式做準備。

(3)條件比較好的學校,老師可選用一些多媒體課件,激發學生的學習興趣,增強學生自主學習的能力。

(4)老師在講解第一節之前,一定要對全章內容和課時安排有一個了解,注意前后知識的銜接,只有這樣,我們老師才能教給學生系統的而不是一些零散的知識,久而久之,學生頭腦中自然會形成一個完整的知識體系。

(5)因為是新學期代數的第一節課,老師一定要給學生一個好印象,好的開端等于成功了一半。那么,怎么才能給學生留下好印象呢?首先,你要盡量在學生面前展示自己的才華。比,英語口語好的老師,可以用英語做一個自我介紹,然后為學生說一段祝福語。第二,上課時盡量使用多種語言與學生交流,其中包括情感語言(眉目語言、手勢語言等),讓學生感受到老師對他的關心。

7.教學重點、難點:

重點:用字母表示數的意義

難點:學會用字母表示數及正確說出一個代數式所表示的數量關系。

教學設計示例

課堂教學過程設計

一、從學生原有的認知結構提出問題

1在小學我們曾學過幾種運算律?都是什么?如可用字母表示它們?

(通過啟發、歸納最后師生共同得出用字母表示數的五種運算律)

(1)加法交換律a+b=b+a;

(2)乘法交換律a·b=b·a;

(3)加法結合律(a+b)+c=a+(b+c);

(4)乘法結合律(ab)c=a(bc);

(5)乘法分配律a(b+c)=ab+ac

指出:(1)“×”也可以寫成“·”號或者省略不寫,但數與數之間相乘,一般仍用“×”;

(2)上面各種運算律中,所用到的字母a,b,c都是表示數的字母,它代表我們過去學過的一切數

2(投影)從甲地到乙地的路程是15千米,步行要3小時,騎車要1小時,乘汽車要0.25小時,試問步行、騎車、乘汽車的速度分別是多少?

3若用s表示路程,t表示時間,ν表示速度,你能用s與t表示ν嗎?

4(投影)一個正方形的邊長是a厘米,則這個正方形的周長是多少?面積是多少?

(用I厘米表示周長,則I=4a厘米;用S平方厘米表示面積,則S=a2平方厘米)

此時,教師應指出:(1)用字母表示數可以把數或數的關系,簡明的表示出來;(2)在公式與中,用字母表示數也會給運算帶來方便;(3)像上面出現的a,5,15÷3,4a,a+b,s/t以及a2等等都叫代數式.那么究竟什么叫代數式呢?代數式的意義又是什么呢?這正是本節課我們將要學習的內容.

三、講授新課

1代數式

單獨的一個數字或單獨的一個字母以及用運算符號把數或表示數的字母連接而成的式子叫代數式.學習代數,首先要學習用代數式表示數量關系,明確代數上的意義

2舉例說明

例1填空:

(1)每包書有12冊,n包書有__________冊;

(2)溫度由t℃下降到2℃后是_________℃;

(3)棱長是a厘米的正方體的體積是_____立方厘米;

(4)產量由m千克增長10%,就達到_______千克

(此例題用投影給出,學生口答完成)

解:(1)12n;(2)(t-2);(3)a3;(4)(1+10%)m

例2說出下列代數式的意義:

解:(1)2a+3的意義是2a與3的和;(2)2(a+3)的意義是2與(a+3)的積;

(5)a2+b2的意義是a,b的平方的和;(6)(a+b)2的意義是a與b的和的平方

說明:(1)本題應由教師示范來完成;

(2)對于代數式的意義,具體說法沒有統一規定,以簡明而不致引起誤會為出發點如第(1)小題也可以說成“a的2倍加上3”或“a的2倍與3的和”等等

例3用代數式表示:

(1)m與n的和除以10的商;

(2)m與5n的差的平方;

(3)x的2倍與y的和;

(4)ν的立方與t的3倍的積

分析:用代數式表示用語言敘述的數量關系要注意:①弄清代數式中括號的使用;②字母與數字做乘積時,習慣上數字要寫在字母的前面

四、課堂練習

1填空:(投影)

(1)n箱蘋果重p千克,每箱重_____千克;

(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高為_____厘米;

(3)底為a,高為h的三角形面積是______;

(4)全校學生人數是x,其中女生占48%?則女生人數是____,男生人數是____

2說出下列代數式的意義:(投影)

3用代數式表示:(投影)

(1)x與y的和;(2)x的平方與y的立方的差;

(3)a的60%與b的2倍的和;(4)a除以2的商與b除3的商的和

五、師生共同小結

首先,提出如下問題:

1本節課學習了哪些內容?2用字母表示數的意義是什么?

3什么叫代數式?

教師在學生回答上述問題的基礎上,指出:①代數式實際上就是算式,字母像數字一樣也可以進行運算;②在代數式和運算結果中,如有單位時,要正確地使用括號

六、作業

1一個三角形的三條邊的長分別的a,b,c,求這個三角形的周長

2張強比王華大3歲,當張強a歲時,王華的年齡是多少?

3飛機的速度是汽車的40倍,自行車的速度是汽車的1/3,若汽車的速度是ν千米/時,那么,飛機與自行車的速度各是多少?

4a千克大米的售價是6元,1千克大米售多少元?

5圓的半徑是R厘米,它的面積是多少?

6用代數式表示:

(1)長為a,寬為b米的長方形的周長;

(2)寬為b米,長是寬的2倍的長方形的周長;

(3)長是a米,寬是長的1/3的長方形的周長;

(4)寬為b米,長比寬多2米的長方形的周長

初中數學教案3000字篇15

一、說課內容:

人教版九年級數學下冊的二次函數的概念及相關習題

二、教材分析:

1、教材的地位和作用

這節課是在學生已經學習了一次函數、正比例函數、反比例函數的基礎上,來學習二次函數的概念。二次函數是初中階段研究的最后一個具體的函數,也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數和以前學過的一元二次方程、一元二次不等式有著密切的聯系。進一步學習二次函數將為它們的解法提供新的方法和途徑,并使學生更為深刻的理解數形結合的重要思想。而本節課的二次函數的概念是學習二次函數的基礎,是為后來學習二次函數的圖象做鋪墊。所以這節課在整個教材中具有承上啟下的重要作用。

2、教學目標和要求:

(1)知識與技能:使學生理解二次函數的概念,掌握根據實際問題列出二次函數關系式的方法,并了解如何根據實際問題確定自變量的取值范圍。

(2)過程與方法:復習舊知,通過實際問題的引入,經歷二次函數概念的探索過程,提高學生解決問題的能力.

(3)情感、態度與價值觀:通過觀察、操作、交流歸納等數學活動加深對二次函數概念的理解,發展學生的數學思維,增強學好數學的愿望與信心.

3、教學重點:對二次函數概念的理解。

4、教學難點:由實際問題確定函數解析式和確定自變量的取值范圍。

三、教法學法設計:

1、從創設情境入手,通過知識再現,孕伏教學過程

2、從學生活動出發,通過以舊引新,順勢教學過程

3、利用探索、研究手段,通過思維深入,領悟教學過程

四、教學過程:

(一)復習提問

1.什么叫函數?我們之前學過了那些函數?

(一次函數,正比例函數,反比例函數)

2.它們的形式是怎樣的?

(y=kx+b,ky=kx,ky=,k0)

3.一次函數(y=kx+b)的自變量是什么?函數是什么?常量是什么?為什么要有k0的條件?k值對函數性質有什么影響?

【設計意圖】復習這些問題是為了幫助學生弄清自變量、函數、常量等概念,加深對函數定義的理解.強調k0的條件,以備與二次函數中的a進行比較.

(二)引入新課

函數是研究兩個變量在某變化過程中的相互關系,我們已學過正比例函數,反比例函數和一次函數。看下面三個例子中兩個變量之間存在怎樣的關系。(電腦演示)

例1、(1)圓的半徑是r(cm)時,面積s(cm2)與半徑之間的關系是什么?

解:s=0)

例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m2)與矩形一邊長x(m)之間的關系是什么?

解:y=x(20/2-x)=x(10-x)=-x2+10x(0

例3、設人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關系是什么(不考慮利息稅)?

解:y=100(1+x)2

=100(x2+2x+1)

=100x2+200x+100(0

教師提問:以上三個例子所列出的函數與一次函數有何相同點與不同點?

【設計意圖】通過具體事例,讓學生列出關系式,啟發學生觀察,思考,歸納出二次函數與一次函數的聯系:(1)函數解析式均為整式(這表明這種函數與一次函數有共同的特征)。(2)自變量的最高次數是2(這與一次函數不同)。

(三)講解新課

以上函數不同于我們所學過的一次函數,正比例函數,反比例函數,我們就把這種函數稱為二次函數。

二次函數的定義:形如y=ax2+bx+c(a0,a,b,c為常數)的函數叫做二次函數。

鞏固對二次函數概念的理解:

1、強調形如,即由形來定義函數名稱。二次函數即y是關于x的二次多項式(關于的x代數式一定要是整式)。

2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)

3、為什么二次函數定義中要求a?

(若a=0,ax2+bx+c就不是關于x的二次多項式了)

4、在例3中,二次函數y=100x2+200x+100中,a=100,b=200,c=100.

5、b和c是否可以為零?

由例1可知,b和c均可為零.

若b=0,則y=ax2+c;

若c=0,則y=ax2+bx;

若b=c=0,則y=ax2.

注明:以上三種形式都是二次函數的特殊形式,而y=ax2+bx+c是二次函數的一般形式.

【設計意圖】這里強調對二次函數概念的理解,有助于學生更好地理解,掌握其特征,為接下來的判斷二次函數做好鋪墊。

判斷:下列函數中哪些是二次函數?哪些不是二次函數?若是二次函數,指出a、b、c.

(1)y=3(x-1)2+1(2)

(3)s=3-2t2(4)y=(x+3)2-x2

(5)s=10r2(6)y=22+2x

(8)y=x4+2x2+1(可指出y是關于x2的二次函數)

【設計意圖】理論學習完二次函數的概念后,讓學生在實踐中感悟什么樣的函數是二次函數,將理論知識應用到實踐操作中。

(四)鞏固練習

1.已知一個直角三角形的兩條直角邊長的和是10cm。

(1)當它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;

(2)設這個直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關

于x的函數關系式。

【設計意圖】此題由具體數據逐步過渡到用字母表示關系式,讓學生經歷由具體到抽象的過程,從而降低學生學習的難度。

2.已知正方體的棱長為xcm,它的表面積為Scm2,體積為Vcm3。

(1)分別寫出S與x,V與x之間的函數關系式子;

(2)這兩個函數中,那個是x的二次函數?

【設計意圖】簡單的實際問題,學生會很容易列出函數關系式,也很容易分辨出哪個是二次函數。通過簡單題目的練習,讓學生體驗到成功的歡愉,激發他們學習數學的興趣,建立學好數學的信心。

3.設圓柱的高為h(cm)是常量,底面半徑為rcm,底面周長為Ccm,圓柱的體積為Vcm3

(1)分別寫出C關于r;V關于r的函數關系式;

(2)兩個函數中,都是二次函數嗎?

【設計意圖】此題要求學生熟記圓柱體積和底面周長公式,在這兒相當于做了一次復習,并與今天所學知識聯系起來。

4.籬笆墻長30m,靠墻圍成一個矩形花壇,寫出花壇面積y(m2)與長x之間的函數關系式,并指出自變量的取值范圍.

【設計意圖】此題較前面幾題稍微復雜些,旨在讓學生能夠開動腦筋,積極思考,讓學生能夠跳一跳,夠得到。

(五)拓展延伸

1.已知二次函數y=ax2+bx+c,當x=0時,y=0;x=1時,y=2;x=-1時,y=1.求a、b、c,并寫出函數解析式.

【設計意圖】在此稍微滲透簡單的用待定系數法求二次函數解析式的問題,為下節課的教學做個鋪墊。

2.確定下列函數中k的值

(1)如果函數y=xk^2-3k+2+kx+1是二次函數,則k的值一定是______

(2)如果函數y=(k-3)xk^2-3k+2+kx+1是二次函數,則k的值一定是______

【設計意圖】此題著重復習二次函數的特征:自變量的最高次數為2次,且二次項系數不為0.

(六)小結思考:

本節課你有哪些收獲?還有什么不清楚的地方?

【設計意圖】讓學生來談本節課的收獲,培養學生自我檢查、自我小結的良好習慣,將知識進行整理并系統化。而且由此可了解到學生還有哪些不清楚的地方,以便在今后的教學中補充。

(七)作業布置:

必做題:

1.正方形的邊長為4,如果邊長增加x,則面積增加y,求y關于x的函數關系式。這個函數是二次函數嗎?

2.在長20cm,寬15cm的矩形木板的四角上各鋸掉一個邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數關系,并注明自變量的取值范圍。

選做題:

1.已知函數是二次函數,求m的值。

2.試在平面直角坐標系畫出二次函數y=x2和y=-x2圖象

【設計意圖】作業中分為必做題與選做題,實施分層教學,體現新課標人人學有價值的.數學,不同的人得到不同的發展。另外補充第4題,旨在激發學生繼續學習二次函數圖象的興趣。

五、教學設計思考

以實現教學目標為前提

以現代教育理論為依據

以現代信息技術為手段

貫穿一個原則以學生為主體的原則

突出一個特色充分鼓勵表揚的特色

滲透一個意識應用數學的意識

初中數學教案3000字篇16

學習目標

1、了解分式的概念,會判斷一個代數式是否是分式。

2、能用分式表示簡單問題中數量之間的關系,能解釋簡單分式的實際背景或幾何意義。

3、能分析出一個簡單分式有、無意義的條件。

4、會根據已知條件求分式的值。

學習重點

分式的概念,掌握分式有意義的條件

學習難點

分式有、無意義的條件

教學流程

預習導航

一、創設情境:

京滬鐵路是我國東部沿海地區縱貫南北的交通大動脈,全長1462km,是我國最繁忙的鐵路干線之一。如果貨運列車的速度為akm/h,快速列車的速度為貨運列車2倍,那么:

(1)貨運列車從北京到上海需要多長時間?

(2)快速列車從北京到上海需要多長時間?

(3)已知從北京到上海快速列車比貨運列車少用多少時間?

觀察剛才你們所列的式子,它們有什么特點?

這些式子與分數有什么相同和不同之處?

合作探究

一、概念探究:

1、列出下列式子:

(1)一塊長方形玻璃板的面積為2㎡,如果寬為am,那么長是

(2)小麗用n元人民幣買了m袋瓜子,那么每袋瓜子的價格是元。

(3)正n邊形的每個內角為度。

(4)兩塊面積分別為a公頃、b公頃的棉田,產棉花分別為m㎏、n㎏。這兩塊棉田平均每公頃產棉花______㎏。

2、兩個數相除可以把它們的商表示成分數的形式。如果用字母分別表示分數的分子和分母,那么可以表示成什么形式呢?

3、思考:

上面所列各式有什么共同特點?

(通過對以上幾個實際問題的研討,學會用的形式表示實際問題中數量之間的關系,感受把分數推廣到分式的優越性和必要性)

分式的概念:

4、小結分式的概念中應注意的問題.

①分式是兩個整式相除的商式,其中分子為被除式,分母為除式,分數線起除號的作用;

②分式的分母中必須含有字母,而分子中可以含有字母,也可以不含字母,這是區別整式的重要依據;

③如同分數一樣,在任何情況下,分式的分母的值都不可以為0,否則分式無意義。分式分母不為零是隱含在此分式中而無須注明的條件。

二、例題分析:

例1:試解釋分式所表示的實際意義

例2:求分式的值①a=3②a=—

例3:當取什么值時,分式(1)沒有意義?(2)有意義?(3)值為零。

三、展示交流:

1、在____________中,是整式的有_____________________,是分式的有________________;

2、寫成分式為____________,且當m≠_____時分式有意義;

3、當x_______時,分式無意義,當x______時,分式的值為1。

4、若分式的值為正數,則x的取值應是()

A.,B.C.D.為任意實數

四、提煉總結:

1、什么叫分式?

2、分式什么時候有意義?怎樣求分式的值

初中數學教案3000字篇17

教學目標:

1、初步理解垂直與平行是同一平面內兩直線的特殊位置關系,初步認識垂線和平行線。

2、在“演示操作驗證解釋應用”的過程中,發展學生的空間觀念,滲透猜想、與驗證的數學思想方法。

教學重點、難點:

正確理解“相交”、“互相平行”、“互相垂直”等概念,發展學生的空間想象力。

教學過程:

一、平面內兩直線位置關系

1、操作:

請每位同學在一張紙上畫兩條直線,這兩條直線的位置關系會出現哪些情況?

2、分類:根據學生想象,出示下圖(網格):

師:老師課前也繪制了這樣6幅圖,想一想,按兩條直線的不同位置關系,你可以分成哪幾類?說說你的分類依據。

3、討論交流,揭示平面內兩條直線的位置關系。

小結:

兩條直線,除了“相交”和“不相交”,還可能存在其他的位置關系嗎?

板書:

相交

兩條直線的位置關系

不相交

二、探究一:垂直

1、平面內兩直線相交構成的4個角的特點。

師:首先來研究平面內兩條直線“相交”這一情況。

師:平面內直線a和直線b相交與點O,已知1=60,誰能馬上求出2、3、4的度數?你是怎么想的?

2、平面內兩直線相交的特殊情況。

提問:這4個角的度數有什么特點?固定點O,旋轉后,情況還是一樣嗎?

(旋轉至垂直)

師:現在兩條直線相交成直角了。繼續旋轉呢?

除了相交成直角以外,其余的情況,都是任意相交的。

板書:任意相交

相交

平面內兩條直線的位置關系相交成直角

不相交

3、練習:

下列圖形中哪兩條直線相交成直角。

○1○2○3

4、揭示概念。(媒體出示)

板書:任意相交

相交

平面內兩條直線的位置關系相交成直角垂直

不相交

5、平面圖形中的垂直現象。

下面圖形中哪些角是直角?在圖上用直角記號標出。哪些線段互相垂直?用垂直符號表示。

○1○2○3

記作:記作:記作:

6、動手操作。

三、探究二:平行

1、提問:長方形中,如果把相對的兩條邊無限延長,是否會在某一點相交?

2、揭示概念

板書:任意相交

相交

平面內兩條直線的位置關系相交成直角垂直

不相交平行

3、平面圖中的平行現象

4、練習

(1)說說下列哪些直線互相垂直?哪些互相平行?

將圖2改為:

提問:e和f還平行嗎?

將圖2改為:

當角1等于角2時,e和f還平行嗎?

(2)滲透“同一”平面觀念

長方體中,這兩條棱相交嗎?那么他們平行嗎?

板書:任意相交

相交

同一平面內兩條直線的位置關系相交成直角垂直

不相交平行

四、生活中的平行與垂直

1、舉例:生活中,你有沒有發現“垂直與平行”的現象?

2、提問:為什么這些地方要設計成“垂直”或者“平行”?

五、課堂總結

初中數學教案3000字篇18

教學目標:

1、知識與技能:

⑴、在具體的現實情境中,認識一個角的余角和補角,掌握余角和補角的性質。

⑵、了解方位角,能確定具體物體的方位。

2、過程與方法:

進一步提高學生的抽象概括能力,發展空間觀念和知識運用能力,學會推理,并能對問題的結論進行合理的猜想。

3、情感態度與價值觀:

體會觀察、歸納、推理對數學知識中獲取數學猜想和論證的重要作用,初步數學中推理的嚴謹性和結論的確定性,能在獨立思考和小組交流中獲益。

重、難點及關鍵:

1、重點:認識角的互余、互補關系及其性質,確定方位是本節課的重點。

2、難點:通過簡單的推理,歸納出余角、補角的性質,并能用規范的語言描述性質是難點。

3、關鍵:了解推理的意義和推理過程是掌握性質的關鍵。

教學過程:

一、引入新課:

讓學生觀察意大利著名建筑比薩斜塔。

比薩斜塔建于1173年,工程曾間斷了兩次很長的時間,歷經約二百年才完工。設計為垂直建造,但是在工程開始后不久便由于地基不均勻和土層松軟而傾斜。

二、新課講解:

1、探究互為余角的定義:

如果兩個角的和是90(直角),那么這兩個角叫做互為余角,其中一個角是另一個角的余角。即:1是2的余角或2是1的余角。

2、練習⑴:

圖中給出的各角,那些互為余角?

3、探究互為補角的定義:

如果兩個角的和是180(平角),那么這兩個角叫做互為補角,其中一個角是另一個角的補角。即:3是4的補角或4是3的補角。

4、練習⑵:

(1)圖中給出的各角,那些互為補角?

(2)填下列表:

a的余角a的補角

5

32

45

77

6223

x

結論:同一個銳角的補角比它的余角大90。

(3)填空:

①70的余角是,補角是。

②a(90)的它的余角是,它的補角是。

重要提醒:ⅰ(如何表示一個角的余角和補角)

銳角a的余角是(90a)

a的補角是(180a)

ⅱ互余和互補是兩個角的數量關系,與它們的位置無關。

5、講解例題:

例1:若一個角的補角等于它的余角4倍,求這個角的度數。

解:設這個角是x,則它的補角是(180-x),余角是(90-x)。

根據題意得:

(180-x)=4(90-x)

解之得:x=60

答:這個角的度數是60。

6、練習⑶:

一個角的補角是它的3倍,這個角是多少度?

7、探究補角的性質:

如圖1與2互補,3與4互補,如果1=3,那么2與4相等嗎?為什么?

教師活動:操作多媒體演示。

學生活動:觀察圖形的運動,得出結果:4

補角性質:同角或等角的補角相等

教師活動:向學生說明,以上從觀察圖形得到的`結論,還可以從理論上說明其理由。

∵1+2=180,3+4=180

2=180-1,4=180-3

∵1=3

180-1=180-3

即:2=4

8、探究余角的性質:

如圖1與2互余,3與4互余,如果1=3,那么2與4相等嗎?為什么?

教師活動:操作多媒體演示。

學生活動:觀察圖形的運動,得出結果:4

余角性質:同角或等角的余角相等

教師活動:向學生說明,以上從觀察圖形得到的結論,還可以從理論上說明其理由。

∵1+2=90,3+4=90

2=90-1,4=90-3

∵1=3

90-1=90-3

即:2=4

9、講解例題:

例2:如圖,AOB=90COD=EOD=90,C,O,E在一條直線上,且4,請說出1與3之間的關系?并試著說明理由?

解:3

∵2=COD=90

3+2=AOB=90

3(等角的余角相等)

10、練習⑷:

如圖AOB=90COD=90則1與2是什么關系?

11、講解方位角:

(1)認識方位:

正東、正南、正西、正北、東南、

西南、西北、東北。

(2)找方位角:

ⅰ乙地對甲地的方位角ⅱ甲地對乙地的方位角

12、講解例題:

例3:選擇題:

(1)A看B的方向是北偏東21,那么B看A的方向()

A:南偏東69B:南偏西69C:南偏東21D:南偏西21

(2)如圖,下列說法中錯誤的是()

A:OC的方向是北偏東60

B:OC的方向是南偏東60

C:OB的方向是西南方向

D:OA的方向是北偏西22

(3)在點O北偏西60的某處有一點A,在點O南偏西20的某處有一點B,則AOB的度數是()

A:100B:70C:180D:140

例4:如圖.貨輪O在航行過程中,發現燈塔A在它南偏東60的方向上,同時,在它北偏東40,南偏西10,西北(即北偏西45)方向上又分別發現了客輪B,貨輪C和海島D.仿照表示燈塔方位的方法畫出表示客輪B,貨輪C和海島D方向的射線.

三、課堂小結:

1、本節課學習了余角和補角,并通過簡單的推理,得到出了余角和補角的性質。

2、了解方位角,學會了確定物體運動的方向。

四、課外作業:

1、課本第114頁:9、11、12題。

2、學習指要第78-79頁:訓練二和訓練三。

課后反思:

84934 主站蜘蛛池模板: 环保袋,无纺布袋,无纺布打孔袋,保温袋,环保袋定制,环保袋厂家,环雅包装-十七年环保袋定制厂家 | 塑料撕碎机_编织袋撕碎机_废纸撕碎机_生活垃圾撕碎机_废铁破碎机_河南鑫世昌机械制造有限公司 | 台湾HIWIN上银直线模组|导轨滑块|TBI滚珠丝杆丝杠-深圳汉工 | BESWICK球阀,BESWICK接头,BURKERT膜片阀,美国SEL继电器-东莞市广联自动化科技有限公司 | 北京租车公司_汽车/客车/班车/大巴车租赁_商务会议/展会用车/旅游大巴出租_北京桐顺创业租车公司 | 自动气象站_农业气象站_超声波气象站_防爆气象站-山东万象环境科技有限公司 | ★店家乐|服装销售管理软件|服装店收银系统|内衣店鞋店进销存软件|连锁店管理软件|收银软件手机版|会员管理系统-手机版,云版,App | 首页 - 军军小站|张军博客 | 小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴 | 刹车盘机床-刹车盘生产线-龙口亨嘉智能装备 | 焦作网 WWW.JZRB.COM | 冻干机(冷冻干燥机)_小型|实验型|食品真空冷冻干燥机-松源 | 钢托盘,钢制托盘,立库钢托盘,金属托盘制造商_南京飞天金属制品实业有限公司 | 篷房|仓储篷房|铝合金篷房|体育篷房|篷房厂家-华烨建筑科技官网 知名电动蝶阀,电动球阀,气动蝶阀,气动球阀生产厂家|价格透明-【固菲阀门官网】 | 照相馆预约系统,微信公众号摄影门店系统,影楼管理软件-盟百网络 | 丹佛斯压力传感器,WISE温度传感器,WISE压力开关,丹佛斯温度开关-上海力笙工业设备有限公司 | 上海公众号开发-公众号代运营公司-做公众号的公司企业服务商-咏熠软件 | 大白菜官网,大白菜winpe,大白菜U盘装系统, u盘启动盘制作工具 | 缓蚀除垢剂_循环水阻垢剂_反渗透锅炉阻垢剂_有机硫化物-郑州威大水处理材料有限公司 | 春腾云财 - 为企业提供专业财税咨询、代理记账服务 | 车间除尘设备,VOCs废气处理,工业涂装流水线,伸缩式喷漆房,自动喷砂房,沸石转轮浓缩吸附,机器人喷粉线-山东创杰智慧 | 喷砂机厂家_自动喷砂机生产_新瑞自动化喷砂除锈设备 | 智慧水务|智慧供排水利信息化|水厂软硬件系统-上海敢创 | 哈尔滨京科脑康神经内科医院-哈尔滨治疗头痛医院-哈尔滨治疗癫痫康复医院 | 找果网 | 苹果手机找回方法,苹果iPhone手机丢了找回,认准找果网! | Safety light curtain|Belt Sway Switches|Pull Rope Switch|ultrasonic flaw detector-Shandong Zhuoxin Machinery Co., Ltd | 铝箔袋,铝箔袋厂家,东莞铝箔袋,防静电铝箔袋,防静电屏蔽袋,防静电真空袋,真空袋-东莞铭晋让您的产品与众不同 | 红酒招商加盟-葡萄酒加盟-进口红酒代理-青岛枞木酒业有限公司 | 集菌仪_智能集菌仪_全封闭集菌仪_无菌检查集菌仪厂家-那艾 | 医学动画公司-制作3d医学动画视频-医疗医学演示动画制作-医学三维动画制作公司 | 定制液氮罐_小型气相液氮罐_自增压液氮罐_班德液氮罐厂家 | 东莞精密模具加工,精密连接器模具零件,自動機零件,冶工具加工-益久精密 | 辽宁资质代办_辽宁建筑资质办理_辽宁建筑资质延期升级_辽宁中杭资质代办 | TTCMS自助建站_网站建设_自助建站_免费网站_免费建站_天天向上旗下品牌 | 卫生人才网-中国专业的医疗卫生医学人才网招聘网站! | 加热制冷恒温循环器-加热制冷循环油浴-杭州庚雨仪器有限公司 | SMC-ASCO-CKD气缸-FESTO-MAC电磁阀-上海天筹自动化设备官网 | 企业微信scrm管理系统_客户关系管理平台_私域流量运营工具_CRM、ERP、OA软件-腾辉网络 | 上海防爆真空干燥箱-上海防爆冷库-上海防爆冷柜?-上海浦下防爆设备厂家? | 筛分机|振动筛分机|气流筛分机|筛分机厂家-新乡市大汉振动机械有限公司 | 上海单片机培训|重庆曙海培训分支机构—CortexM3+uC/OS培训班,北京linux培训,Windows驱动开发培训|上海IC版图设计,西安linux培训,北京汽车电子EMC培训,ARM培训,MTK培训,Android培训 |