初中數學教案通用模版
編寫教案有助于養成嚴謹的工作作風和辦事認真的習慣;可使備課充分,上起課來有條不紊。好的初中數學教案通用模版應該怎么寫?快來看看,小編給大家分享初中數學教案通用模版的寫作技巧和示例,供大家參考!
初中數學教案通用模版篇1
教材分析:
一元二次方程根與系數的關系的知識內容主要是以前一單元中的求根公式為基礎的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根與系數的關系,以及以數x1、x2為根的一元二次方程的求方程模型。然后通過4個例題介紹了利用根與系數的關系簡化一些計算的知識。
學情分析:
1.學生已學習用求根公式法解一元二次方程。
2.本課的教學對象是九年級學生,學生對事物的認識多是直觀、形象的,他們所注意的多是事物外部的、直接的、具體形象的特征。
3.在教學初始,出示一些學生所熟悉和感興趣的東西,結合一元二次方程求根公式使他們在現代化的教學模式和傳統的教學模式相結合的基礎上掌握一元二次方程根與系數的關系。
教學目標:
1、知識目標:要求學生在理解的基礎上掌握一元二次方程根與系數的關系式,能運用根與系數的關系由已知一元二次方程的一個根求出另一個根與未知數,會求一元二次方程兩個根的倒數和與平方數,兩根之差。
2、能力目標:通過韋達定理的教學過程,使學生經歷觀察、實驗、猜想、證明等數學活動過程,發展推理能力,能有條理地、清晰地闡述自己的觀點,進一步培養學生的創新意識和創新精神。
3、情感目標:通過情境教學過程,激發學生的求知欲望,培養學生積極學習數學的態度。體驗數學活動中充滿著探索與創造,體驗數學活動中的成功感,建立自信心。
教學重難點:
1、重點:一元二次方程根與系數的關系。
2、難點:讓學生從具體方程的根發現一元二次方程根與系數之間的關系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關系,比較抽象,學生真正掌握有一定的難度,是教學的難點。
板書設計:
一元二次方程根與系數的關系如果ax+bx+c=0(a≠0)的兩根是x1,x2,那么x1+x2=,x1x2=。
問題6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用嗎?①二次項系數a是否為零,決定著方程是否為二次方程;②當a≠0時,b=0,a、c異號,方程兩根互為相反數;③當a≠0時,△=b-4ac可判定根的情況;④當a≠0,b-4ac≥0時,x1+x2=,x1x2=。⑤當a≠0,c=0時,方程必有一根為0。
學生學習活動評價設計:
本節課充分讓學生分析、觀察、提高了學生的歸納能力及推理論證的能力。
教學反思:
1.一元二次方程根與系數的關系的推導是在求根公式的基礎上進行。它深化了兩根的和與積同系數之間的關系,是我們今后繼續研究一元二次方程根的情況的主要工具,必須熟記,為進一步使用打下基礎。
2.以一元二次方程根與系數的關系的探索與推導,向學生展示認識事物的一般規律,提倡積極思維,勇于探索的精神,借此鍛煉學生分析、觀察、歸納的能力及推理論證的能力。
3.一元二次方程的根與系數的關系,在中考中多以填空,選擇,解答題的形式出現,考查的頻率較高,也常與幾何、二次函數等問題結合考查,是考試的熱點,它是方程理論的重要組成部分。
4.使學生體會解題方法的多樣性,開闊解題思路,優化解題方法,增強擇優能力。力求讓學生在自主探索和合作交流的過程中進行學習,獲得數學活動經驗,教師應注意引導。
初中數學教案通用模版篇2
學習目標
1、在同一直角坐標系中,感受圖形上點的坐標變化與圖形的變化(平移、軸對稱、伸長、壓縮)之間的關系并能找出變化規律。
2、由坐標的變化探索新舊圖形之間的變化。
重點
1、作某一圖形關于對稱軸的對稱圖形,并能寫出所得圖形相應各點的坐標。
2、根據軸對稱圖形的`特點,已知軸一邊的圖形或坐標確定另一邊的圖形或坐標。
難點
體會極坐標和直角坐標思想,并能解決一些簡單的問題
學習過程(導入、探究新知、即時練習、小結、達標檢測、作業)
第一課時
學習過程:
一、舊知回顧:
1、平面直角坐標系定義:在平面內,兩條____________且有公共_________的數軸組成平面直角坐標系。
2、坐標平面內點的坐標的表示方法____________。
3、各象限點的坐標的特征:
二、新知檢索:
1、在方格紙上描出下列各點(0,0),(5,4),(3,0),(5,1),(5,-1),
(3,0),(4,-2),(0,0)并用線段依次連接,觀察形成了什么圖形
三、典例分析
例1、
(1)將魚的頂點的縱坐標保持不變,橫坐標分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標保持不變,橫坐標分別減2呢?
(2)將魚的頂點的橫坐標保持不變,縱坐標分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標保持不變,縱坐標減2呢?
例2、(1)將魚的頂點的縱坐標保持不變,橫坐標分別變為原來的2倍畫出圖形,分析所得圖形與原來圖形相比有什么變化?
(2)將魚的頂點的橫坐標保持不變,縱坐標分別變為原來的1/2畫出圖形,分析所得圖形與原來圖形相比有什么變化?
四、題組訓練
1、在平面直角坐標系中,將坐標為(0,0),(2,4),(2,0),(4,4)的點用線段依次連接起來形成一個圖案。
(1)這四個點的縱坐標保持不變,橫坐標變成原來的1/2,將所得的四個點用線段依次連接起來,所得圖案與原來圖案相比有什么變化?
(2)縱、橫分別加3呢?
(3)縱、橫分別變成原來的2倍呢?
歸納:圖形坐標變化規律
1、平移規律:2、圖形伸長與壓縮:
第二課時
一、舊知回顧:
1、軸對稱圖形定義:如果一個圖形沿著對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形。
中心對稱圖形定義:在同一平面內,如果把一個圖形繞某一點旋轉,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形
二、新知檢索:
1、如圖,左邊的魚與右邊的魚關于y軸對稱。
1、左邊的魚能由右邊的魚通過平移、壓縮或拉伸而得到嗎?
2、各個對應頂點的坐標有怎樣的關系?
3、如果將圖中右邊的魚沿x軸正方向平移1個單位長度,為保持整個圖形關于y軸對稱,那么左邊的魚各個頂點的坐標將發生怎樣的變化?
三、典例分析,如圖所示,
1、右圖的魚是通過什么樣的變換得到左圖的魚的。
2、如果將右邊的魚的橫坐標保持不變,縱坐標分別變為原來的1倍,畫出圖形,得到的魚與原來的魚有什么樣的位置關系。
3、如果將右邊的魚的縱、橫坐標都分別變為原來的1倍,得到的魚與原來的魚有什么樣的位置關系
四、題組練習
1、將坐標作如下變化時,圖形將怎樣變化?
①(x,y)(x,y+4)②(x,y)(x,y-2)③(x,y)(1/2x,y)
④(x,y)(3x,y)⑤(x,y)(x,1/2y)⑥(x,y)(3x,3y)
2、如圖,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形狀、大小完全一樣的蝴蝶,并寫出第二象限中蝴蝶各個頂點的坐標。
3、如圖,作字母M關于y軸的軸對稱圖形,并寫出所得圖形相應各端點的坐標。
4、描出下圖中楓葉圖案關于x軸的軸對稱圖形的簡圖。
初中數學教案通用模版篇3
一、 教材結構與內容簡析
在分析新數學課程標準的基礎上確定了本節課在教材中的地位和作用以及確定本節課的教學目標、重點和難點。首先來看一下本節課在教材中的地位和作用。
有理數的加減法在整個知識系統中的地位和作用是很重要的。它是整個初中代數的一個基礎,它直接關系到有理數運算、實數運算、代數式運算、解方程、、研究函數等內容的學習。初中階段要培養學生的運算能力、邏輯思維能力和空間想象能力以及讓學生根據一些現實模型,把它轉化成數學問題,從而培養學生的數學意識,增強學生對數學的理解和解決實際問題的能力。 就第一章而言,有理數的加減法是本章的一個重點。在有理數范圍內進行的各種運算:加、減法可以統一成為加法,乘法、除法和乘方可以統一成乘法,因此加法和乘法的運算是本章的關鍵,而加法又是學生接觸的第一種有理數運算,學生能否接受和形成在有理數范圍內進行的各種運算的思考方式(確定結果的符號和絕對值),關鍵是這一節的學習。
數學思想方法分析:作為一名數學老師,不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想、數學意識,因此本節課在教學中力圖向學生滲透的德育目標是:(1)滲透由特殊到一般的辯證唯物主義思想 (2)培養學生嚴謹的思維品質。
二、 教學目標
根據新課程標準和上述對教材結構與內容分析,考慮到學生已有的認知結構及心理特征 ,制定如下教學目標:
1.了解代數和的概念,理解有理數加減法可以互相轉化,會進行加減混合運算;
2. 通過學習理解加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想;
3.通過加法運算練習,培養學生的運算能力。
三、教學建議
(一)重點、難點分析
本小節的重點是依據運算法則和運算律準確迅速地進行有理數的加減混合運算,難點是省略符號與括號的代數和的計算.
由于減法運算可以轉化為加法運算,所以加減混合運算實際上就是有理數的加法運算。了解運算符號和性質符號之間的關系,把任何一個含有有理數加、減混合運算的算式都看成和式,就可靈活運用加法運算律,簡化計算.
(二)教法建議
1.通過習題,復習、鞏固有理數的加、減運算以及加減混合運算的法則與技能,講課前教師要認真總結、分析學生在進行有理數加、減混合運算時常犯的錯誤,以便在這節課分析習題時,有意識地幫助學生改正.
2.關于“去括號法則”,只要學生了解,并不要求追究所以然.
3.任意含加法、減法的算式,都可把運算符號理解為數的性質符號,看成省略加號的和式。這時,稱這個和式為代數和。再例如:-3-4表示-3、-4兩數的代數和,-4+3表示-4、+3兩數的代數和,3+4表示3和+4的代數和等。代數和概念是掌握有理數運算的一個重要概念,請老師務必給予充分注意。
4.先把正數與負數分別相加,可以使運算簡便。
5.在交換加數的位置時,要連同前面的符號一起交換。如:12-5+7 應變成 12+7-5,而不能變成12-7+5。
備注:教學過程我主要說第一小節---去括號
(三)教學過程:根據教材的結構特點,緊緊抓住新舊知識的內在聯系,運用類比、聯想、轉化的思想,突破難點.
初中數學教案通用模版篇4
教學目標
1.使學生認識字母表示數的意義,了解字母表示數是數學的一大進步;
2.了解代數式的概念,使學生能說出一個代數式所表示的數量關系;
3.通過對用字母表示數的講解,初步培養學生觀察和抽象思維的能力;
4.通過本節課的教學,使學生深刻體會從特殊到一般的的數學思想方法。
教學建議
1.知識結構:本小節先回顧了小學學過的字母表示的兩種實例,一是運算律,二是公式,從中看出字母表示數的優越性,進而引出代數式的概念。
2.教學重點分析:教科書,介紹了小學用字母表示數的實例,一個是運算律,一個是常用公式,上述兩種例子應用廣泛,且能很好地體現用字母表示數所具有的簡明、普遍的優越性,用字母表示是數學從算術到代數的一大進步,是代數的顯著特點。運用算術的方法解決問題,是小學學生的思維方法,現在,從具體的數過渡到用字母表示數,滲透了抽象概括的思維方法,在認識上是一個質的飛躍。對代數式的概念課文沒有直接給出,而是用實例形象地說明了代數式的概念。對代數式的概念可以從三個方面去理解:
(1)從具體的數到用字母表示數,是抽象思維的開始,體現了特殊與一般的辨證關系,用字母表示數具有簡明、普遍的優越性.
(2)代數式中并不要求數和表示數的字母同時出現,單獨的一個數和字母也是代數式.如:2,m都是代數式.
等都不是代數式.
3.教學難點分析:能正確說出一個代數式的數量關系,即用語言表達代數式的意義,一定要理清代數式中含有的各種運算及其順序。用語言表達代數式的意義,具體說法沒有統一規定,以簡明而不引起誤會為出發點。
如:說出代數式7(a-3)的意義。
分析7(a-3)讀成7乘a減3,這樣就產生歧義,究竟是7a-3呢?還是7(a-3)呢?有模棱兩可之感。代數式7(a-3)的最后運算是積,應把a-3作為一個整體。所以,7(a-3)的意義是7與(a-3)的積。
4.書寫代數式的注意事項:
(1)代數式中數字與字母或者字母與字母相乘時,通常把乘號簡寫作“·”或省略不寫,同時要求數字應寫在字母前面.
如3×a,應寫作3.a或寫作3a,a×b應寫作3.a或寫作ab.帶分數與字母相乘,應把帶分數化成假分數,
FormatImgID_0
.數字與數字相乘一般仍用“×”號.
(2)代數式中有除法運算時,一般按照分數的寫法來寫.
(3)含有加減運算的代數式需注明單位時,一定要把整個式子括起來.
5.對本節例題的分析:
例1是用代數式表示幾個比較簡單的數量關系,這些小學都學過.比較復雜一些的數量關系的代數式表示,課文安排在下一節中專門介紹.
例2是說出一些比較簡單的`代數式的意義.因為代數式中用字母表示數,所以把字母也看成數,一種特殊的數,就可以像看待原來比較熟悉的數式一樣,說出一個代數式所表示的數量關系,只是另外還要考慮乘號可能省略等新規定而已.
6.教法建議
(1)因為這一章知識大部分在小學學習過,講授新課之前要先復習小學學過的運算律,在學生原有的認知結構上,提出新的問題。這樣即復習了舊知識,又引出了新知識,能激發學生的學習興趣。在教學中,一定要注意發揮本章承上啟下的作用,搞好小學數學與初中代數的銜接,使學生有一個良好的開端。
(2)在本節的學習過程中,要使學生理解代數式的概念,首先要給學生多舉例子(學生比較熟悉、貼近現實生活的例子),使學生從感性上認識什么是代數式,理清代數式中的運算和運算順序,才能正確說出一個代數式所表示的數量關系,從而認識字母表示數的意義——普遍性、簡明性,也為列代數式做準備。
(3)條件比較好的學校,老師可選用一些多媒體課件,激發學生的學習興趣,增強學生自主學習的能力。
(4)老師在講解第一節之前,一定要對全章內容和課時安排有一個了解,注意前后知識的銜接,只有這樣,我們老師才能教給學生系統的而不是一些零散的知識,久而久之,學生頭腦中自然會形成一個完整的知識體系。
(5)因為是新學期代數的第一節課,老師一定要給學生一個好印象,好的開端等于成功了一半。那么,怎么才能給學生留下好印象呢?首先,你要盡量在學生面前展示自己的才華。比,英語口語好的老師,可以用英語做一個自我介紹,然后為學生說一段祝福語。第二,上課時盡量使用多種語言與學生交流,其中包括情感語言(眉目語言、手勢語言等),讓學生感受到老師對他的關心。
7.教學重點、難點:
重點:用字母表示數的意義
難點:學會用字母表示數及正確說出一個代數式所表示的數量關系。
教學設計示例
課堂教學過程設計
一、從學生原有的認知結構提出問題
1在小學我們曾學過幾種運算律?都是什么?如可用字母表示它們?
(通過啟發、歸納最后師生共同得出用字母表示數的五種運算律)
(1)加法交換律a+b=b+a;
(2)乘法交換律a·b=b·a;
(3)加法結合律(a+b)+c=a+(b+c);
(4)乘法結合律(ab)c=a(bc);
(5)乘法分配律a(b+c)=ab+ac
指出:(1)“×”也可以寫成“·”號或者省略不寫,但數與數之間相乘,一般仍用“×”;
(2)上面各種運算律中,所用到的字母a,b,c都是表示數的字母,它代表我們過去學過的一切數
2(投影)從甲地到乙地的路程是15千米,步行要3小時,騎車要1小時,乘汽車要0.25小時,試問步行、騎車、乘汽車的速度分別是多少?
3若用s表示路程,t表示時間,ν表示速度,你能用s與t表示ν嗎?
4(投影)一個正方形的邊長是a厘米,則這個正方形的周長是多少?面積是多少?
(用I厘米表示周長,則I=4a厘米;用S平方厘米表示面積,則S=a2平方厘米)
此時,教師應指出:(1)用字母表示數可以把數或數的關系,簡明的表示出來;(2)在公式與中,用字母表示數也會給運算帶來方便;(3)像上面出現的a,5,15÷3,4a,a+b,s/t以及a2等等都叫代數式.那么究竟什么叫代數式呢?代數式的意義又是什么呢?這正是本節課我們將要學習的內容.
三、講授新課
1代數式
單獨的一個數字或單獨的一個字母以及用運算符號把數或表示數的字母連接而成的式子叫代數式.學習代數,首先要學習用代數式表示數量關系,明確代數上的意義
2舉例說明
例1填空:
(1)每包書有12冊,n包書有__________冊;
(2)溫度由t℃下降到2℃后是_________℃;
(3)棱長是a厘米的正方體的體積是_____立方厘米;
(4)產量由m千克增長10%,就達到_______千克
(此例題用投影給出,學生口答完成)
解:(1)12n;(2)(t-2);(3)a3;(4)(1+10%)m
例2說出下列代數式的意義:
解:(1)2a+3的意義是2a與3的和;(2)2(a+3)的意義是2與(a+3)的積;
(5)a2+b2的意義是a,b的平方的和;(6)(a+b)2的意義是a與b的和的平方
說明:(1)本題應由教師示范來完成;
(2)對于代數式的意義,具體說法沒有統一規定,以簡明而不致引起誤會為出發點如第(1)小題也可以說成“a的2倍加上3”或“a的2倍與3的和”等等
例3用代數式表示:
(1)m與n的和除以10的商;
(2)m與5n的差的平方;
(3)x的2倍與y的和;
(4)ν的立方與t的3倍的積
分析:用代數式表示用語言敘述的數量關系要注意:①弄清代數式中括號的使用;②字母與數字做乘積時,習慣上數字要寫在字母的前面
四、課堂練習
1填空:(投影)
(1)n箱蘋果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高為_____厘米;
(3)底為a,高為h的三角形面積是______;
(4)全校學生人數是x,其中女生占48%?則女生人數是____,男生人數是____
2說出下列代數式的意義:(投影)
3用代數式表示:(投影)
(1)x與y的和;(2)x的平方與y的立方的差;
(3)a的60%與b的2倍的和;(4)a除以2的商與b除3的商的和
五、師生共同小結
首先,提出如下問題:
1本節課學習了哪些內容?2用字母表示數的意義是什么?
3什么叫代數式?
教師在學生回答上述問題的基礎上,指出:①代數式實際上就是算式,字母像數字一樣也可以進行運算;②在代數式和運算結果中,如有單位時,要正確地使用括號
六、作業
1一個三角形的三條邊的長分別的a,b,c,求這個三角形的周長
2張強比王華大3歲,當張強a歲時,王華的年齡是多少?
3飛機的速度是汽車的40倍,自行車的速度是汽車的1/3,若汽車的速度是ν千米/時,那么,飛機與自行車的速度各是多少?
4a千克大米的售價是6元,1千克大米售多少元?
5圓的半徑是R厘米,它的面積是多少?
6用代數式表示:
(1)長為a,寬為b米的長方形的周長;
(2)寬為b米,長是寬的2倍的長方形的周長;
(3)長是a米,寬是長的1/3的長方形的周長;
(4)寬為b米,長比寬多2米的長方形的周長
初中數學教案通用模版篇5
一、教學目標
1、了解二次根式的意義;
2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;
3、掌握二次根式的性質和,并能靈活應用;
4、通過二次根式的計算培養學生的&39;邏輯思維能力;
5、通過二次根式性質和的介紹滲透對稱性、規律性的數學美。
二、教學重點和難點
重點:
(1)二次根的意義;
(2)二次根式中字母的取值范圍。
難點:確定二次根式中字母的取值范圍。
三、教學方法
啟發式、講練結合。
四、教學過程
(一)復習提問
1、什么叫平方根、算術平方根?
2、說出下列各式的意義,并計算
(二)引入新課
新課:二次根式
定義:式子叫做二次根式。
對于請同學們討論論應注意的問題,引導學生總結:
(1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?呢?
若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。
(2)是二次根式,而,提問學生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的“外在形態”。請學生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據二次根式定義,由學生分析、回答。
例1當a為實數時,下列各式中哪些是二次根式?
例2x是怎樣的實數時,式子在實數范圍有意義?
解:略。
說明:這個問題實質上是在x是什么數時,x—3是非負數,式子有意義。
例3當字母取何值時,下列各式為二次根式:
分析:由二次根式的定義,被開方數必須是非負數,把問題轉化為解不等式。
解:(1)∵a、b為任意實數時,都有a2+b2≥0,∴當a、b為任意實數時,是二次根式。
(2)—3x≥0,x≤0,即x≤0時,是二次根式。
(3),且x≠0,∴x>0,當x>0時,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x>2。當x>2時,是二次根式。
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個例題根據二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義,。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
(3)由于x取任何實數時都有x≥0,因此,x+0。1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數。
(4)由—b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。
初中數學教案通用模版篇6
教學目標
1、了解數軸的概念和數軸的畫法,掌握數軸的三要素;
2、會用數軸上的點表示有理數,會利用數軸比較有理數的大小;
3、使學生初步了解數形結合的思想方法,培養學生相互聯系的觀點。
教學建議
一、重點、難點分析
本節的重點是初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數,并會比較有理數的大小。難點是正確理解有理數與數軸上點的對應關系。數軸的概念包含兩個內容,一是數軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規定的。另外應該明確的是,所有的有理數都可用數軸上的點表示,但數軸上的點所表示的數并不都是有理數。通過學習,使學生初步掌握用數軸解決問題的方法,為今后充分利用“數軸”這個工具打下基礎。
二、知識結構
有了數軸,數和形得到了初步結合,這有利于對數學問題的研究,數形結合是理解數學、學好數學的方法,本課知識要點如下表:
定義三要素應用
數形結合
規定了原點、正方向、單位長度的直線叫數軸原點
正方向
單位長度幫助理解有理數的概念,每個有理數都可用數軸上的點表示,但數軸上的點并非都是有理數比較有理數大小,數軸上右邊的數總比左邊的數要大
在理解并掌握數軸概念的基礎之上,要會畫出數軸,能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數,要知道所有的有理數都可以用數軸上的點表示,會利用數軸比較有理數的大小。
三、教法建議
小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出數軸的概念。數軸是一條具有三個要素(原點、正方向、單位長度)的直線,這三個要素是判斷一條直線是不是數軸的根本依據。數軸與它所在的位置無關,但為了教學上需要,一般水平放置的數軸,規定從原點向右為正方向。要注意原點位置選擇的任意性。
關于有理數與數軸上的點的對應關系,應該明確的是有理數可以用數軸上的點表示,但數軸上的點與有理數并不存在一一對應的關系。根據幾個有理數在數軸上所對應的點的相互位置關系,應該能夠判斷它們之間的大小關系。通過點與有理數的對應關系及其應用,逐步滲透數形結合的思想。
四、數軸的相關知識點
1、數軸的概念
(1)規定了原點、正方向和單位長度的直線叫做數軸。
這里包含兩個內容:一是數軸的三要素:原點、正方向、單位長度缺一不可。二是這三個要素都是規定的。
(2)數軸能形象地表示數,所有的有理數都可用數軸上的點表示,但數軸上的點所表示的數并不都是有理數。
以數軸是理解有理數概念與運算的重要工具。有了數軸,數和形得到初步結合,數與表示數的圖形(如數軸)相結合的思想是學習數學的思想。另外,數軸能直觀地解釋相反數,幫助理解絕對值的意義,還可以比較有理數的大小。因此,應重視對數軸的學習。
2、數軸的畫法
(1)畫直線(一般畫成水平的)、定原點,標出原點“O”。
(2)取原點向右方向為正方向,并標出箭頭。
(3)選適當的長度作為單位長度,并標出…,—3,—2,—1,1,2,3…各點。具體如下圖。
(4)標注數字時,負數的次序不能寫錯,如下圖。
3。用數軸比較有理數的大小
(1)在數軸上表示的兩數,右邊的數總比左邊的數大。
(2)由正、負數在數軸上的位置可知:正數都有大于0,負數都小于0,正數大于一切負數。
(3)比較大小時,用不等號順次連接三個數要防止出現“”的寫法,正確應寫成“”。
五、數軸定義的理解
初中數學教案通用模版篇7
【地位作用】
《有理數的加法運算律》是人教版七年級數學上冊第一章《有理數》第三節的內容。本節共計兩課時,加法運算律是第二課時的內容,依據教材的安排本節課應是讓學生在理解有理數的加法法則的基礎上來運用加法運算律,最終能熟練地進行有理數的加法運算,并能用運算律簡化運算。加、減法可以統一成為加法,因此加法的運算是本小節的關鍵,而加法又是學生初中階段接觸的第一種有理數運算,學生能否接受和形成在有理數范圍內進行的各種運算的思考方式(確定結果的符合和絕對值),關鍵在于本一節的學習。
【教學目標】
知識與技能
通過有理數加法運算法則,使學生掌握有理數加法的運算律,并能用有理數加法進行簡化運算。
過程與方法
培養學生觀察能力、歸納能力,通過分類結合思想滲透,提高學生運算能力,尤其是簡便計算能力的提高。
情感態度與價值觀
培養學生把實際問題抽象成數學問題的能力
【教學重點、難點】
重點:有理數加法運算律
難點:靈活運用有理數運算律簡便運算
重難點的突破:
1、處理好知識之間的聯系。適時復習,以舊帶新,相互對比。
2、給出大量具體的例子。讓學生親身經歷觀察思考、抽象概括、補充完善的過程,從不同的問題情境中抽象出相同的數學模型。
【學情分析】
認知:七年級的學生年齡和認知水平還較低,學生愛表現、有較強的好勝心理等特征,因此,在教學過程中善于結合學生的這些特征是上好這節課的關鍵所在。
能力:1.學生對正數加正數,正數加零的情況較為熟練,但計算準確率不高。
2.對異號兩數相加確定符號,絕對值大減小掌握不好。
3.學生善于形象思維,思維活躍,能積極參與討論。
【教法與學法】
教法:以引導法為主,輔之以直觀演示法、小組討論法,向學生提供充分從事數學活動的機會,激發學生的學習主動性,使學生主動參與課堂活動的全過程。
學法:在學生的學習方式上,采用動手實踐,自主探究與合作交流相結合的方式使學習過程直觀化、形象化。通過PK賽的形式調動學生的學習熱情,從而掌握簡便運算的技巧
【教學過程分析】
回顧復習,承前啟后
例題講解,合作學習
應用練習,鞏固新知
歸納總結,反思提高
作業布置
初中數學教案通用模版篇8
教學目標
1.通過實驗,使學生相信經過大量的重復實驗后得到的頻率值確實可以作為隨機事件每次發生的機會的估計值,體會隨機事件中所隱含著的確定性內涵。
2.使學生知道,通過實驗的方法,用頻率估計機會的大小,必須要求實驗是在相同條件下進行的。且在相同條件下,實驗次數越多,就越有可能得到較好的估計值,但個人所得的值也并不一定相同。
3.培養學生合作學習的能力,并學會與他人交流思維的過程和結果。
教學重難點
重點:頻率與機會的關系。
難點:如何用頻率估計機會的大???教學準備數枚相同的圖釘。
教學過程
一、提出問題
上一節課,通過一系列的實驗和觀察,我們已經知道:實驗是估計機會大小的一種方法。我們可以通過實驗,觀察某事件出現的頻率,當頻率值逐漸穩定時,這個值就可以作為我們對該事件發生機會的估計。
實際上,在前面的問題中,即使不做實驗,也可以設法預先推測出事件發生的機會,為什么還要花大量時間去進行實驗呢?
下面讓我們看另一類問題:
一枚圖釘被拋起后釘尖觸地的`機會有多大?
二、分組實驗
1.兩個學生一個小組,一人拋擲,一人記錄
每個小組拋擲40次,記錄出現釘尖觸地的頻數
教師負責把各小組的結果登錄在黑板上
2.然后把每小組的結果合起來,分別計算拋擲80次、120次、160次、200次、240次、180次、320次、360次、400次、480次、520次、560次后出現釘尖觸地的頻數及頻率
3.列出統計表,繪制折線圖
4.根據實驗結果估計一下釘尖觸地的機會是百分之幾?
5.課本第105頁表15.2.1和圖15.2.2是一位同學在拋擲圖釘的實驗中畫的統計表和折線圖。這與你實驗的結果相同嗎?為什么?
三、深入思考
如果兩個小組使用的是兩種不同形狀的圖釘,那么這兩種圖釘釘尖觸地的機會相同嗎?
能把兩個小組的實驗數據合起來進行實驗嗎?
四、概括小結
從上面的問題可以看出:
1.通過實驗的方法用頻率估計機會的大小,必須要求實驗是在相同條件下進行的。比如,以同樣的方式拋擲同一種圖釘。
2.在相同的條件下,實驗次數越多,就越有可能得到較好的估計值,但每人所得的值也并不一定相同。
五、用心觀察
我們已經知道,在相同條件下,實驗次數越多,就越有可能得到較好的估計值。那么,總共要做多少次實驗才認為得到的結果比較可靠呢?
觀察課本第105頁表15.2.1和圖15.2.2。
當實驗進行到多少次以后,所得頻率值就趨于平穩了?
(小結:實驗到頻率值較穩定時,結果比較可靠。這個頻率值也就可以作為這個事件發生機會的估計值。)
六、鞏固練習
課本第107頁練習第1、2題。
七、課堂小結
這節課你有什么收獲?還有哪些問題需要老師幫你解決的?
注意:通過實驗的方法用頻率估計機會大小,必須要求實驗是在相同條件下進行的。
八、布置作業
1、課本第108頁習題15.2第2題
2、課本第106頁做一做
2、數字之積為奇數與偶數的機會
初中數學教案通用模版篇9
一、教材、學情分析
“扇形統計圖”是義務教育課程標準實驗教科書浙江教育出版社七年級上冊第六章第四節的學習內容,是從生活中實際問題出發,結合新課程標準的理念,創造使用教材設計的一節課。生活中經常需要收集數據,而統計圖是展示數據的重要方法,經常出現在報刊雜志媒體中,為此教科書安排了扇形統計圖的認識和制作。
學生在小學里曾經學習過扇形統計圖,對扇形統計圖的意義、特點和制作有初步的了解。本節課數據的收集是從學生身邊熟悉的簡單問題入手,讓學生體會數據在現實生活中的作用,理解扇形統計圖的特點,并能從中獲得有用的信息,進而養成數據說話的習慣,初一學生積極要求上進喜歡表現自己,課堂上應該給學生廣闊的舞臺,讓學生充分思考、合作交流和探究,品嘗學習帶來的快樂。
二、教學目標
知識與技能目標:
1、通過實際問題認識扇形統計圖的含義和特點;
2、能從扇形統計圖中獲取正確的信息,并能作出合理的解釋和推斷。
過程與方法目標:
1、在收集數據的過程當中,學會合作學習,并了解收集數據的方法步驟;
2、在從扇形統計圖中獲取信息的過程當中,學會相互交流、相互評價;
3、在決策和形成猜想中的過程當中,感受收集和利用數據是非常重要的。
情感與態度目標:
1、通過從身邊的一些簡單問題,體驗數據在解決不少現實問題中是有用的;
2、在問題解決的過程當中,品嘗發現帶來的歡樂,樹立學好數學的自信心。
三、教學重點和難點
重點:在合作討論的過程當中體會數據在現實生活中的作用,理解扇形統計圖的特點,學會制作扇形統計圖。
難點:從扇形統計圖中盡可能多并且正確地獲取信息、利用數據進行分析、作出判斷。
四、教學和活動過程
(一)教學準備階段
1、利用PowerPoint制作一個簡單課件(沒有多媒體教室可采用小黑板展示);
2、布置學生準備,圓規、鉛筆、彩色筆、計算器、剪刀等工具。
(二)教學流程
1、引入前面我們學習了折線統計圖和條形統計圖,今天我們將學習另外一種統計圖——扇形統計圖,大家小學里已經學過,有印象嗎?能回憶起來是怎樣的一個圖嗎?學生回答(是一個圓分成幾部分),下面先讓大家欣賞一個扇形統計圖。(展示)同學們暑假肯定看了奧運會,能知道中國得了多少枚金牌嗎?(32)
射擊412。5%
球類825%
水上項目825%
力量型項目928。125%
田徑26。25%
體操13。125%
從這個統計圖中同學們能知道中國在什么項目上有優勢,什么項目上薄弱呢?大家知道嗎?美國在什么項目上有優勢?(田徑)
引入設計說明:
1、從學生感興趣的奧運會引入,激發學生的興趣,調節課堂氣氛。2、突出扇形統計圖的優點——能直觀反映各部分在總體中所占的比例,區別于折線型統計圖和條形統計圖。
今天這節課我們來更深入一步認識一下扇形統計圖,并教大家如何來畫扇形統計圖。
2、出示課本學生快餐營養成份統計圖,學生觀察、思考,老師介紹扇形統計圖的特點。
用圓和扇形分別表示關于總體和各個組成部分數據的統計圖叫做扇形統計圖(或稱餅形圖),特點是能直觀地、生動地反映各部分在總體中所占的比例。
第一問、第二問學生回答;
第三問先說明什么是圓心角,頂點在圓心的角,課本上有摩天輪圖(學生觀察)。我們可以更直觀向學生介紹,用事先準備好圓紙片對折,再對折,把圓分成相等四部分,這個直角就是圓心角。
這樣學生更直觀、清楚地理解了圓心角的概念。
還有奔馳汽車的標志,把圓分成相等的三部分,圓心角為120。
總結:圓心角的度數為所占的比例乘以360。
請一個學生回答第三問。
3、做一做,P152,第(2)小題后面部分,老師分析。
4、合作活動,師生互動(主要讓學生學會畫扇形統計圖)
提出問題—→調查情況—→收集數據—→整理數據—→畫圖
問題:同學們從家里到學校交通情況。
學生舉手,一個學生點數,另一個學生記錄,得出有關數據。
①步行20人40%144不妨設有50名學生,統計數據若如下(根據現場統計情況有不同的數據)。
②騎自行車15人30%108
③坐公交10人20%72
④其他5人10%36
畫圖步驟:1、畫一個圓;
2、按各組成部分所占的比例算出各個扇形的圓心角度數;
3、根據算出的各圓心角的度數畫出各個扇形,并注明相應的百分比,各比例的名稱可以注在圖上,也可用圖例表明。
注意:不用彩色,也可用白色、涂黑、斜線、網狀等表示,學會動手畫出扇形統計圖。
學生再看例題:氣象資料統計圖,計算圓心角度數需用計算器。
5、課內練習,學生板演,一個學生計算數據,一個學生畫出扇形統計圖。
6、作業1)P153①②③④,思考題⑤
2)收集扇形統計圖,渠道來自報紙、雜志、上網查詢。
3)自己設計一個調查方案,用調查的數據制作一個扇形統計圖。
五、教學設計說明
新課程標準下的教學設計應全面貫徹六大基本理念,更加側重理念③和理念④,本節課突出生動有趣的特點,學習方式多樣化,讓學生成為課堂的主人。引入的情景設計是學生身邊的問題,例題采用學生自己收集數據、整理數據,最后畫圖,讓學生感到一種自己研究成果的成就感,相比之下,比課本的氣象資料更具有感染力。作業中有一題是自己設計一個調查方案,培養學生動手能力、實踐能力,這就是新課程大力倡導的。
初中數學教案通用模版篇10
問題描述:
初中數學教學案例
初中的,隨便那個年級.2000字.案例和反思
1個回答分類:數學20__-11-30
問題解答:
我來補答
2.3平行線的性質
一、教材分析:
本節課是人民教育出版社義務教育課程標準實驗教科書(五四學制)七年級上冊第2章第3節平行線的性質,它是平行線及直線平行的繼續,是后面研究平移等內容的基礎,是“空間與圖形”的重要組成部分.
二、教學目標:
知識與技能:掌握平行線的性質,能應用性質解決相關問題.
數學思考:在平行線的性質的探究過程中,讓學生經歷觀察、比較、聯想、分析、歸納、猜想、概括的全過程.
解決問題:通過探究平行線的性質,使學生形成數形結合的數學思想方法,以及建模能力、創新意識和創新精神.
情感態度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數學的熱情和勇于探索、鍥而不舍的精神.
三、教學重、難點:
重點:平行線的性質
難點:“性質1”的探究過程
四、教學方法:
“引導發現法”與“動像探索法”
五、教具、學具:
教具:多媒體課件
學具:三角板、量角器.
六、教學媒體:
大屏幕、實物投影
七、教學過程:
(一)創設情境,設疑激思:
1.播放一組幻燈片.內容:①火車行駛在鐵軌上;②游泳池;③橫格紙.
2.聲音:日常生活中我們經常會遇到平行線,你能說出直線平行的條件嗎?
學生活動:
思考回答.①同位角相等兩直線平行;②內錯角相等兩直線平行;③同旁內角互補兩直線平行;
教師:首先肯定學生的回答,然后提出問題.
問題:若兩直線平行,那么同位角、內錯角、同旁內角各有什么關系呢?
引出課題——平行線的性質.
(二)數形結合,探究性質
1.畫圖探究,歸納猜想
任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標出8個角(如圖).
問題一:指出圖中的同位角,并度量這些角,把結果填入下表:
第一組
第二組
第三組
第四組
同位角
∠1
∠5
角的度數
數量關系
學生活動:畫圖——度量——填表——猜想
結論:兩直線平行,同位角相等.
問題二:再畫出一條截線d,看你的猜想結論是否仍然成立?
學生:探究、討論,最后得出結論:仍然成立.
2.教師用《幾何畫板》課件驗證猜想
3.性質1.兩條直線被第三條直線所截,同位角相等.(兩直線平行,同位角相等)
(三)引申思考,培養創新
問題三:請判斷內錯角、同旁內角各有什么關系?
學生活動:獨立探究——小組討論——成果展示.
教師活動:引導學生說理.
因為a‖b因為a‖b
所以∠1=∠2所以∠1=∠2
又∠1=∠3又∠1+∠4=180°
所以∠2=∠3所以∠2+∠4=180°
語言敘述:
性質2兩條直線被第三條直線所截,內錯角相等.
(兩直線平行,內錯角相等)
性質3兩條直線被第三條直線所截,同旁內角互補.
(兩直線平行,同旁內角互補)
(四)實際應用,優勢互補
1.(搶答)
(1)如圖,平行線AB、CD被直線AE所截
①若∠1=110°,則∠2=°.理由:.
②若∠1=110°,則∠3=°.理由:.
③若∠1=110°,則∠4=°.理由:.
(2)如圖,由AB‖CD,可得()
(A)∠1=∠2(B)∠2=∠3
(C)∠1=∠4(D)∠3=∠4
(3)如圖,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=()
(A)180°(B)270°(C)360°(D)540°
(4)誰問誰答:如圖,直線a‖b,
如:∠1=54°時,∠2=.
學生提問,并找出回答問題的同學.
2.(討論解答)
如圖是一塊梯形鐵片的殘余部分,量得∠A=100°,
∠B=115°,求梯形另外兩角分別是多少度?
(五)概括存儲(小結)
1.平行線的性質1、2、3;
2.用“運動”的觀點觀察數學問題;
3.用數形結合的方法來解決問題.
(六)作業第69頁2、4、7.
八、教學反思:
①教的轉變:本節課教師的角色從知識的傳授者轉變為學生學習的組織者、引導者、合作者與共同研究者.在引導學生畫圖、測量、發現結論后,利用幾何畫板直觀地、動態地展示同位角的關系,激發學生自覺地探究數學問題,體驗發現的樂趣.
②學的轉變:學生的角色從學會轉變為會學.本節課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境.
③課堂氛圍的轉變:整節課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維活動減少干預,教學過程呈現一種比較流暢的特征,整節課學生與學生、學生與教師之間以“對話”、“討論”為出發點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環境中自主選擇獲得成功的方向,判斷發現的價值.
初中數學教案通用模版篇11
活動目標:
1、通過觀察、操作認識三角形的特征,認識三角形。
2、培養幼兒的觀察能力和操作能力。
活動準備:
1、三角形圖形、畫點的底圖、水筆、三角形組合的掛圖、教室周圍布置三角形的實物。
2、正方形的蠟光紙、剪刀、膠水、圖畫紙。
活動過程:
1、導入:有個圖形寶寶來我們班做客,你們想知道是什么圖形寶寶嗎?
2、出示三角形,讓幼兒說出三角形的名稱,然后讓幼兒找出教室周圍與三角形相似的實物。
3、提出問題:“你怎么知道它們是和三角形寶寶一樣的圖形?”引導幼兒用手摸摸三角形的角和邊,體會三角形的外形——三個角,三條邊。
4、出示三角形組合的掛圖:
1)引導幼兒找出掛圖的圖案都是三角形組成的。
2)請幼兒說說怎么知道是三角形組成的。
5、出示左圖,請幼兒用直線與點連接起來成三角形。
6、老師與小朋友一起講評連接三角形的情況。
7、剪貼花:
1)出示范例:引導幼兒觀察老師的花是用什么圖形粘貼的。
2)提出問題:沒有三角形的`蠟光紙怎么辦?(引導幼兒用正方形折剪成三角形進行粘貼。
初中數學教案通用模版篇12
一、說教材
1、本課在在教材中的地位和作用《分式的加減》這節課是代數運算的基礎,分兩課時完成,我所設計的是第一課時的教學,主要內容是同分母的分式相加減及簡單的異分母的分式相加減。學生已掌握了分數的加減法運算,同時也學習過分式的基本性質,這為本節課的學習打下了基礎,而掌握好本節課的知識,將為《分式的加減》第二課時以及《分式方程》的學習做好必備的知識儲備。
2、教學目標
①知識與技能:會進行簡單的分式加減運算,具有一定的代數化歸能力,能解決一些簡單的實際問題;
②過程與方法:使學生經歷探索分式加減運算法則的過程,理解其算理;
3、情感態度與價值觀:培養學生大膽猜想,積極探究的學習態度,發展學生有條理思考及代數表達能力,體會其價值。
4、重點、難點
①重點:掌握分式的加減運算
②難點:異分母的分式加減運算及簡單的分式混合運算
二、說教法
本課我主要以“創設情景——引導探究——類比歸納——拓展延伸”為主線,啟發和引導貫穿教學始終,通過師生共同研究探討,體現以教為主導、學為主體、練為主線的教學過程。
三、說學法
根據學生的認知水平,我設計了“自主探索、合作交流、猜想歸納和鞏固提高”四個層次的學法。四、說教學過程
(一)創設情境,導入新知
第一環節:提出問題
問題1:甲工程隊完成一項工程需n天,乙工程隊要比甲隊多用3天才能完成這項工程,兩隊共同工作一天完成這項工程的幾分之幾?
問題2:2001年,2002年,2003年某地的森林面積(單位:公頃)分別是S1,S2,S3,2003年與2002年相比,森林面積增長率提高了多少?
老師活動:組織學生分組討論,再共同研究學生活動:小組討論、探究、發言設計意圖:通過創設這兩個問題情境,引入分式的加減運算,既體現了分式加減運算的意義,又讓學生經歷從實際問題建立分式模型的過程,并在此基礎上激發學生尋求解決問題的方法。
第二環節:同分母分式相加減
想一想:(1)同分母的分數如何加減?如:2/3+5/3=(2+5)/3,:2/3—5/3=(2—5)/3;(2)思考:類比分數的加減法則,你能歸納出分式的加減法則嗎?老師活動:鼓勵學生通過類比、探究并大膽猜想分式的加減運算法則學生活動:分組進行討論、交流,并多舉類似例子進行類比,而后,小組發表意見,說明自己的推測。
在學生通過交流得到猜想的基礎上出示做一做:做一做:(1)1/a+2/a=_____________2(2)x/(x—2)–4/(x—2)=___________(3)(x+2)/(x+1)–(x—1)/(x+1)+(x—3)/(x+1)=___________教師通過讓學生練習“做一做”的題目,加以驗證和領悟,法則的形成打下基礎,并導出分式加減運算法則:同分母的`分式相加減,分母不變,把分子相加減老師活動:引入習題“做一做”,適當糾正學生的語言,并板書法則學生活動:通過個體練習,領悟規律,再小組交流,形成法則設計意圖:引導學生通過類比分數運算方法,大膽猜想分式的加減法則
(二)主動探究,拓展延伸
第三環節:異分母的分式相加減想一想:
(1)異分母的分數如何相加減?如:1/2+2/3=?:1/2—2/3=?。
(2)你認為異分母的分式應該如何加減?如:1/a+2/b=?老師活動:提出問題,引導、啟發學生通過異分母分數相加減的方法類比得到異分母分式相加減的方法學生活動:參與交流、討論、歸納異分母分式加減的方法設計意圖:進一步鍛煉學生的類比思想;同時通過討論解決分式的通分,使學生掌握異分母分式轉化為同分母分式的方法,培養學生的轉化思想,為下節課做好準備
(三)例題教學
第四環節:解決問題
(1)回到開始提出的兩個問題:s3?s2s2?s111?問題一:(?)s2s1nn?3問題二:
(2)例題1:計算(課本P81頁)老師活動:出示習題,巡視、引導、糾正學生活動:自主完成
設計意圖:進一步提高學生對異分母分式的加減運算能力
(四)隨堂練習
第五環節:鞏固深化
老師活動:巡視、引導學生活動:個體練習、板演設計意圖:檢驗學生是否掌握分式的加減運算方法(五)課堂小結第六環節:提高認識老師活動:本節課我們學了哪些知識?在運用過程中需要注意些什么?你有什么收獲?學生活動
歸納總結
(1)同分母分式加減法則
(2)簡單異分母分式的加減設計意圖:鍛煉學生及時總結的良好習慣和歸納能力(六)作業布置第七環節:反思提煉課本P27第1、2題五、板書設計
初中數學教案通用模版篇13
教學目標:
1、通過解題,使學生了解到數學是具有趣味性的。
2、培養學生勤于動腦的習慣。
教學過程:
一、出示趣味題
師:老師這里有一些有趣的問題,希望大家開動腦筋,積極思考。
1、小衛到文具店買文具,他買毛筆用去了所帶錢的一半,買鉛筆用去了剩下錢的一半,最后用去剩下的8分,問小衛原有()錢?
2、蘋蘋做加法,把一個加數22錯寫成12,算出結果是48,問正確結果是()。
3、小明做減法,把減數30寫成20,這樣他算出的得數比正確得數多(),如果小明算出的結果是10,正確結果是()。
4、同學們種樹,要把9棵樹分3行種,每一行都是4棵,你能想出幾種
辦法來用△表示。
5、把一段布5米,一次剪下1米,全部剪下要()次。
6、李小松有10本本子,送給小剛2本后,兩人本子數同樣多,小剛原來
有()本本子。
二、小組討論
三、指名講解
四、評價
1、同學互評
2、老師點評
五、小結
師:通過今天的學習,你有哪些收獲呢?
初中數學教案通用模版篇14
一、教材內容及設置依據
【教材內容】本節教材的主要內容是通過對有理數加法、減法的運算的回顧,學習包括分數和小數的有理數的加減混合運算,理解其方法;應用有理數的加減混合運算,解決實際問題。
【設置依據】教材內容的確定主要根據知識的社會作用性、教育性原則(對培養學生的數學思維、數學能力,以及形成辨證唯物主義世界觀的重要作用)、后繼教育原則(為進一步深造、參加實際工作和適應日常生活準備條件)、可接受性原則(即考慮學生的認識水平、接受能力、生理心理特征,又要著眼于學生的不斷發展);還要與現實生活、科技發展相適應,逐步深透現代教學思想。
二、教材的地位和作用
本節內容是在學習了有理數的加法、有理數的減法的基礎上學習的,是前面知識的延伸和加強,同時又是后面所要學習的有理數的乘法、除法及有理數的混合運算的基礎,
特別是減法可以轉化為加法為后面的除法可以轉化為乘法的學習提供了
類比依據。也為后面學習代數式的合并同類項及有關的恒等變形奠定了基礎,因此具有承上啟下的重要作用。
三、對重點、難點的處理
【對重點的處理】本節的重點是有理數加減混合運算的方法及在實際生活中的應用。為了突出重點,教師應盡量從實際問題引入、應盡可能的在課堂上創設具體教學情境,注重使學生在具體情境中體會運算的方法。同時我們也可以根據學生的接受情況和每節課的具體情況,盡可能的把每節課的“課堂練習”和“習題”的內容劃分成不同的板塊,如:1、知識鞏固型2、實際應用型3、方法多變型4、知識拓展型等。
【對難點的處理】對于難點的處理,因為新教材“強調要給學生足夠的空間和時間”,因此教學時我們應盡量從學生已有的生活經驗和已有的知識經驗出發,或用“已知”去解決“未知”的思想引導學生,鼓勵學生大膽的猜測、交流,充分的探索。同時淡化形式,突出實質(不出現代數和的定義,只是讓學生理解有理數的加減運算可以統一成加法以及加法運算可以寫成省略括號及前面加號的形式,重點是讓學生通過具體情境對“代數和”加以體會)
四、關于教學方法的選用
根據本節課的內容和學生的實際水平,本節課可采用的方法:
1、情境體驗:通過教師創設貼近學生生活實際的教學情境,讓學生融會到課堂中去,產生共鳴,激發興趣,鼓勵學生觀察、分析、探索,加深其對本節內容的理解,培養學生解決問題的能力。
2、引導發現法:它符合辯證唯物主義中內因與外因相互作用的觀點,符合教學論中的自覺性和積極性、鞏固性、可接受性、教學與發展相結合、教師的主導作用與學生的主體地位相統一等原則。引導發現法的關鍵是通過教師的引導啟發,充分調動學生學習的主動性。
3、小組合作、探究討論:通過合作討論,使學生形成一個“學習共同體”,在這個共同體內相互交流、相互溝通、相互啟發、相互補充,分享彼此的思考、經驗和知識,交流彼此的情感、體驗和觀念,共同體驗成功的喜悅,使學生體會到集體的力量,形成合作的意識,產生合作的愿望。
五、關于學法的指導
“授人以魚,不如授人以漁”,在教給學生知識的同時,要教給他們好的學習方法,讓他們“會學習”在本節課的教學中,在提出問題后,要鼓勵學生分析、探索、討論,確定出問題解決的辦法。通過小組探究交流,得到解決問題的不同方法,開拓了思路,培養了思維能力。同時意識到:數學是生活實際中的數學、大自然中的數學,萌生了用數學解決實際問題的意識、愿望。
六、課時安排:1課時
教學程序:
一、復習鋪墊:
首先利用多媒體出示一組有關有理數的加法、減法的題目,讓學生進行速算比賽,看誰做的又對又快。
1、45+(-23)2、9-(-5)
3、-28-(-37)4、(-13)+0
5、(-29)+(-31)6、(-16)-(-12)-24-(-18)7、1.6-(-1.2)-2.58、(-42)+57+(-84)+(-23)
從四排學生中個推選一名學生代表板演6、7、8、題。
通過比賽的方式,符合學生的心理特點,迎合了學生好勝的心理,激起了學生學習的內在動力,激發了學習的興趣。
然后教師與學生一起對題目進行評判,對優勝的學生進行表揚,對其他學生加以鼓勵,使他們意識到“勝敗乃兵家常事”,關鍵要有信心,要有高昂的斗志。通過練習,學生已在不知不覺中復習了有理數的加法、減法法則,特別是減法法則,加深了印象,這符合教學論中的鞏固性原則,為后面學習有理數的加減混合運算奠定了基礎。
二、新知探索:
1、出示引例1:一架飛機作特技表演,起飛后的高度變化如下表:高度變化記作
上升4.5千米+4.5千米
下降3.2千米-3.2千米
上升1.1千米+1.1千米
下降1.4千米-1.4千米
此時飛機比起飛點高了多少米?
讓學生分組探究討論,讓學生發表自己的見解,不難得出兩種算法:
①4.5+(-3.2)+1.1+(-1.4)②4.5-3.2+1.1-1.4
=1.3+1.1+(-1.4)=1.3+1.1-1.4
=2.4+(-1.4)=2.4-1.4
=1千米=1千米
教師隨之提出問題:比較以上兩種算法,你發現了什么?通過學生的合作討論、教師的引導、規納、總結可得出:加減法混合運算可以統一成加法;加法運算可以寫成省略括號及前面加號的形式。使學生在解決問題的過程中體會到“代數和“的含義。這里不要求出現“代數和”的名稱。通過小組合作,探究討論,讓每一個學
初中數學教案通用模版篇15
教學目標
1、使學生能把簡單的與數量有關的詞語用代數式表示出來;
2、初步培養學生觀察、分析和抽象思維的能力
教學重點和難點
重點:把實際問題中的數量關系列成代數式?
難點:正確理解題意,從中找出數量關系里的運算順序并能準確地寫成代數式???
教學手段
現代課堂教學手段
教學方法
啟發式教學
教學過程
(一)、從學生原有的認知結構提出問題
1、用代數式表示乙數:(投影)
(1)乙數比x大5;(x+5)
(2)乙數比x的2倍小3;(2x-3)
(3)乙數比x的倒數小7;(-7)
(4)乙數比x大16%?((1+16%)x)
(應用引導的方法啟發學生解答本題)
2、在代數里,我們經常需要把用數字或字母敘述的一句話或一些計算關系式,列成代數式,正如上面的練習中的問題一樣,這一點同學們已經比較熟悉了,但在代數式里也常常需要把用文字敘述的一句話或計算關系式(即日常生活語言)列成代數式?本節課我們就來一起學習這個問題?
(二)、講授新課
例1用代數式表示乙數:
(1)乙數比甲數大5;(2)乙數比甲數的2倍小3;
(3)乙數比甲數的倒數小7;(4)乙數比甲數大16%?
分析:要確定的乙數,既然要與甲數做比較,那么就只有明確甲數是什么之后,才能確定乙數,因此寫代數式以前需要把甲數具體設出來,才能解決欲求的乙數?
解:設甲數為x,則乙數的代數式為
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x?
(本題應由學生口答,教師板書完成)
最后,教師需指出:第4小題的答案也可寫成x+16%x?
例2用代數式表示:
(1)甲乙兩數和的2倍;
(2)甲數的與乙數的的差;
(3)甲乙兩數的平方和;
(4)甲乙兩數的和與甲乙兩數的差的積;
(5)乙甲兩數之和與乙甲兩數的差的積?
分析:本題應首先把甲乙兩數具體設出來,然后依條件寫出代數式?
解:設甲數為a,乙數為b,則
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)?
(本題應由學生口答,教師板書完成)
此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說,用文字語言敘述的句子里應特別注意其運算順序?
例3用代數式表示:
(1)被3整除得n的數;
(2)被5除商m余2的數?
分析本題時,可提出以下問題:
(1)被3整除得2的數是幾?被3整除得3的數是幾?被3整除得n的數如何表示?
(2)被5除商1余2的數是幾?如何表示這個數?商2余2的數呢?商m余2的數呢?
解:(1)3n;(2)5m+2?
(這個例子直接為以后讓學生用代數式表示任意一個偶數或奇數做準備)?
例4設字母a表示一個數,用代數式表示:
(1)這個數與5的和的3倍;(2)這個數與1的差的;
(3)這個數的5倍與7的.和的一半;(4)這個數的平方與這個數的的和?
分析:啟發學生,做分析練習?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數式“a+5”再將“和的3倍”列成代數式“3(a+5)”?
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a?
(通過本例的講解,應使學生逐步掌握把較復雜的數量關系分解為幾個基本的數量關系,培養學生分析問題和解決問題的能力?)
例5設教室里座位的行數是m,用代數式表示:
(1)教室里每行的座位數比座位的行數多6,教室里總共有多少個座位?
(2)教室里座位的行數是每行座位數的,教室里總共有多少個座位?
分析本題時,可提出如下問題:
(1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(3)通過上述問題的解答結果,你能找出其中的規律嗎?(總座位數=每行的座位數×行數)
解:(1)m(m+6)個;(2)(m)m個?
(三)、課堂練習
1?設甲數為x,乙數為y,用代數式表示:(投影)
(1)甲數的2倍,與乙數的的和;(2)甲數的與乙數的3倍的差;
(3)甲乙兩數之積與甲乙兩數之和的差;(4)甲乙的差除以甲乙兩數的積的商?
2?用代數式表示:
(1)比a與b的和小3的數;(2)比a與b的差的一半大1的數;
(3)比a除以b的商的3倍大8的數;(4)比a除b的商的3倍大8的數?
3?用代數式表示:
(1)與a-1的和是25的數;(2)與2b+1的積是9的數;
(3)與2x2的差是x的數;(4)除以(y+3)的商是y的數?
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕
(四)、師生共同小結
首先,請學生回答:
1?怎樣列代數式?2?列代數式的關鍵是什么?
其次,教師在學生回答上述問題的基礎上,指出:對于較復雜的數量關系,應按下述規律列代數式:
(1)列代數式,要以不改變原題敘述的數量關系為準(代數式的形式不唯一);
(2)要善于把較復雜的數量關系,分解成幾個基本的數量關系;
(3)把用日常生活語言敘述的數量關系,列成代數式,是為今后學習列方程解應用題做準備?要求學生一定要牢固掌握
練習設計
1、用代數式表示:
(1)體校里男生人數占學生總數的60%,女生人數是a,學生總數是多少?
(2)體校里男生人數是x,女生人數是y,教練人數與學生人數之比是1∶10,教練人數是多?
2、已知一個長方形的周長是24厘米,一邊是a厘米,
求:(1)這個長方形另一邊的長;(2)這個長方形的面積?
板書設計
§3.2代數式
(一)知識回顧(三)例題解析(五)課堂小結
例1、例2
(二)觀察發現(四)課堂練習練習設計
教學后記
由于列代數式的內容既是本章的重點,又是本書的重點,同時也是學生學習過程中的一個難點,故在設計其教學過程時,注意所選例題及練習題由易到難,循序漸進,使學生逐步地掌握好這一內容,為今后的學習打下一個良好的基礎?同時,也使學生的抽象思維能力得到初的培養。
初中數學教案通用模版篇16
教學目標 1, 通過對數“零”的意義的探討,進一步理解正數和負數的概念;
2, 利用正負數正確表示相反意義的量(規定了指定方向變化的量)
3, 進一步體驗正負數在生產生活實際中的廣泛應用,提高解決實際問題的能力,激發學習數學的興趣。
教學難點 深化對正負數概念的理解
知識重點 正確理解和表示向指定方向變化的量
教學過程(師生活動) 設計理念
知識回顧與深化 回顧:上一節課我們知道了在實際生產和生活中存在著兩種不同意義的量,為了區分這兩種量,我們用正數表示其中一種意義的量,那么另一種意義的量就用負數來表示.這就是說:數的范圍擴大了(數有正數和負數之分).那么,有沒有一種既不是正數又不是負數的數呢?
問題1:有沒有一種既不是正數又不是負數的數呢?
學生思考并討論.
(數0既不是正數又不是負數,是正數和負數的分
界,是基準.這個道理學生并不容易理解,可視學生的討論情況作些啟發和引導,下面的例子供參考)
例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規定零上溫度用正數來表示,零下溫度用負數來表示。那么某一天某地的溫度是
零上7℃,最低溫度是零下5℃時,就應該表示為+7℃
和-5℃,這里+7℃和-5℃就分別稱為正數和負數 .
那么當溫度是零度時,我們應該怎樣表示呢?(表示為0℃),它是正數還是負數呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數也不是負數?
問題2:引入負數后,數按照“兩種相反意義的量”來分,可以分成幾類? “數0耽不是正數,也不是負數”也應看作是負數定義的一部分.在引入
負數后,0除了表示一個也沒有以外,還是正數和負數的分界.了解。的這一層意義,也有助于對正負數的理解;且對數的順利擴張和有理毅概念的建立都有幫助。
所舉的例子,要考慮學生的可接受性.“數0既不是正數,也不是負數”應從相反意義的1這個角度來說明.這個問題只要初步認識即
可,不必深究.
分析問題
解決問題 問題3:教科書第6頁例題
說明:這是一個用正負數描述向指定方向變化情況的例子, 通常向指定方向變化用正數表示;向指定方向的相反方向變化用負數表示。這種描述在實際生活中有廣泛的應用,應予以重視。教學中,應讓學生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的增長值”和“進出口額的增長率”,就暗示著用正數來表示增長的量。
歸納:在同一個問題中,分別用正數和負數表示的量具有相反的意義(教科書第6頁).
類似的例子很多,如:
水位上升-3m,實際表示什么意思呢?
收人增加-10%,實際表示什么意思呢?
等等。
可視教學中的實際情況進行補充.
這種用正負數描述向指定方向變化情況的例子,在實際生活中有廣泛的應用,按題意找準哪種
意義的量應該用正數表示是解題的關健.這種描述具有相反數的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現在
不必向學生提出.
鞏固練習 教科書第6頁練習
閱讀思考
教科書第8頁 閱讀與思考是正負數應用的很好例子,要花時間讓學生討論交流
小結與作業
課堂小結 以問題的形式,要求學生思考交流:
1,引人負數后,你是怎樣認識數0的,數0的意義有哪些變化?
2,怎樣用正負數表示具有相反意義的量?
(用正數表示其中一種意義的量,另一種量用負數表示;特別地,在用正負數表示向指定方向變化的量時,通常把向指定方向變化的量規定為正數,而把向指定方向的相反方向變化的量規定為負數.)
本課作業 1, 必做題:教科書第7頁習題1.1第3,6,7,8題
2, 選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,本課主要目的是加深對正負數概念的理解和用正負數表示實際生產生活中的向指
定方向變化的量。
2,“數0既不是正數,也不是負數,’(要從0不屬于兩種相反意義的量中的任何一種上來理解)也應看作是負數定義的一部分.在引人負數后,除了表示一個也沒有以外,還是正數和負數的分界。了解0的這一層意義,也有助于對正負數的理解,且對數的順利擴張和有理數概念的建立都有幫助.由于上節課的重點是建立兩種相反意義量的概念,考慮到學生的可接受性,所以作為知識的回顧和深化而放到本課.
3,教科書的例子是用正負數表示(向指定方向變化的)量的實際應用,用這種方式描述的例子很多,要盡量使學生理解.
4,本設計體現了學生自主學習、交流討論的教學理念,教學中要讓學生體驗數學知識在實際中的合理應用,在體驗中感悟和深化知識.通過實際例子的學習激發學生學習數學的興趣.
初中數學教案通用模版篇17
一、課題
略。
二、教學目標
1.結合具體例子,體會數學與我們的成長密切相關。
2.通過對小學數學知識的歸納,感受到數學學習促進了我們的成長。
3.嘗試從不同角度,運用多種方式(觀察、獨立思考、自主探索、合作交流)有效解決問題。
4.通過對數學問題的自主探索,進一步體會數學學習促進了我們成長,發展了我們的思維。
三、教學重點和難點
重點
難點
1.結合具體例子,體會數學與我們的成長密切相關。
2.通過對小學數學知識的歸納,感受到數學學習促進了我們的成長。
結合具體例子,體會數學與我們的成長密切相關。
四、教學手段
現代課堂教學手段
教學準備
教師準備
錄音機、投影儀、剪刀、長方形紙片。
學生準備
預習、剪刀、長方形紙片
五、教學方法
啟發式教學
六、教學過程設計
一、導入
教師活動
學生活動
展示圖片并播放錄音。
宇宙之大(海王星、流星雨),粒子之微(鈹原子、氯化鈉晶體結構),火箭之速(火箭),化工之巧(陶瓷),地球之變(隕石坑),生物之謎(青蛙),日用之繁(杯子、表),大千世界,天上人間,無處不有數學的貢獻,讓我們共同走進數學世界,去領略一下數學的風采,體會數學的魅力。
觀察圖片,聽錄音。
二、板書課題。
三、導學
教師活動
學生活動
1.現在讓我們進入時空的隧道,回憶我們的成長歷程:
出生——學前——小學(板書),我們每一天都在接觸數學并不斷學習它,相信嗎?不妨大家從不同階段來舉出一些我們身邊或親身經歷的例子,試一試。(積極鼓勵)
(師、生共同討論交流,從具體事例中分析并找出數學信息。)
2.進入小學,我們正式開始學習數學,回憶一下,在小學階段我們學習的主要數學知識有哪些?
3.指定若干名學生口答,師生共同系統歸納:
數與式:認識、計算、方程、解應用題;
圖形:圖形的認識、圖形的畫法、圖形的計算;
統計知識。
4.數學知識的學習,不僅開闊了我們的視野,而且改變了我們的思維方式,使我們變得更加聰明了。發揮一下我們的聰明才智,嘗試解決下面的2個問題:
(1)投影或小黑板展示下列問題:
①計算并觀察下列三組算式:
②已知25×25=625,則24×26=(不要計算)
③你能舉出一個類似的例子嗎?
④更一般地,若a×a=m,則(a+1)(a-1)=。
(老師點評、表揚)
(2)投影或小黑板展示教材第13頁第4題。
通過剛才的解題,可以看出同學們都非常聰明,其實不僅我們每個人離不開數學,而且整個人類、整個社會也離不開數學,同學們課后可以閱讀一下第1節第2點《人類離不開數學》,體會數學對促進人類社會發展的&39;重大作用。
布置作業:
(1)談一談你對數學的興趣、學習數學的方法以及學習中存在的困難等;
(2)習題1.1第2、4題。
1.回憶、交流、積極大膽發言。
2.回憶、交流。
3.觀察、計算、思考、探索。
4.學生取出剪刀和長方形紙片,小組合作,動手嘗試解決。
學生1
學生2
學生拼圖(略)
七、練習設計
課堂基礎練習
1、下列圖形中,陰影部分的面積相等的是.
答案:A與B;C與D
2、三個連續奇數的和是21,它們的積為
答案:315
3、計算:7+27+377+4777
答案:5188
課后延伸練習
1、猜謎語(各打數學中常用字)
千人分在北上下;②1人立在口上邊
答案:①乘;②倍
2、在與伙伴玩“24點”游戲中,使數1,5,5,5通過運算得24?
答案:[5-(1÷5)]×5
3、只允許添兩個“一”、一個“十”和一個括號,不改變數字順序,把1,2,3,4,5,6,7,8,9這九個數字連成結果為100的算式:
123456789=100
答案:123-(45+67-89)=100
4、把長方形剪去一個角,它可能是幾邊形?
答案:三邊形,四邊形,五邊形.
5、有一個正方形池塘如圖1-1-2,在它的四個角上有四棵大樹,現在為了擴大池塘,要把池塘面積擴大一倍,但是,這四棵樹不便搬動,也不能使它淹在水里,而且擴大后的池塘還是正方形,這該怎么辦呢?
答案:
能力提高訓練
18
19
答案:7個,邊長從大到
小依次為11、8、
7、5、3
1、一個長方形,長19cm,寬18cm,如果把這個長方形分割成若干個邊長為整數的小正方形,那么這些小正方形最少有多少個?如何分割?
2、在操場上,小華遇到小馮,交談中順便問道:“你們班有多少學生?”小馮說:“如果我們班上的學生像孫悟空那樣一個能變兩個,然后再來這么多學生的,再加上班上學生的,最后連你也算過去,就該有100個了.”那么小馮班上有多少學生?
答案:36
八、板書設計
(一)知識回顧(四)例題解析(六)課堂小結
(二)觀察發現例1、例2
(三)解方程(五)課堂練習練習設計
九、教學后記