小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教學設計 >

《初中數學教案》

時間: 新華 教學設計

教案可以幫助教師了解學生的學習情況和需求,以便更好地指導教師進行教學,從而提高教學效果和學生的學習效果。寫好《初中數學教案》不是那么簡單,下面給大家分享《初中數學教案》,供大家參考。

《初中數學教案》篇1

一、學生起點分析

七年級學生已經具備一定的觀察、歸納、探索和推理的能力.在小學,他們已學習了一些幾何圖形面積的計算方法(包括割補法),但運用面積法和割補思想解決問題的意識和能力還遠遠不夠.部分學生聽說過“勾三股四弦五”,但并沒有真正認識什么是“勾股定理”.此外,學生普遍學習積極性較高,探究意識較強,課堂活動參與較主動,但合作交流能力和探究能力有待加強.

二、教學任務分析

本節課是義務教育課程標準實驗教科書北師大版八年級(上)第一章《勾股定理》第一節第1課時.勾股定理揭示了直角三角形三邊之間的一種美妙關系,將形與數密切聯系起來,在數學的發展和現實世界中有著廣泛的作用.本節是直角三角形相關知識的延續,同時也是學生認識無理數的基礎,充分體現了數學知識承前啟后的緊密相關性、連續性.此外,歷勾股定理的發現反映了人類杰出的智慧,其中蘊涵著豐富的科學與人文價值.

為此本節課的教學目標是:

1.用數格子(或割、補、拼等)的辦法體驗勾股定理的探索過程并理解勾股定理反映的直角三角形的三邊之間的數量關系,會初步運用勾股定理進行簡單的計算和實際運用.

2.讓學生經歷“觀察—猜想—歸納—驗證”的數學思想,并體會數形結合和特殊到一般的思想方法.

3.進一步發展學生的說理和簡單推理的意識及能力;進一步體會數學與現實生活的緊密聯系.

4.在探索勾股定理的過程中,體驗獲得成功的快樂;通過介紹勾股定理在中國古代的研究,激發學生熱愛祖國,熱愛祖國悠久文化歷史,激勵學生發奮學習.

三、教學過程設計

本節課設計了五個教學環節:第一環節:創設情境,引入新課;第二環節:探索發現勾股定理;第三環節:勾股定理的簡單應用;第四環節:課堂小結;第五環節:布置作業.

第一環節:創設情境,引入新課

內容:2002年世界數學家大會在我國北京召開,投影顯示本屆世界數學家大會的會標:

會標中央的圖案是一個與“勾股定理”有關的圖形,數學家曾建議用“勾股定理”的圖來作為與“外星人”聯系的信號.今天我們就來一同探索勾股定理.(板書課題)

意圖:緊扣課題,自然引入,同時滲透愛國主義教育.

效果:激發起學生的求知欲和愛國熱情.

第二環節:探索發現勾股定理

1.探究活動一

內容:投影顯示如下地板磚示意圖,引導學生從面積角度觀察圖形:

問:你能發現各圖中三個正方形的面積之間有何關系嗎?

學生通過觀察,歸納發現:

結論1以等腰直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積.

意圖:從觀察實際生活中常見的地板磚入手,讓學生感受到數學就在我們身邊.通過對特殊情形的探究得到結論1,為探究活動二作鋪墊.

效果:1.探究活動一讓學生獨立觀察,自主探究,培養獨立思考的習慣和能力;2.通過探索發現,讓學生得到成功體驗,激發進一步探究的熱情和愿望.

2.探究活動二

內容:由結論1我們自然產生聯想:一般的直角三角形是否也具有該性質呢?

(1)觀察下面兩幅圖:

(2)填表:

A的面積

(單位面積)B的面積

(單位面積)C的面積

(單位面積)

左圖

右圖

(3)你是怎樣得到正方形C的面積的?與同伴交流.(學生可能會做出多種方法,教師應給予充分肯定.)

學生的方法可能有:

方法一:

如圖1,將正方形C分割為四個全等的直角三角形和一個小正方形,.

方法二:

如圖2,在正方形C外補四個全等的直角三角形,形成大正方形,用大正方形的面積減去四個直角三角形的面積,.

方法三:

如圖3,正方形C中除去中間5個小正方形外,將周圍部分適當拼接可成為正方形,如圖3中兩塊紅色(或兩塊綠色)部分可拼成一個小正方形,按此拼法,.

(4)分析填表的數據,你發現了什么?

學生通過分析數據,歸納出:

結論2以直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積.

意圖:探究活動二意在讓學生通過觀察、計算、探討、歸納進一步發現一般直角三角形的性質.由于正方形C的面積計算是一個難點,為此設計了一個交流環節.

效果:學生通過充分討論探究,在突破正方形C的面積計算這一難點后得出結論2.

3.議一議

內容:(1)你能用直角三角形的邊長,,來表示上圖中正方形的面積嗎?

(2)你能發現直角三角形三邊長度之間存在什么關系嗎?

(3)分別以5厘米、12厘米為直角邊作出一個直角三角形,并測量斜邊的長度.2中發現的規律對這個三角形仍然成立嗎?

勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方.如果用,,分別表示直角三角形的兩直角邊和斜邊,那么.

數學小史:勾股定理是我國最早發現的,中國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦,“勾股定理”因此而得名.(在西方文獻中又稱為畢達哥拉斯定理)

意圖:議一議意在讓學生在結論2的基礎上,進一步發現直角三角形三邊關系,得到勾股定理.

效果:1.讓學生歸納表述結論,可培養學生的抽象概括能力及語言表達能力;2.通過作圖培養學生的動手實踐能力.

第三環節:勾股定理的簡單應用

內容:

例題如圖所示,一棵大樹在一次強烈臺風中于離地面10m處折斷倒下,樹頂落在離樹根24m處.大樹在折斷之前高多少?

(教師板演解題過程)

練習:

1.基礎鞏固練習:

求下列圖形中未知正方形的面積或未知邊的長度(口答):

2.生活中的應用:

小明媽媽買了一部29in(74cm)的電視機.小明量了電視機的屏幕后,發現屏幕只有58cm長和46cm寬,他覺得一定是售貨員搞錯了.你同意他的想法嗎?你能解釋這是為什么嗎?

意圖:練習第1題是勾股定理的直接運用,意在鞏固基礎知識.

效果:例題和練習第2題是實際應用問題,體現了數學來源于生活,又服務于生活,意在培養學生“用數學”的意識.運用數學知識解決實際問題是數學教學的重要內容.

第四環節:課堂小結

內容:

教師提問:

1.這一節課我們一起學習了哪些知識和思想方法?

2.對這些內容你有什么體會?與同伴進行交流.

在學生自由發言的基礎上,師生共同總結:

1.知識:勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方.如果用,,分別表示直角三角形的兩直角邊和斜邊,那么.

2.方法:(1)觀察—探索—猜想—驗證—歸納—應用;

(2)“割、補、拼、接”法.

3.思想:(1)特殊—一般—特殊;

(2)數形結合思想.

意圖:鼓勵學生積極大膽發言,可增進師生、生生之間的交流、互動.

效果:通過暢談收獲和體會,意在培養學生口頭表達和交流的能力,增強不斷反思總結的意識.

第五環節:布置作業

內容:布置作業:1.教科書習題1.1.

2.觀察下圖,探究圖中三角形的三邊長是否滿足?

《初中數學教案》篇2

教學目標

(一)知識認知要求

1、回顧收集數據的方式、

2、回顧收集數據時,如何保證樣本的代表性、

3、回顧頻率、頻數的概念及計算方法、

4、回顧刻畫數據波動的統計量:極差、方差、標準差的概念及計算公式、

5、能利用計算器或計算機求一組數據的算術平均數、

(二)能力訓練要求

1、熟練掌握本章的知識網絡結構、

2、經歷數據的收集與處理的過程,發展初步的統計意識和數據處理能力、

3、經歷調查、統計等活動,在活動中發展學生解決問題的能力、

(三)情感與價值觀要求

1、通過對本章內容的回顧與思考,發展學生用數學的意識、

2、在活動中培養學生團隊精神、

教學重點

1、建立本章的知識框架圖、

2、體會收集數據的方式,保證樣本的代表性,頻率、頻數及刻畫數據離散程度的統計量在實際情境中的意義和應用、

教學難點

收集數據的方式、抽樣時保證樣本的代表性、頻率、頻數、刻畫數據離散程度的統計量在不同情境中的應用、

教學過程

一、導入新課

本章的內容已全部學完、現在如何讓你調查一個情況、并且根據你獲得數據,分析整理,然后寫出調查報告,我想大家現在心里應該有數、

例如,我們要調查一下“上網吧的人的年齡”這一情況,我們應如何操作?

先選擇調查方式,當然這個調查應采用抽樣調查的方式,因為我們不可能調查到所有上網吧的人,何況也沒有必要、

同學們感興趣的話,下去以后可以以小組為單位,選擇自己感興趣的事情做調查,然后再作統計分析,然后把調查結果匯報上來,我們可以比一比,哪一個組表現最好?

二、講授新課

1、舉例說明收集數據的方式主要有哪幾種類型、

2、抽樣調查時,如何保證樣本的代表性?舉例說明、

3、舉出與頻數、頻率有關的幾個生活實例?

4、刻畫數據波動的統計量有哪些?它們有什么作用?舉例說明、

針對上面的幾個問題,同學們先獨立思考,然后可在小組內交流你的想法,然后我們每組選出代表來回答、

(教師可參與到學生的討論中,發現同學們前面知識掌握不好的地方,及時補上)、

收集數據的方式有兩種類型:普查和抽樣調查、

例如:調查我校八年級同學每天做家庭作業的時間,我們就可以用普查的形式、

在這次調查中,總體:我校八年級全體學生每天做家庭作業的時間;個體:我校八年級每個學生每天做家庭作業的時間、

用普查的方式可以直接獲得總體情況、但有時總體中個體數目太多,普查的工作量較大;有時受客觀條件的限制,無法對所有個體進行普查;有時調查具有破壞性,不允許普查,此時可用抽樣調查、

例如把上面問題改成“調查全國八年級同學每天做家庭作業的時間”,由于個體數目太多,普查的工作量也較大,此時就采取抽樣調查,從總體中抽取一個樣本,通過樣本的特征數字來估計總體,例如平均數、中位數、眾數、極差、方差等、

上面我們回顧了為了了解某種情況而采取的調查方式:普查和抽樣調查,但抽樣調查必須保證數據具有代表性,因為只有這樣,你抽取的樣本才能體現出總體的情況,不然,就會失去可靠性和準確性、

例如對我們班里某門學科的成績情況,有時不僅知道平均成績,還要知道90分以上占多少,80到90分之間占多少,……,不及格的占多少等,這時,我們只要看一下每個學生的成績落在哪一個分數段,落在這個分數段的分數有幾個,表明數據落在這個小組的頻數就是多少,數據落在這個小組的頻率就是頻數與數據總個數的商、

刻畫數據波動的統計量有極差、方差、標準差、它們是用來描述一組數據的穩定性的、一般而言,一組數據的`極差、方差或標準差越小,這組數據就越穩定、

例如:某農科所在8個試驗點,對甲、乙兩種玉米進行對比試驗,這兩種玉米在各試驗點的畝產量如下(單位:千克)

甲:450460450430450460440460

乙:440470460440430450470440

在這個試驗點甲、乙兩種玉米哪一種產量比較穩定?

我們可以算極差、甲種玉米極差為460-430=30千克;乙種玉米極差為470-430=40千克、所以甲種玉米較穩定、

還可以用方差來比較哪一種玉米穩定、

s甲2=100,s乙2=200、

s甲2<s乙2,所以甲種玉米的產量較穩定、

三、建立知識框架圖

通過剛才的幾個問題回顧思考了我們這一章的重點內容,下面構建本章的知識結構圖、

四、隨堂練習

例1一家電腦生產廠家在某城市三個經銷本廠產品的大商場調查,產品的銷量占這三個大商場同類產品銷量的40%、由此在廣告中宣傳,他們的產品在國內同類產品的銷售量占40%、請你根據所學的統計知識,判斷該宣傳中的數據是否可靠:________,理由是________、

分析:這是一道判斷說理型題,它要求借助于統計知識,作出科學的判斷,同時運用統計原理給予準確的解釋、因此,該電腦生產廠家憑借挑選某城市經銷本產品情況,斷然說他們的產品在國內同類產品的銷量占40%,宣傳中的數據是不可靠的,其理由有二:第一,所取樣本容量太小;第二,樣本抽取缺乏代表性和廣泛性、

例2在舉國上下眾志成城抗擊“非典”的斗爭中,疫情變化牽動著全國人民的心、請根據下面的疫情統計圖表回答問題:

(1)圖10是5月11日至5月29日全國疫情每天新增數據統計走勢圖,觀察后回答:

①每天新增確診病例與新增疑似病例人數之和超過100人的天數共有__________天;

②在本題的統計中,新增確診病例的人數的中位數是___________;

③本題在對新增確診病例的統計中,樣本是__________,樣本容量是__________、

(2)下表是我國一段時間內全國確診病例每天新增的人數與天數的頻率統計表、(按人數分組)

①100人以下的分組組距是________;

②填寫本統計表中未完成的空格;

③在統計的這段時期中,每天新增確診

病例人數在80人以下的天數共有_________天、

解:(1)①7②26③5月11日至29日每天新增確診病例人數19

(2)①10人②11400、1250、325③25

五.課時小結

這節課我們通過回顧與思考這一章的重點內容,共同建立的知識框架圖,并進一步用統計的思想和知識解決問題,作出決策、

六.課后作業:

七.活動與探究

從魚塘捕得同時放養的草魚240尾,從中任選9尾,稱得每尾魚的質量分別是1、5,1、6,1、4,1、6,1、3,1、4,1、2,1、7,1、8(單位:千克)、依此估計這240尾魚的總質量大約是

A、300克B、360千克C、36千克D、30千克

《初中數學教案》篇3

一、教材內容及設置依據

【教材內容】本節教材的主要內容是通過對有理數加法、減法的運算的回顧,學習包括分數和小數的有理數的加減混合運算,理解其方法;應用有理數的加減混合運算,解決實際問題。

【設置依據】教材內容的確定主要根據知識的社會作用性、教育性原則(對培養學生的數學思維、數學能力,以及形成辨證唯物主義世界觀的重要作用)、后繼教育原則(為進一步深造、參加實際工作和適應日常生活準備條件)、可接受性原則(即考慮學生的認識水平、接受能力、生理心理特征,又要著眼于學生的不斷發展);還要與現實生活、科技發展相適應,逐步深透現代教學思想。

二、教材的地位和作用

本節內容是在學習了有理數的加法、有理數的減法的基礎上學習的,是前面知識的延伸和加強,同時又是后面所要學習的有理數的乘法、除法及有理數的混合運算的基礎,

特別是減法可以轉化為加法為后面的除法可以轉化為乘法的學習提供了

類比依據。也為后面學習代數式的合并同類項及有關的恒等變形奠定了基礎,因此具有承上啟下的重要作用。

三、對重點、難點的處理

【對重點的處理】本節的重點是有理數加減混合運算的方法及在實際生活中的應用。為了突出重點,教師應盡量從實際問題引入、應盡可能的在課堂上創設具體教學情境,注重使學生在具體情境中體會運算的方法。同時我們也可以根據學生的接受情況和每節課的具體情況,盡可能的把每節課的“課堂練習”和“習題”的內容劃分成不同的板塊,如:1、知識鞏固型2、實際應用型3、方法多變型4、知識拓展型等。

【對難點的處理】對于難點的處理,因為新教材“強調要給學生足夠的空間和時間”,因此教學時我們應盡量從學生已有的生活經驗和已有的知識經驗出發,或用“已知”去解決“未知”的思想引導學生,鼓勵學生大膽的猜測、交流,充分的探索。同時淡化形式,突出實質(不出現代數和的定義,只是讓學生理解有理數的加減運算可以統一成加法以及加法運算可以寫成省略括號及前面加號的形式,重點是讓學生通過具體情境對“代數和”加以體會)

四、關于教學方法的選用

根據本節課的內容和學生的實際水平,本節課可采用的方法:

1、情境體驗:通過教師創設貼近學生生活實際的教學情境,讓學生融會到課堂中去,產生共鳴,激發興趣,鼓勵學生觀察、分析、探索,加深其對本節內容的理解,培養學生解決問題的能力。

2、引導發現法:它符合辯證唯物主義中內因與外因相互作用的觀點,符合教學論中的自覺性和積極性、鞏固性、可接受性、教學與發展相結合、教師的主導作用與學生的主體地位相統一等原則。引導發現法的關鍵是通過教師的引導啟發,充分調動學生學習的主動性。

3、小組合作、探究討論:通過合作討論,使學生形成一個“學習共同體”,在這個共同體內相互交流、相互溝通、相互啟發、相互補充,分享彼此的思考、經驗和知識,交流彼此的情感、體驗和觀念,共同體驗成功的喜悅,使學生體會到集體的力量,形成合作的意識,產生合作的愿望。

五、關于學法的指導

“授人以魚,不如授人以漁”,在教給學生知識的同時,要教給他們好的學習方法,讓他們“會學習”在本節課的教學中,在提出問題后,要鼓勵學生分析、探索、討論,確定出問題解決的辦法。通過小組探究交流,得到解決問題的不同方法,開拓了思路,培養了思維能力。同時意識到:數學是生活實際中的數學、大自然中的數學,萌生了用數學解決實際問題的意識、愿望。

六、課時安排:1課時

教學程序:

一、復習鋪墊:

首先利用多媒體出示一組有關有理數的加法、減法的題目,讓學生進行速算比賽,看誰做的又對又快。

1、45+(-23)2、9-(-5)

3、-28-(-37)4、(-13)+0

5、(-29)+(-31)6、(-16)-(-12)-24-(-18)7、1.6-(-1.2)-2.58、(-42)+57+(-84)+(-23)

從四排學生中個推選一名學生代表板演6、7、8、題。

通過比賽的方式,符合學生的心理特點,迎合了學生好勝的心理,激起了學生學習的內在動力,激發了學習的興趣。

然后教師與學生一起對題目進行評判,對優勝的學生進行表揚,對其他學生加以鼓勵,使他們意識到“勝敗乃兵家常事”,關鍵要有信心,要有高昂的斗志。通過練習,學生已在不知不覺中復習了有理數的加法、減法法則,特別是減法法則,加深了印象,這符合教學論中的鞏固性原則,為后面學習有理數的加減混合運算奠定了基礎。

二、新知探索:

1、出示引例1:一架飛機作特技表演,起飛后的高度變化如下表:高度變化記作

上升4.5千米+4.5千米

下降3.2千米-3.2千米

上升1.1千米+1.1千米

下降1.4千米-1.4千米

此時飛機比起飛點高了多少米?

讓學生分組探究討論,讓學生發表自己的見解,不難得出兩種算法:

①4.5+(-3.2)+1.1+(-1.4)②4.5-3.2+1.1-1.4

=1.3+1.1+(-1.4)=1.3+1.1-1.4

=2.4+(-1.4)=2.4-1.4

=1千米=1千米

教師隨之提出問題:比較以上兩種算法,你發現了什么?通過學生的合作討論、教師的引導、規納、總結可得出:加減法混合運算可以統一成加法;加法運算可以寫成省略括號及前面加號的形式。使學生在解決問題的過程中體會到“代數和“的含義。這里不要求出現“代數和”的名稱。通過小組合作,探究討論,讓每一個學

《初中數學教案》篇4

一、素質教育目標

(一)知識教學點

1.理解有理數乘方的意義.

2.掌握有理數乘方的運算.

(二)能力訓練點

1.培養學生觀察、分析、比較、歸納、概括的能力.

2.滲透轉化思想.

(三)德育滲透點:培養學生勤思、認真和勇于探索的精神.

(四)美育滲透點

把記成,顯示了乘方符號的簡潔美.

二、學法引導

1.教學方法:引導探索法,嘗試指導,充分體現學生主體地位.

2.學生學法:探索的性質→練習鞏固

三、重點、難點、疑點及解決辦法

1.重點:運算.

2.難點:運算的符號法則.

3.疑點:①乘方和冪的區別.

②與的區別.

四、課時安排

1課時

五、教具學具準備

投影儀、自制膠片.

六、師生互動活動設計

教師引導類比,學生討論歸納乘方的概念,教師出示探索性練習,學生討論歸納乘方的性質,教師出示鞏固性練習,學生多種形式完成.

七、教學步驟

(一)創設情境,導入 新課

師:在小學我們已經學過:記作,讀作的平方(或的二次方);記作,讀作的立方(或的三次方);那么可以記作什么?讀作什么?

生:可以記作,讀作的四次方.

師:呢?

生:可以記作,讀作的五次方.

師:(為正整數)呢?

生:可以記作,讀作的次方.

師:很好!把個相乘,記作,既簡單又明確.

【教法說明】教師給學生創設問題情境,鼓勵學生積極參與,大大調動了學生學習的積極性.同時,使學生認識到數學的發展是不斷進行推廣的,是由計算正方形的面積得到的,是由計算正方體和體積得到的,而,……是學生通過類推得到的.

師:在小學對底數,我們只能取正數.進入中學以后我們學習了有理數,那么還可取哪些數呢?請舉例說明.

生:還可取負數和零.例如:0×0×0記,(-2)×(-2)×(-2)×(-2)記作.

非常好!對于中的,不僅可以取正數,還可以取0和負數,也就是說可以取任意有理數,這就是我們今天研究的課題:(板書).

【教法說明】對于的范圍,是在教師的引導下,學生積極動腦參與,并且根據初一學生的認知水平,分層逐步說明可以取正數,可以取零,可以取負數,最后總結出可以取任意有理數.

(二)探索新知,講授新課

1.求個相同因數的積的運算,叫做乘方.

乘方的結果叫做冪,相同的因數叫做底數,相同的因數的個數叫做指數.一般地,在中,取任意有理數,取正整數.

注意:乘方是一種運算,冪是乘方運算的結果.看作是的次方的結果時,也可讀作的次冪.

鞏固練習(出示投影1)

(1)在中,底數是__________,指數是___________,讀作__________或讀作___________;

(2)在中,-2是__________,4是__________,讀作__________或讀作__________;

(3)在中,底數是_________,指數是__________,讀作__________;

(4)5,底數是___________,指數是_____________.

【教法說明】此組練習是鞏固乘方的有關概念,及時反饋學生掌握情況.(2)、(3)小題的區別表示底數是-2,指數是4的冪;而表示底數是2,指數是4的冪的相反數.為后面的計算做鋪墊.通過第(4)小題指出一個數可以看作這個數本身的一次方,如5就是,指數1通常省略不寫.

師:到目前為止,對有理數業說,我們已經學過幾種運算?分別是什么?其運算結果叫什么?

學生活動:同學們思考,前后桌同學互相討論交流,然后舉手回答.

生:到目前為止,已經學習過五種運算,它們是:

運算:加、減、乘、除、乘方;

運算結果:和、差、積、商、冪;

教師對學生的回答給予評價并鼓勵.

【教法說明】注重學生在認知過程中的思維.主動參與,通過學生討論、歸納得出的知識,比教師的單獨講解要記得牢,同時也培養學生歸納、總結的能力.

師:我們知道,乘方和加、減、乘、除一樣,也是一種運算,如何進行乘方運算?請舉例說明.

學生活動:學生積極思考,同桌相互討論,并在練習本上舉例.

【教法說明】通過學生積極動腦,主動參與,得出可以利用有理數的乘法運算來進行有理數乘方的運算.向學生滲透轉化的思想.

2.練習:(出示投影2)

計算:1.(1)2, (2), (3), (4).

2.(1),,,.

(2)-2,,.

3.(1)0, (2), (3), (4).

學生活動:學生獨立完成解題過程,請三個學生板演,教師巡回指導,待學生完成后,師生共同評價對錯,并予以鼓勵.

師:請同學們觀察、分析、比較這三組題中,每組題中底數、指數和冪之間有什么聯系?

先讓學生獨立思考,教師邊巡視邊做適當提示.然后讓學生討論,老師加入某一小組.

生:正數的任何次冪都是正數;負數的奇次冪是負數,負數的偶次冪是正數,零的任何次冪都是零.

師:請同學們繼續觀察與,與中,底數、指數和冪之間有何聯系?你能得出什么結論呢?

學生活動:學生積極思考,同桌之間、前后桌之間互相討論.

生:互為相反數的兩個數的奇次冪仍互為相反數,偶次冪相等.

師:請同學思考一個問題,任何一個數的偶次冪是什么數?

生:任何一個數的偶次冪是非負數.

師:你能把上述結論用數學符號表示嗎?

生:(1)當時,(為正整數);

(2)當

(3)當時,(為正整數);

(4)(為正整數);

(為正整數);

(為正整數,為有理數).

【教法說明】教師把重點放在教學情境的設計上,通過學生自己探索,獲取知識.教師要始終給學生創造發揮的機會,注重學生參與.學生通過特殊問題歸納出一般性的結論,既訓練學生歸納總結的能力和口頭表達的能力,又能使學生對法則記得牢,領會的深刻.

《初中數學教案》篇5

教學目標

1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關的實際問題;

2、理解一元一次不等式組應用題的一般解題步驟,逐步形成分析問題和解決問題的能力;

3、體驗數學學習的樂趣,感受一元一次不等式組在解決實際問題中的價值。

教學難點

正確分析實際問題中的不等關系,列出不等式組。

知識重點

建立不等式組解實際問題的數學模型。

探究實際問題

出示教科書第145頁例2(略)

問:(1)你是怎樣理解“不能完成任務”的數量含義的?

(2)你是怎樣理解“提前完成任務”的數量含義的&39;?

(3)解決這個問題,你打算怎樣設未知數?列出怎樣的不等式?

師生一起討論解決例2.

歸納小結

1、教科書146頁“歸納”(略).

2、你覺得列一元一次不等式組解應用題與列二元一次方程組解應用題的步驟一樣嗎?

在討論或議論的基礎上老師揭示:

步法一致(設、列、解、答);本質有區別.(見下表)一元一次不等式組應用題與二元一次方程組應用題解題步驟異同表。

《初中數學教案》篇6

一、課題2.4有理數的減法

二、教學目標

1.使學生掌握有理數減法法則并熟練地進行有理數減法運算;

2.培養學生觀察、分析、歸納及運算能力.

三、教學重點

有理數減法法則

四、教學難點

有理數減法法則

五、教學用具

三角尺、小黑板、小卡片

六、課時安排

1課時

七、教學過程

(一)、從學生原有認知結構提出問題

1.計算:

(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

2.化簡下列各式符號:

(1)-(-6);(2)-(+8);(3)+(-7);

(4)+(+4);(5)-(-9);(6)-(+3).

3.填空:

(1)______+6=20;(2)20+______=17;

(3)______+(-2)=-20;(4)(-20)+______=-6.

在第3題中,已知一個加數與和,求另一個加數,在小學里就是減法運算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎樣算出來的?這就是有理數的減法,減法是加法的逆運算.

(二)、師生共同研究有理數減法法則

問題1(1)(+10)-(+3)=______;

(2)(+10)+(-3)=______.

教師引導學生發現:兩式的結果相同,(更多內容請訪問首頁:)即(+10)-(+3)=(+10)+(-3).

教師啟發學生思考:減法可以轉化成加法運算.但是,這是否具有一般性?問題2(1)(+10)-(-3)=______;

(2)(+10)+(+3)=______.

對于(1),根據減法意義,這就是要求一個數,使它與-3相加等于+10,這個數是多少?

(2)的結果是多少?

于是,(+10)-(-3)=(+10)+(+3).

至此,教師引導學生歸納出有理數減法法則:

減去一個數,等于加上這個數的.相反數.

教師強調運用此法則時注意“兩變”:一是減法變為加法;二是減數變為其相反數.減數變號(減法============加法)

(三)、運用舉例變式練習

例1計算:

(1)(-3)-(-5);(2)0-7.

例2計算:

(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).

通過計算上面一組有理數減法算式,引導學生發現:

在小學里學習的減法,差總是小于被減數,在有理數減法中,差不一定小于被減數了,只要減去一個負數,其差就大于被減數.

例3世界上最高的山峰是珠穆朗瑪峰,其海拔高度大約為是8848米,吐魯番盆地的海拔高度大約是-155米,兩處高度相差多少米?

閱讀課本63頁例3

(四)、小結

1.教師指導學生閱讀教材后強調指出:

由于把減數變為它的相反數,從而減法轉化為加法.有理數的加法和減法,當引進負數后就可以統一用加法來解決.

2.不論減數是正數、負數或是零,都符合有理數減法法則.在使用法則時,注意被減數是永不變的.

(五)、課堂練習

1.計算:

(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;

2.計算:

(1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14;

(5)123-190;(6)(-112)-98;(7)(-131)-(-129);(8)341-249.

3.計算:

(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;

(4)(-5.9)-(-6.1);

(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).

利用有理數減法解下列問題

4.世界最高峰是珠穆朗瑪峰,海拔高度是8848m,陸上最低處是位于亞洲西部的死海湖,湖面海拔高度是-392m.兩處高度相差多少?

八、布置課后作業:

課本習題2.6知識技能的2、3、4和問題解決1

九、板書設計

2.5有理數的減法

(一)知識回顧(三)例題解析(五)課堂小結

例1、例2、例3

(二)觀察發現(四)課堂練習練習設計

十、課后反思

《初中數學教案》篇7

(一)本節內容在教材中的地位與作用。

對于全等三角形的研究,實際是平面幾何中對封閉的兩個圖形關系研究的第一步。它是兩三角形間最簡單、最常見的關系。本節《探索三角形全等的條件》是學生在認識三角形的基礎上,在了解全等圖形和全等三角形以后進行學習的,它既是前面所學知識的延伸與拓展,又是后繼學習探索相似形的條件的基礎,并且是用以說明線段相等、兩角相等的重要依據。因此,本節課的知識具有承上啟下的作用。同時,蘇科版教材將“邊角邊”這一識別方法作為五個基本事實之一,說明本節的內容對學生學習幾何說理來說具有舉足輕重的作用。

(二)教學目標

在本課的教學中,不僅要讓學生學會“邊角邊”這一全等三角形的識別方法,更主要地是要讓學生掌握研究問題的方法,初步領悟分類討論的數學思想。同時,還要讓學生感受到數學來源于生活,又服務于生活的基本事實,從而激發學生學習數學的興趣。為此,我確立如下教學目標:

(1)經歷探索三角形全等條件的過程,體會分析問題的方法,積累數學活動的經驗。

(2)掌握“邊角邊”這一三角形全等的識別方法,并能利用這些條件判別兩個三角形是否全等,解決一些簡單的實際問題。

(3)培養學生勇于探索、團結協作的精神。

(三)教材重難點

由于本節課是第一次探索三角形全等的條件,故我確立了以“探究全等三角形的必要條件的個數及探究邊角邊這一識別方法作為教學的重點,而將其發現過程以及邊邊角的辨析作為教學的難點。同時,我將采用讓學生動手操作、合作探究、媒體演示的方式以及滲透分類討論的數學思想方法教學來突出重點、突破難點。

(四)教學具準備,教具:相關多媒體課件;學具:剪刀、紙片、直尺。畫有相關圖片的作業紙。

二、教法選擇與學法指導

本節課主要是“邊角邊”這一基本事實的發現,故我在課堂教學中將盡量為學生提供“做中學”的時空,讓學生進行小組合作學習,在“做”的過程中潛移默化地滲透分類討論的數學思想方法,遵循“教是為了不教”的原則,讓學生自得知識、自尋方法、自覓規律、自悟原理。

三、教學流程

(一)創設情景,激發求知欲望

首先,我出示一個實際問題:

問題:皮皮公司接到一批三角形架的加工任務,客戶的要求是所有的三角形必須全等。質檢部門為了使產品順利過關,提出了明確的要求:要逐一檢查三角形的三條邊、三個角是不是都相等。技術科的毛毛提出了質疑:分別檢查三條邊、三個角這6個數據固然可以。但為了提高我們的效率,是不是可以找到一個更優化的方法,只量一個數據可以嗎?兩個呢?……

然后,教師提出問題:毛毛已提出了這么一個設想,同學們是否可以和毛毛一起來攻克這個難題呢?

這樣設計的目的是既交代了本節課要研究和學習的主要問題,又能較好地激發學生求知與探索的欲望,同時也為本節課的教學做好了鋪墊。

(二)引導活動,揭示知識產生過程

數學教學的本質就是數學活動的教學,為此,本節課我設計了如下的系列活動,旨在讓學生通過動手操作、合作探究來揭示“邊角邊”判定三角形全等這一知識的產生過程。

活動一:讓學生通過畫圖或者舉例說明,只量一個數據,即一條邊或一個角不能判斷兩個三角形全等。

活動二:讓學生就測量兩個數據展開討論。先讓學生分析有幾種情況:即邊邊、邊角、角角。再由各小組自行探索。同樣可以讓學生舉反例說明,也可以通過畫圖說明。

活動三:在兩個條件不能判定的基礎上,只能再添加一個條件。先讓學生討論分幾種情況,教師在啟發學生有序思考,避免漏解。如:

1

2

3

3

2

1

教師提出3個角不能判定兩三角形全等,實質我們已經討論過了。明確今天的任務:討論兩條邊一個角是否可以判定兩三角形全等。師生再共同探討兩邊一角又分為兩邊一夾角與兩邊一對角兩種情況。

活動四:討論第一種情況:各小組每人用一張長方形紙剪一個直角三角形(只用直尺和剪刀),怎樣才能使各小組內部剪下的直角三角形都全等呢?主要是讓學生體驗研究問題通常可以先從特殊情況考慮,再延伸到一般情況。

活動五:出示課本上的3幅圖,讓學生通過觀察、進行猜想,再測量或剪下來驗證。并說說全等的圖形之間有什么共同點。

活動六:小組競賽:每人畫一個三角形,其中一個角是30°,有兩條邊分別是7cm、5cm,看哪組先完成,并且小組內是全等的。這樣既調動了學生的積極性,又便于發現邊角邊的識別方法。

最后教師再用幾何畫板演示,學生進行觀察、比較后,師生共同分析、歸納出“邊角邊”這一識別方法。

若有小組畫成邊邊角的形式,則順勢引出下面的探究活動。否則提出:若兩個三角形有兩條邊及其中一邊的對角對應相等,則這兩個三角形一定全等嗎?

活動七:在給出的畫有的圖上,讓學生自主探究(其中另一條邊為5cm),看畫出的三角形是否一定全等。讓學生在給出的圖上研究是為了減小探索的麻木性。

教師用幾何畫板演示,讓學生在辨析中再次認識邊角邊。同時完成課后練習第一題。

(三)例題教學,發揮示范功能

例題教學是課堂教學的一個重要環節,因此,如何充分地發揮好例題的教學功能是十分重要的。為此,我將充分利用好這道例題,培養學生有條理的說理能力,同時,通過對例題的變式與引伸培養學生發散思維能力。

首先,我將出示課本例1,并設計下列系列問題,讓學生一步一步地走向“知識獲得與應用”的理想彼岸。

問題1:請說說本例已知了哪些條件,還差一個什么條件,怎么辦?(讓學生學會找隱含條件)。

問題2:你能用“因為……根據……所以……”的表達形式說說本題的說理過程嗎?

問題3:ADC可以看成是由ABC經過怎樣的圖形變換得到的?

在探索完上述3個問題的基礎上,對例題作如下的變式與引伸:

ABC與ADC全等了,你又能得到哪些結論?連接BD交AC于O,你能說明BOC與DOC全等嗎?若全等,你又能得到哪些結論?

這樣設計的目的在于體現“數學教學不僅僅是數學知識的教學,更重要的發展學生數學思維的教學”這一思想。

在例題教學的基礎上,為了及時的反饋教學效果,也為提高學生知識應用的水平,達到及時鞏固的目的,我設計了如下兩個練習:

(1)基礎知識應用。完成教材P139練一練2。

(2)已知如圖:,請你添加一些適當的條件,再根據SAS的識別方法說明兩個三角形全等。對學生進行逆向思維訓練,同時讓學生發現對頂角這一隱含條件。

(四)課堂小結,建立知識體系。

(1)本節課你有哪些收獲:重點是將研究問題的方法進行一次梳理,對邊角邊的識別方法進行一次回顧。

(2)你還有哪些疑問?

附板書設計:

三角

探索三角形全等的條件

兩角一邊

探究活動一:兩個三角形全等至少要幾個條件

一角兩邊

一個條件行不通兩個條件行不通三個條件

三邊

探究活動二:全等三角形的識別方法:

特殊------一般

《初中數學教案》篇8

一、說教材

(一)教材的地位和作用

本節教材是八年級數學第十六章第二節第一課時的內容,是初中數學的重要內容之一。一方面,這是在學習了分式基本性質、分式的約分和因式分解的基礎上,進一步學習分式的乘除法;另一方面,又為學習分式加減法和分式方程等知識奠定了基礎。因此,本節課在整個的初中數學的學習中起著承上啟下的過渡作用。

(二)教學目標分析

根據新課標的要求和本節課內容特點,考慮到年級班級學生的知識水平,以及對教材的地位與作用的分析,我制定了如下三維教學目標、

1.認知目標、理解并掌握分式的乘除法法則,能進行簡單的分式乘除法運算,能解決一些與分式乘除有關的實際問題。

2.技能目標、經歷從分數的乘除法運算到分式的乘除法運算的過程,培養班級學生類比的探究能力,加深對從特殊到一般數學的思想認識。

3.情感目標、教學中讓班級學生在主動探究,合作交流中滲透類比轉化的思想,使班級學生在學知識的同時感受探索的樂趣和成功的體驗。

(三)教學重難點

本著課程標準,在充分理解教材的基礎上,我確立了如下的教學重點、難點、

教學重點、運用分式的乘除法法則進行運算。

教學難點、分子、分母為多項式的分式乘除運算。

下面,為了講清重點難點,使班級學生能達到本節課的教學目標,我再從教法和學法上談談、

二、說學情

1.班級學生已經學習分式基本性質、分式的約分和因式分解,通過與分數的乘除法類比,促進知識的正遷移。

2.八年級的班級學生接受能力、思維能力、自我控制能力都有很大變化和提高,自學能力較強,通過類比學習加快知識的學習。

三、說教法學法

(一)說教法

教學方式的改變是新課標改革的目標,新課標要求把過去單純的老師講,班級學生接受的教學方式,變為師生互動式教學。師生互動式教學以教學大綱為依據,滲透新的教育理念,遵循教師主導、班級學生為主體的原則,結合本節課的內容特點和班級學生的年齡特征,本節課我采用啟發式、討論式以及講練結合的教學方法,以問題的提出、問題的解決為主線,倡導班級學生主動參與教學實踐活動,以師生互動的形式,在教師的指導下突破難點、分式的乘除法運算,在例題的引導分析時,教學中應予以簡單明白,深入淺出的分析本課教學難點、分子、分母為多項式的分式乘除運算。讓班級學生在練習題中鞏固難點,從真正意義上完成對知識的自我建構。

另外,在教學過程中,我采用多媒體輔助教學,以直觀呈現教學素材,從而更好地激發班級學生的學習興趣,增大教學容量,提高教學效率。

(二)說學法

從認知狀況來說,班級學生在此之前對分數乘除法運算比較熟悉,加上對本章第一節分式及其性質學習,抓住初中生具有豐富的想象能力和活躍的思維能力,愛發表見解,希望得到老師的表揚這些心理特征,因此,我認為本節課適合采用班級學生自主探索、合作交流的數學學習方式。一方面運用實際生活中的問題引入,激發班級學生的興趣,使他們在課堂上集中注意力;另一方面,由于分式的乘除法法則與分數的乘除法法則類似,以類比的方法得出分式的乘除法則,易于班級學生理解、接受,讓班級學生在自主探索、合作交流中加深理解分式的乘除運算,充分發揮班級學生學習的主動性。不但讓班級學生"學會"還要讓班級學生"會學"

四、說教學過程

新課標指出,數學教學過程是教師引導班級學生進行學習活動的過程,是教師和班級學生間互動的過程,是師生共同發展的過程。為有序、有效地進行教學,接下來,我再具體談談本節課的教學過程安排、

(一)提出問題,引入課題

俗話說、"好的開端是成功的一半"同樣,好的引入能激發班級學生興趣和求知欲。因此我用實際出發提出現實生活中的問題、

問題1求容積的高是,(引出分式乘法的學習需要)。

問題2求大拖拉機的工作效率是小拖拉機的工作效率的倍,(引出分式除法的學習需要)。

從實際出發,引出分式的乘除的實在存在意義,讓班級學生感知學習分式的乘法和除法的實際需要,從而激發班級學生興趣和求知欲。

(二)類比聯想,探究新知

從班級學生熟悉的分數的乘除法出發,引發班級學生的學習興趣。(1)(2)

解后總結概括、

(1)式是什么運算?依據是什么?

(2)式又是什么運算?依據是什么?能說出具體內容嗎?(如果有困難教師應給于引導)

(班級學生應該能說出依據的是、分數的乘法和除法法則)教師加以肯定,并指出與分數的乘除法法則類似,引導班級學生類比分數的乘除法則,猜想出分式的乘除法則。

【分式的乘除法法則】

乘法法則、分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母。

除法法則、分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

用式子表示為、

設計意圖、由于分式的乘除法法則與分數的乘除法法則類似,故以類比的方法得出分式的乘除法則,易于班級學生理解、接受,體現了自主探索,合作學習的新理念。

(三)例題分析,應用新知

師生活動、教師參與并指導,班級學生獨立思考,并嘗試完成例題。

P11的例1,在例題分析過程中,為了突出重點,應多次回顧分式的乘除法法則,使班級學生耳熟能詳。P11例2是分子、分母為多單項式的分式乘除法則的運用,為了突破本節課的難點我采取板演的形式,和班級學生一起詳細分析,提醒班級學生關注易錯易漏的環節,學會解題的方法。

(四)練習鞏固,培養能力

P13練習第2題的(1)(3)(4)與第3題的(2)

師生活動、教師出示問題,班級學生獨立思考解答,并讓班級學生板演或投影展示班級學生的解題過程。

通過這一環節,主要是為了通過課堂跟蹤反饋,達到鞏固提高的目的,進一步熟練解題的思路,也遵循了鞏固與發展相結合的原則。讓班級學生板演,一是為了暴露問題,二是為了規范解題格式和結果。

(五)課堂小結,回扣目標

引導班級學生自主進行課堂小結、

1.本節課我們學習了哪些知識?

2.在知識應用過程中需要注意什么?

3.你有什么收獲呢?

師生活動、班級學生反思,提出疑問,集體交流。

設計意圖、學習結果讓班級學生作為反饋,讓他們體驗到學習數學的快樂,在交流中與全班同學分享,從而加深對知識的理解記憶。

(六)布置作業

教科書習題6.2第1、2(必做)練習冊P(選做),我設計了必做題和選做題,必做題是對本節課內容的一個反饋,選做題是對本節課知識的一個延伸。總的設計意圖是反饋教學,鞏固提高。

五、說板書設計

在本節課中我將采用提綱式的板書設計,因為提綱式-條理清楚、從屬關系分明,給人以清晰完整的印象,便于班級學生對教材內容和知識體系的理解和記憶。

《初中數學教案》篇9

第1課時

1.使學生了解因式分解的意義,了解因式分解和整式乘法是整式的兩種相反方向的變形.

2.讓學生會確定多項式中各項的公因式,會用提公因式法進行因式分解.

自主探索,合作交流.

1.通過與因數分解的類比,讓學生感悟數學中數與式的共同點,體驗數學的類比思想.

2.通過對因式分解的教學,培養學生“換元”的意識.

【重點】因式分解的概念及提公因式法的應用.

【難點】正確找出多項式中各項的公因式.

【教師準備】多媒體.

【學生準備】復習有關乘法分配律的知識.

導入一:

【問題】一塊場地由三個長方形組成,這些長方形的長分別為,,,寬都是,求這塊場地的面積.

解法1:這塊場地的面積=×+×+×=++==2.

解法2:這塊場地的面積=×+×+×=×=×4=2.

從上面的解答過程看,解法1是按運算順序:先算乘法,再算加減法進行計算的,解法2是先逆用乘法分配律,再進行計算的,由此可知解法2要簡單一些.這個事實說明,有時我們需要將多項式化為幾個整式的積的形式,而提公因式法就是將多項式化為幾個整式的積的形式的一種方法.

[設計意圖]讓學生通過利用乘法分配律的逆運算這一特殊算法,運用類比思想自然地過渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎.

導入二:

【問題】計算×15-×9+×2采用什么方法?依據是什么?

解法1:原式=-+==5.

解法2:原式=×(15-9+2)=×8=5.

解法1是按運算順序:先算乘法,再算加減法進行計算的,解法2是先逆用乘法分配律,再進行計算的,由此可知解法2要簡單一些.這個事實說明,有時我們需要將多項式化為幾個整式的積的形式,而提公因式法就是把多項式化為幾個整式的積的形式的一種方法.

[設計意圖]讓學生通過利用乘法分配律的逆運算這一特殊算法,運用類比思想自然地過渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎.

一、提公因式法分解因式的概念

思路一

[過渡語]上一節我們學習了什么是因式分解,那么怎樣進行因式分解呢?我們來看下面的問題.

如果一塊場地由三個長方形組成,這三個長方形的長分別為a,b,c,寬都是,那么這塊場地的面積為a+b+c或(a+b+c),可以用等號來連接,即:a+b+c=(a+b+c).

大家注意觀察這個等式,等式左邊的每一項有什么特點?各項之間有什么聯系?等式右邊的項有什么特點?

分析:等式左邊的每一項都含有因式,等式右邊是與多項式a+b+c的乘積,從左邊到右邊的過程是因式分解.

由于是左邊多項式a+b+c中的各項a,b,c都含有的一個相同因式,因此叫做這個多項式各項的公因式.

由上式可知,把多項式a+b+c寫成與多項式a+b+c的乘積的形式,相當于把公因式從各項中提出來,作為多項式a+b+c的一個因式,把從多項式a+b+c的各項中提出后形成的多項式a+b+c,作為多項式a+b+c的另一個因式.

總結:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種因式分解的方法叫做提公因式法.

[設計意圖]通過實例的教學,使學生明白什么是公因式和用提公因式法分解因式.

思路二

[過渡語]同學們,我們來看下面的問題,看看同學們誰先做出來.

多項式ab+ac中,各項都含有相同的因式嗎?多項式3x2+x呢?多項式b2+nb-b呢?

結論:多項式中各項都含有的相同因式,叫做這個多項式各項的公因式.

多項式2x2+6x3中各項的公因式是什么?你能嘗試將多項式2x2+6x3因式分解嗎?

結論:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種因式分解的方法叫做提公因式法.

[設計意圖]從讓學生找出幾個簡單多項式的公因式,再到讓學生嘗試將多項式分解因式,使學生理解公因式以及提公因式法分解因式的概念.

二、例題講解

[過渡語]剛剛我們學習了因式分解的一種方法,現在我們嘗試下利用這種方法進行因式分解吧.

(教材例1)把下列各式因式分解:

(1)3x+x3;

(2)7x3-21x2;

(3)8a3b2-12ab3c+ab;

(4)-24x3+12x2-28x.

〔解析〕首先要找出各項的公因式,然后再提取出來.要避免提取公因式后,各項中還有公因式,即“沒提徹底”的現象.

解:(1)3x+x3=x3+__2=x(3+x2).

(2)7x3-21x2=7x2x-7x23=7x2(x-3).

(3)8a3b2-12ab3c+ab

=ab8a2b-ab12b2c+ab1

=ab(8a2b-12b2c+1).

(4)-24x3+12x2-28x

=-(24x3-12x2+28x)

=-(4x6x2-4x3x+4x7)

=-4x(6x2-3x+7).

【學生活動】通過剛才的練習,大家互相交流,總結出提取公因式的一般步驟和容易出現的問題.

總結:提取公因式的步驟:(1)找公因式;(2)提公因式.

容易出現的問題(以本題為例):(1)第(2)題中只提出7x作為公因式;(2)第(3)題中最后一項提出ab后,漏掉了“+1”;(3)第(4)題提出“-”號時,沒有把后面的因式中的每一項都變號.

教師提醒:

(1)各項都含有的字母的最低次冪的積是公因式的字母部分;

(2)因式分解后括號內的多項式的項數與原多項式的項數相同;

(3)若多項式的首項為“-”,則先提取“-”號,然后再提取其他公因式;

(4)將分解因式后的式子再進行整式的乘法運算,其積應與原式相等.

[設計意圖]經歷用提公因式法進行因式分解的過程,在教師的啟發與指導下,學生自己歸納出提公因式的步驟及提取公因式時容易出現的類似問題,為提取公因式積累經驗.

1.提公因式法分解因式的一般形式,如:

a+b+c=(a+b+c).

這里的字母a,b,c,可以是一個系數不為1的.、多字母的、冪指數大于1的單項式.

2.提公因式法分解因式的關鍵在于發現多項式的公因式.

3.找公因式的一般步驟:

(1)若各項系數是整系數,則取系數的最大公約數;

(2)取各項中相同的字母,字母的指數取最低的;

(3)所有這些因式的乘積即為公因式.

1.多項式-6ab2+18a2b2-12a3b2c的公因式是()

A.-6ab2cB.-ab2

C.-6ab2D.-6a3b2c

解析:根據確定多項式各項的公因式的方法,可知公因式為-6ab2.故選C.

2.下列用提公因式法分解因式正確的是()

A.12abc-9a2b2=3abc(4-3ab)

B.3x2-3x+6=3(x2-x+2)

C.-a2+ab-ac=-a(a-b+c)

D.x2+5x-=(x2+5x)

解析:A.12abc-9a2b2=3ab(4c-3ab),錯誤;B.3x2-3x+6=3(x2-x+2),錯誤;D.x2+5x-=(x2+5x-1),錯誤.故選C.

3.下列多項式中應提取的公因式為5a2b的是()

A.15a2b-20a2b2

B.30a2b3-15ab4-10a3b2

C.10a2b-20a2b3+50a4b

D.5a2b4-10a3b3+15a4b2

解析:B.應提取公因式5ab2,錯誤;C.應提取公因式10a2b,錯誤;D.應提取公因式5a2b2,錯誤.故選A.

4.填空.

(1)5a3+4a2b-12abc=a();

(2)多項式32p2q3-8pq4的公因式是;

(3)3a2-6ab+a=(3a-6b+1);

(4)因式分解:+n=;

(5)-15a2+5a=(3a-1);

(6)計算:21×3.14-31×3.14=.

答案:(1)5a2+4ab-12bc(2)8pq3(3)a(4)(+n)(5)-5a(6)-31.4

5.用提公因式法分解因式.

(1)8ab2-16a3b3;

(2)-15x-5x2;

(3)a3b3+a2b2-ab;

(4)-3a3-6a2+12a.

解:(1)8ab2(1-2a2b).

(2)-5x(3+x).

(3)ab(a2b2+ab-1).

(4)-3a(a2+2a-4).

第1課時

一、教材作業

【必做題】

教材第96頁隨堂練習.

【選做題】

教材第96頁習題4.2.

二、課后作業

【基礎鞏固】

1.把多項式4a2b+10ab2分解因式時,應提取的公因式是.

2.(20__淮安中考)因式分解:x2-3x=.

3.分解因式:12x3-18x22+24x3=6x.

【能力提升】

4.把下列各式因式分解.

(1)3x2-6x;

(2)5x23-25x32;

(3)-43+162-26;

(4)15x32+5x2-20x23.

【拓展探究】

5.分解因式:an+an+2+a2n.

6.觀察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….這列式子有什么規律?請你將猜想到的規律用含有字母n(n為自然數)的式子表示出來.

【答案與解析】

1.2ab

2.x(x-3)

3.(2x2-3x+42)

4.解:(1)3x(x-2).(2)5x22(-5x).(3)-2(22-8+13).(4)5x2(3x+1-42).

5.解:原式=an1+ana2+anan=an(1+a2+an).

6.解:由題中給出的幾個式子可得出規律:n2+n=n(n+1).

本節運用類比的思想方法,在新概念的提出、新知識點的講授過程中,使學生易于理解和掌握.如學生在接受提公因式法時,由提公因數到提公因式,由整式乘法的逆運算到提公因式法的概念,都是利用了類比的數學思想,從而使得學生接受新的概念時顯得輕松自然,容易理解.

在小組討論之前,應該留給學生充分的獨立思考的時間,不要讓一些思維活躍的學生的回答代替了其他學生的思考,掩蓋了其他學生的疑問.

由于因式分解的主要目的是對多項式進行恒等變形,它的作用更多的是應用于多項式的計算和化簡,比如在以后將要學習的分式運算、解分式方程等中都要用到因式分解的知識,因此應該注重因式分解的概念和方法的教學.

隨堂練習(教材第96頁)

解:(1)(a+b).(2)52(+4).(3)3x(2-3).(4)ab(a-5).(5)22(2-3).(6)b(a2-5a+9).(7)-a(a-b+c).(8)-2x(x2-2x+3).

習題4.2(教材第96頁)

1.解:(1)2x2-4x=2x(x-2).(2)82n+2n=2n4+2n1=2n(4+1).(3)a2x2-ax2=axax-ax=ax(ax-).(4)3x3-3x2+9x=3x(x2-x+3).(5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72).(6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1).(7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43).(8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).

2.解:(1)++=(++)=3.14×(202+162+122)=2512.(2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7.(3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.

3.解:(1)不正確,因為提取的公因式不對,應為n(2n--1).(2)不正確,因為提取公因式-b后,第三項沒有變號,應為-b(ab-2a+3).(3)正確.(4)不正確,因為最后的結果不是乘積的形式,應為(a-2)(a+1).

提公因式法是本章的第2小節,占兩個課時,這是第一課時,它主要讓學生經歷從乘法分配律的逆運算到提公因式的過程,讓學生體會數學中的一種主要思想——類比思想.運用類比的思想方法,在新概念的提出、新知識點的講授過程中,可以使學生易于理解和掌握.如學生在接受提公因式法時,由整式乘法的逆運算到提公因式法的概念,就利用了類比的數學思想,從而使得學生接受新的概念時顯得輕松自然,容易理解,進而使學生進一步理解因式分解與整式乘法運算之間的互逆關系.

已知方程組求7(x-3)2-2(3-x)3的值.

〔解析〕將代數式分解因式,產生x-3與2x+兩個因式,再根據方程組整體代入,使計算簡便.

解:7(x-3)2-2(3-x)3

=(x-3)2[7+2(x-3)]

=(x-3)2(7+2x-6)

=(x-3)2(2x+).

由方程組可得原式=12×6=6.

《初中數學教案》篇10

一、教材分析

(一)、教材內容的地位和作用

《代數式的值》選自義務教育課程標準實驗教科書(人教版)七年級數學(上)第二章,是我個人根據學生的知識基礎較差、認知能力不強以及思維品質不夠活躍等實際情況而在教學中加以補充的一節課。代數學作為一門學科,它的課題首要的就是研究用字母表示式子的變形規則和解方程的方法。因此,本節課既是算術知識的延續,又為后面知識的學習起著導航作用,即:對于代數我們研究什么?如何研究?

(二)、教學目標

根據新《課標》要求和上述教材分析,結合學生的情況,我制定了以下教學目標:

知識、能力目標:了解代數式的值的概念,知道代數式求值的書寫格式,能區分易混淆語言,清楚代數式求值過程中易出錯的地方,會解決簡單的問題,并在此基礎上應用變式訓練進行拔高。

情感目標:使學生明白數學來源于生活,學習數學是為了解決實際問題,,培養學生科學的學習態度,同時通過多媒體演示激發學生探究數學問題的興趣。

(三)、教學重點、難點

教學重點:代數式求值的書寫格式。

教學難點:代數式求值的書寫格式,變式訓練知識的運用。

二、教法、學法分析

本節課涉及的知識點不多,知識的切入點比較低,根據課標的要求,代數式的值的概念屬于了解內容,所以本節課較多的時間用在代數式求值知識的運用上。教師以多媒體為教學平臺,通過精心設計的問題串和活動系列,采取精講多練、講練結合的方法來落實知識點并不斷地制造思維興奮點,讓學生腦、嘴、手動起來,充分調動了學生的學習積極性,達到事半功倍的教學效果,而學生在教師的鼓勵引導下小結方法,克服思維定勢,并通過小組討論、組際競賽等多種方式增強學習的成就感及自信心,從而培養濃厚的學習興趣。

三、教學程序設計

板書設計:

代數式的值

四、評價與反思

新課標要求我們合理選用教學素材,優化教學內容。所以我在教學中,選用具有現實性和趣味性的素材,并注意學科間的聯系。忠實于教材,但不迷信教材,在研究的基礎上使用教材,對于課堂和課外練習一部分取材于課本,而概念的引入卻有別于教材。以激發學生的學習積極性和主動探究數學問題的熱情。

教學方法合理化,不拘泥于形式。在教學中,通過問題串與活動系列,實施開放式教學,隨處可見學生思維間碰撞的火花,發展了學生的思維能力,培養了學生思考的習慣,增強了學生運用數學知識解決實際問題的能力。

無論是教學環節設計,還是課外作業的安排上,我都重視知識的產生過程,關注人的發展,意到個體間的差異,注意分層教學,讓每一個學生在課堂上都有所感悟,都有著各自的數學體驗,不同的人在數學上都得到不同的發展。

以上是我對《代數式的值》一課的說課,不當之處請各位評委、老師批評指正,謝謝。

《初中數學教案》篇11

一、教學目標

1、了解推理、證明的格式,理解判定定理的證法、

2、掌握平行線的第二個判定定理,會用判定公理及定理進行簡單的推理論證、

3、通過第二個判定定理的推導,培養學生分析問題、進行推理的能力、

4、使學生了解知識來源于實踐,又服務于實踐,只有學好文化知識,才有解決實際問題的本領,從而對學生進行學習目的的&39;教育、

二、學法引導

1、教師教法:啟發式引導發現法、

2、學生學法:積極參與、主動發現、發展思維、

三、重點、難點及解決辦法

(一)重點

判定定理的推導和例題的解答、

(二)難點

使用符號語言進行推理、

(三)解決辦法

1、通過教師正確引導,學生積極思維,發現定理,解決重點、

2、通過教師指導,學生自行完成推理過程,解決難點及疑點、

四、課時安排

1課時

五、教具學具準備

三角板、投影儀、自制膠片、

六、師生互動活動設計

1、通過設計練習,復習基礎,創造情境,引入新課、

2、通過教師指導,學生探索新知,練習鞏固,完成新授、

3、通過學生自己總結完成小結、

七、教學步驟

(一)明確目標

掌握平行線的第二個定理的推理,并能運用其進行簡單的證明,培養學生的邏輯思維能力、

(二)整體感知

以情境創設,設計懸念,引出課題,以引導學生的思維,發現新知,以變式訓練鞏固新知、

(三)教學過程

創設情境,復習引入

師:上節課我們學習了平行線的判定公理和一種判定方法,根據所學看下面的問題(出示投影)、

學生活動:學生口答第1、2題、

師:你能說出有什么條件,就可以判定兩條直線平行呢?

學生活動:由第l、2題,學生思考分析,只要有同位角相等或內錯角相等,就可以判定兩條直線平行、

教師將第3題圖形畫在黑板上、

學生活動:學生口答理由,同角的補角相等、

師:要求學生寫出符號推理過程,并板書、

教法說明:本節課是前一節課的繼續,是在前一節課的基礎上進行學習的,所以通過第1、2兩題復習上節課所學平行線判定的兩個方法,使學生明確,只要有同位角相等或內錯角相等,就可以判定兩條直線平行、第3題是為推導本節到定定理做鋪墊,即如果同旁內角互補,則可以推出同位角相等,也可以推出內錯角相等,為定理的推理論證,分散了難點、

師:第4題是一個實際問題,題目中已知的兩個角是什么位置關系角?

學生活動:同分內角、

師:它們有什么關系、

學生活動:互補、

師:這個問題就是知道同分內角互補了,那么兩條直線是不是平行的呢?這就是這節課我們要研究的問題、

《初中數學教案》篇12

【學習目標】

1.借助數軸,初步理解絕對值和相反數的概念,能求一個數的絕對值和相反數,2.會利用絕對值比較兩負數的大小;學習數形結合的數學方法和分類討論的思想。

3.會與人合作,并能與他人交流思想的過程和結果;

【學習方法】

自主探究與合作交流相結合。

【學習重難點】

重點:會求一個數的絕對值和相反數,會利用絕對值比較兩負數的大小。

難點:對絕對值和相反數的代數意義、幾何意義的理解。

【學習過程】

模塊一預習反饋

一、學習準備

1.數軸:規定了__、__、__的一條直線叫做__.

2.數軸上兩個點表示的數,右邊的總比左邊的;正數大于,負數小于,正數大于一切。

3.請同學們閱讀教材p30—p32,預習過程中請注意:⑴不懂的地方要用紅筆標記符號;⑵完成你力所能及的習題和課后作業。

二、精讀教材

4.相反數的意義

+3與—3,—5與+5,—1.5與1.5這三對數有什么共同點?還能列舉出這樣的數嗎?

歸納:如果兩個數只有__不同,那么稱其中一個數為另一個數的__,也稱這兩個數__.特別地,0的相反數是__。如,+3的相反數是—3,也可以說+3與—3互為相反數。相反數是成對出現的,不能單獨存在。

《2.3絕對值》課時練習

一、選擇題(共10題)

1.有理數的絕對值一定是()

A.正數B.負數

C.零或正數D.零或負數

答案:C

解析:解答:根據絕對值的定義可知:正數的絕對值是它本身,負數的絕對值是正數,零的絕對值是零;所以答案選擇C選項

分析:考查有理數的絕對值,注意正數的絕對值是它本身,負數的絕對值是正數,零的絕對值是零

2.絕對值等于它本身的數有()

A.0個B.1個C.2個D.無數個

答案:D

解析:解答:根據絕對值得定義可知正數和零的絕對值是它本身,所以答案選擇D選項

分析:考查絕對值這一知識點.

3.相反數等于-5的數是()

A.5B.-5C.5或-5D.不能確定

答案:A

解析:解答:根據相反數的定義可知,互為相反數的兩個數只有符號不同,所以答案選擇A選項

分析:考查相反數的基本概念。

2.3絕對值》同步練習

10.如果a=-a,下列成立的是()

A.-a一定是非負數B.-a一定是負數

C.a一定是正數D.a不能是0

11.下列說法:①一個數的絕對值一定是正數;②-a一定是一個負數;③沒有絕對值為-3的數;④若a=a,則a是一個正數;⑤-20__的絕對值是20__.其中正確的有__.(填序號)

12.若絕對值相等的兩個數在數軸上的對應點的距離為6,則這兩個數為()

A.+6和-6B.-3和+3C.-3和+6D.-6和+3

《初中數學教案》篇13

學習目標

1、了解分式的概念,會判斷一個代數式是否是分式。

2、能用分式表示簡單問題中數量之間的關系,能解釋簡單分式的實際背景或幾何意義。

3、能分析出一個簡單分式有、無意義的條件。

4、會根據已知條件求分式的值。

學習重點

分式的概念,掌握分式有意義的條件

學習難點

分式有、無意義的條件

教學流程

預習導航

一、創設情境:

京滬鐵路是我國東部沿海地區縱貫南北的交通大動脈,全長1462km,是我國最繁忙的鐵路干線之一。如果貨運列車的速度為akm/h,快速列車的速度為貨運列車2倍,那么:

(1)貨運列車從北京到上海需要多長時間?

(2)快速列車從北京到上海需要多長時間?

(3)已知從北京到上海快速列車比貨運列車少用多少時間?

觀察剛才你們所列的式子,它們有什么特點?

這些式子與分數有什么相同和不同之處?

合作探究

一、概念探究:

1、列出下列式子:

(1)一塊長方形玻璃板的面積為2㎡,如果寬為am,那么長是

(2)小麗用n元人民幣買了m袋瓜子,那么每袋瓜子的價格是元。

(3)正n邊形的每個內角為度。

(4)兩塊面積分別為a公頃、b公頃的棉田,產棉花分別為m㎏、n㎏。這兩塊棉田平均每公頃產棉花______㎏。

2、兩個數相除可以把它們的商表示成分數的形式。如果用字母分別表示分數的分子和分母,那么可以表示成什么形式呢?

3、思考:

上面所列各式有什么共同特點?

(通過對以上幾個實際問題的研討,學會用的形式表示實際問題中數量之間的關系,感受把分數推廣到分式的優越性和必要性)

分式的概念:

4、小結分式的概念中應注意的問題.

①分式是兩個整式相除的商式,其中分子為被除式,分母為除式,分數線起除號的作用;

②分式的分母中必須含有字母,而分子中可以含有字母,也可以不含字母,這是區別整式的重要依據;

③如同分數一樣,在任何情況下,分式的分母的值都不可以為0,否則分式無意義。分式分母不為零是隱含在此分式中而無須注明的條件。

二、例題分析:

例1:試解釋分式所表示的實際意義

例2:求分式的值①a=3②a=—

例3:當取什么值時,分式(1)沒有意義?(2)有意義?(3)值為零。

三、展示交流:

1、在____________中,是整式的有_____________________,是分式的有________________;

2、寫成分式為____________,且當m≠_____時分式有意義;

3、當x_______時,分式無意義,當x______時,分式的值為1。

4、若分式的值為正數,則x的取值應是()

A.,B.C.D.為任意實數

四、提煉總結:

1、什么叫分式?

2、分式什么時候有意義?怎樣求分式的值

《初中數學教案》篇14

教學目標

1.了解代數和的概念,理解有理數加減法可以互相轉化,會進行加減混合運算;

2.通過學習一切加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想;

3.通過加法運算練習,培養學生的運算能力。

教學建議

(一)重點、難點分析

本節課的重點是依據運算法則和運算律準確迅速地進行有理數的加減混合運算,難點是省略加號與括號的代數和的計算.

由于減法運算可以轉化為加法運算,所以加減混合運算實際上就是有理數的加法運算。了解運算符號和性質符號之間的關系,把任何一個含有有理數加、減混合運算的算式都看成和式,這是因為有理數加、減混合算式都看成和式,就可靈活運用加法運算律,簡化計算.

(二)知識結構

(三)教法建議

1.通過習題,復習、鞏固有理數的加、減運算以及加減混合運算的法則與技能,講課前教師要認真總結、分析學生在進行有理數加、減混合運算時常犯的錯誤,以便在這節課分析習題時,有意識地幫助學生改正.

2.關于“去括號法則”,只要學生了解,并不要求追究所以然.

3.任意含加法、減法的算式,都可把運算符號理解為數的性質符號,看成省略加號的和式。這時,稱這個和式為代數和。再例如

-3-4表示-3、-4兩數的代數和,

-4+3表示-4、+3兩數的代數和,

3+4表示3和+4的代數和

等。代數和概念是掌握有理數運算的一個重要概念,請老師務必給予充分注意。

4.先把正數與負數分別相加,可以使運算簡便。

5.在交換加數的位置時,要連同前面的符號一起交換。如

12-5+7應變成12+7-5,而不能變成12-7+5。

教學設計示例一

有理數的加減混合運算(一)

一、素質教育目標

(一)知識教學點

1.了解:代數和的概念.

2.理解:有理數加減法可以互相轉化.

3.應用:會進行加減混合運算.

(二)能力訓練點

培養學生的口頭表達能力及計算的準確能力.

(三)德育滲透點

通過學習一切加減法運算,都可以統一成加法運算,繼續滲透數學的轉化思想.

(四)美育滲透點

學習了本節課就知道一切加減法運算都可以統一成加法運算.體現了數學的統一美.

二、學法引導

1.教學方法:采用嘗試指導法,體現學生主體地位,每一環節,設置一定題目進行鞏固練

習,步步為營,分散難點,解決關鍵問題.

2.學生寫法:練習→尋找簡單的一般性的方法→練習鞏固.

三、重點、難點、疑點及解決辦法

1.重點:把加減混合運算算式理解為加法算式.

2.難點:把省略括號和的形式直接按有理數加法進行計算.

四、課時安排

1課時

五、教具學具準備

投影儀或電腦、自制膠片.

六、師生互動活動設計

教師提出問題學生練習討論,總結歸納加減混合運算的一般步驟,教師出示練習題,學生練習反饋.

七、教學步驟

(一)創設情境,復習引入

師:前面我們學習了有理數的加法和減法,同學們學得都很好!請同學們看以下題目:-9+(+6);(-11)-7.

師:(1)讀出這兩個算式.

(2)“+、-”讀作什么?是哪種符號?

“+、-”又讀作什么?是什么符號?

學生活動:口答教師提出的問題.

師繼續提問:(1)這兩個題目運算結果是多少?

(2)(-11)-7這題你根據什么運算法則計算的?

學生活動:口答以上兩題(教師訂正).

師小結:減法往往通過轉化成加法后來運算.

【教法說明】為了進行有理數的`加減混合運算,必須先對有理數加法,特別是有理數減法的題目進行復習,為進一步學習加減混合運算奠定基礎.這里特別指出“+、-”有時表示性質符號,有時是運算符號,為在混合運算時省略加號、括號時做必要的準備工作.

師:把兩個算式-9+(+6)與(-11)-7之間加上減號就成了一個題目,這個題目中既有加法又有減法,就是我們今天學習的有理數的加減混合運算.(板書課題2.7有理數的加減混合運算(1))

教學說明:由復習的題目巧妙地填“-”號,就變成了今天將學的加減混合運算內容,使學生更形象、更深刻地明白了有理數加減混合運算題目組成.

(二)探索新知,講授新課

1.講評(-9)+(-6)-(-11)-7.

(1)省略括號和的形式

師:看到這個題你想怎樣做?

學生活動:自己在練習本上計算.

教師針對學生所做的方法區別優劣.

【教法說明】題目出示后,教師不急于自己講評,而是讓學生嘗試,給了學生一個展示自己的機會,這時,有的學生可能是按從左到右的順序運算,有的同學可能是先把減法都轉化成了加法,然后按加法的計算法則再計算??這樣在不同的方法中,學生自己就會尋找到簡單的、一般性的方法.

師:我們對此類題目經常采用先把減法轉化為加法,這時就成了-9,+6,+11,-7的和,加號通常可以省略,括號也可以省略,即:

原式=(-9)+(+6)+(+11)+(-7)

=-9+6+11-7.

提出問題:雖然加號、括號省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以這個算式可以讀成??

學生活動:先自己練習嘗試用兩種讀法讀,口答(教師糾正).

【教法說明】教師根據學生所做的方法,及時指出最具代表性的方法來給學生指明方向,在把算式寫成省略括號代數和的形式后,通過讓學生練習兩種讀法,可以加深對此算式的理解,以此來訓練學生的觀察能力及口頭表達能力.

鞏固練習:(出示投影1)

1.把下列算式寫成省略括號和的形式,并把結果用兩種讀法讀出來.

(1)(+9)-(+10)+(-2)-(-8)+3;

(2)+()-()-().

2.判斷

式子-7+1-5-9的正確讀法是().

A.負7、正1、負5、負9;

B.減7、加1、減5、減9;

C.負7、加1、負5、減9;

D.負7、加1、減5、減9;

學生活動:1題兩個學生板演,兩個學生用兩種讀法讀出結果,其他同學自行演練,然后同桌讀出互相糾正,2題搶答.

【教法說明】這兩題旨意在鞏固怎樣把加減混合運算題目都轉化成加法運算寫成代數和的形式,這里特別注意了代數和形式的兩種讀法.

2.用加法運算律計算出結果

師:既然算式能看成幾個數的和,我們可以運用加法的運算律進行計算,通常同號兩數放在一起分別相加.

-9+6+11-7

=-9-7+6+11.

學生活動:按教師要求口答并讀出結果.

鞏固練習:(出示投影2)

填空:

1.-4+7-4=-______________-_______________+_______________

2.+6+9-15+3=_____________+_____________+_____________-_____________

3.-9-3+2-4=____________9____________3____________4____________2

4.____________________________________

學生活動:討論后回答.

【教法說明】學生運用加法交換律時,很可能產生“-9+7+11-6”這樣的錯誤,教師先讓學生自己去做,然后糾正,又做一組鞏固練習,使學生牢固掌握運用加法運算律把同號數放在一起時,一定要連同前面的符號一起交換這一知識點.

師:-9-7+6+11怎樣計算?

學生活動:口答

[板書]

-9-7+6+11

=-16+17

=1

鞏固練習:(出示投影3)

1.計算(1)-1+2-3-4+5;

(2).

2.做完前面兩個題目計算:(1)(+9)-(+10)+(-2)-(-8)+3;

(2).

學生活動:四個同學板演,其他同學在練習本上做.

【教法說明】針對一道例題分成三部分,每一部分都有一組相應的鞏固練習,這樣每一步學生都掌握得較牢固,這時教師一定要總結有理數加減混合運算的方法,使分散的知識有相對的集中.

師小結:有理數加減法混合運算的題目的步驟為:

1.減法轉化成加法;

2.省略加號括號;

3.運用加法交換律使同號兩數分別相加;

4.按有理數加法法則計算.

(三)反饋練習

(出示投影4)

計算:(1)12-(-18)+(-7)-15;

(2).

學生活動:可采用同桌互相測驗的方法,以達到糾正錯誤的目的.

【教法說明】這兩個題目是本節課的重點.采用測驗的方式來達到及時反饋.

(四)歸納小結

師:1.怎樣做加減混合運算題目?

2.省略括號和的形式的兩種讀法?

學生活動:口答.

【教法說明】小結不是教師單純的總結,而是讓學生參與回答,在學生思考回答的過程中將本節的重點知識納入知識系統.

八、隨堂練習

1.把下列各式寫成省略括號的和的形式

(1)(-5)+(+7)-(-3)-(+1);

(2)10+(-8)-(+18)-(-5)+(+6).

2.說出式子-3+5-6+1的兩種讀法.

3.計算

(1)0-10-(-8)+(-2);

(2)-4.5+1.8-6.5+3-4;

(3).

九、布置作業

(一)必做題:1.計算:(1)-8+12-16-23;

(2);

(3)-40-28-(-19)+(-24)-(-32);

(4)-2.7+(-3.2)-(1.8)-2.2;

(二)選做題:(1)當時,,,哪個最大,哪個最小?

(2)當時,,,哪個最大,哪個最小?

十、板書設計

《初中數學教案》篇15

1.知識結構

2.重點和難點分析

重點:本節的重點是平行四邊形的概念和性質.雖然平行四邊形的概念在小學學過,但對于概念本質屬性的理解并不深刻,為了加深學生對概念的理解,為以后學習特殊的平行四邊形打下基礎,所以教師不要忽視平行四邊形的概念教學.平行四邊形的性質是以后證明四邊形問題的基礎,也是學好全章的關鍵.尤其是平行四邊形性質定理的推論,推論的應用有兩個條件:

一個是夾在兩條平行線間;

一個是平行線段,具備這兩個條件才能得出一個結論平行線段相等,缺少任何一個條件結論都不成立,這也是學生容易犯錯的地方,教師要反復強調.

難點:本節的難點是平行四邊形性質定理的靈活應用.為了能熟練的應用性質定理及其推論,要把性質定理和推論的條件和結論給學生講清楚,哪幾個條件,決定哪個結論,如何用數學符號表示即書寫格式,都要在講練中反復強化.

3.教法建議

(1)教科書一開始就給出了平行四邊形的定義,我感覺這樣引入新課,不利于調動學生的積極性.自己設計了一個動畫,建議老師們用它作為本節的引入,既可以激發學生的學習興趣,又可以激活學生的思維.

(2)在生產或生活中,平行四邊形是常見圖形之一,教師可以多給學生提供一些平行四邊形的圖片,增加學生的感性認識,然后,讓他們自己總結出平行四邊形的定義,教師最后做總結.平行四邊形是特殊的四邊形,要判定一個四邊形是不是平行四邊形,要判斷兩點:首先是四邊形,然后四邊形的兩組對邊分別平行.平行四邊形的定義既是平行四邊形的一個判定方法,又是平行四邊形的一個性質.

(3)對于教師來說講課固然重要,但講完課后有目的的強化訓練也是不可缺少的,通過做題,幫助學生更好的理解所講內容,也就是我們平時說的要反思回顧,總結深化.

平行四邊形及其性質第一課時

一、素質教育目標

(一)知識教學點

1.使學生掌握平行四邊形的概念,理解兩條平行線間的距離的概念.

2.掌握平行四邊形的性質定理1、2.

3.并能運用這些知識進行有關的證明或計算.

(二)能力訓練點

1.知道解決平行四邊形問題的基本思想是化為三角形問題來處理,滲透轉化思想.

2.通過推導平行四邊形的性質定理的過程,培養學生的推導、論證能力和邏輯思維能力.

(三)德育滲透點

通過要求學生書寫規范,培養學生科學嚴謹的學風.

(四)美育滲透點

通過學習,滲透幾何方法美和幾何語言美及圖形內在美和結構美

二、學法引導

閱讀、思考、講解、分析、轉化

三、重點·難點·疑點及解決辦法

1.教學重點:平行四邊形性質定理的應用

2.教學難點:正確理解兩條平行線間的距離的概念和運用性質定理2的推論;在計算或證明中綜合應用本節前一章的知識.

3.疑點及解決辦法:關于性質定理2的推論;兩點的距離,點到直線的距離,兩平行直線中間的距離的區別與聯系,注重對概念的教學,使學生深刻理解上述概念,搞清它們之間的關系;平行四邊形的高有關問題.

四、課時安排

2課時

五、教具學具準備

教具(做兩個全等的三角形),投影儀,投影膠片,小黑板,常用畫圖工具

六、師生互動活動設計

教師復習提問,學習思考口答;教師設疑引思,學生討論分析;師生共同總結結論,教師示范講解,學生達標練習

第一課時

七、教學步驟

【復習提問】

1.什么叫做四邊形?什么叫四邊形的一組對邊?

2.四邊形的兩組對邊在位置上有幾種可能?

(教師隨著學生回答畫出圖1)

圖1

【引入新課】

在四邊形中,我們常見的實用價值最大的就是平行四邊形,如汽車的防護鏈,無軌電車的擊電桿都是平行四邊形的形象,平行四邊形有什么性質呢?這是這節課研究的主要內容(寫出課題).

【講解新課】

1.平行四邊形的定義:兩組對邊分別平行的四邊形叫做平行四邊形.

注意:一個四邊形必須具備有兩組對邊分別平行才是平行四邊形,反過來,平行四邊形就一定是有“兩組對邊分別平行”的一個四邊形.因此定義既是平行四邊形的一個判定方法(定義判定法)又是平行四邊形的一個性質.

2.平行四邊形的表示:平行四邊形用符號“

”表示,如圖1就是平行四邊形

,記作“

”.

align=middle>

圖1

3.平行四邊形的性質

講解平行四邊形性質前必須使學生明確平行四邊形從屬于四邊形,因此它具有四邊形的一切性質(共性),同時它又是特殊的四邊形,當然還有其特性(個性),下面介紹的性質就是其特性,這是一般四邊形所不具有的.

平行四邊形性質定理1:平行四邊形的對角相等.

平行四邊形性質定理2:平行四邊形對邊相等.

(教具用兩個全等的三角形拼湊的平行四邊形演示,由此得到證明以上兩個定理的方法.如圖2)

圖2如圖3

所以四邊形是平行四邊形,所以.由此得到

推論:夾在兩條平行線間的平行線段相等.

圖3

要注意:必須有兩個平行,即夾兩條平行線段的兩條直線平行,被夾的兩條線段平行,缺一不可,如圖4中的幾種情況都不可以推出圖4

4.平行線間的距離

從推論可以知道,如果兩條直線平行,那么從一條直線上所有各點到另一條直線的距離相等,如圖5.

我們把兩條平行線中一條直線上任意一點到另一條直線的距離,叫做平行線的距離.

圖5

注意:(1)兩相交直線無距離可言.

(2)連結兩點間的線段的長度叫兩點間的距離,從直線外一點到一條直線的垂線段的長,叫點到直線的距離.兩條平行線中一條直線上任意一點到另一條直線的距離,叫做這兩條平行線的距離,一定要注意這些概念之間的區別與聯系.

例1已知:如圖1,

《初中數學教案》篇16

一、教學內容的分析

(一)地位與作用:

二次函數的應用本身是學習二次函數的圖象與性質后,檢驗學生應用所學知識解決實際問題能力的一個綜合考查。新課標中要求學生能通過對實際問題的情境的分析確定二次函數的表達式,體會其意義,能根據圖象的性質解決簡單的實際問題。而最值問題又是生活中利用二次函數知識解決最常見、最有實際應用價值的問題之一,它生活背景豐富,學生比較感興趣,面積問題與最大利潤學生易于理解和接受,故而在這兒作專題講座。目的在于讓學生通過掌握求面積、利潤最大這一類題,學會用建模的思想去解決其它和函數有關應用問題,此部分內容既是學習一次函數及其應用后的鞏固與延伸,又為高中乃至以后學習更多函數打下堅實的理論和思想方法基礎。例題和一部分習題,無論是例題還是習題都沒有歸類,不利于學生系統地掌握解決問題的方法,我設計時把它分為面積、利潤最大、運動中的二次函數、綜合應用三課時,本節是第一課時。

(二)學情及學法分析

對九年級學生來說,在學習了一次函數和二次函數圖象與性質以后,對函數的思想已有初步認識,對分析問題的方法已會初步模仿,能識別圖象的增減性和最值,但在變量超過兩個的實際問題中,還不能熟練地應用知識解決問題,本節課正是為了彌補這一不足而設計的,目的是進一步培養學生利用所學知識構建數學模型,解決實際問題的能力,這也符合新課標中知識與技能呈螺旋式上升的規律。

二、教學目標、重點、難點的確定

對于函數知識來說它是從生活中廣泛的實際問題中抽象出來的數學知識,所以它是解決實際問題中被廣泛應用的工具。這部分知識的學習無論對提高學生在生活中應用函數知識的意識,還是對掌握運用函數知識的方法,都具有重要意義。

而二次函數的知識是九年級數學學習的重要內容之一。同樣它也是從生活實際問題中抽象出的知識,又是在解決實際問題時廣泛應用的數學工具。課程標準強調學生的應用意識的培養,讓學生面對實際問題時,能嘗試著從數學的角度運用所學知識和方法尋求解決問題的策略。

本節課是學生在學習了二次函數的概念、圖像和性質后進一步學習二次函數的應用。學生有了一定的二次函數的知識,并且在前兩節課已經接觸到運用二次函數的知識解決函數的最值問題,而本節課需要利用建模的思想,將實際問題轉化為二次函數的問題,從而使問題得到解決。建立二次函數關系對學生而言比較困難,尤其是關注實際問題中自變量的取值范圍,需要學生經歷分析、討論、對比等過程,進而得出結論。本節課的問題均來自學生的日常生活,學生會感到很有興趣,愿意去探究。但學生基礎比較薄弱,對學習數學還是有一些畏難的情緒,因此需要教師進行適當引導、分散難點。

根據上述教學背景分析,特制訂如下教學目標:

1.知識與技能:學會將實際問轉化為數學問題;學會用二次函數的知識解決有關的實際問題.

2.過程與方法:經歷實際問題轉化成數學問題利用二次函數知識解決問題利用求解的結果解釋問題的過程體會數學建模的思想,體會到數學來源于生活,又服務于生活。

3.情感態度、價值觀:培養學生的獨立思考的能力和合作學習的精神,在動手、交流過程中培養學生的交際能力和語言表達能力,促進學生綜合素質的養成。

利用二次函數的知識對現實問題進行數學地分析,即用數學的方式表示問題以及用數學的方法解決問題,就是本節課的教學重點;由于學生理解問題的能力和知識儲備情況的不同,那么從現實問題中建立二次函數模型。就是本節課的一個難點。

新課程標準強調動手實踐、自主探索與合作交流應該是學生學習數學的重要方式。教師應該是學生數學學習的組織者、引導者、合作者。同時,我認為教學方法與學習方法應該是相輔相成的不應該是割裂開來的,而且在一節課中教學方法和學習方法不可能是單一的而是多種方式方法并存的,因此根據本節課的內容和學生的實際情況,同時也為了突出本節課的重點并突破學習難點我確定本節課的教法與學法有啟發法、探究法、試驗法、課堂討論法、練習法等。

三、教學方法與手段的選擇

本節課我采用的是導學案的教法,

創設情境、引入問題------二人小組、復習回顧------自主探究、小組合作-------板演展示、別組糾錯---------教師點評、總結歸納--------課堂測評

四、教學設計分析

首先創設問題情境,激發學生的學習興趣。數學課程的內容應當是現實的、有意義的、富有挑戰性的,這些內容要有利于學生主動地進行觀察、實驗、猜想、驗證、推理與交流。而20世紀下半葉數學的一個最大進展是它的廣泛應用,數學的價值觀因此發生了深刻的變化。最直接的一個結論就是數學教育要重視應用意識和應用能力的培養。數學應用意識的孕育數學建模能力的培養聯系學生的日常生活并解決相關的問題等方面的要求越來越處于突出的地位。所以我以養雞場問題、商品銷售利潤問題為例,提出問題,引起學生的興趣,同時也讓學生切實體會到數學來源于生活。針對學生基礎比較薄弱,解題能力較差的現狀,我緊接著先給出幾道關于二次函數的練習題,鞏固二次函數最值的求法,為后面解決實際問題掃清障礙。

接下來就是解決最開始提出的商品何時利潤最大問題,在解決商品利潤問題時我先讓學生做了幾道關于利潤的計算題,回憶一下有關利潤的公式。

由于有了前面例子的認知基礎,因此引導學生考慮能否利用二次函數的知識來解決,這時學生能想到要列出函數關系式。由于獲得最大利潤的方式有很兩種,因此采用小組合作探究的方式分組討論實施。這是為了給學生提供充分從事數學活動的機會,在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法。由于學生的基礎比較薄弱,因此教師作為引導者與合作者參與到學生的討論中。這里要給學生充分的時間進行探究。在各小組充分討論后進行全班交流,歸納出全班哪種辦法求解起來最簡便,作出優劣的判斷。接著由所得到的結論繼續提出新問題,再次體會數學來源于生活又服務于生活。

最后是歸納總結、加深印象環節。在小結中,引導學生總結出從數學的角度解決實際問題的過程:有實際問題抽象轉化成數學問題,然后運用所學的數學知識得到問題的解,再由結論反過來解釋或解決新的實際問題。

最后是課堂測評。

對于作業的處理,針對學生的實際情況,作業分為必做題與選做題。對于基礎比較薄弱的學生只需完成課堂中的鞏固練習即可;對于學有余力的學生補充兩道選做題。

以上就是我對本節課的設計。提出的問題都是學生親身的經歷的情境,學生能感受到數學來源于生活,又服務于生活。而且新課標也提出為學生提供的素材應該具有現實性和趣味性,要密切聯系生活實際,讓學生體會到數學在生活中的作用

《初中數學教案》篇17

一、說教材

本節內容是人民教育出版社的義務教育數學課程標準實驗教科書《數學》初二下冊第16章第二節第二課時《分式的加減法》,屬于數與代數領域的知識。它是代數運算的基礎,分兩課時完成,我所設計的是第一課時的教學,主要內容是同分母的分式相加減及簡單的異分母的分式相加減。

在此之前,學生已經學習了分數的加減法運算,同時也學習過分式的基本性質,這為本節課的學習打下了基礎。而掌握好本節課的知識,將為《分式的加減法》第二課時以及《分式方程》的學習做好必備的知識儲備。因此,在分式的學習中,占據重要的地位。本節課中掌握分式的加減運算法則是重點,運用法則計算分式的加減是難點,掌握計算的一般解題步驟是解決問題是關鍵。基于以上對教材的認識,考慮到學生已有的認識和結構與心理特征,我制定如下的教學目標。

二、說目標

根據學生已有的認識基礎及本課教材的.地位和作用,依據新課程標準制定如下:知識與技能:會進行簡單的分式加減運算,具有一定解決問題計算的能力;過程與方法:使學生經歷探索分式加減運算法則的過程,理解其算理;情感態度與價值觀:培養學生大膽猜想,積極探究的學習態度,發展學生有條理思考及代數表達能力,體會其價值。為突出重點,突破難點,抓住關鍵使學生能達到本節設定的教學目標,我載從教法和學法上談談設計思路。

三、說教學方法

教法選擇與手段:本課我主要以“復習舊知,導入新知,例題講解,拓展延伸”為主線,啟發和引導貫穿教學始終,通過師生共同研究探討,體現以教為主導、學為主體、練為主線的教學過程。學法指導:根據學生的認知水平,我設計了“觀察思考、猜想歸納、例題學習和鞏固提高”四個層次的學法。最后,我來具體談一談本節課的教學過程。

四、說教學過程

在分析教材、確定教學目標、合理選擇教法與學法的基礎上,我預設的教學過程是:觀察導入、例題示范、習題鞏固、歸納小結和作業布置。

五、分層作業

各位老師,以上所說只是我預設的一種方案,但課堂是千變萬化的,會隨著學生和教師的靈活發揮而隨機生成的,預設效果如何,最終還有待于課堂教學實踐的檢驗。

69964 主站蜘蛛池模板: wika威卡压力表-wika压力变送器-德国wika代理-威卡总代-北京博朗宁科技 | 世纪豪门官网 世纪豪门集成吊顶加盟电话 世纪豪门售后电话 | 悬浮拼装地板_篮球场木地板翻新_运动木地板价格-上海越禾运动地板厂家 | 防火窗_耐火窗_防火门厂家_防火卷帘门-重庆三乐门业有限公司 | 动环监控_机房环境监控_DCIM_机房漏水检测-斯特纽| 【365公司转让网】公司求购|转让|资质买卖_股权转让交易平台 | 小港信息港-鹤壁信息港 鹤壁老百姓便民生活信息网站 | 游泳池设计|设备|配件|药品|吸污机-东莞市太平洋康体设施有限公司 | 掺铥光纤放大器-C/L波段光纤放大器-小信号光纤放大器-合肥脉锐光电技术有限公司 | 带锯机|木工带锯机圆木推台锯|跑车带锯机|河北茂业机械制造有限公司| | 杭州营业执照代办-公司变更价格-许可证办理流程_杭州福道财务管理咨询有限公司 | 珠海网站建设_响应网站建设_珠海建站公司_珠海网站设计与制作_珠海网讯互联 | UV-1800紫外光度计-紫外可见光度计厂家-翱艺仪器(上海)有限公司 | 走心机厂家,数控走心机-台州博城智能科技有限公司 | 留学生辅导网-在线课程论文辅导-留学生挂科申诉机构 | YT保温材料_YT无机保温砂浆_外墙保温材料_南阳银通节能建材高新技术开发有限公司 | Trimos测长机_测高仪_TESA_mahr,WYLER水平仪,PWB对刀仪-德瑞华测量技术(苏州)有限公司 | 滚塑PE壳体-PE塑料浮球-警示PE浮筒-宁波君益塑业有限公司 | 衬塑设备,衬四氟设备,衬氟设备-淄博鲲鹏防腐设备有限公司 | 宁波普瑞思邻苯二甲酸盐检测仪,ROHS2.0检测设备,ROHS2.0测试仪厂家 | LINK FASHION 童装·青少年装展| 水上浮桥-游艇码头-浮动码头-游船码头-码瑞纳游艇码头工程 | 炒货机-炒菜机-炒酱机-炒米机@霍氏机械 | 科普仪器菏泽市教育教学仪器总厂| 经济师考试_2025中级经济师报名时间_报名入口_考试时间_华课网校经济师培训网站 | 紫外荧光硫分析仪-硫含量分析仪-红外光度测定仪-泰州美旭仪器 | 企业微信营销_企业微信服务商_私域流量运营_艾客SCRM官网 | 污水处理设备,一体化泵站,一体化净水设备-「梦之洁环保设备厂家」 | 环讯传媒,永康网络公司,永康网站建设,永康小程序开发制作,永康网站制作,武义网页设计,金华地区网站SEO优化推广 - 永康市环讯电子商务有限公司 | 天津云仓-天津仓储物流-天津云仓一件代发-顺东云仓 | 传动滚筒,改向滚筒-淄博建凯机械科技有限公司 | 一体化污水处理设备_生活污水处理设备_全自动加药装置厂家-明基环保 | 车间除尘设备,VOCs废气处理,工业涂装流水线,伸缩式喷漆房,自动喷砂房,沸石转轮浓缩吸附,机器人喷粉线-山东创杰智慧 | 同步带轮_同步带_同步轮_iHF合发齿轮厂家-深圳市合发齿轮机械有限公司 | 东莞注册公司-代办营业执照-东莞公司注册代理记账-极刻财税 | 铝箔袋,铝箔袋厂家,东莞铝箔袋,防静电铝箔袋,防静电屏蔽袋,防静电真空袋,真空袋-东莞铭晋让您的产品与众不同 | 东莞螺丝|东莞螺丝厂|东莞不锈钢螺丝|东莞组合螺丝|东莞精密螺丝厂家-东莞利浩五金专业紧固件厂家 | 武汉宣传片制作-视频拍摄-企业宣传片公司-武汉红年影视 | 环压强度试验机-拉链拉力试验机-上海倾技仪器仪表科技有限公司 | 密集架-密集柜厂家-智能档案密集架-自动选层柜订做-河北风顺金属制品有限公司 | 蒜肠网-动漫,二次元,COSPLAY,漫展以及收藏型模型,手办,玩具的新媒体.(原变形金刚变迷TF圈) |