小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教學(xué)設(shè)計 >

設(shè)計初中數(shù)學(xué)教案

時間: 新華 教學(xué)設(shè)計

教案可以幫助教師更好地了解學(xué)生,從而更好地滿足學(xué)生的學(xué)習(xí)需求。如何才能寫出優(yōu)秀的設(shè)計初中數(shù)學(xué)教案?這里給大家分享設(shè)計初中數(shù)學(xué)教案供大家參考。

設(shè)計初中數(shù)學(xué)教案篇1

教學(xué)目標(biāo)

通過十幾減9的練習(xí),進一步理解和掌握20以內(nèi)退位減9的口算方法,提高計算能力。

教學(xué)過程

一、復(fù)習(xí)

填數(shù)計算,并講一講上下兩行有什么聯(lián)系?

(1)9+()=15(2)9+()=18

15-9=()18-9=()

(3)9+()=14(4)9+()=17

14-9=()17-9=()

二、課堂練習(xí)

1.完成P11頁練習(xí)一的第4題。

出示畫面,讓學(xué)生理解題意。

(2)讓學(xué)生獨立口算出每一個算式的答案,并將他們對號入座。

(3)教師任意選擇一題讓學(xué)生說一說你是怎樣想的。

2.完成P11頁練習(xí)一的第3題。

教師將l0、14、13、17……寫在黑板上,然后教師一手拿著9的卡片在黑板上移動(不必按順序),卡片對著十幾就算十幾減9。

教師還可以隨意在黑板上指題,全班每一個學(xué)生舉數(shù)字卡片表示得數(shù),這樣能激發(fā)學(xué)生做題的興趣,有利于提高學(xué)習(xí)的效果。

3.完成P12頁練習(xí)一的第6題。

(1)出示題目讓學(xué)生理解題意,口頭敘述畫面內(nèi)容。

(2)提問:這道題告訴我們什么條件,要我們求什么?

(3)請學(xué)生列式,并復(fù)述口算過程。

4.完成P12頁練習(xí)一的第8題。

(1)讓學(xué)生獨立理解題意,敘述畫面內(nèi)容。

(2)讓學(xué)生通過畫面內(nèi)容想一想:這道題可以提什么問題?

(3)學(xué)生任意選擇獨立完成。

三、課堂練習(xí)

1.完成P11頁練習(xí)一的第5題。

2.完成P12頁練習(xí)一的第7題。

學(xué)生獨立完成,集體訂正。

3.布置作業(yè)。

設(shè)計初中數(shù)學(xué)教案篇2

教學(xué)目標(biāo)

1.使學(xué)生認(rèn)識字母表示數(shù)的意義,了解字母表示數(shù)是數(shù)學(xué)的一大進步;

2.了解代數(shù)式的概念,使學(xué)生能說出一個代數(shù)式所表示的數(shù)量關(guān)系;

3.通過對用字母表示數(shù)的講解,初步培養(yǎng)學(xué)生觀察和抽象思維的能力;

4.通過本節(jié)課的教學(xué),使學(xué)生深刻體會從特殊到一般的的數(shù)學(xué)思想方法。

教學(xué)建議

1.知識結(jié)構(gòu):本小節(jié)先回顧了小學(xué)學(xué)過的字母表示的兩種實例,一是運算律,二是公式,從中看出字母表示數(shù)的優(yōu)越性,進而引出代數(shù)式的概念。

2.教學(xué)重點分析:教科書,介紹了小學(xué)用字母表示數(shù)的實例,一個是運算律,一個是常用公式,上述兩種例子應(yīng)用廣泛,且能很好地體現(xiàn)用字母表示數(shù)所具有的簡明、普遍的優(yōu)越性,用字母表示是數(shù)學(xué)從算術(shù)到代數(shù)的一大進步,是代數(shù)的顯著特點。運用算術(shù)的方法解決問題,是小學(xué)學(xué)生的思維方法,現(xiàn)在,從具體的數(shù)過渡到用字母表示數(shù),滲透了抽象概括的思維方法,在認(rèn)識上是一個質(zhì)的飛躍。對代數(shù)式的概念課文沒有直接給出,而是用實例形象地說明了代數(shù)式的概念。對代數(shù)式的概念可以從三個方面去理解:

(1)從具體的數(shù)到用字母表示數(shù),是抽象思維的開始,體現(xiàn)了特殊與一般的辨證關(guān)系,用字母表示數(shù)具有簡明、普遍的優(yōu)越性.

(2)代數(shù)式中并不要求數(shù)和表示數(shù)的字母同時出現(xiàn),單獨的一個數(shù)和字母也是代數(shù)式.如:2,m都是代數(shù)式.

等都不是代數(shù)式.

3.教學(xué)難點分析:能正確說出一個代數(shù)式的數(shù)量關(guān)系,即用語言表達代數(shù)式的意義,一定要理清代數(shù)式中含有的各種運算及其順序。用語言表達代數(shù)式的意義,具體說法沒有統(tǒng)一規(guī)定,以簡明而不引起誤會為出發(fā)點。

如:說出代數(shù)式7(a-3)的意義。

分析7(a-3)讀成7乘a減3,這樣就產(chǎn)生歧義,究竟是7a-3呢?還是7(a-3)呢?有模棱兩可之感。代數(shù)式7(a-3)的最后運算是積,應(yīng)把a-3作為一個整體。所以,7(a-3)的意義是7與(a-3)的積。

4.書寫代數(shù)式的注意事項:

(1)代數(shù)式中數(shù)字與字母或者字母與字母相乘時,通常把乘號簡寫作“·”或省略不寫,同時要求數(shù)字應(yīng)寫在字母前面.

如3×a,應(yīng)寫作3.a或?qū)懽?a,a×b應(yīng)寫作3.a或?qū)懽鱝b.帶分?jǐn)?shù)與字母相乘,應(yīng)把帶分?jǐn)?shù)化成假分?jǐn)?shù),

FormatImgID_0

.數(shù)字與數(shù)字相乘一般仍用“×”號.

(2)代數(shù)式中有除法運算時,一般按照分?jǐn)?shù)的寫法來寫.

(3)含有加減運算的代數(shù)式需注明單位時,一定要把整個式子括起來.

5.對本節(jié)例題的分析:

例1是用代數(shù)式表示幾個比較簡單的數(shù)量關(guān)系,這些小學(xué)都學(xué)過.比較復(fù)雜一些的數(shù)量關(guān)系的代數(shù)式表示,課文安排在下一節(jié)中專門介紹.

例2是說出一些比較簡單的`代數(shù)式的意義.因為代數(shù)式中用字母表示數(shù),所以把字母也看成數(shù),一種特殊的數(shù),就可以像看待原來比較熟悉的數(shù)式一樣,說出一個代數(shù)式所表示的數(shù)量關(guān)系,只是另外還要考慮乘號可能省略等新規(guī)定而已.

6.教法建議

(1)因為這一章知識大部分在小學(xué)學(xué)習(xí)過,講授新課之前要先復(fù)習(xí)小學(xué)學(xué)過的運算律,在學(xué)生原有的認(rèn)知結(jié)構(gòu)上,提出新的問題。這樣即復(fù)習(xí)了舊知識,又引出了新知識,能激發(fā)學(xué)生的學(xué)習(xí)興趣。在教學(xué)中,一定要注意發(fā)揮本章承上啟下的作用,搞好小學(xué)數(shù)學(xué)與初中代數(shù)的銜接,使學(xué)生有一個良好的開端。

(2)在本節(jié)的學(xué)習(xí)過程中,要使學(xué)生理解代數(shù)式的概念,首先要給學(xué)生多舉例子(學(xué)生比較熟悉、貼近現(xiàn)實生活的例子),使學(xué)生從感性上認(rèn)識什么是代數(shù)式,理清代數(shù)式中的運算和運算順序,才能正確說出一個代數(shù)式所表示的數(shù)量關(guān)系,從而認(rèn)識字母表示數(shù)的意義——普遍性、簡明性,也為列代數(shù)式做準(zhǔn)備。

(3)條件比較好的學(xué)校,老師可選用一些多媒體課件,激發(fā)學(xué)生的學(xué)習(xí)興趣,增強學(xué)生自主學(xué)習(xí)的能力。

(4)老師在講解第一節(jié)之前,一定要對全章內(nèi)容和課時安排有一個了解,注意前后知識的銜接,只有這樣,我們老師才能教給學(xué)生系統(tǒng)的而不是一些零散的知識,久而久之,學(xué)生頭腦中自然會形成一個完整的知識體系。

(5)因為是新學(xué)期代數(shù)的第一節(jié)課,老師一定要給學(xué)生一個好印象,好的開端等于成功了一半。那么,怎么才能給學(xué)生留下好印象呢?首先,你要盡量在學(xué)生面前展示自己的才華。比,英語口語好的老師,可以用英語做一個自我介紹,然后為學(xué)生說一段祝福語。第二,上課時盡量使用多種語言與學(xué)生交流,其中包括情感語言(眉目語言、手勢語言等),讓學(xué)生感受到老師對他的關(guān)心。

7.教學(xué)重點、難點:

重點:用字母表示數(shù)的意義

難點:學(xué)會用字母表示數(shù)及正確說出一個代數(shù)式所表示的數(shù)量關(guān)系。

教學(xué)設(shè)計示例

課堂教學(xué)過程設(shè)計

一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

1在小學(xué)我們曾學(xué)過幾種運算律?都是什么?如可用字母表示它們?

(通過啟發(fā)、歸納最后師生共同得出用字母表示數(shù)的五種運算律)

(1)加法交換律a+b=b+a;

(2)乘法交換律a·b=b·a;

(3)加法結(jié)合律(a+b)+c=a+(b+c);

(4)乘法結(jié)合律(ab)c=a(bc);

(5)乘法分配律a(b+c)=ab+ac

指出:(1)“×”也可以寫成“·”號或者省略不寫,但數(shù)與數(shù)之間相乘,一般仍用“×”;

(2)上面各種運算律中,所用到的字母a,b,c都是表示數(shù)的字母,它代表我們過去學(xué)過的一切數(shù)

2(投影)從甲地到乙地的路程是15千米,步行要3小時,騎車要1小時,乘汽車要0.25小時,試問步行、騎車、乘汽車的速度分別是多少?

3若用s表示路程,t表示時間,ν表示速度,你能用s與t表示ν嗎?

4(投影)一個正方形的邊長是a厘米,則這個正方形的周長是多少?面積是多少?

(用I厘米表示周長,則I=4a厘米;用S平方厘米表示面積,則S=a2平方厘米)

此時,教師應(yīng)指出:(1)用字母表示數(shù)可以把數(shù)或數(shù)的關(guān)系,簡明的表示出來;(2)在公式與中,用字母表示數(shù)也會給運算帶來方便;(3)像上面出現(xiàn)的a,5,15÷3,4a,a+b,s/t以及a2等等都叫代數(shù)式.那么究竟什么叫代數(shù)式呢?代數(shù)式的意義又是什么呢?這正是本節(jié)課我們將要學(xué)習(xí)的內(nèi)容.

三、講授新課

1代數(shù)式

單獨的一個數(shù)字或單獨的一個字母以及用運算符號把數(shù)或表示數(shù)的字母連接而成的式子叫代數(shù)式.學(xué)習(xí)代數(shù),首先要學(xué)習(xí)用代數(shù)式表示數(shù)量關(guān)系,明確代數(shù)上的意義

2舉例說明

例1填空:

(1)每包書有12冊,n包書有__________冊;

(2)溫度由t℃下降到2℃后是_________℃;

(3)棱長是a厘米的正方體的體積是_____立方厘米;

(4)產(chǎn)量由m千克增長10%,就達到_______千克

(此例題用投影給出,學(xué)生口答完成)

解:(1)12n;(2)(t-2);(3)a3;(4)(1+10%)m

例2說出下列代數(shù)式的意義:

解:(1)2a+3的意義是2a與3的和;(2)2(a+3)的意義是2與(a+3)的積;

(5)a2+b2的意義是a,b的平方的和;(6)(a+b)2的意義是a與b的和的平方

說明:(1)本題應(yīng)由教師示范來完成;

(2)對于代數(shù)式的意義,具體說法沒有統(tǒng)一規(guī)定,以簡明而不致引起誤會為出發(fā)點如第(1)小題也可以說成“a的2倍加上3”或“a的2倍與3的和”等等

例3用代數(shù)式表示:

(1)m與n的和除以10的商;

(2)m與5n的差的平方;

(3)x的2倍與y的和;

(4)ν的立方與t的3倍的積

分析:用代數(shù)式表示用語言敘述的數(shù)量關(guān)系要注意:①弄清代數(shù)式中括號的使用;②字母與數(shù)字做乘積時,習(xí)慣上數(shù)字要寫在字母的前面

四、課堂練習(xí)

1填空:(投影)

(1)n箱蘋果重p千克,每箱重_____千克;

(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高為_____厘米;

(3)底為a,高為h的三角形面積是______;

(4)全校學(xué)生人數(shù)是x,其中女生占48%?則女生人數(shù)是____,男生人數(shù)是____

2說出下列代數(shù)式的意義:(投影)

3用代數(shù)式表示:(投影)

(1)x與y的和;(2)x的平方與y的立方的差;

(3)a的60%與b的2倍的和;(4)a除以2的商與b除3的商的和

五、師生共同小結(jié)

首先,提出如下問題:

1本節(jié)課學(xué)習(xí)了哪些內(nèi)容?2用字母表示數(shù)的意義是什么?

3什么叫代數(shù)式?

教師在學(xué)生回答上述問題的基礎(chǔ)上,指出:①代數(shù)式實際上就是算式,字母像數(shù)字一樣也可以進行運算;②在代數(shù)式和運算結(jié)果中,如有單位時,要正確地使用括號

六、作業(yè)

1一個三角形的三條邊的長分別的a,b,c,求這個三角形的周長

2張強比王華大3歲,當(dāng)張強a歲時,王華的年齡是多少?

3飛機的速度是汽車的40倍,自行車的速度是汽車的1/3,若汽車的速度是ν千米/時,那么,飛機與自行車的速度各是多少?

4a千克大米的售價是6元,1千克大米售多少元?

5圓的半徑是R厘米,它的面積是多少?

6用代數(shù)式表示:

(1)長為a,寬為b米的長方形的周長;

(2)寬為b米,長是寬的2倍的長方形的周長;

(3)長是a米,寬是長的1/3的長方形的周長;

(4)寬為b米,長比寬多2米的長方形的周長

設(shè)計初中數(shù)學(xué)教案篇3

整式的加減——初中數(shù)學(xué)第一冊教案(通用2篇)

整式的加減——初中數(shù)學(xué)第一冊篇1

第9課3.4整式的加減(1)

教學(xué)目的

1、使學(xué)生在掌握合并同類項、去括號法則基礎(chǔ)上進行整式的加減運算。

2、使學(xué)生掌握整式加減的一般步驟,熟練進行整式的加減運算。

教學(xué)分析

重點:整式的加減運算。

難點:括號前是-號,去括號時,括號內(nèi)的各項都要改變符號。

突破:正確理解去括號法則,并會把括號與括號前的符號理解成整體。

教學(xué)過程 

一、復(fù)習(xí)

1、 敘述合并同類項法則。

2、 練習(xí)題:(用投影儀顯示、學(xué)生完成)

3、 敘述去括號與添括號法則。

4、 練習(xí)題:(用投影儀顯示、學(xué)生完成)

5、化簡:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化簡,如果有括號,首先要去括號,然后合并同類項,所以去括號和合并同類項是整式加減的基礎(chǔ)。

2、例題

例1(P166例1)(學(xué)生自學(xué)后,教師按以下提示點拔即可)

求單項式5x2y,-2x2y,2xy2,-4xy2的和。

提示:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是這四個單項式的和。幾個整式相加減,通常用括號把每一個整式括號起來,再用加減號連接。

解:(略,見教材P166)

練習(xí):P167 1、2

例2(P166例2)

求3x2-6x+5與4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每個多項式要加括號)(口述:文字?jǐn)⑹龅恼郊訙p,對每個整式要添上括號)

=3x2-6x+5+4x2-7x-6       (去括號)

=7x2+x-1                (合并同類項)

練習(xí):P167 3

例3。(P166例3)(學(xué)生自學(xué)后,完成練習(xí),教師矯正練習(xí)錯誤)

求2x2+xy+3y2與x2-xy+2y2的差。

解:(2x2+xy+3y2)-(x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、歸納整式加減的一般步驟。(最好由學(xué)生歸納)

整式加減實際上就是合并同類項。在運算中,如果遇到括號,按去括號法則,先去括號,再合并同類項。

三、練習(xí)

補:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B(視時間是否足夠而定)

四、小結(jié)(用投影儀板演)

1、文字?jǐn)⑹龅恼郊訙p,對每一個整式要添上括號。

2、有括號的要先去括號,如果雙有中括號或大括號,要先去小括號,后去中括號,再去大括號。

五、作業(yè) 

1、             P169:A:1(3、4),3,5,6,7,8。B:1,2。 (可適當(dāng)減少些)

整式的加減——初中數(shù)學(xué)第一冊教案篇2

整式的加減(1)

教學(xué)目的

1、使學(xué)生在掌握合并同類項、去括號法則基礎(chǔ)上進行整式的加減運算。

2、使學(xué)生掌握整式加減的一般步驟,熟練進行整式的加減運算。

教學(xué)分析

重點:整式的加減運算。

難點:括號前是-號,去括號時,括號內(nèi)的各項都要改變符號。

突破:正確理解去括號法則,并會把括號與括號前的符號理解成整體。

教學(xué)過程 

一、復(fù)習(xí)

1、敘述合并同類項法則。

2、敘述去括號與添括號法則。

3、化簡:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化簡,如果有括號,首先要去括號,然后合并同類項,所以去括號和合并同類項是整式加減的基礎(chǔ)。

2、例題

例1(P166例1)

求單項式5x2y,-2x2y,2xy2,-4xy2的和。

分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是這四個單項式的和。幾個整式相加減,通常用括號把每一個整式括號起來,再用加減號連接。

解:(略,見教材P166)

例2(P166例2)

求3x2-6x+5與4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每個多項式要加括號)

=3x2-6x+5+4x2-7x-6       (去括號)

=7x2+x-1                (合并同類項)

例3。(P166例3)

求2x2+xy+3y2與x2-xy+2y2的差。

解:(2x2+xy+3y2)-(x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、歸納整式加減的一般步驟。

整式加減實際上就是合并同類項。在運算中,如果遇到括號,按去括號法則,先去括號,再合并同類項。

三、練習(xí)

P167:1,2,3,4。

補:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B

四、小結(jié)

1、文字?jǐn)⑹龅恼郊訙p,對每一個整式要添上括號。

2、有括號的要先去括號,如果雙有中括號或大括號,要先去小括號,后去中括號,再去大括號。

五、作業(yè) 

1、             P169:A:1(3、4),3,5,6,7,8。B:1,2。 

基礎(chǔ)訓(xùn)練同步練習(xí)1。

整式的加減(1)

教學(xué)目的

1、使學(xué)生在掌握合并同類項、去括號法則基礎(chǔ)上進行整式的加減運算。

2、使學(xué)生掌握整式加減的一般步驟,熟練進行整式的加減運算。

教學(xué)分析

重點:整式的加減運算。

難點:括號前是-號,去括號時,括號內(nèi)的各項都要改變符號。

突破:正確理解去括號法則,并會把括號與括號前的符號理解成整體。

教學(xué)過程 

一、復(fù)習(xí)

1、敘述合并同類項法則。

2、敘述去括號與添括號法則。

3、化簡:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化簡,如果有括號,首先要去括號,然后合并同類項,所以去括號和合并同類項是整式加減的基礎(chǔ)。

2、例題

例1(P166例1)

求單項式5x2y,-2x2y,2xy2,-4xy2的和。

分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是這四個單項式的和。幾個整式相加減,通常用括號把每一個整式括號起來,再用加減號連接。

解:(略,見教材P166)

例2(P166例2)

求3x2-6x+5與4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每個多項式要加括號)

=3x2-6x+5+4x2-7x-6       (去括號)

=7x2+x-1                (合并同類項)

例3。(P166例3)

求2x2+xy+3y2與x2-xy+2y2的差。

解:(2x2+xy+3y2)-(x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、歸納整式加減的一般步驟。

整式加減實際上就是合并同類項。在運算中,如果遇到括號,按去括號法則,先去括號,再合并同類項。

三、練習(xí)

P167:1,2,3,4。

補:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B

四、小結(jié)

1、文字?jǐn)⑹龅恼郊訙p,對每一個整式要添上括號。

2、有括號的要先去括號,如果雙有中括號或大括號,要先去小括號,后去中括號,再去大括號。

五、作業(yè) 

1、             P169:A:1(3、4),3,5,6,7,8。B:1,2。 

基礎(chǔ)訓(xùn)練同步練習(xí)1。

整式的加減(1)

教學(xué)目的

1、使學(xué)生在掌握合并同類項、去括號法則基礎(chǔ)上進行整式的加減運算。

2、使學(xué)生掌握整式加減的一般步驟,熟練進行整式的加減運算。

教學(xué)分析

重點:整式的加減運算。

難點:括號前是-號,去括號時,括號內(nèi)的各項都要改變符號。

突破:正確理解去括號法則,并會把括號與括號前的符號理解成整體。

教學(xué)過程 

一、復(fù)習(xí)

1、敘述合并同類項法則。

2、敘述去括號與添括號法則。

3、化簡:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化簡,如果有括號,首先要去括號,然后合并同類項,所以去括號和合并同類項是整式加減的基礎(chǔ)。

2、例題

例1(P166例1)

求單項式5x2y,-2x2y,2xy2,-4xy2的和。

分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是這四個單項式的和。幾個整式相加減,通常用括號把每一個整式括號起來,再用加減號連接。

解:(略,見教材P166)

例2(P166例2)

求3x2-6x+5與4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每個多項式要加括號)

=3x2-6x+5+4x2-7x-6       (去括號)

=7x2+x-1                (合并同類項)

例3。(P166例3)

求2x2+xy+3y2與x2-xy+2y2的差。

解:(2x2+xy+3y2)-(x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、歸納整式加減的一般步驟。

整式加減實際上就是合并同類項。在運算中,如果遇到括號,按去括號法則,先去括號,再合并同類項。

三、練習(xí)

P167:1,2,3,4。

補:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B

四、小結(jié)

1、文字?jǐn)⑹龅恼郊訙p,對每一個整式要添上括號。

2、有括號的要先去括號,如果雙有中括號或大括號,要先去小括號,后去中括號,再去大括號。

五、作業(yè) 

1、             P169:A:1(3、4),3,5,6,7,8。B:1,2。 

基礎(chǔ)訓(xùn)練同步練習(xí)1。

整式的加減(1)

教學(xué)目的

1、使學(xué)生在掌握合并同類項、去括號法則基礎(chǔ)上進行整式的加減運算。

2、使學(xué)生掌握整式加減的一般步驟,熟練進行整式的加減運算。

教學(xué)分析

重點:整式的加減運算。

難點:括號前是-號,去括號時,括號內(nèi)的各項都要改變符號。

突破:正確理解去括號法則,并會把括號與括號前的符號理解成整體。

教學(xué)過程 

一、復(fù)習(xí)

1、敘述合并同類項法則。

2、敘述去括號與添括號法則。

3、化簡:

y2+(x2+2xy-3y2)-(2x2-xy-2y2)

二、新授

1、引入

整式的化簡,如果有括號,首先要去括號,然后合并同類項,所以去括號和合并同類項是整式加減的基礎(chǔ)。

2、例題

例1(P166例1)

求單項式5x2y,-2x2y,2xy2,-4xy2的和。

分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是這四個單項式的和。幾個整式相加減,通常用括號把每一個整式括號起來,再用加減號連接。

解:(略,見教材P166)

例2(P166例2)

求3x2-6x+5與4x2-7x-6的和。

解:(3x2-6x+5)+(4x2-7x-6) (每個多項式要加括號)

=3x2-6x+5+4x2-7x-6       (去括號)

=7x2+x-1                (合并同類項)

例3。(P166例3)

求2x2+xy+3y2與x2-xy+2y2的差。

解:(2x2+xy+3y2)-(x2-xy+2y2)

=2x2+xy+3y2-x2+xy-2y2

=x2+2xy+y2

3、歸納整式加減的一般步驟。

整式加減實際上就是合并同類項。在運算中,如果遇到括號,按去括號法則,先去括號,再合并同類項。

三、練習(xí)

P167:1,2,3,4。

補:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B

四、小結(jié)

1、文字?jǐn)⑹龅恼郊訙p,對每一個整式要添上括號。

2、有括號的要先去括號,如果雙有中括號或大括號,要先去小括號,后去中括號,再去大括號。

五、作業(yè) 

1、             P169:A:1(3、4),3,5,6,7,8。B:1,2。 

基礎(chǔ)訓(xùn)練同步練習(xí)1。

設(shè)計初中數(shù)學(xué)教案篇4

學(xué)習(xí)目標(biāo):

1、能借助數(shù)軸初步理解絕對值的概念,會求一個數(shù)的絕對值。

2、正確理解絕對值的代數(shù)意義和幾何意義,滲透數(shù)形結(jié)合與分類討論思想。重點和難點:理解絕對值的概念,能求一個數(shù)的絕對值。

學(xué)習(xí)過程:

任務(wù)一、復(fù)習(xí)舊知:

1、什么叫互為相反數(shù)?在數(shù)軸上表示互為相反數(shù)的兩點和原點的位置關(guān)系怎樣?

2、數(shù)軸上與原點的距離是2的點表示的數(shù)有_____個,他們表示的數(shù)是_____;與原點的距離是5的點有____個、任務(wù)二、新知理解:

1、自讀課本p11-p12,體會絕對值的意義。

絕對值的幾何意義:____________________________________、

a的絕對值記作_______,如5的絕對值記作______,結(jié)果是_____、

試一試:(1)+6=______,0、2=________,+8、2=_______

(2)0=_______;

(3)-3=_____,-0、2=_____,-8、2=________、

絕對值的代數(shù)意義:(1)一個正數(shù)的絕對值是__________;

(2)一個負(fù)數(shù)的絕對值是___________(3)0的絕對值是___________。

上述可以用式子表示為:(1)當(dāng)a是正數(shù)時,a=_______,

(2)當(dāng)a是負(fù)數(shù)時,a=_______,(2)當(dāng)a=0時,a=________,

任務(wù)三:鞏固練習(xí)

1、求下列各數(shù)的絕對值:?7

12,?

110

,?4、75,10、5

2.計算-2++834??815

-20??45

3、絕對值是3的數(shù)是_______,有____個絕對值是1、5的數(shù)?4、判斷:(1)有理數(shù)的絕對值一定是正數(shù);

(2)如果一個數(shù)是正數(shù),那么這個數(shù)的絕對值是它本身;(3)如果一個數(shù)的絕對值是它本身,那么這個數(shù)是正數(shù)(4)一個數(shù)的絕對值越大,表示它的點在數(shù)軸上越靠右。歸納:(1)不論有理數(shù)a取何值,它的絕對值總是______。

(2)兩個互為相反數(shù)的絕對值____。能力提升:

(1)-35、6=________;a=_____(a<0);若x=5,則x=______(2)絕對值小于4的整數(shù)有________;絕對值大于2小于5的整數(shù)有________;

(3)絕對值等于本身的數(shù)是_______,絕對值等于它的相反數(shù)的數(shù)是_________,絕對值最小的有理數(shù)是_______、(

4)若a-2=3,則a=______

歸納總結(jié):

設(shè)計初中數(shù)學(xué)教案篇5

【地位作用】

《有理數(shù)的加法運算律》是人教版七年級數(shù)學(xué)上冊第一章《有理數(shù)》第三節(jié)的內(nèi)容。本節(jié)共計兩課時,加法運算律是第二課時的內(nèi)容,依據(jù)教材的安排本節(jié)課應(yīng)是讓學(xué)生在理解有理數(shù)的加法法則的基礎(chǔ)上來運用加法運算律,最終能熟練地進行有理數(shù)的加法運算,并能用運算律簡化運算。加、減法可以統(tǒng)一成為加法,因此加法的運算是本小節(jié)的關(guān)鍵,而加法又是學(xué)生初中階段接觸的第一種有理數(shù)運算,學(xué)生能否接受和形成在有理數(shù)范圍內(nèi)進行的各種運算的思考方式(確定結(jié)果的符合和絕對值),關(guān)鍵在于本一節(jié)的學(xué)習(xí)。

【教學(xué)目標(biāo)】

知識與技能

通過有理數(shù)加法運算法則,使學(xué)生掌握有理數(shù)加法的運算律,并能用有理數(shù)加法進行簡化運算。

過程與方法

培養(yǎng)學(xué)生觀察能力、歸納能力,通過分類結(jié)合思想滲透,提高學(xué)生運算能力,尤其是簡便計算能力的提高。

情感態(tài)度與價值觀

培養(yǎng)學(xué)生把實際問題抽象成數(shù)學(xué)問題的能力

【教學(xué)重點、難點】

重點:有理數(shù)加法運算律

難點:靈活運用有理數(shù)運算律簡便運算

重難點的突破:

1、處理好知識之間的聯(lián)系。適時復(fù)習(xí),以舊帶新,相互對比。

2、給出大量具體的例子。讓學(xué)生親身經(jīng)歷觀察思考、抽象概括、補充完善的過程,從不同的問題情境中抽象出相同的數(shù)學(xué)模型。

【學(xué)情分析】

認(rèn)知:七年級的學(xué)生年齡和認(rèn)知水平還較低,學(xué)生愛表現(xiàn)、有較強的好勝心理等特征,因此,在教學(xué)過程中善于結(jié)合學(xué)生的這些特征是上好這節(jié)課的關(guān)鍵所在。

能力:1.學(xué)生對正數(shù)加正數(shù),正數(shù)加零的情況較為熟練,但計算準(zhǔn)確率不高。

2.對異號兩數(shù)相加確定符號,絕對值大減小掌握不好。

3.學(xué)生善于形象思維,思維活躍,能積極參與討論。

【教法與學(xué)法】

教法:以引導(dǎo)法為主,輔之以直觀演示法、小組討論法,向?qū)W生提供充分從事數(shù)學(xué)活動的機會,激發(fā)學(xué)生的學(xué)習(xí)主動性,使學(xué)生主動參與課堂活動的全過程。

學(xué)法:在學(xué)生的學(xué)習(xí)方式上,采用動手實踐,自主探究與合作交流相結(jié)合的方式使學(xué)習(xí)過程直觀化、形象化。通過PK賽的形式調(diào)動學(xué)生的學(xué)習(xí)熱情,從而掌握簡便運算的技巧

【教學(xué)過程分析】

回顧復(fù)習(xí),承前啟后

例題講解,合作學(xué)習(xí)

應(yīng)用練習(xí),鞏固新知

歸納總結(jié),反思提高

作業(yè)布置

設(shè)計初中數(shù)學(xué)教案篇6

一、一次函數(shù)

1、問題導(dǎo)入:

問題1:小明暑假第一次去北京、汽車駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車的平均速度是95千米/時、己知A地直達北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時間有什么關(guān)系,以便根據(jù)時間估計自己和北京的距離、

問題2:小張準(zhǔn)備將平時的零用錢節(jié)約一些儲存起來、他己存有50元,從現(xiàn)在起每個月節(jié)存12元、試寫出小張的存款與從現(xiàn)在開始的月份數(shù)之間的函數(shù)關(guān)系式、

請同學(xué)們思考后回答:

(1)找出問題中的變量并用字母表示,列出函數(shù)關(guān)系式、

(2)這兩個函數(shù)關(guān)系式有什么共同點?自變量的取值范圍各有什么限制?

以上這些問題,請各小組討論一下,派代表回答、引出課題(板書課題)教師最后總結(jié)一次函數(shù)的概念、(板書)

2、引導(dǎo)學(xué)生觀察這兩個函數(shù)關(guān)系式的結(jié)構(gòu)特征,引出一次函數(shù)的一般形式(學(xué)生回答,且互相補充)老師最后歸納:一次函數(shù)通常可以表示為的形式,其中為常數(shù),特別地,當(dāng)時,一次函數(shù)(常數(shù))也叫做正比例函數(shù)、

二、一次函數(shù)的圖象是什么形狀呢?

1、做一做:

我們已經(jīng)學(xué)習(xí)了用描點法畫函數(shù)的圖象,請同學(xué)運用描點法畫出下列函數(shù)的圖象(老師用多媒體打出題目)。根據(jù)學(xué)生的動手實踐、觀察與討論,得出結(jié)論:一次函數(shù)的圖象是一條直線、特別地,正比例函數(shù)的圖象是經(jīng)過原點的一條直線。

2、接下來教師提問:

(1)觀察所畫出的四個一次函數(shù)的圖象,比較各對一次函數(shù)的圖象有什么共同點,有什么不同點。

(2)能否從中了現(xiàn)一些規(guī)律?對于直線(是常數(shù)),常數(shù)的取值對于直線的位置各有什么影響?

3、組織學(xué)生分小組討論,相互交流、相互補充,最后總結(jié)出規(guī)律:當(dāng)一樣,不一樣時,直線方向相同(平行),但沒有相同點;當(dāng)不一樣,一樣時,都經(jīng)過(0,)點(相交),但直線方向不同、

4、鞏固訓(xùn)練:

(1)在同一平面直角坐標(biāo)系中畫出下列函數(shù)的圖象

教師提出問題:①畫出圖象,看看是否與上面的討論結(jié)果一樣;②你取的是哪幾個點?和同學(xué)比較一下,怎樣取比較簡便?

(2)將直線向下平移2個單位,得到直線_______________________、

將直線向上平移5個單位,得到直線_______________________、

(由學(xué)生到前板演)、

5、對于教材中第42頁例2處理,教師先用多媒體打出,并提出問題:平面直角坐標(biāo)系中坐標(biāo)軸上點的坐標(biāo)有什么特征?在坐標(biāo)軸上取點有什么好處?組織學(xué)生結(jié)合問題去分析,動手嘗試,小組討論交流,最后達成共識、對于教材第43頁例3處理,教師可以提出以下幾個問題討論同學(xué)們討論:①這里取的數(shù)懸殊較大怎么辦?②這個函數(shù)是不是一次函數(shù)?③這個函數(shù)中自變量的取值范圍是什么?函數(shù)的圖象是什么?④在實際問題中,一次函數(shù)的圖象除了直線和本題的圖形外,還有沒有其他情形?你能不能找出幾個例子加以說明?

三、一次函數(shù)的性質(zhì)

函數(shù)反映了客觀世界中量的變化規(guī)律,那么一次函數(shù)又有什么性質(zhì)呢?

1、請同學(xué)們來一起觀察大屏幕上函數(shù)圖象(教師用多媒體演示函數(shù)的圖象),并回答:當(dāng)一個點在直線上從左右移動時,它的位置如何變化?你能從中得到函數(shù)值的變化與自變量的變化規(guī)律嗎?(教師運用現(xiàn)代化的教學(xué)手段來演示點的移動情況,進一步促進了學(xué)生對一次函數(shù)的變化規(guī)律理解)由學(xué)生討論出結(jié)果:也就是說,函數(shù)值隨自變量的增大而增大、(教師板書)

2、請同學(xué)們畫出函數(shù)的圖象,然后教師可以提出問題:觀察它們是否也有相應(yīng)的性質(zhì),有什么不同你能否發(fā)現(xiàn)什么規(guī)律?讓學(xué)生帶著老師提出的問題進行分組討論,相互交流,最后歸納出一次函數(shù)如下性質(zhì):(1)當(dāng)時,隨的增大而增大,這時函數(shù)的圖象從左到右上升;(2)當(dāng)時,隨的增大而減小,這時函數(shù)的圖象從左到右下降;

3、補充性質(zhì):(3)時,一次函數(shù)的圖象經(jīng)過一、二、三象限;(4)時,一次函數(shù)的圖象經(jīng)過一、三、四象限;(5)時,一次函數(shù)的圖象經(jīng)過一、二、四象限;(6)時,一次函數(shù)的圖象經(jīng)過二、三、四象限、

4、對于教材中第45頁做一做處理,可以作為例題,引導(dǎo)學(xué)生動手操作,分組討論,由學(xué)生自己得出結(jié)論,教師起著指導(dǎo)作用;對于教材中第45頁例4的處理,教師可以先組織學(xué)生審題分析找出題中的己知量,并提示學(xué)生:要想求一次函數(shù)的關(guān)系式,關(guān)鍵是要確定和的值,那么,結(jié)合題中所給的己知條件,又怎樣來確定和的值呢?組織學(xué)生討論,結(jié)合學(xué)生得出的結(jié)論,教師再給出待定系數(shù)法的概念,這樣學(xué)生馬上就會理解,從而難點得以突破、在這里教師要提醒學(xué)生,注意實際問題有關(guān)函數(shù)的自變量的范圍限制、

設(shè)計初中數(shù)學(xué)教案篇7

一、教案背景概述:

教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個直角的"形"的特點,轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。

學(xué)生分析:

1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過三角尺的同學(xué)并不多,通過這樣的情景設(shè)計,能非常簡單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。

2、以與勾股定理有關(guān)的人文歷史知識為背景展開對直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。

設(shè)計理念:本教案以學(xué)生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗勾股定理的探索和運用過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。

教學(xué)目標(biāo):

1、經(jīng)歷用面積割、補法探索勾股定理的過程,培養(yǎng)學(xué)生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。

2、經(jīng)歷用多種割、補圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的文化價值。

3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛國熱情。

4、欣賞設(shè)計圖形美。

二、教案運行描述:

教學(xué)準(zhǔn)備階段:

學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。

老師準(zhǔn)備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。

三、教學(xué)流程:

(一)引入

同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)

(二)實驗探究

1、取方格紙片,在上面先設(shè)計任意格點直角三角形,再以它們的每一邊分別向三角形外作正方形,如圖1

設(shè)網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:

(討論難點:以斜邊為邊的正方形的面積找法)

交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)

(三)探索所得結(jié)論的正確性

當(dāng)直角三角形的直角邊分別為a、b,斜邊為c時,是否一定成立?

1、指導(dǎo)學(xué)生運用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計合理分割(或補全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進行)

在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導(dǎo)學(xué)生進行說理:

如圖2(用補的方法說明)

師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為"畢達哥拉斯定理"。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見課本52頁彩圖2—1,欣賞圖片)

如圖3(用割的方法去探索)

師介紹:(出示圖片)中國古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運用這個結(jié)論。早在公元前2000年左右,大禹治水時期,就曾經(jīng)用過此方法測量土地的`等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結(jié)論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學(xué)家趙爽曾構(gòu)造此圖驗證了這一結(jié)論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨特風(fēng)格樹立了一個典范。他是我國有記載以來第一個證明這一結(jié)論的數(shù)學(xué)家。我國數(shù)學(xué)家們?yōu)榱思o(jì)念我國在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為"勾股定理"。(點題)

20__年,世界數(shù)學(xué)家大會在中國北京召開,當(dāng)時選用這個圖案作為會場主圖,它標(biāo)志著我國古代數(shù)學(xué)的輝煌成就。(見課本50頁彩圖,欣賞圖片)

如圖4(構(gòu)造新圖形的方法去探索)

師介紹:(出示圖片)勾股定理是數(shù)學(xué)史上的一顆璀璨明珠,它的證明在數(shù)學(xué)史上屢創(chuàng)奇跡,從畢達哥拉斯到現(xiàn)在,吸引著世界上無數(shù)的數(shù)學(xué)家、物理學(xué)家、數(shù)學(xué)愛好者對它的探究,甚至政界要人——美國第20任總統(tǒng)加菲爾德,也加入到對它的探索證明中,如圖是他當(dāng)年設(shè)計的證明方法。據(jù)說至今已經(jīng)找到的證明方法有四百多種,且每年還會有所增加。(若有時間可以繼續(xù)出示學(xué)生中有價值的圖片進行討論),有興趣的同學(xué)課后可以繼續(xù)探索……

四、總結(jié):

本節(jié)課學(xué)習(xí)的勾股定理用語言敘說為:

五、作業(yè):

1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。

2、探索勾股定理的運用。

設(shè)計初中數(shù)學(xué)教案篇8

教學(xué)目標(biāo)

1、使學(xué)生能說出有理數(shù)大小的比較法則

2、能熟練運用法則結(jié)合數(shù)軸比較有理數(shù)的大小,特別是應(yīng)用絕對值概念比較兩個負(fù)數(shù)的大小,能利用數(shù)軸對多個有理數(shù)進行有序排列。

3、能正確運用符號"<"">""∵""∴"寫出表示推理過程中簡單的因果關(guān)系。

三、教學(xué)重點與難點

重點:運用法則借助數(shù)軸比較兩個有理數(shù)的大小。

難點:利用絕對值概念比較兩個負(fù)分?jǐn)?shù)的大小。

四、教學(xué)準(zhǔn)備

多媒體課件

五、教學(xué)設(shè)計

(一)交流對話,探究新知

1、說一說

(多媒體顯示)某一天我們5個城市的最低氣溫    從剛才的圖片中你獲得了哪些信息?(從常見的氣溫入手,激發(fā)學(xué)生的求知欲望,可能有些學(xué)生會說從中知道廣州的最低氣溫10℃比上海的最低氣溫0℃高,有些學(xué)生會說哈爾濱的最低氣溫零下20℃比北京的最低氣溫零下10℃低等;不會說的,老師適當(dāng)點拔,從而學(xué)生在合作交流中不知不覺地完成了以下填空。

比較這一天下列兩個城市間最低氣溫的高低(填"高于"或"低于")

廣州_______上海;北京________上海;北京________哈爾濱;武漢________哈爾濱;武漢__________廣州。

2、畫一畫:(1)把上述5個城市最低氣溫的數(shù)表示在數(shù)軸上,(2)觀察這5個數(shù)在數(shù)軸上的位置,從中你發(fā)現(xiàn)了什么?

(3)溫度的高低與相應(yīng)的數(shù)在數(shù)軸上的位置有什么?

(通過學(xué)生自己動手操作,觀察、思考,發(fā)現(xiàn)原點左邊的數(shù)都是負(fù)數(shù),原點右邊的數(shù)都是正數(shù);同時也發(fā)現(xiàn)5在0右邊,5比0大;10在5右邊,10比5大,初步感受在數(shù)軸上原點右邊的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。教師趁機追問,原點左邊的數(shù)也有這樣的規(guī)律嗎?從而激發(fā)學(xué)生探索知識的欲望,進一步驗證了原點左邊的數(shù)也有這樣的規(guī)律。從而使學(xué)生親身體驗探索的樂趣,在探究中不知不覺獲得了知識。)由小組討論后,教師歸納得出結(jié)論:

在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。

正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。

(二)應(yīng)用新知,體驗成功

1、練一練(師生共同完成例1后,學(xué)生完成隨堂練習(xí)1)

例1:在數(shù)軸上表示數(shù)5,0,-4,-1,并比較它們的大小,將它們按從小到大的順序用"<"號連接。(師生共同完成)

分析:本題意有幾層含義?應(yīng)分幾步?

要點總結(jié):小組討論歸納,本題解題時的一般步驟:①畫數(shù)軸②描點;③有序排列;④不等號連接。

隨堂練習(xí): P19 T1

2、做一做

(1)在數(shù)軸上表示下列各對數(shù),并比較它們的大小

①2和7  ?、?6和-1 ?、?6和-36 ?、?和-1.5

(2)求出圖中各對數(shù)的絕對值,并比較它們的大小。

(3)由①、②從中你發(fā)現(xiàn)了什么?

(學(xué)生小組討論后,代表站起來發(fā)言,口述自己組的發(fā)現(xiàn),說明自己組發(fā)現(xiàn)的過程,逐步培養(yǎng)學(xué)生觀察、歸納、用數(shù)學(xué)語言表達數(shù)學(xué)規(guī)律的能力。)

要點總結(jié):兩個正數(shù)比較大小,絕對值大的數(shù)大;兩個負(fù)數(shù)比較大小,絕對值大的數(shù)反而小。

在學(xué)生討論的基礎(chǔ)上,由學(xué)生總結(jié)得出有理數(shù)大小的比較法則。

(1)正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。

(2)兩個正數(shù)比較大小,絕對值大的數(shù)大。

(3)兩個負(fù)數(shù)比較大小,絕對值大的數(shù)反而小。

3、師生共同完成例2后,學(xué)生完成隨堂練習(xí)2、3、4。

例2比較下列每對數(shù)的大小,并說明理由:(師生共同完成)

(1)1與-10,(2)-0.001與0,(3)-8與+2;(4)-與-;(5)-(+)與-|-0.8|

分析:第(4)(5)題較難,第(4)題應(yīng)先通分,第(5)題應(yīng)先化簡,再比較。同時在講解時,要注意格式。

注:絕對值比較時,分母相同,分子大的數(shù)大;分子相同,則分母大的數(shù)反而小;分子分母都不相同時,則應(yīng)先通分再比較,或把分子化相同再比較。

兩個負(fù)數(shù)比較大小時的一般步驟:①求絕對值;②比較絕對值的大小;③比較負(fù)數(shù)的大小。

思考:還有別的方法嗎?(分組討論,積極思考)

4、想一想:我們有幾種方法來判斷有理數(shù)的大小?你認(rèn)為它們各有什么特點?

由學(xué)生討論后,得出比較有理數(shù)的大小共有兩種方法,一種是法則,另一種是利用數(shù)軸,當(dāng)兩個數(shù)比較時一般選用第一種,當(dāng)多個有理數(shù)比較大小時,一般選用第二種較好。

練一練:P19 T2、3、4

5、考考你:請你回答下列問題:

(1)有沒有的有理數(shù),有沒有最小的有理數(shù),為什么?

(2)有沒有絕對值最小的有理數(shù)?若有,請把它寫出來?

(3)在于-1.5且小于4.2的整數(shù)有_____個,它們分別是____。

(4)若a>0,b<0,a<|b|,則你能比較a、b、-a、-b這四個數(shù)的大小嗎?(本題屬提高題,不要求全體學(xué)生掌握)

(新穎的問題會激發(fā)學(xué)生的好奇心,通過合作交流,自主探究等活動,培養(yǎng)學(xué)生思維的習(xí)慣和數(shù)學(xué)語言的表達能力)

6、議一議,談?wù)劚竟?jié)課你有哪些收獲

(由師生共同完成本節(jié)課的小結(jié))本節(jié)課主要學(xué)習(xí)了有理數(shù)大小比較的兩種方法,一種是按照法則,兩兩比較,另一種是利用數(shù)軸,運用這種方法時,首先必須把要比較的數(shù)在數(shù)軸上表示出來,然后按照它們在數(shù)軸上的位置,從左到右(或從右到左)用"<"(或">")連接,這種方法在比較多個有理數(shù)大小時非常簡便。

六、布置作業(yè):P19 A組、B組

基礎(chǔ)好的A、B兩組都做

基礎(chǔ)較差的同學(xué)選做A組。

設(shè)計初中數(shù)學(xué)教案篇9

課題名稱:完全平方公式(1)

一、內(nèi)容簡介

本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式。

關(guān)鍵信息:

1、以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)系。通過學(xué)生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗,得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

2、用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。

二、學(xué)習(xí)者分析:

1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識和技能:

①同類項的定義。

②合并同類項法則

③多項式乘以多項式法則。

2、學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:

在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

三、教學(xué)/學(xué)習(xí)目標(biāo)及其對應(yīng)的課程標(biāo)準(zhǔn):

(一)教學(xué)目標(biāo):

1、經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推力能力。

2、會推導(dǎo)完全平方公式,并能運用公式進行簡單的計算。

(二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認(rèn)識有理

數(shù)、實數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運用代數(shù)式、防城、不等式、函數(shù)等進行描述。

(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同

角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。

(五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨立克服困難

和運用知識解決問題的成功體驗,有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。

四、教育理念和教學(xué)方式:

1、教師是學(xué)生學(xué)習(xí)的組織者、促進者、合作者:學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動的、富有個性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。

教學(xué)是師生交往、積極互動、共同發(fā)展的過程。當(dāng)學(xué)生迷路的時

候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向;當(dāng)學(xué)生登山畏懼了的時候,教師不是拖著他走,而是喚起他內(nèi)在的精神動力,鼓勵他不斷向上攀登。

2、采用“問題情景—探究交流—得出結(jié)論—強化訓(xùn)練”的模式

展開教學(xué)。

3、教學(xué)評價方式:

(1)通過課堂觀察,關(guān)注學(xué)生在觀察、總結(jié)、訓(xùn)練等活動中的主

動參與程度與合作交流意識,及時給與鼓勵、強化、指導(dǎo)和矯正。

(2)通過判斷和舉例,給學(xué)生更多機會,在自然放松的狀態(tài)下,

揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學(xué)情,調(diào)查教學(xué)。

(3)通過課后訪談和作業(yè)分析,及時查漏補缺,確保達到預(yù)期的

教學(xué)效果。

五、教學(xué)媒體:多媒體六、教學(xué)和活動過程:

教學(xué)過程設(shè)計如下:

〈一〉、提出問題

[引入]同學(xué)們,前面我們學(xué)習(xí)了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關(guān)系嗎?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析問題

1、[學(xué)生回答]分組交流、討論

(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,

(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

(1)原式的特點。

(2)結(jié)果的項數(shù)特點。

(3)三項系數(shù)的特點(特別是符號的特點)。

(4)三項與原多項式中兩個單項式的關(guān)系。

2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:

兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、運用公式,解決問題

1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

(m+n)2=____________,(m-n)2=_______________,

(-m+n)2=____________,(-m-n)2=______________,

(a+3)2=______________,(-c+5)2=______________,

(-7-a)2=______________,(0.5-a)2=______________.

2、判斷:

()①(a-2b)2=a2-2ab+b2

()②(2m+n)2=2m2+4mn+n2

()③(-n-3m)2=n2-6mn+9m2

()④(5a+0.2b)2=25a2+5ab+0.4b2

()⑤(5a-0.2b)2=5a2-5ab+0.04b2

()⑥(-a-2b)2=(a+2b)2

()⑦(2a-4b)2=(4a-2b)2

()⑧(-5m+n)2=(-n+5m)2

3、小試牛刀

①(x+y)2=______________;②(-y-x)2=_______________;

③(2x+3)2=_____________;④(3a-2)2=_______________;

⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;

⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.

〈四〉、[學(xué)生小結(jié)]

你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?

(1)公式右邊共有3項。

(2)兩個平方項符號永遠為正。

(3)中間項的符號由等號左邊的兩項符號是否相同決定。

(4)中間項是等號左邊兩項乘積的2倍。

〈五〉、冒險島:

(1)(-3a+2b)2=________________________________

(2)(-7-2m)2=__________________________________

(3)(-0.5m+2n)2=_______________________________

(4)(3/5a-1/2b)2=________________________________

(5)(mn+3)2=__________________________________

(6)(a2b-0.2)2=_________________________________

(7)(2xy2-3x2y)2=_______________________________

(8)(2n3-3m3)2=________________________________

〈六〉、學(xué)生自我評價

[小結(jié)]通過本節(jié)課的學(xué)習(xí),你有什么收獲和感悟?

本節(jié)課,我們自己通過計算、分析結(jié)果,總結(jié)出了完全平方公式。在知識探索的過程中,同學(xué)們積極思考,大膽探索,團結(jié)協(xié)作共同取得了進步。

〈七〉[作業(yè)]P34隨堂練習(xí)P36習(xí)題

設(shè)計初中數(shù)學(xué)教案篇10

教材分析

立體圖形的翻折問題是高二《代數(shù)》(下)中立體幾何的一個學(xué)習(xí)內(nèi)容,它融會貫通于各種立體幾何和幾何體中,對學(xué)生進一步理解立體圖形起著至關(guān)重要的作用。立體圖形的翻折是從學(xué)生生活周圍熟悉的物體入手,使學(xué)生進一步認(rèn)識立體圖形于平面圖形的關(guān)系;不僅要讓學(xué)生了解幾何體可由平面圖形折疊而成,更重要的是讓學(xué)生通過觀察、思考和自己動手操作、經(jīng)歷和體驗圖形的變化過程,使學(xué)生了解研究立體圖形的方法。

教學(xué)重點

了解平面圖形于折疊后的立體圖形之間的關(guān)系,找到變化過程中的不變量。

教學(xué)難點

轉(zhuǎn)化思想的運用及發(fā)散思維的培養(yǎng)。

學(xué)生分析

學(xué)生在前面已經(jīng)對一些簡單幾何體有了一定的認(rèn)識,對于求解空間角及空間距離已具備了一定的能力,并且在班級中已初步形成合作交流,敢于探索與實踐的良好習(xí)慣。學(xué)生間相互評價、相互提問的互動的氣氛較濃。

設(shè)計理念

根據(jù)教育課程改革的具體目標(biāo),結(jié)合“注重開放與生成,構(gòu)建充滿生命活力的課堂教學(xué)運行體系”的要求,改變課程過于注重知識傳授的傾向,強調(diào)形成積極生動的學(xué)習(xí)態(tài)度,關(guān)注學(xué)生的學(xué)習(xí)興趣和經(jīng)驗,實施開放式教學(xué),讓學(xué)生主動參與學(xué)習(xí)活動,并引導(dǎo)學(xué)生在課堂活動中感悟知識的生成、發(fā)展與變化。

教學(xué)目標(biāo)

1、使學(xué)生掌握翻折問題的解題方法,并會初步應(yīng)用。

2、培養(yǎng)學(xué)生的動手實踐能力。在實踐過程中,使學(xué)生提高對立體圖形的分析能力,并在設(shè)疑的同時培養(yǎng)學(xué)生的發(fā)散思維。

3、通過平面圖形與折疊后的立體圖形的對比,向?qū)W生滲透事物間的變化與聯(lián)系觀點,在解題過程中,使學(xué)生理解,將立體圖形中的問題化歸到平面圖形中去解決的`轉(zhuǎn)化思想。

教學(xué)流程

一、創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生觀察、設(shè)想、導(dǎo)入課題。

1、如圖(圖略),是一個正方體的展開圖,在原正方體中,有下列命題

(1)AB與EF所在直線平行

(2)AB與CD所在直線異面

(3)MN與EF所在直線成60度

(4)MN與CD所在直線互相垂直其中正確命題的序號是

2、引入課題----翻折

二、學(xué)生通過直觀感知、操作確認(rèn)等實踐活動,加強對圖形的認(rèn)識和感受(引導(dǎo)學(xué)生在解題的過程中如何突破難點,從而體現(xiàn)在平面圖形中求解一些不變量對于解空間問題的重要性)。

1、給學(xué)生一個展示自我的空間和舞臺,讓學(xué)生自己講解。教師根據(jù)學(xué)生的講解進一步提出問題。

(1)線段AE與EF的夾角為什么不是60度呢?

(2)AE與FG所成角呢?

(3)AE與GC所成角呢?

(4)在此正四棱柱上若有一小蟲從A點爬到C點最短路徑是什么?經(jīng)過各面呢?

(通過對發(fā)散問題的提出培養(yǎng)學(xué)生的培養(yǎng)精神及轉(zhuǎn)化的教學(xué)思想方法,讓學(xué)生體會折疊圖與展開圖的不同應(yīng)用。)

2、讓學(xué)生觀察電腦演示折疊過程后,再親自動手折疊,針對問題做出回答。

(1)E、F分別處于G1G2、G2G3的什么位置?

(2)選擇哪種擺放方式更利于求解體積呢?

(3)如何求G點到面PEF的距離呢?

(4)PG與面PEF所成角呢?

(5)面GEF與面PEF所成角呢?

(學(xué)生會發(fā)現(xiàn)這幾個問題可在同一個直角三角形中找到答案,然后讓學(xué)生在折紙中找到這個三角形的位置,既而發(fā)現(xiàn)折疊過程中的不變量。)

3、演示MN的運動過程,讓學(xué)生觀察分析解題過程強調(diào)證PN垂直AB的困難性。與學(xué)生共同品位解出這道2002高考題的喜悅的同時,引導(dǎo)學(xué)生用上題的思路能否更快捷地解出此題呢?

(學(xué)生大膽想象,并通過模型制作確認(rèn)想象結(jié)果的正確性,從而開辟一條簡捷的翻折思想解題思路。)

三、小結(jié)

1、畫平面圖,并折前圖與折后圖中的字母盡量保持一致。

2、尋找立體圖形中的不變量到平面圖形中求解是關(guān)鍵。

3、注意培養(yǎng)轉(zhuǎn)化思想和發(fā)散思維。

(通過提問方式引導(dǎo)學(xué)生小結(jié)本節(jié)主要知識及學(xué)習(xí)活動,養(yǎng)成學(xué)習(xí)、總結(jié)、學(xué)習(xí)的良好學(xué)習(xí)習(xí)慣,發(fā)散自我評價的作用,培養(yǎng)學(xué)生的語言表達能力。)

四、課外活動

1、完成課上未解決的問題。

2、對與1題折成正三棱柱結(jié)果會怎樣?對于2題改變E、F兩點位置剪成正三棱柱呢?

(通過課外活動學(xué)習(xí)本節(jié)知識內(nèi)容,培養(yǎng)學(xué)生的發(fā)散思維。)

課后反思

本課設(shè)計中,有梯度性的先安排三個小題,讓學(xué)生經(jīng)歷先動手、思考、預(yù)習(xí)這一學(xué)習(xí)過程,然后在課堂上給學(xué)生一個充分展示自我的空間,并且適時發(fā)問的同時幫助學(xué)生找到解決方法。歸納總結(jié)解翻折問題的技巧和作為解題方法的優(yōu)越性。在實施開放式教學(xué)的過程中,注重引導(dǎo)學(xué)生在課堂活動過程中感悟知識的生成、發(fā)展與變化,培養(yǎng)學(xué)生主動探索、敢于實踐、善于發(fā)現(xiàn)的科學(xué)精神以及合作交流的精神和創(chuàng)新意識,將創(chuàng)新的教材、創(chuàng)新的教法與創(chuàng)新的課堂環(huán)境有機地結(jié)合起來,將學(xué)生自主學(xué)習(xí)與創(chuàng)新意識的培養(yǎng)落到實處。

103320 主站蜘蛛池模板: 科研ELISA试剂盒,酶联免疫检测试剂盒,昆虫_植物ELISA酶免试剂盒-上海仁捷生物科技有限公司 | 澳洁干洗店加盟-洗衣店干洗连锁「澳洁干洗免费一对一贴心服务」 干洗加盟网-洗衣店品牌排行-干洗设备价格-干洗连锁加盟指南 | 防渗土工膜|污水处理防渗膜|垃圾填埋场防渗膜-泰安佳路通工程材料有限公司 | 红酒招商加盟-葡萄酒加盟-进口红酒代理-青岛枞木酒业有限公司 | 原子吸收设备-国产分光光度计-光谱分光光度计-上海光谱仪器有限公司 | 户外-组合-幼儿园-不锈钢-儿童-滑滑梯-床-玩具-淘气堡-厂家-价格 | 杭州双螺杆挤出机-百科| 江苏全风,高压风机,全风环保风机,全风环形高压风机,防爆高压风机厂家-江苏全风环保科技有限公司(官网) | 博客-悦享汽车品质生活 | EDLC超级法拉电容器_LIC锂离子超级电容_超级电容模组_软包单体电容电池_轴向薄膜电力电容器_深圳佳名兴电容有限公司_JMX专注中高端品牌电容生产厂家 | 锌合金压铸-铝合金压铸厂-压铸模具-冷挤压-誉格精密压铸 | 陶氏道康宁消泡剂_瓦克消泡剂_蓝星_海明斯德谦_广百进口消泡剂 | 大学食堂装修设计_公司餐厅效果图_工厂食堂改造_迈普装饰 | 会议会展活动拍摄_年会庆典演出跟拍_摄影摄像直播-艾木传媒 | 水冷散热器_水冷电子散热器_大功率散热器_水冷板散热器厂家-河源市恒光辉散热器有限公司 | 扬尘监测_扬尘监测系统_带证扬尘监测设备 - 郑州港迪科技有限公司 | 磁力抛光机_磁力研磨机_磁力去毛刺机-冠古设备厂家|维修|租赁【官网】 | 昆明网络公司|云南网络公司|昆明网站建设公司|昆明网页设计|云南网站制作|新媒体运营公司|APP开发|小程序研发|尽在昆明奥远科技有限公司 | 乐泰胶水_loctite_乐泰胶_汉高乐泰授权(中国)总代理-鑫华良供应链 | 聚合氯化铝-碱式氯化铝-聚合硫酸铁-聚氯化铝铁生产厂家多少钱一吨-聚丙烯酰胺价格_河南浩博净水材料有限公司 | 真空乳化机-灌装封尾机-首页-温州精灌 | 净化工程_无尘车间_无尘车间装修-广州科凌净化工程有限公司 | 阳光模拟试验箱_高低温试验箱_高低温冲击试验箱_快速温变试验箱|东莞市赛思检测设备有限公司 | 超声波清洗机_大型超声波清洗机_工业超声波清洗设备-洁盟清洗设备 | 窖井盖锯圆机_锯圆机金刚石锯片-无锡茂达金刚石有限公司 | 工业硝酸钠,硝酸钠厂家-淄博「文海工贸」| ETFE膜结构_PTFE膜结构_空间钢结构_膜结构_张拉膜_浙江萬豪空间结构集团有限公司 | 沥青灌缝机_路面灌缝机_道路灌缝机_沥青灌缝机厂家_济宁萨奥机械有限公司 | CXB船用变压器-JCZ系列制动器-HH101船用铜质开关-上海永上船舶电器厂 | 新能源汽车电池软连接,铜铝复合膜柔性连接,电力母排-容发智能科技(无锡)有限公司 | 全自动包装机_灌装机生产厂家-迈驰包装设备有限公司 | 西安中国国际旅行社(西安国旅) | 列管冷凝器,刮板蒸发器,外盘管反应釜厂家-无锡曼旺化工设备有限公司 | 吹田功率计-长创耐压测试仪-深圳市新朗普电子科技有限公司 | 上海深蓝_缠绕机_缠膜机-上海深蓝机械装备有限公司 | 大立教育官网-一级建造师培训-二级建造师培训-造价工程师-安全工程师-监理工程师考试培训 | 东莞市超赞电子科技有限公司 全系列直插/贴片铝电解电容,电解电容,电容器 | 小型UV打印机-UV平板打印机-大型uv打印机-UV打印机源头厂家 |松普集团 | 绿萝净除甲醛|深圳除甲醛公司|测甲醛怎么收费|培训机构|电影院|办公室|车内|室内除甲醛案例|原理|方法|价格立马咨询 | 北京浩云律师事务所-企业法律顾问_破产清算等公司法律服务 | 德州网站制作 - 网站建设设计 - seo排名优化 -「两山建站」 |