小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數(shù)學(xué)教案 >

高一數(shù)學(xué)公開(kāi)課教案

時(shí)間: 新華 數(shù)學(xué)教案

編寫(xiě)教案有助于教師更好地掌握教學(xué)內(nèi)容和方法,增強(qiáng)教學(xué)自信心。怎么寫(xiě)好高一數(shù)學(xué)公開(kāi)課教案?小編給大家分享一些高一數(shù)學(xué)公開(kāi)課教案,方便大家學(xué)習(xí)。

高一數(shù)學(xué)公開(kāi)課教案篇1

一元二次不等式的解法

教學(xué)目標(biāo)

(1)掌握一元二次不等式的解法;

(2)知道一元二次不等式可以轉(zhuǎn)化為一元一次不等式組;

(3)了解簡(jiǎn)單的分式不等式的解法;

(4)能利用二次函數(shù)與一元二次方程來(lái)求解一元二次不等式,理解它們?nèi)咧g的內(nèi)在聯(lián)系;

(5)能夠進(jìn)行較簡(jiǎn)單的分類(lèi)討論,借助于數(shù)軸的直觀,求解簡(jiǎn)單的含字母的一元二次不等式;

(6)通過(guò)利用二次函數(shù)的圖象來(lái)求解一元二次不等式的解集,培養(yǎng)學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想;

(7)通過(guò)研究函數(shù)、方程與不等式之間的內(nèi)在聯(lián)系,使學(xué)生認(rèn)識(shí)到事物是相互聯(lián)系、相互轉(zhuǎn)化的,樹(shù)立辨證的世界觀.

教學(xué)重點(diǎn):一元二次不等式的解法;

教學(xué)難點(diǎn):弄清一元二次不等式與一元二次方程、二次函數(shù)的關(guān)系.

教與學(xué)過(guò)程設(shè)計(jì)

第一課時(shí)

Ⅰ.設(shè)置情境

問(wèn)題:

①解方程

②作函數(shù) 的圖像

③解不等式

【置疑】在解決上述三問(wèn)題的基礎(chǔ)上分析,一元一次函數(shù)、一元一次方程、一元一次不等式之間的關(guān)系。能通過(guò)觀察一次函數(shù)的圖像求得一元一次不等式的解集嗎?

【回答】函數(shù)圖像與x軸的交點(diǎn)橫坐標(biāo)為方程的根,不等式 的解集為函數(shù)圖像落在x軸上方部分對(duì)應(yīng)的橫坐標(biāo)。能。

通過(guò)多媒體或其他載體給出下列表格。扼要講解怎樣通過(guò)觀察一次函數(shù)的圖像求得一元一次不等式的解集。注意色彩或彩色粉筆的運(yùn)用

在這里我們發(fā)現(xiàn)一元一次方程,一次不等式與一次函數(shù)三者之間有著密切的聯(lián)系。利用這種聯(lián)系(集中反映在相應(yīng)一次函數(shù)的圖像上!)我們可以快速準(zhǔn)確地求出一元一次不等式的解集,類(lèi)似地,我們能不能將現(xiàn)在要求解的一元二次不等式與二次函數(shù)聯(lián)系起來(lái)討論找到其求解方法呢?

Ⅱ.探索與研究

我們現(xiàn)在就結(jié)合不等式 的求解來(lái)試一試。(師生共同活動(dòng)用“特殊點(diǎn)法”而非課本上的“列表描點(diǎn)”的方法作出 的圖像,然后請(qǐng)一位程度中下的同學(xué)寫(xiě)出相應(yīng)一元二次方程及一元二次不等式的解集。)

【答】方程 的解集為

不等式 的解集為

【置疑】哪位同學(xué)還能寫(xiě)出 的解法?(請(qǐng)一程度差的同學(xué)回答)

【答】不等式 的解集為

我們通過(guò)二次函數(shù) 的圖像,不僅求得了開(kāi)始上課時(shí)我們還不知如何求解的那個(gè)第(5)小題 的解集,還求出了 的解集,可見(jiàn)利用二次函數(shù)的圖像來(lái)解一元二次不等式是個(gè)十分有效的方法。

下面我們?cè)賹?duì)一般的一元二次不等式 與 來(lái)進(jìn)行討論。為簡(jiǎn)便起見(jiàn),暫只考慮 的情形。請(qǐng)同學(xué)們思考下列問(wèn)題:

如果相應(yīng)的一元二次方程 分別有兩實(shí)根、惟一實(shí)根,無(wú)實(shí)根的話,其對(duì)應(yīng)的二次函數(shù) 的圖像與x軸的位置關(guān)系如何?(提問(wèn)程度較好的學(xué)生)

【答】二次函數(shù) 的圖像開(kāi)口向上且分別與x軸交于兩點(diǎn),一點(diǎn)及無(wú)交點(diǎn)。

現(xiàn)在請(qǐng)同學(xué)們觀察表中的二次函數(shù)圖,并寫(xiě)出相應(yīng)一元二次不等式的解集。(通過(guò)多媒體或其他載體給出以下表格)

【答】 的解集依次是

的解集依次是

它是我們今后求解一元二次不等式的主要工具。應(yīng)盡快將表中的結(jié)果記住。其關(guān)鍵就是抓住相應(yīng)二次函數(shù) 的圖像。

課本第19頁(yè)上的例1.例2.例3.它們均是求解二次項(xiàng)系數(shù) 的一元二次不等式,卻都沒(méi)有給出相應(yīng)二次函數(shù)的圖像。其解答過(guò)程雖很簡(jiǎn)練,卻不太直觀。現(xiàn)在我們?cè)谡n本預(yù)留的位置上分別給它們補(bǔ)上相應(yīng)二次函數(shù)圖像。

(教師巡視,重點(diǎn)關(guān)注程度稍差的同學(xué)。)

Ⅲ.演練反饋

1.解下列不等式:

(1) (2)

(3) (4)

2.若代數(shù)式 的值恒取非負(fù)實(shí)數(shù),則實(shí)數(shù)x的取值范圍是 。

3.解不等式

(1) (2)

參考答案:

1.(1) ;(2) ;(3) ;(4)R

2.

3.(1)

(2)當(dāng) 或 時(shí), ,當(dāng) 時(shí),

當(dāng) 或 時(shí), 。

Ⅳ.總結(jié)提煉

這節(jié)課我們學(xué)習(xí)了二次項(xiàng)系數(shù) 的一元二次不等式的解法,其關(guān)鍵是抓住相應(yīng)二次函數(shù)的圖像與x軸的交點(diǎn),再對(duì)照課本第39頁(yè)上表格中的結(jié)論給出所求一元二次不等式的解集。

(五)、課時(shí)作業(yè)

(P20.練習(xí)等3、4兩題)

(六)、板書(shū)設(shè)計(jì)

第二課時(shí)

Ⅰ.設(shè)置情境

(通過(guò)講評(píng)上一節(jié)課課后作業(yè)中出現(xiàn)的問(wèn)題,復(fù)習(xí)利用“三個(gè)二次”間的關(guān)系求解一元二次不等式的主要操作過(guò)程。)

上節(jié)課我們只討論了二次項(xiàng)系數(shù) 的一元二次不等式的求解問(wèn)題。肯定有同學(xué)會(huì)問(wèn),那么二次項(xiàng)系數(shù) 的一元二次不等式如何來(lái)求解?咱們班上有誰(shuí)能解答這個(gè)疑問(wèn)呢?

Ⅱ.探索研究

(學(xué)生議論紛紛.有的說(shuō)仍然利用二次函數(shù)的圖像,有的說(shuō)將二次項(xiàng)的系數(shù)變?yōu)檎龜?shù)后再求解,…….教師分別請(qǐng)持上述見(jiàn)解的學(xué)生代表進(jìn)一步說(shuō)明各自的見(jiàn)解.)

生甲:只要將課本第39頁(yè)上表中的二次函數(shù)圖像次依關(guān)于x軸翻轉(zhuǎn)變成開(kāi)口向下的拋物線,再根據(jù)可得的圖像便可求得二次項(xiàng)系數(shù) 的一元二次不等式的解集.

生乙:我覺(jué)得先在不等式兩邊同乘以-1將二次項(xiàng)系數(shù)變?yōu)檎龜?shù)后直接運(yùn)用上節(jié)課所學(xué)的方法求解就可以了.

師:首先,這兩種見(jiàn)解都是合乎邏輯和可行的.不過(guò)按前一見(jiàn)解來(lái)操作的話,同學(xué)們則需再記住一張類(lèi)似于第39頁(yè)上的表格中的各結(jié)論.這不但加重了記憶負(fù)擔(dān),而且兩表中的結(jié)論容易搞混導(dǎo)致錯(cuò)誤.而按后一種見(jiàn)解來(lái)操作時(shí)則不存在這個(gè)問(wèn)題,請(qǐng)同學(xué)們閱讀第19頁(yè)例4.

(待學(xué)生閱讀完畢,教師再簡(jiǎn)要講解一遍.)

[知識(shí)運(yùn)用與解題研究]

由此例可知,對(duì)于二次項(xiàng)系數(shù)的一元二次不等式是將其通過(guò)同解變形化為 的一元二次不等式來(lái)求解的,因此只要掌握了上一節(jié)課所學(xué)過(guò)的方法。我們就能求

解任意一個(gè)一元二次不等式了,請(qǐng)同學(xué)們求解以下兩不等式.(調(diào)兩位程度中等的學(xué)生演板)

(1) (2)

(分別為課本P21習(xí)題1.5中1大題(2)、(4)兩小題.教師講評(píng)兩位同學(xué)的解答,注意糾正表述方面存在的問(wèn)題.)

訓(xùn)練二 可化為一元一次不等式組來(lái)求解的不等式.

目前我們熟悉了利用“三個(gè)二次”間的關(guān)系求解一元二次不等式的方法雖然對(duì)任意一元二次不等式都適用,但具體操作起來(lái)還是讓我們感到有點(diǎn)麻煩.故在求解形如 (或 )的一元二次不等式時(shí)則根據(jù)(有理數(shù))乘(除)運(yùn)算的“符號(hào)法則”化為同學(xué)們更加熟悉的一元一次不等式組來(lái)求解.現(xiàn)在清同學(xué)們閱讀課本P20上關(guān)于不等式 求解的內(nèi)容并思考:原不等式的解集為什么是兩個(gè)一次不等式組解集的并集?(待學(xué)生閱讀完畢,請(qǐng)一程度較好,表達(dá)能力較強(qiáng)的學(xué)生回答該問(wèn)題.)

【答】因?yàn)闈M足不等式組 或 的x都能使原不等式 成立,且反過(guò)來(lái)也是對(duì)的,故原不等式的解集是兩個(gè)一元二次不等式組解集的并集.

這個(gè)回答說(shuō)明了原不等式的解集A與兩個(gè)一次不等式組解集的并集B是互為子集的關(guān)系,故它們必相等,現(xiàn)在請(qǐng)同學(xué)們求解以下各不等式.(調(diào)三位程度各異的學(xué)生演板.教師巡視,重點(diǎn)關(guān)注程度較差的學(xué)生).

(1) [P20練習(xí)中第1大題]

(2) [P20練習(xí)中第1大題]

(3) [P20練習(xí)中第2大題]

(老師扼要講評(píng)三位同學(xué)的解答.尤其要注意糾正表述方面存在的問(wèn)題.然后講解P21例5).

例5 解不等式

因?yàn)?有理數(shù))積與商運(yùn)算的“符號(hào)法則”是一致的,故求解此類(lèi)不等式時(shí),也可像求解 (或 )之類(lèi)的不等式一樣,將其化為一元一次不等式組來(lái)求解。具體解答過(guò)程如下。

解:(略)

現(xiàn)在請(qǐng)同學(xué)們完成課本P21練習(xí)中第3、4兩大題。

(等學(xué)生完成后教師給出答案,如有學(xué)生對(duì)不上答案,由其本人追查原因,自行糾正。)

[訓(xùn)練三]用“符號(hào)法則”解不等式的復(fù)式訓(xùn)練。

(通過(guò)多媒體或其他載體給出下列各題)

1.不等式 與 的解集相同此說(shuō)法對(duì)嗎?為什么[補(bǔ)充]

2.解下列不等式:

(1) [課本P22第8大題(2)小題]

(2)   [補(bǔ)充]

(3) [課本P43第4大題(1)小題]

(4) [課本P43第5大題(1)小題]

(5) [補(bǔ)充]

(每題均先由學(xué)生說(shuō)出解題思路,教師扼要板書(shū)求解過(guò)程)

參考答案:

1.不對(duì)。同 時(shí)前者無(wú)意義而后者卻能成立,所以它們的解集是不同的。

2.(1)

(2)原不等式可化為: ,即

解集為 。

(3)原不等式可化為

解集為

(4)原不等式可化為 或

解集為

(5)原不等式可化為: 或 解集為

Ⅲ.總結(jié)提煉

這節(jié)課我們重點(diǎn)講解了利用(有理數(shù))乘除法的符號(hào)法則求解左式為若干一次因式的積或商而右式為0的不等式。值得注意的是,這一方法對(duì)符合上述形狀的高次不等式也是有效的,同學(xué)們應(yīng)掌握好這一方法。

(五)布置作業(yè)

(P22.2(2)、(4);4;5;6。)

(六)板書(shū)設(shè)計(jì)

高一數(shù)學(xué)公開(kāi)課教案篇2

邏輯聯(lián)結(jié)詞

一、教學(xué)目標(biāo)

(1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;

(2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;

(3)能用邏輯聯(lián)結(jié)詞和簡(jiǎn)單命題構(gòu)成不同形式的復(fù)合命題;

(4)能識(shí)別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡(jiǎn)單命題;

(5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假;

(6)在知識(shí)學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡(jiǎn)單推理的技能.

二、教學(xué)重點(diǎn)難點(diǎn):

重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對(duì)“或”的含義的理解.

三、教學(xué)過(guò)程

1.新課導(dǎo)入

在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開(kāi)邏輯.具有一定邏輯知識(shí)是構(gòu)成一個(gè)公民的文化素質(zhì)的重要方面.數(shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識(shí),將會(huì)在我們學(xué)習(xí)的過(guò)程中不知不覺(jué)地經(jīng)常犯邏輯性的錯(cuò)誤.其實(shí),同學(xué)們?cè)诔踔幸呀?jīng)開(kāi)始接觸一些簡(jiǎn)易邏輯的知識(shí).

初一平面幾何中曾學(xué)過(guò)命題,請(qǐng)同學(xué)們舉一個(gè)命題的例子.(板書(shū):命題.)

(從初中接觸過(guò)的“命題”入手,提出問(wèn)題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識(shí).)

學(xué)生舉例:平行四邊形的對(duì)角線互相平. ……(1)

兩直線平行,同位角相等.…………(2)

教師提問(wèn):“……相等的角是對(duì)頂角”是不是命題?……(3)

(同學(xué)議論結(jié)果,答案是肯定的.)

教師提問(wèn):什么是命題?

(學(xué)生進(jìn)行回憶、思考.)

概念總結(jié):對(duì)一件事情作出了判斷的語(yǔ)句叫做命題.

(教師肯定了同學(xué)的回答,并作板書(shū).)

由于判斷有正確與錯(cuò)誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

(教師利用投影片,和學(xué)生討論以下問(wèn)題.)

例1 判斷以下各語(yǔ)句是不是命題,若是,判斷其真假:

命題一定要對(duì)一件事情作出判斷,(3)、(4)沒(méi)有對(duì)一件事情作出判斷,所以它們不是命題.

初中所學(xué)的命題概念涉及邏輯知識(shí),我們今天開(kāi)始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡(jiǎn)易邏輯的知識(shí).

2.講授新課

大家看課本(人教版,試驗(yàn)修訂本,第一冊(cè)(上))從第25頁(yè)至26頁(yè)例1前,并歸納一下這段內(nèi)容主要講了哪些問(wèn)題?

(片刻后請(qǐng)同學(xué)舉手回答,一共講了四個(gè)問(wèn)題.師生一道歸納如下.)

(1)什么叫做命題?

可以判斷真假的語(yǔ)句叫做命題.

判斷一個(gè)語(yǔ)句是不是命題,關(guān)鍵看這語(yǔ)句有沒(méi)有對(duì)一件事情作出了判斷,疑問(wèn)句、祈使句都不是命題.有些語(yǔ)句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無(wú)法確定這語(yǔ)句的真假(這種含有變量的語(yǔ)句叫做“開(kāi)語(yǔ)句”).

(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.

“或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.

對(duì)“或”的理解,可聯(lián)想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一個(gè)是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.

對(duì)“且”的理解,可聯(lián)想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 這兩個(gè)條件都要滿足的意思.

對(duì)“非”的理解,可聯(lián)想到集合中的“補(bǔ)集”概念,若命題 對(duì)應(yīng)于集合 ,則命題非 就對(duì)應(yīng)著集合 在全集 中的補(bǔ)集 .

命題可分為簡(jiǎn)單命題和復(fù)合命題.

不含邏輯聯(lián)結(jié)詞的命題叫做簡(jiǎn)單命題.簡(jiǎn)單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.

由簡(jiǎn)單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡(jiǎn)單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.

(4)命題的表示:用 , , , ,……來(lái)表示.

(教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對(duì)復(fù)合命題的概念作出分析和展開(kāi).)

我們接觸的復(fù)合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式.

給出一個(gè)含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說(shuō)出構(gòu)成它的簡(jiǎn)單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個(gè)簡(jiǎn)單命題,寫(xiě)出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.

對(duì)于給出“若 則 ”形式的復(fù)合命題,應(yīng)能找到條件 和結(jié)論 .

在判斷一個(gè)命題是簡(jiǎn)單命題還是復(fù)合命題時(shí),不能只從字面上來(lái)看有沒(méi)有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無(wú)“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無(wú)“或”,但它們都是復(fù)合命題.

3.鞏固新課

例2 判斷下列命題,哪些是簡(jiǎn)單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡(jiǎn)單命題.

(1) ;

(2)0.5非整數(shù);

(3)內(nèi)錯(cuò)角相等,兩直線平行;

(4)菱形的對(duì)角線互相垂直且平分;

(5)平行線不相交;

(6)若 ,則 .

(讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對(duì)“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)

例3 寫(xiě)出下表中各給定語(yǔ)的否定語(yǔ)(用課件打出來(lái)).

分析:“等于”的否定語(yǔ)是“不等于”;

“大于”的否定語(yǔ)是“小于或者等于”;

“是”的否定語(yǔ)是“不是”;

“都是”的否定語(yǔ)是“不都是”;

“至多有一個(gè)”的否定語(yǔ)是“至少有兩個(gè)”;

“至少有一個(gè)”的否定語(yǔ)是“一個(gè)都沒(méi)有”;

“至多有 個(gè)”的否定語(yǔ)是“至少有 個(gè)”.

(如果時(shí)間寬裕,可讓學(xué)生討論后得出結(jié)論.)

置疑:“或”、“且”的否定是什么?(視學(xué)生的情況、課堂時(shí)間作適當(dāng)?shù)谋嫖雠c展開(kāi).)

4.課堂練習(xí):第26頁(yè)練習(xí)1,2.

5.課外作業(yè):第29頁(yè)習(xí)題1.6 1,2.

高一數(shù)學(xué)公開(kāi)課教案篇3

教學(xué)目標(biāo):

①掌握對(duì)數(shù)函數(shù)的性質(zhì)。

②應(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)可以解決:對(duì)數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值 域及單調(diào)性。

③ 注重函數(shù)思想、等價(jià)轉(zhuǎn)化、分類(lèi)討論等思想的滲透,提高解題能力。

教學(xué)重點(diǎn)與難點(diǎn):對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用。

教學(xué)過(guò)程設(shè)計(jì):

⒈復(fù)習(xí)提問(wèn):對(duì)數(shù)函數(shù)的概念及性質(zhì)。

⒉開(kāi)始正課

1 比較數(shù)的大小

例 1 比較下列各組數(shù)的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

師:請(qǐng)同學(xué)們觀察一下⑴中這兩個(gè)對(duì)數(shù)有何特征?

生:這兩個(gè)對(duì)數(shù)底相等。

師:那么對(duì)于兩個(gè)底相等的對(duì)數(shù)如何比大小?

生:可構(gòu)造一個(gè)以a為底的對(duì)數(shù)函數(shù),用對(duì)數(shù)函數(shù)的單調(diào)性比大小。

師:對(duì),請(qǐng)敘述一下這道題的解題過(guò)程。

生:對(duì)數(shù)函數(shù)的單調(diào)性取決于底的大小:當(dāng)0調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞增,所以loga5.1

板書(shū):

解:Ⅰ)當(dāng)0

∵5.1<5.9 ∴l(xiāng)oga5.1>loga5.9

Ⅱ)當(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù),

∵5.1<5.9 ∴l(xiāng)oga5.1

師:請(qǐng)同學(xué)們觀察一下⑵中這三個(gè)對(duì)數(shù)有何特征?

生:這三個(gè)對(duì)數(shù)底、真數(shù)都不相等。

師:那么對(duì)于這三個(gè)對(duì)數(shù)如何比大小?

生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,

log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板書(shū):略。

師:比較對(duì)數(shù)值的大小常用方法:①構(gòu)造對(duì)數(shù)函數(shù),直接利用對(duì)數(shù)函數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對(duì)數(shù)函數(shù)圖象的位置關(guān)系來(lái)比大小。

2 函數(shù)的定義域, 值 域及單調(diào)性。

例 2 ⑴求函數(shù)y=的定義域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

師:如何來(lái)求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,被開(kāi)方式大于或等于零;若函數(shù)中有對(duì)數(shù)的形式,則真數(shù)大于零,如果函數(shù)中同時(shí)出現(xiàn)以上幾種情況,就要全部考慮進(jìn)去,求它們共同作用的結(jié)果。)生:分母2x-1≠0且偶次根式的被開(kāi)方式log0.8x-1≥0,且真數(shù)x>0。

板書(shū):

解:∵   2x-1≠0      x≠0.5

log0.8x-1≥0 ,  x≤0.8

x>0        x>0

∴x(0,0.5)∪(0.5,0.8〕

師:接下來(lái)我們一起來(lái)解這個(gè)不等式。

分析:要解這個(gè)不等式,首先要使這個(gè)不等式有意義,即真數(shù)大于零,再根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性求解。

師:請(qǐng)你寫(xiě)一下這道題的解題過(guò)程。

生:<板書(shū)>

解:  x2+2x-3>0      x<-3 或 x>1

(3x+3)>0    ,   x>-1

x2+2x-3<(3x+3)    -2

不等式的解為:1

例 3 求下列函數(shù)的值域和單調(diào)區(qū)間。

⑴y=log0.5(x- x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

師:求例3中函數(shù)的的值域和單調(diào)區(qū)間要用及復(fù)合函數(shù)的思想方法。

下面請(qǐng)同學(xué)們來(lái)解⑴。

生:此函數(shù)可看作是由y= log0.5u, u= x- x2復(fù)合而成。

板書(shū):

解:⑴∵u= x- x2>0, ∴0

u= x- x2=-(x-0.5)2+0.25, ∴0

∴y= log0.5u≥log0.50.25=2

∴y≥2

x    x(0,0.5]   x[0.5,1)

u= x- x2

y= log0.5u

y=log0.5(x- x2)

函數(shù)y=log0.5(x- x2)的單調(diào)遞減區(qū)間(0,0.5],單調(diào)遞 增區(qū)間[0.5,1)

注:研究任何函數(shù)的性質(zhì)時(shí),都應(yīng)該首先保證這個(gè)函數(shù)有意義,否則函數(shù)都不存在,性質(zhì)就無(wú)從談起。

師:在⑴的基礎(chǔ)上,我們一起來(lái)解⑵。請(qǐng)同學(xué)們觀察一下⑴與⑵有什么區(qū)別?

生:⑴的底數(shù)是常值,⑵的底數(shù)是字母。

師:那么⑵如何來(lái)解?

生:只要對(duì)a進(jìn)行分類(lèi)討論,做法與⑴類(lèi)似。

板書(shū):略。

⒊小結(jié)

這堂課主要講解如何應(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)解決一些問(wèn)題,希望能通過(guò)這堂課使同學(xué)們對(duì)等價(jià)轉(zhuǎn)化、分類(lèi)討論等思想加以應(yīng)用,提高解題能力。

⒋作業(yè)

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數(shù))

⑵已知函數(shù)y=loga(x2-2x),(a>0,a≠1)

①求它的單調(diào)區(qū)間;②當(dāng)0

⑶已知函數(shù)y=loga (a>0, b>0, 且 a≠1)

①求它的定義域;②討論它的奇偶性;  ③討論它的單調(diào)性。

⑷已知函數(shù)y=loga(ax-1) (a>0,a≠1),

①求它的定義域;②當(dāng)x為何值時(shí),函數(shù)值大于1;③討論它的單調(diào)性。

5.課堂教學(xué)設(shè)計(jì)說(shuō)明

這節(jié)課是安排為習(xí)題課,主要利用對(duì)數(shù)函數(shù)的性質(zhì)解決一些問(wèn)題,整個(gè)一堂課分兩個(gè)部分:一 .比較數(shù)的大小,想通過(guò)這一部分的練習(xí),

培養(yǎng)同學(xué)們構(gòu)造函數(shù)的思想和分類(lèi)討論、數(shù)形結(jié)合的思想。二.函數(shù)的定義域, 值 域及單調(diào)性,想通過(guò)這一部分的練習(xí),能使同學(xué)們重視求函數(shù)的定義域。因?yàn)閷W(xué)生在求函數(shù)的值域和單調(diào)區(qū)間時(shí),往往不考慮函數(shù)的定義域,并且這種錯(cuò)誤很頑固,不易糾正。因此,力求學(xué)生做到想法正確,步驟清晰。為了調(diào)動(dòng)學(xué)生的積極性,突出學(xué)生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學(xué)生獨(dú)立完成。但是,每一道題的解題過(guò)程,老師都應(yīng)該給以板書(shū),這樣既讓學(xué)生有了獲取新知識(shí)的快樂(lè),又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡(jiǎn)明扼要地小結(jié),以使好學(xué)生掌握地更完善,較差的學(xué)生也能夠跟上。

高一數(shù)學(xué)公開(kāi)課教案篇4

一、學(xué)習(xí)目標(biāo)與自我評(píng)估

1 掌握利用單位圓的幾何方法作函數(shù) 的圖象

2 結(jié)合 的圖象及函數(shù)周期性的定義了解三角函數(shù)的周期性,及最小正周期

3 會(huì)用代數(shù)方法求 等函數(shù)的周期

4 理解周期性的幾何意義

二、學(xué)習(xí)重點(diǎn)與難點(diǎn)

“周期函數(shù)的概念”, 周期的求解。

三、學(xué)法指導(dǎo)

1、 是周期函數(shù)是指對(duì)定義域中所有 都有____,即 應(yīng)是恒等式。

2、周期函數(shù)一定會(huì)有周期,但不一定存在最小正周期。

四、學(xué)習(xí)活動(dòng)與意義建構(gòu)

五、重點(diǎn)與難點(diǎn)探究

例1、若鐘擺的高度 與時(shí)間 之間的函數(shù)關(guān)系如圖所示

(1)求該函數(shù)的周期;

(2)求 時(shí)鐘擺的高度。

例2、求下列函數(shù)的周期。

(1) (2)

總結(jié):(1)函數(shù) (其中 均為常數(shù),且___的周期T= 。

(2)函數(shù) (其中 均為常數(shù),且__的周期T= 。

例3、求證:____的周期為 __。

例4、(1)研究 和 函數(shù)的圖象,分析其周期性。(2)求證: 的周期為 (其中 均為常數(shù),

總結(jié):函數(shù) (其中 均為常數(shù),且___的周期T= 。

例5、(1)求 的周期。

(2)已知 滿足 ,求證: 是周期函數(shù)

課后思考:能否利用單位圓作函數(shù) 的圖象。

六、作業(yè):

七、自主體驗(yàn)與運(yùn)用

1、函數(shù) 的周期為 ( )

A、 B、 C、 D、

2、函數(shù) 的最小正周期是 ( )

A、 B、 C、 D、

3、函數(shù) 的最小正周期是 ( )

A、 B、 C、 D、

4、函數(shù) 的周期是 ( )

A、 B、 C、 D、

5、設(shè) 是定義域?yàn)镽,最小正周期為 的函數(shù),

若 ,則 的值等于 (  )

A、1 B、 C、0 D、

6、函數(shù) 的最小正周期是 ,則

7、已知函數(shù) 的最小正周期不大于2,則正整數(shù)的最小值是

8、求函數(shù) 的最小正周期為T(mén),且 ,則正整數(shù)的值是

9、已知函數(shù) 是周期為6的奇函數(shù),且 則

10、若函數(shù) ,則

11、用周期的定義分析 的周期。

12、已知函數(shù) ,如果使 的周期在 內(nèi),求正整數(shù) 的值

13、一機(jī)械振動(dòng)中,某質(zhì)子離開(kāi)平衡位置的位移 與時(shí)間 之間的

函數(shù)關(guān)系如圖所示:

(1) 求該函數(shù)的周期;

(2) 求 時(shí),該質(zhì)點(diǎn)離開(kāi)平衡位置的位移。

14、已知 是定義在R上的函數(shù),且對(duì)任意 有

成立,

(1) 證明: 是周期函數(shù);

(2) 若 求 的值。

兩角差的余弦公式

【使用說(shuō)明】

1、復(fù)習(xí)教材P124-P127頁(yè),40分鐘時(shí)間完成預(yù)習(xí)學(xué)案

2、有余力的學(xué)生可在完成探究案中的部分內(nèi)容。

【學(xué)習(xí)目標(biāo)】

知識(shí)與技能:理解兩角差的余弦公式的推導(dǎo)過(guò)程及其結(jié)構(gòu)特征并能靈活運(yùn)用。

過(guò)程與方法:應(yīng)用已學(xué)知識(shí)和方法思考問(wèn)題,分析問(wèn)題,解決問(wèn)題的能力。

情感態(tài)度價(jià)值觀: 通過(guò)公式推導(dǎo)引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和學(xué)習(xí)數(shù)學(xué)的興趣。

【重點(diǎn)】通過(guò)探索得到兩角差的余弦公式以及公式的靈活運(yùn)用

【難點(diǎn)】?jī)山遣钣嘞夜降耐茖?dǎo)過(guò)程

預(yù)習(xí)自學(xué)案

一、知識(shí)鏈接

1. 寫(xiě)出 的三角函數(shù)線 :

2. 向量 , 的數(shù)量積,

①定義:

②坐標(biāo)運(yùn)算法則:

3. , ,那么 是否等于 呢?

下面我們就探討兩角差的余弦公式

二、教材導(dǎo)讀

1.、兩角差的余弦公式的推導(dǎo)思路

如圖,建立單位圓O

(1)利用單位圓上的三角函數(shù)線

設(shè)

又OM=OB+BM

=OB+CP

=OA_____ +AP_____

=

從而得到兩角差的余弦公式:

____________________________________

(2)利用兩點(diǎn)間距離公式

如圖,角 的終邊與單位圓交于A( )

角 的終邊與單位圓交于B( )

角 的終邊與單位圓交于P( )

點(diǎn)T( )

AB與PT關(guān)系如何?

從而得到兩角差的余弦公式:

____________________________________

(3) 利用平面向量的知識(shí)

用 表示向量 ,

=( , ) =( , )

則 . =

設(shè) 與 的夾角為

①當(dāng) 時(shí):

=

從而得出

②當(dāng) 時(shí)顯然此時(shí) 已經(jīng)不是向量 的夾角,在 范圍內(nèi),是向量夾角的補(bǔ)角.我們?cè)O(shè)夾角為 ,則 + =

此時(shí) =

從而得出

2、兩角差的余弦公式

____________________________

三、預(yù)習(xí)檢測(cè)

1. 利用余弦公式計(jì)算 的值.

2. 怎樣求 的值

你的疑惑是什么?

________________________________________________________

______________________________________________________

探究案

例1. 利用差角余弦公式求 的值.

例2.已知 , 是第三象限角,求 的值.

訓(xùn)練案

一、 基礎(chǔ)訓(xùn)練題

1、

2、 ???????????

3、

二、綜合題

--------------------------------------------------

高一數(shù)學(xué)公開(kāi)課教案篇5

教學(xué)目標(biāo)

1.通過(guò)教學(xué)使學(xué)生理解的概念,推導(dǎo)并掌握通項(xiàng)公式.

2.使學(xué)生進(jìn)一步體會(huì)類(lèi)比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.

3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.

教學(xué)重點(diǎn),難點(diǎn)

重點(diǎn)、難點(diǎn)是的定義的歸納及通項(xiàng)公式的推導(dǎo).

教學(xué)用具

投影儀,多媒體軟件,電腦.

教學(xué)方法

討論、談話法.

教學(xué)過(guò)程

一、提出問(wèn)題

給出以下幾組數(shù)列,將它們分類(lèi),說(shuō)出分類(lèi)標(biāo)準(zhǔn).(幻燈片)

①-2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1, , ,…

⑤31,29,27,25,23,21,19,…

⑥1,-1,1,-1,1,-1,1,-1,…

⑦1,-10,100,-1000,10000,-100000,…

⑧0,0,0,0,0,0,0,…

由學(xué)生發(fā)表意見(jiàn)(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類(lèi)),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類(lèi)數(shù)列(學(xué)生看不出③的情況也無(wú)妨,得出定義后再考察③是否為).

二、講解新課

請(qǐng)學(xué)生說(shuō)出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類(lèi)似的例子,如變形蟲(chóng)分裂問(wèn)題.假設(shè)每經(jīng)過(guò)一個(gè)單位時(shí)間每個(gè)變形蟲(chóng)都分裂為兩個(gè)變形蟲(chóng),再假設(shè)開(kāi)始有一個(gè)變形蟲(chóng),經(jīng)過(guò)一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲(chóng),經(jīng)過(guò)兩個(gè)單位時(shí)間就有了四個(gè)變形蟲(chóng),…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲(chóng)個(gè)數(shù)得到了一列數(shù) 這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類(lèi)數(shù)列——. (這里播放變形蟲(chóng)分裂的多媒體軟件的第一步)

(板書(shū))

1.的定義(板書(shū))

根據(jù)與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給下定義.學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來(lái)的.教師寫(xiě)出的定義,標(biāo)注出重點(diǎn)詞語(yǔ).

請(qǐng)學(xué)生指出②③④⑥⑦各自的公比,并思考有無(wú)數(shù)列既是等差數(shù)列又是.學(xué)生通過(guò)觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問(wèn),還有沒(méi)有其他的例子,讓學(xué)生再舉兩例.而后請(qǐng)學(xué)生概括這類(lèi)數(shù)列的一般形式,學(xué)生可能說(shuō)形如 的數(shù)列都滿足既是等差又是,讓學(xué)生討論后得出結(jié)論:當(dāng) 時(shí),數(shù)列 既是等差又是,當(dāng) 時(shí),它只是等差數(shù)列,而不是.教師追問(wèn)理由,引出對(duì)的認(rèn)識(shí):

2.對(duì)定義的認(rèn)識(shí)(板書(shū))

(1)的首項(xiàng)不為0;

(2)的每一項(xiàng)都不為0,即 ;

問(wèn)題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為的什么條件?

(3)公比不為0.

用數(shù)學(xué)式子表示的定義.

是 ①.在這個(gè)式子的寫(xiě)法上可能會(huì)有一些爭(zhēng)議,如寫(xiě)成 ,可讓學(xué)生研究行不行,好不好;接下來(lái)再問(wèn),能否改寫(xiě)為 是 ?為什么不能?

式子 給出了數(shù)列第 項(xiàng)與第 項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)?(不能)確定一個(gè)需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式.

3.的通項(xiàng)公式(板書(shū))

問(wèn)題:用 和 表示第 項(xiàng) .

①不完全歸納法

②疊乘法

,… , ,這 個(gè)式子相乘得 ,所以 .

(板書(shū))(1)的通項(xiàng)公式

得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式.

(板書(shū))(2)對(duì)公式的認(rèn)識(shí)

由學(xué)生來(lái)說(shuō),最后歸結(jié):

①函數(shù)觀點(diǎn);

②方程思想(因在等差數(shù)列中已有認(rèn)識(shí),此處再?gòu)?fù)習(xí)鞏固而已).

這里強(qiáng)調(diào)方程思想解決問(wèn)題.方程中有四個(gè)量,知三求一,這是公式最簡(jiǎn)單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類(lèi)問(wèn)題).解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)

如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學(xué)可以試著編幾道題.

三、小結(jié)

1.本節(jié)課研究了的概念,得到了通項(xiàng)公式;

2.注意在研究?jī)?nèi)容與方法上要與等差數(shù)列相類(lèi)比;

3.用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用.

四、作業(yè) (略)

五、板書(shū)設(shè)計(jì)

1.等比數(shù)列的定義

2.對(duì)定義的認(rèn)識(shí)

3.等比數(shù)列的通項(xiàng)公式

(1)公式

(2)對(duì)公式的認(rèn)識(shí)

探究活動(dòng)

將一張很大的薄紙對(duì)折,對(duì)折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米.

參考答案:

30次后,厚度為,這個(gè)厚度超過(guò)了世界的山峰——珠穆朗瑪峰的高度.如果紙?jiān)俦∫恍热缂埡?.001毫米,對(duì)折34次就超過(guò)珠穆朗瑪峰的高度了.還記得國(guó)王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是 粒,用計(jì)算器算一下吧(用對(duì)數(shù)算也行).

100505 主站蜘蛛池模板: 污水提升器,污水提升泵,地下室排水,增压泵,雨水泵,智能供排水控制器-上海智流泵业有限公司 | 广西资质代办_建筑资质代办_南宁资质代办理_新办、增项、升级-正明集团 | 深圳美安可自动化设备有限公司,喷码机,定制喷码机,二维码喷码机,深圳喷码机,纸箱喷码机,东莞喷码机 UV喷码机,日期喷码机,鸡蛋喷码机,管芯喷码机,管内壁喷码机,喷码机厂家 | 二手电脑回收_二手打印机回收_二手复印机回_硒鼓墨盒回收-广州益美二手电脑回收公司 | 玻璃钢型材-玻璃钢风管-玻璃钢管道,生产厂家-[江苏欧升玻璃钢制造有限公司] | 全国冰箱|空调|洗衣机|热水器|燃气灶维修服务平台-百修家电 | 制氮设备_PSA制氮机_激光切割制氮机_氮气机生产厂家-苏州西斯气体设备有限公司 | 上海地磅秤|电子地上衡|防爆地磅_上海地磅秤厂家–越衡称重 | PC构件-PC预制构件-构件设计-建筑预制构件-PC构件厂-锦萧新材料科技(浙江)股份有限公司 | 消泡剂_水处理消泡剂_切削液消泡剂_涂料消泡剂_有机硅消泡剂_广州中万新材料生产厂家 | 火锅底料批发-串串香技术培训[川禾川调官网] | EPDM密封胶条-EPDM密封垫片-EPDM生产厂家 | app开发|app开发公司|小程序开发|物联网开发||北京网站制作|--前潮网络 | 全自动端子机|刺破式端子压接机|全自动双头沾锡机|全自动插胶壳端子机-东莞市傅氏兄弟机械设备有限公司 | 炭黑吸油计_测试仪,单颗粒子硬度仪_ASTM标准炭黑自销-上海贺纳斯仪器仪表有限公司(HITEC中国办事处) | 蜘蛛车-登高车-高空作业平台-高空作业车-曲臂剪叉式升降机租赁-重庆海克斯公司 | CTP磁天平|小电容测量仪|阴阳极极化_双液系沸点测定仪|dsj电渗实验装置-南京桑力电子设备厂 | 安徽千住锡膏_安徽阿尔法锡膏锡条_安徽唯特偶锡膏_卡夫特胶水-芜湖荣亮电子科技有限公司 | 转子泵_凸轮泵_凸轮转子泵厂家-青岛罗德通用机械设备有限公司 | 骨密度检测仪_骨密度分析仪_骨密度仪_动脉硬化检测仪专业生产厂家【品源医疗】 | 陕西自考报名_陕西自学考试网| 钢格板|热镀锌钢格板|钢格栅板|钢格栅|格栅板-安平县昊泽丝网制品有限公司 | 六自由度平台_六自由度运动平台_三自由度摇摆台—南京全控科技 | 电池高低温试验箱-气态冲击箱-双层电池防爆箱|简户百科 | 安徽控制器-合肥船用空调控制器-合肥家电控制器-合肥迅驰电子厂 安徽净化板_合肥岩棉板厂家_玻镁板厂家_安徽科艺美洁净科技有限公司 | 四川职高信息网-初高中、大专、职业技术学校招生信息网 | 涂层测厚仪_漆膜仪_光学透过率仪_十大创新厂家-果欧电子科技公司 | VI设计-LOGO设计公司-品牌设计公司-包装设计公司-导视设计-杭州易象设计 | 南京蜂窝纸箱_南京木托盘_南京纸托盘-南京博恒包装有限公司 | 春腾云财 - 为企业提供专业财税咨询、代理记账服务 | 气胀轴|气涨轴|安全夹头|安全卡盘|伺服纠偏系统厂家-天机传动 | 液压扳手-高品质液压扳手供应商 - 液压扳手, 液压扳手供应商, 德国进口液压拉马 | 广州迈驰新GMP兽药包装机首页_药品包装机_中药散剂包装机 | Boden齿轮油泵-ketai齿轮泵-yuken油研-无锡新立液压有限公司 | 存包柜厂家_电子存包柜_超市存包柜_超市电子存包柜_自动存包柜-洛阳中星 | 阳光模拟试验箱_高低温试验箱_高低温冲击试验箱_快速温变试验箱|东莞市赛思检测设备有限公司 | 成都LED显示屏丨室内户外全彩led屏厂家方案报价_四川诺显科技 | 宽带办理,电信宽带,移动宽带,联通宽带,电信宽带办理,移动宽带办理,联通宽带办理 | 合肥网带炉_安徽箱式炉_钟罩炉-合肥品炙装备科技有限公司 | 卫生人才网-中国专业的医疗卫生医学人才网招聘网站! | 专业甜品培训学校_广东糖水培训_奶茶培训_特色小吃培训_广州烘趣甜品培训机构 |