高一數學怎么寫教案
教案可以幫助教師從學生實際情況出發,面向大多數學生,調動學生學習的積極性。什么才算好的高一數學怎么寫教案?接下來給大家分享一些高一數學怎么寫教案,供大家參考。
高一數學怎么寫教案篇1
一、課標要求:
理解充分條件、必要條件與充要條件的意義,會判斷充分條件、必要條件與充要條件.
二、知識與方法回顧:
1、充分條件、必要條件與充要條件的概念:
2、從邏輯推理關系上看充分不必要條件、必要不充分條件與充要條件:
3、從集合與集合之間關系上看充分條件、必要條件與充要條件:
4、特殊值法:判斷充分條件與必要條件時,往往用特殊值法來否定結論
5、化歸思想:
表示p等價于q,等價命題可以進行相互轉化,當我們要證明p成立時,就可以轉化為證明q成立;
這里要注意原命題逆否命題、逆命題否命題只是等價形式之一,對于條件或結論是不等式關系(否定式)的命題一般應用化歸思想.
6、數形結合思想:
利用韋恩圖(即集合的包含關系)來判斷充分不必要條件,必要不充分條件,充要條件.
三、基礎訓練:
1、設命題若p則q為假,而若q則p為真,則p是q的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
2、設集合M,N為是全集U的兩個子集,則是的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
3、若是實數,則是的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
四、例題講解
例1已知實系數一元二次方程,下列結論中正確的是()
(1)是這個方程有實根的充分不必要條件
(2)是這個方程有實根的必要不充分條件
(3)是這個方程有實根的.充要條件
(4)是這個方程有實根的充分不必要條件
A.(1)(3)B.(3)(4)C.(1)(3)(4)D.(2)(3)(4)
例2(1)已知h0,a,bR,設命題甲:,命題乙:且,問甲是乙的()
(2)已知p:兩條直線的斜率互為負倒數,q:兩條直線互相垂直,則p是q的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
變式:a=0是直線與平行的條件;
例3如果命題p、q都是命題r的必要條件,命題s是命題r的充分條件,命題q是命題s
的充分條件,那么命題p是命題q的條件;命題s是命題q的條件;命題r是命題q的條件.
例4設命題p:4x-31,命題q:x2-(2a+1)x+a(a+1)0,若﹁p是﹁q的必要不充分條件,求實數a的取值范圍;
例5設是方程的兩個實根,試分析是兩實根均大于1的什么條件?并給予證明.
五、課堂練習
1、設命題p:,命題q:,則p是q的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
2、給出以下四個命題:①若p則q②若﹁r則﹁q③若r則﹁s
④若﹁s則q若它們都是真命題,則﹁p是s的條件;
3、是否存在實數p,使是的充分條件?若存在,求出p的取值范圍;若不存在說明理由.
六、課堂小結:
七、教學后記:
高三班學號姓名日期:月日
1、AB是AB=B的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
2、是的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
3、2x2-5x-30的一個必要不充分條件是()
A.-
4、2且b是a+b4且ab的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
5、設a1、b1、c1、a2、b2、c2均為非零實數,不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分別為集合M和N,那么是M=N的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件
6、若命題A:,命題B:,則命題A是B的條件;
7、設條件p:x=x,條件q:x2-x,則p是q的條件;
8、方程mx2+2x+1=0至少有一個負根的充要條件是;
9、關于x的方程x2+mx+n=0有兩個小于1的正根的一個充要條件是;
10、已知,求證:的充要條件是;
11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分條件,求實數m的取值范圍。
12、已知關于x的方程(1-a)x2+(a+2)x-4=0,aR,求:
(1)方程有兩個正根的充要條件;
(2)方程至少有一正根的充要條件.
高一數學怎么寫教案篇2
課題:
人教版全日制普通高級中學教科書數學第一冊(上)《2.7對數》
教材分析:
本節內容主要學習對數的概念及其對數式與指數式的互化。它屬于函數領域的知識。而對數的概念是對數函數部分教學中的核心概念之一,而函數的思想方法貫穿在高中數學教學的始終。通過對數的學習,可以解決數學中知道底數和冪值求指數的問題,以及對數函數的相關問題。
學情分析:
在ab=N(a>0,a≠1)中,知道底數和指數可以求冪值,那么知道底數和冪值如何求求指數,從學生認知的角度自然就產生了這樣的需要。因此,在前面學習指數的基礎上學習對數的概念是水到渠成的事。
教學目標:
(一)教學知識點:
1.對數的概念。
2.對數式與指數式的互化。
(二)能力目標:
1.理解對數的概念。
2.能夠進行對數式與指數式的互化。
(三)德育滲透目標:
1.認識事物之間的相互聯系與相互轉化,
2.用聯系的觀點看問題。
教學重點與難點:
重點是對數定義,難點是對數概念的理解。
高一數學怎么寫教案篇3
一、指導思想與理論依據
數學是一門培養人的思維,發展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節課我以建構主義的“創設問題情境——提出數學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現的更加完美。
二、教材分析
三角函數的誘導公式是普通高中課程標準實驗教科書(人教A版)數學必修四,第一章第三節的內容,其主要內容是三角函數誘導公式中的公式(二)至公式(六).本節是第一課時,教學內容為公式(二)、(三)、(四).教材要求通過學生在已經掌握的任意角的三角函數的定義和誘導公式(一)的基礎上,利用對稱思想發現任意角與、、終邊的對稱關系,發現他們與單位圓的交點坐標之間關系,進而發現他們的三角函數值的關系,即發現、掌握、應用三角函數的誘導公式公式(二)、(三)、(四).同時教材滲透了轉化與化歸等數學思想方法,為培養學生養成良好的學習習慣提出了要求.為此本節內容在三角函數中占有非常重要的地位.
三、學情分析
本節課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發現的教學方法應該能輕松的完成本節課的教學內容.
四、教學目標
(1).基礎知識目標:理解誘導公式的發現過程,掌握正弦、余弦、正切的誘導公式;
(2).能力訓練目標:能正確運用誘導公式求任意角的正弦、余弦、正切值,以及進行簡單的三角函數求值與化簡;
(3).創新素質目標:通過對公式的推導和運用,提高三角恒等變形的能力和滲透化歸、數形結合的數學思想,提高學生分析問題、解決問題的能力;
(4).個性品質目標:通過誘導公式的學習和應用,感受事物之間的普通聯系規律,運用化歸等數學思想方法,揭示事物的本質屬性,培養學生的唯物史觀.
五、教學重點和難點
1.教學重點
理解并掌握誘導公式.
2.教學難點
正確運用誘導公式,求三角函數值,化簡三角函數式.
六、教法學法以及預期效果分析
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想方法,如何實現這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預期效果等三個方面做如下分析.
1.教法
數學教學是數學思維活動的教學,而不僅僅是數學活動的結果,數學學習的目的不僅僅是為了獲得數學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質.
在本節課的教學過程中,本人以學生為主題,以發現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環境,讓學生體味學習的快樂和成功的喜悅.
2.學法
“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生程度的消化知識,提高學習熱情是教者必須思考的問題.
在本節課的教學過程中,本人引導學生的學法為思考問題、共同探討、解決問題簡單應用、重現探索過程、練習鞏固。讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉化為主動的自主學習.
3.預期效果
本節課預期讓學生能正確理解誘導公式的發現、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題.
七、教學流程設計
(一)創設情景
1.復習銳角300,450,600的三角函數值;
2.復習任意角的三角函數定義;
3.問題:由,你能否知道sin2100的值嗎?引如新課.
設計意圖
自信的鼓勵是增強學生學習數學的自信,簡單易做的題加強了每個學生學習的熱情,具體數據問題的出現,讓學生既有好像會做的心理但又有迷惑的茫然,去發掘潛力期待尋找機會證明我能行,從而思考解決的辦法.
(二)新知探究
1.讓學生發現300角的終邊與2100角的終邊之間有什么關系;
2.讓學生發現300角的終邊和2100角的終邊與單位圓的交點的坐標有什么關系;
3.Sin2100與sin300之間有什么關系.
設計意圖
由特殊問題的引入,使學生容易了解,實現教學過程的平淡過度,為同學們探究發現任意角與的三角函數值的關系做好鋪墊.
(三)問題一般化
探究一
1.探究發現任意角的終邊與的終邊關于原點對稱;
2.探究發現任意角的終邊和角的終邊與單位圓的交點坐標關于原點對稱;
3.探究發現任意角與的三角函數值的關系.
設計意圖
首先應用單位圓,并以對稱為載體,用聯系的觀點,把單位圓的性質與三角函數聯系起來,數形結合,問題的設計提問從特殊到一般,從線對稱到點對稱到三角函數值之間的關系,逐步上升,一氣呵成誘導公式二.同時也為學生將要自主發現、探索公式三和四起到示范作用,下面練習設計為了熟悉公式一,讓學生感知到成功的喜悅,進而敢于挑戰,敢于前進
(四)練習
利用誘導公式(二),口答下列三角函數值.
(1).;(2).;(3)..
喜悅之后讓我們重新啟航,接受新的挑戰,引入新的問題.
(五)問題變形
由sin3000=-sin600出發,用三角的定義引導學生求出sin(-3000),Sin1500值,讓學生聯想若已知sin3000=-sin600,能否求出sin(-3000),Sin1500)的值.學生自主探究
高一數學怎么寫教案篇4
一元二次不等式的解法
教學目標
(1)掌握一元二次不等式的解法;
(2)知道一元二次不等式可以轉化為一元一次不等式組;
(3)了解簡單的分式不等式的解法;
(4)能利用二次函數與一元二次方程來求解一元二次不等式,理解它們三者之間的內在聯系;
(5)能夠進行較簡單的分類討論,借助于數軸的直觀,求解簡單的含字母的一元二次不等式;
(6)通過利用二次函數的圖象來求解一元二次不等式的解集,培養學生的數形結合的數學思想;
(7)通過研究函數、方程與不等式之間的內在聯系,使學生認識到事物是相互聯系、相互轉化的,樹立辨證的世界觀.
教學重點:一元二次不等式的解法;
教學難點:弄清一元二次不等式與一元二次方程、二次函數的關系.
教與學過程設計
第一課時
Ⅰ.設置情境
問題:
①解方程
②作函數 的圖像
③解不等式
【置疑】在解決上述三問題的基礎上分析,一元一次函數、一元一次方程、一元一次不等式之間的關系。能通過觀察一次函數的圖像求得一元一次不等式的解集嗎?
【回答】函數圖像與x軸的交點橫坐標為方程的根,不等式 的解集為函數圖像落在x軸上方部分對應的橫坐標。能。
通過多媒體或其他載體給出下列表格。扼要講解怎樣通過觀察一次函數的圖像求得一元一次不等式的解集。注意色彩或彩色粉筆的運用
在這里我們發現一元一次方程,一次不等式與一次函數三者之間有著密切的聯系。利用這種聯系(集中反映在相應一次函數的圖像上!)我們可以快速準確地求出一元一次不等式的解集,類似地,我們能不能將現在要求解的一元二次不等式與二次函數聯系起來討論找到其求解方法呢?
Ⅱ.探索與研究
我們現在就結合不等式 的求解來試一試。(師生共同活動用“特殊點法”而非課本上的“列表描點”的方法作出 的圖像,然后請一位程度中下的同學寫出相應一元二次方程及一元二次不等式的解集。)
【答】方程 的解集為
不等式 的解集為
【置疑】哪位同學還能寫出 的解法?(請一程度差的同學回答)
【答】不等式 的解集為
我們通過二次函數 的圖像,不僅求得了開始上課時我們還不知如何求解的那個第(5)小題 的解集,還求出了 的解集,可見利用二次函數的圖像來解一元二次不等式是個十分有效的方法。
下面我們再對一般的一元二次不等式 與 來進行討論。為簡便起見,暫只考慮 的情形。請同學們思考下列問題:
如果相應的一元二次方程 分別有兩實根、惟一實根,無實根的話,其對應的二次函數 的圖像與x軸的位置關系如何?(提問程度較好的學生)
【答】二次函數 的圖像開口向上且分別與x軸交于兩點,一點及無交點。
現在請同學們觀察表中的二次函數圖,并寫出相應一元二次不等式的解集。(通過多媒體或其他載體給出以下表格)
【答】 的解集依次是
的解集依次是
它是我們今后求解一元二次不等式的主要工具。應盡快將表中的結果記住。其關鍵就是抓住相應二次函數 的圖像。
課本第19頁上的例1.例2.例3.它們均是求解二次項系數 的一元二次不等式,卻都沒有給出相應二次函數的圖像。其解答過程雖很簡練,卻不太直觀。現在我們在課本預留的位置上分別給它們補上相應二次函數圖像。
(教師巡視,重點關注程度稍差的同學。)
Ⅲ.演練反饋
1.解下列不等式:
(1) (2)
(3) (4)
2.若代數式 的值恒取非負實數,則實數x的取值范圍是 。
3.解不等式
(1) (2)
參考答案:
1.(1) ;(2) ;(3) ;(4)R
2.
3.(1)
(2)當 或 時, ,當 時,
當 或 時, 。
Ⅳ.總結提煉
這節課我們學習了二次項系數 的一元二次不等式的解法,其關鍵是抓住相應二次函數的圖像與x軸的交點,再對照課本第39頁上表格中的結論給出所求一元二次不等式的解集。
(五)、課時作業
(P20.練習等3、4兩題)
(六)、板書設計
第二課時
Ⅰ.設置情境
(通過講評上一節課課后作業中出現的問題,復習利用“三個二次”間的關系求解一元二次不等式的主要操作過程。)
上節課我們只討論了二次項系數 的一元二次不等式的求解問題。肯定有同學會問,那么二次項系數 的一元二次不等式如何來求解?咱們班上有誰能解答這個疑問呢?
Ⅱ.探索研究
(學生議論紛紛.有的說仍然利用二次函數的圖像,有的說將二次項的系數變為正數后再求解,…….教師分別請持上述見解的學生代表進一步說明各自的見解.)
生甲:只要將課本第39頁上表中的二次函數圖像次依關于x軸翻轉變成開口向下的拋物線,再根據可得的圖像便可求得二次項系數 的一元二次不等式的解集.
生乙:我覺得先在不等式兩邊同乘以-1將二次項系數變為正數后直接運用上節課所學的方法求解就可以了.
師:首先,這兩種見解都是合乎邏輯和可行的.不過按前一見解來操作的話,同學們則需再記住一張類似于第39頁上的表格中的各結論.這不但加重了記憶負擔,而且兩表中的結論容易搞混導致錯誤.而按后一種見解來操作時則不存在這個問題,請同學們閱讀第19頁例4.
(待學生閱讀完畢,教師再簡要講解一遍.)
[知識運用與解題研究]
由此例可知,對于二次項系數的一元二次不等式是將其通過同解變形化為 的一元二次不等式來求解的,因此只要掌握了上一節課所學過的方法。我們就能求
解任意一個一元二次不等式了,請同學們求解以下兩不等式.(調兩位程度中等的學生演板)
(1) (2)
(分別為課本P21習題1.5中1大題(2)、(4)兩小題.教師講評兩位同學的解答,注意糾正表述方面存在的問題.)
訓練二 可化為一元一次不等式組來求解的不等式.
目前我們熟悉了利用“三個二次”間的關系求解一元二次不等式的方法雖然對任意一元二次不等式都適用,但具體操作起來還是讓我們感到有點麻煩.故在求解形如 (或 )的一元二次不等式時則根據(有理數)乘(除)運算的“符號法則”化為同學們更加熟悉的一元一次不等式組來求解.現在清同學們閱讀課本P20上關于不等式 求解的內容并思考:原不等式的解集為什么是兩個一次不等式組解集的并集?(待學生閱讀完畢,請一程度較好,表達能力較強的學生回答該問題.)
【答】因為滿足不等式組 或 的x都能使原不等式 成立,且反過來也是對的,故原不等式的解集是兩個一元二次不等式組解集的并集.
這個回答說明了原不等式的解集A與兩個一次不等式組解集的并集B是互為子集的關系,故它們必相等,現在請同學們求解以下各不等式.(調三位程度各異的學生演板.教師巡視,重點關注程度較差的學生).
(1) [P20練習中第1大題]
(2) [P20練習中第1大題]
(3) [P20練習中第2大題]
(老師扼要講評三位同學的解答.尤其要注意糾正表述方面存在的問題.然后講解P21例5).
例5 解不等式
因為(有理數)積與商運算的“符號法則”是一致的,故求解此類不等式時,也可像求解 (或 )之類的不等式一樣,將其化為一元一次不等式組來求解。具體解答過程如下。
解:(略)
現在請同學們完成課本P21練習中第3、4兩大題。
(等學生完成后教師給出答案,如有學生對不上答案,由其本人追查原因,自行糾正。)
[訓練三]用“符號法則”解不等式的復式訓練。
(通過多媒體或其他載體給出下列各題)
1.不等式 與 的解集相同此說法對嗎?為什么[補充]
2.解下列不等式:
(1) [課本P22第8大題(2)小題]
(2) [補充]
(3) [課本P43第4大題(1)小題]
(4) [課本P43第5大題(1)小題]
(5) [補充]
(每題均先由學生說出解題思路,教師扼要板書求解過程)
參考答案:
1.不對。同 時前者無意義而后者卻能成立,所以它們的解集是不同的。
2.(1)
(2)原不等式可化為: ,即
解集為 。
(3)原不等式可化為
解集為
(4)原不等式可化為 或
解集為
(5)原不等式可化為: 或 解集為
Ⅲ.總結提煉
這節課我們重點講解了利用(有理數)乘除法的符號法則求解左式為若干一次因式的積或商而右式為0的不等式。值得注意的是,這一方法對符合上述形狀的高次不等式也是有效的,同學們應掌握好這一方法。
(五)布置作業
(P22.2(2)、(4);4;5;6。)
(六)板書設計
高一數學怎么寫教案篇5
一、教材分析
1、教材的地位和作用
一元二次方程是中學教學的主要內容,在初中代數中占有重要的地位,在一元二次方程的前面,學生學了實數與代數式的運算,一元一次方程(包括可化為一元一次方程的分式方程)和一次方程組,上述內容都是學習一元二次方程的基礎,通過一元二次方程的學習,就可以對上述內容加以鞏固,一元二次方程也是以后學習(指數方式,對數方程,三角方程以及不等式,函數,二次曲線等內容)的基礎,此外,學習一元二次方程對其他學科也有重要的意義。
2、教學目標及確立目標的依據
九年義務教育大綱對這部分的要求是:“使學生了解一元二次方程的概念”,依據教學大綱的要求及教材的內容,針對學生的理解和接受知識的實際情況,以提高學生的素質為主要目的而制定如下教學目標。
知識目標:使學生進一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
能力目標:通過一元二次方程概念的教學,培養學生善于觀察,發現,探索,歸納問題的能力,培養學生創造性思維和邏輯推理的能力。
德育目標:培養學生把感性認識上升到理性認識的辯證唯物主義的觀點。
3、重點,難點及確定重難點的依據
“一元二次方程”有著承上啟下的作用,在今后的學習中有廣泛的應用,因此本節課做為起始課的重點是一元二次方程的概念,一元二次方程(特別是含有字母系數的)化成一般形式是本節課的難點。
二、教材處理
在教學中,我發現有的學生對概念背得很熟,但在準確和熟練應用方面較差,缺乏應變能力,針對學生中存在的這些問題,本節課突出對教學概念形成過程的教學,采用探索發現的方法研究概念,并引導學生進行創造性學習。
三、教學方法和學法
教學中,我運用啟發引導的方法讓學生從一元一次方程入手,類比發現并歸納出一元二次方程的概念,啟發學生發現規律,并總結規律,最后達到問題解決。
四、教學手段
采用投影儀
五、教學程序
1、新課導入:
(1)什么叫一元一次方程?(并引入一元二次方程的概念做鋪墊)
(2)列方程解應用題的方法,步驟?(并引例打基礎)
課本引例(如圖)由教師提出并分析其中的數量關系。(用實際問題引出一元二次方程,可以幫助學生認識到一元二次方程是來源于客觀需要的)
設出求知數,列出代數式,并根據等量關系列出方程
高一數學怎么寫教案篇6
一、教材
《直線與圓的位置關系》是高中人教版必修2第四章第二節的內容,直線和圓的位置關系是本章的重點內容之一。從知識體系上看,它既是點與圓的位置關系的延續與提高,又是學習切線的判定定理、圓與圓的位置關系的基礎。從數學思想方法層面上看它運用運動變化的觀點揭示了知識的發生過程以及相關知識間的內在聯系,滲透了數形結合、分類討論、類比、化歸等數學思想方法,有助于提高學生的思維品質。
二、學情
學生初中已經接觸過直線與圓相交、相切、相離的定義和判定;且在上節的學習過程中掌握了點的坐標、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標法研究點與圓的位置關系的基礎;具有一定的數形結合解題思想的基礎。
三、教學目標
(一)知識與技能目標
能夠準確用圖形表示出直線與圓的三種位置關系;可以利用聯立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關系。
(二)過程與方法目標
經歷操作、觀察、探索、總結直線與圓的位置關系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。
(三)情感態度價值觀目標
激發求知欲和學習興趣,鍛煉積極探索、發現新知識、總結規律的能力,解題時養成歸納總結的良好習慣。
四、教學重難點
(一)重點
用解析法研究直線與圓的位置關系。
(二)難點
體會用解析法解決問題的數學思想。
五、教學方法
根據本節課教材內容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術工具,以幾何畫板為平臺,通過圖形的動態演示,變抽象為直觀,為學生的數學探究與數學思維提供支持.在教學中采用小組合作學習的方式,這樣可以為不同認知基礎的學生提供學習機會,同時有利于發揮各層次學生的作用,教師始終堅持啟發式教學原則,設計一系列問題串,以引導學生的數學思維活動。
六、教學過程
(一)導入新課
教師借助多媒體創設泰坦尼克號的情景,并從中抽象出數學模型:已知冰山的分布是一個半徑為r的圓形區域,圓心位于輪船正西的l處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?
教師引導學生回顧初中已經學習的直線與圓的位置關系,將所想到的航行路線轉化成數學簡圖,即相交、相切、相離。
設計意圖:在已有的知識基礎上,提出新的問題,有利于保持學生知識結構的連續性,同時開闊視野,激發學生的學習興趣。
(二)新課教學——探究新知
教師提問如何判斷直線與圓的位置關系,學生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學所想到的思路。在整個交流討論中,教師既要有對正確認識的贊賞,又要有對錯誤見解的分析及對該學生的鼓勵。
判斷方法:
(1)定義法:看直線與圓公共點個數
即研究方程組解的個數,具體做法是聯立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關系。
(2)比較法:圓心到直線的距離d與圓的半徑r做比較,
(三)合作探究——深化新知
教師進一步拋出疑問,對比兩種方法,由學生觀察實踐發現,兩種方法本質相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎的題目,學生解答,總結思路。
已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關系?
讓學生自主探索,討論交流,并闡述自己的解題思路。
當已知了直線與圓的方程之后,圓心坐標和半徑r易得到,問題的關鍵是如何得到圓心到直線的距離d,他的本質是點到直線的距離,便可以直接利用點到直線的距離公式求d。類比前面所學利用直線方程求兩直線交點的方法,聯立直線與圓的方程,組成方程組,通過方程組解得個數確定直線與圓的交點個數,進一步確定他們的位置關系。最后明確解題步驟。
(四)歸納總結——鞏固新知
為了將結論由特殊推廣到一般引導學生思考:
可由方程組的解的不同情況來判斷:
當方程組有兩組實數解時,直線l與圓C相交;
當方程組有一組實數解時,直線l與圓C相切;
當方程組沒有實數解時,直線l與圓C相離。
活動:我將抽取兩位同學在黑板上扮演,并在巡視過程中對部分學生加以指導。最后對黑板上的兩名學生的解題過程加以分析完善。通過對基礎題的練習,鞏固兩種判斷直線與圓的位置關系判斷方法,并使每一個學生獲得后續學習的信心。
(五)小結作業
在小結環節,我會以口頭提問的方式:
(1)這節課學習的主要內容是什么?
(2)在數學問題的解決過程中運用了哪些數學思想?
設計意圖:啟發式的課堂小結方式能讓學生主動回顧本節課所學的知識點。也促使學生對知識網絡進行主動建構。
作業:在學生回顧本堂學習內容明確兩種解題思路后,教師讓學生對比兩種解法,那種更簡捷,明確本節課主要用比較d與r的關系來解決這類問題,對用方程組解的個數的判斷方法,要求學生課外做進一步的探究,下一節課匯報。
七、板書設計
我的板書本著簡介、直觀、清晰的原則,這就是我的板書設計。
高一數學怎么寫教案篇7
一、教材分析
1、 教材的地位和作用:
函數是數學中最主要的概念之一,而函數概念貫穿在中學數學的始終,概念是數學的基礎,概念性強是函數理論的一個顯著特點,只有對概念作到深刻理解,才能正確靈活地加以應用。本課中對函數概念理解的程度會直接影響其它知識的學習,所以函數的第一課時非常的重要。
2、 教學目標及確立的依據:
教學目標:
(1) 教學知識目標:了解對應和映射概念、理解函數的近代定義、函數三要素,以及對函數抽象符號的理解。
(2) 能力訓練目標:通過教學培養的抽象概括能力、邏輯思維能力。
(3) 德育滲透目標:使懂得一切事物都是在不斷變化、相互聯系和相互制約的辯證唯物主義觀點。
教學目標確立的依據:
函數是數學中最主要的概念之一,而函數概念貫穿整個中學數學,如:數、式、方程、函數、排列組合、數列極限等都是以函數為中心的代數。加強函數教學可幫助學好其他的內容。而掌握好函數的概念是學好函數的基石。
3、教學重點難點及確立的依據:
教學重點:映射的概念,函數的近代概念、函數的三要素及函數符號的理解。
教學難點:映射的概念,函數近代概念,及函數符號的理解。
重點難點確立的依據:
映射的概念和函數的近代定義抽象性都比較強,要求學生的理性認識的能力也比較高,對于剛剛升入高中不久的來說不易理解。而且由于函數在高考中可以以低、中、高擋題出現,所以近年來有一種“函數熱”的趨勢,所以本節的重點難點必然落在映射的概念和函數的近代定義及函數符號的理解與運用上。
二、教材的處理:
將映射的定義及類比手法的運用作為本課突破難點的關鍵。 函數的定義,是以集合、映射的觀點給出,這與初中教材變量值與對應觀點給出不一樣了,從而給本身就很抽象的函數概念的理解帶來更大的困難。為解決這難點,主要是從實際出發調動學生的學習熱情與參與意識,運用引導對比的手法,啟發引導學生進行有目的的反復比較幾個概念的異同,使真正對函數的概念有很準確的認識。
三、教學方法和學法
教學方法:講授為主,自主預習為輔。
依據是:因為以新的觀點認識函數概念及函數符號與運用時,更重要的是必須給學生講清楚概念及注意事項,并通過師生的共同討論來幫助學生深刻理解,這樣才能使函數的概念及符號的運用在學生的思想和知識結構中打上深刻的烙印,為能學好后面的知識打下堅實的基礎。
學法:四、教學程序
一、課程導入
通過舉以下一個通俗的例子引出通過某個對應法則可以將兩個非空集合聯系在一起。
例1:把高一(12)班和高一(11)全體同學分別看成是兩個集合,問,通過“找好朋友”這個對應法則是否能將這兩個集合的某些元素聯系在一起?
二. 新課講授:
(1) 接著再通過幻燈片給出六組學生熟悉的數集的對應關系引導學生歸納它們的共同性質(一對一,多對一),進而給出映射的概念,表示符號f:a→b,及原像和像的定義。強調指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的對應法則 f。進一步引導判斷一個從a到b的對應是否為映射的關鍵是看a中的任意一個元素通過對應法則f在b中是否有確定的元素與之對應。
(2)鞏固練習課本52頁第八題。
此練習能讓更深刻的認識到映射可以“一對多,多對一”但不能是“一對多”。
例1. 給出學生初中學過的函數的傳統定義和幾個簡單的一次、二次函數,通過畫圖表示這些函數的對應關系,引導發現它們是特殊的映射進而給出函數的近代定義(設a、b是兩個非空集合,如果按照某種對應法則f,使得a中的任何一個元素在集合b中都有的元素與之對應則這樣的對應叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對應法則f),并說明把函f:a→b記為y=f(_),其中自變量_的取值范圍a叫做函數的定義域,與_的值相對應的y(或f(_))值叫做函數值,函數值的集合{ f(_):_∈a}叫做函數的值域。
并把函數的近代定義與映射定義比較使認識到函數與映射的區別與聯系。(函數是非空數集到非空數集的映射)。
再以讓判斷的方式給出以下關于函數近代定義的注意事項:2. 函數是非空數集到非空數集的映射。
3. f表示對應關系,在不同的函數中f的具體含義不一樣。
4. f(_)是一個符號,不表示f與_的乘積,而表示_經過f作用后的結果。
5. 集合a中的數的任意性,集合b中數的性。
6. “f:a→b”表示一個函數有三要素:法則f(是核心),定義域a(要優先),值域c(上函數值的集合且c∈b)。
三.講解例題
例1.問y=1(_∈a)是不是函數?
解:y=1可以化為y=0__+1
畫圖可以知道從_的取值范圍到y的取值范圍的對應是“多對一”是從非空數集到非空數集的映射,所以它是函數。
[注]:引導從集合,映射的觀點認識函數的定義。
四.課時小結:
1. 映射的定義。
2. 函數的近代定義。
3. 函數的三要素及符號的正確理解和應用。
4. 函數近代定義的五大注意點。
五.課后作業及板書設計
書本p51 習題2.1的1、2寫在書上3、4、5上交。
預習函數三要素的定義域,并能求簡單函數的定義域。
函數(一)
一、映射:
2.函數近代定義: 例題練習
二、函數的定義 [注]1—5
1.函數傳統定義
三、作業:
高一數學怎么寫教案篇8
【考點闡述】
兩角和與差的正弦、余弦、正切.二倍角的正弦、余弦、正切.
【考試要求】
(3)掌握兩角和與兩角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.
(4)能正確運用三角公式,進行簡單三角函數式的化簡、求值和恒等式證明.
【考題分類】
(一)選擇題(共5題)
1.(海南寧夏卷理7)=()
A.B.C.2D.
解:,選C。
2.(山東卷理5文10)已知cos(α-)+sinα=
(A)-(B)(C)-(D)
解:,,
3.(四川卷理3文4)()
(A)(B)(C)(D)
【解】:∵
故選D;
【點評】:此題重點考察各三角函數的關系;
4.(浙江卷理8)若則=()
(A)(B)2(C)(D)
解析:本小題主要考查三角函數的求值問題。由可知,兩邊同時除以得平方得,解得或用觀察法.
5.(四川延考理5)已知,則()
(A)(B)(C)(D)
解:,選C
(二)填空題(共2題)
1.(浙江卷文12)若,則_________。
解析:本小題主要考查誘導公式及二倍角公式的應用。由可知,;而。答案:
2.(上海春卷6)化簡:.
(三)解答題(共1題)
1.(上海春卷17)已知,求的值.
[解]原式……2分
.……5分
又,,……9分
.……12分文章
高一數學怎么寫教案篇9
學習目標
1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質
2、掌握標準方程中的幾何意義
3、能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題
一、預習檢查
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
3、雙曲線的漸進線方程為、
4、設分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是、
二、問題探究
探究1、類比橢圓的幾何性質寫出雙曲線的幾何性質,畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關系、
練習:已知雙曲線經過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是、
例1根據以下條件,分別求出雙曲線的標準方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
例2已知雙曲線,直線過點,左焦點到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率、
例3(理)求離心率為,且過點的雙曲線標準方程、
三、思維訓練
1、已知雙曲線方程為,經過它的右焦點,作一條直線,使直線與雙曲線恰好有一個交點,則設直線的斜率是、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
4、(理)設是雙曲線上一點,雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點,若,則、
四、知識鞏固
1、已知雙曲線方程為,過一點(0,1),作一直線,使與雙曲線無交點,則直線的斜率的集合是、
2、設雙曲線的一條準線與兩條漸近線交于兩點,相應的焦點為,若以為直徑的圓恰好過點,則離心率為、
3、已知雙曲線的左,右焦點分別為,點在雙曲線的右支上,且,則雙曲線的離心率的值為、
4、設雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
5、(理)雙曲線的焦距為,直線過點和,且點(1,0)到直線的距離與點(-1,0)到直線的距離之和、求雙曲線的離心率的取值范圍、
高一數學怎么寫教案篇10
目標:
1.讓學生熟練掌握二次函數的圖象,并會判斷一元二次方程根的存在性及根的個數;
2.讓學生了解函數的零點與方程根的聯系;
3.讓學生認識到函數的圖象及基本性質(特別是單調性)在確定函數零點中的作用;
4。培養學生動手操作的能力。
二、教學重點、難點
重點:零點的概念及存在性的判定;
難點:零點的確定。
三、復習引入
例1:判斷方程x2-x-6=0解的存在。
分析:考察函數f(x)=x2-x-6,其
圖像為拋物線容易看出,f(0)=-60,
f(4)0,f(-4)0
由于函數f(x)的圖像是連續曲線,因此,
點B(0,-6)與點C(4,6)之間的那部分曲線
必然穿過x軸,即在區間(0,4)內至少有點
X1使f(X1)=0;同樣,在區間(-4,0)內也至
少有點X2,使得f(X2)=0,而方程至多有兩
個解,所以在(-4,0),(0,4)內各有一解
定義:對于函數y=f(x),我們把使f(x)=0的實數x叫函數y=f(x)的零點
抽象概括
y=f(x)的圖像與x軸的交點的橫坐標叫做該函數的零點,即f(x)=0的解。
若y=f(x)的圖像在[a,b]上是連續曲線,且f(a)f(b)0,則在(a,b)內至少有一個零點,即f(x)=0在(a,b)內至少有一個實數解。
f(x)=0有實根(等價與y=f(x))與x軸有交點(等價與)y=f(x)有零點
所以求方程f(x)=0的根實際上也是求函數y=f(x)的零點
注意:1、這里所說若f(a)f(b)0,則在區間(a,b)內方程f(x)=0至少有一個實數解指出了方程f(x)=0的實數解的存在性,并不能判斷具體有多少個解;
2、若f(a)f(b)0,且y=f(x)在(a,b)內是單調的,那么,方程f(x)=0在(a,b)內有唯一實數解;
3、我們所研究的大部分函數,其圖像都是連續的曲線;
4、但此結論反過來不成立,如:在[-2,4]中有根,但f(-2)0,f(4)0,f(-2)f(4)
5、缺少條件在[a,b]上是連續曲線則不成立,如:f(x)=1/x,有f(-1)xf(1)0但沒有零點。
四、知識應用
例2:已知f(x)=3x-x2,問方程f(x)=0在區間[-1,0]內沒有實數解?為什么?
解:f(x)=3x-x2的圖像是連續曲線,因為
f(-1)=3-1-(-1)2=-2/30,f(0)=30-(0)2=-10,
所以f(-1)f(0)0,在區間[-1,0]內有零點,即f(x)=0在區間[-1,0]內有實數解
練習:求函數f(x)=lnx+2x-6有沒有零點?
例3判定(x-2)(x-5)=1有兩個相異的實數解,且有一個大于5,一個小于2。
解:考慮函數f(x)=(x-2)(x-5)-1,有
f(5)=(5-2)(5-5)-1=-1
f(2)=(2-2)(2-5)-1=-1
又因為f(x)的圖像是開口向上的拋物線,所以拋物線與橫軸在(5,+)內有一個交點,在(-,2)內也有一個交點,所以方程式(x-2)(x-5)=1有兩個相異數解,且一個大于5,一個小于2。
練習:關于x的方程2x2-3x+2m=0有兩個實根均在[-1,1]內,求m的取值范圍。
五、課后作業
p133第2,3題