高中數(shù)學教案怎么
編寫教案可以幫助教師更好地掌握教學內(nèi)容,規(guī)劃教學流程,增強教學自信心。如何寫出優(yōu)秀的高中數(shù)學教案怎么?下面給大家分享一些高中數(shù)學教案怎么,希望對大家有所幫助。
高中數(shù)學教案怎么篇1
排列問題的應用題是學生學習的難點,也是高考的必考內(nèi)容,筆者在教學中嘗試將排列問題歸納為三種類型來解決:
下面就每一種題型結(jié)合例題總結(jié)其特點和解法,并附以近年的高考原題供讀者參研.
一.能排不能排排列問題(即特殊元素在特殊位置上有特別要求的排列問題)
解決此類問題的關(guān)鍵是特殊元素或特殊位置優(yōu)先.或使用間接法.
例1.(1)7位同學站成一排,其中甲站在中間的位置,共有多少種不同的排法?
(2)7位同學站成一排,甲、乙只能站在兩端的排法共有多少種?
(3)7位同學站成一排,甲、乙不能站在排頭和排尾的排法共有多少種?
(4)7位同學站成一排,其中甲不能在排頭、乙不能站排尾的排法共有多少種?
解析:(1)先考慮甲站在中間有1種方法,再在余下的6個位置排另外6位同學,共種方法;
(2)先考慮甲、乙站在兩端的排法有種,再在余下的5個位置排另外5位同學的排法有種,共種方法;
(3)先考慮在除兩端外的5個位置選2個安排甲、乙有種,再在余下的5個位置排另外5位同學排法有種,共種方法;本題也可考慮特殊位置優(yōu)先,即兩端的排法有,中間5個位置有種,共種方法;
(4)分兩類乙站在排頭和乙不站在排頭,乙站在排頭的排法共有種,乙不站在排頭的排法總數(shù)為:先在除甲、乙外的5人中選1人安排在排頭的方法有種,中間5個位置選1個安排乙的方法有,再在余下的5個位置排另外5位同學的排法有,故共有種方法;本題也可考慮間接法,總排法為,不符合條件的甲在排頭和乙站排尾的排法均為,但這兩種情況均包含了甲在排頭和乙站排尾的情況,故共有種.
例2.某天課表共六節(jié)課,要排政治、語文、數(shù)學、物理、化學、體育共六門課程,如果第一節(jié)不排體育,最后一節(jié)不排數(shù)學,共有多少種不同的排課方法?
解法1:對特殊元素數(shù)學和體育進行分類解決
(1)數(shù)學、體育均不排在第一節(jié)和第六節(jié),有種,其他有種,共有種;
(2)數(shù)學排在第一節(jié)、體育排在第六節(jié)有一種,其他有種,共有種;
(3)數(shù)學排在第一節(jié)、體育不在第六節(jié)有種,其他有種,共有種;
(4)數(shù)學不排在第一節(jié)、體育排在第六節(jié)有種,其他有種,共有種;
所以符合條件的排法共有種
解法2:對特殊位置第一節(jié)和第六節(jié)進行分類解決
(1)第一節(jié)和第六節(jié)均不排數(shù)學、體育有種,其他有種,共有種;
(2)第一節(jié)排數(shù)學、第六節(jié)排體育有一種,其他有種,共有種;
(3)第一節(jié)排數(shù)學、第六節(jié)不排體育有種,其他有種,共有種;
(4)第一節(jié)不排數(shù)學、第六節(jié)排體育有種,其他有種,共有種;
所以符合條件的排法共有種.
解法3:本題也可采用間接排除法解決
不考慮任何限制條件共有種排法,不符合題目要求的排法有:(1)數(shù)學排在第六節(jié)有種;(2)體育排在第一節(jié)有種;考慮到這兩種情況均包含了數(shù)學排在第六節(jié)和體育排在第一節(jié)的情況種所以符合條件的排法共有種
附:1、(20__北京卷)五個工程隊承建某項工程的五個不同的子項目,每個工程隊承建1項,其中甲工程隊不能承建1號子項目,則不同的承建方案共有()
(A)種(B)種(C)種(D)種
解析:本題在解答時將五個不同的子項目理解為5個位置,五個工程隊相當于5個不同的元素,這時問題可歸結(jié)為能排不能排排列問題(即特殊元素在特殊位置上有特別要求的排列問題),先排甲工程隊有,其它4個元素在4個位置上的排法為種,總方案為種.故選(B).
2、(20__全國卷Ⅱ)在由數(shù)字0,1,2,3,4,5所組成的沒有重復數(shù)字的四位數(shù)中,不能被5整除的數(shù)共有個.
解析:本題在解答時只須考慮個位和千位這兩個特殊位置的限制,個位為1、2、3、4中的某一個有4種方法,千位在余下的4個非0數(shù)中選擇也有4種方法,十位和百位方法數(shù)為種,故方法總數(shù)為種.
3、(20__福建卷)從6人中選出4人分別到巴黎、倫敦、悉尼、莫斯科四個城市游覽,要求每個城市有一人游覽,每人只游覽一個城市,且這6人中甲、乙兩人不去巴黎游覽,則不同的選擇方案共有()
A.300種B.240種C.144種D.96種
解析:本題在解答時只須考慮巴黎這個特殊位置的要求有4種方法,其他3個城市的排法看作標有這3個城市的3個簽在5個位置(5個人)中的排列有種,故方法總數(shù)為種.故選(B).
上述問題歸結(jié)為能排不能排排列問題,從特殊元素和特殊位置入手解決,抓住了問題的本質(zhì),使問題清晰明了,解決起來順暢自然.
二.相鄰不相鄰排列問題(即某兩或某些元素不能相鄰的排列問題)
相鄰排列問題一般采用大元素法,即將相鄰的元素捆綁作為一個元素,再與其他元素進行排列,解答時注意釋放大元素,也叫捆綁法.不相鄰排列問題(即某兩或某些元素不能相鄰的排列問題)一般采用插空法.
例3.7位同學站成一排,
(1)甲、乙和丙三同學必須相鄰的排法共有多少種?
(2)甲、乙和丙三名同學都不能相鄰的排法共有多少種?
(3)甲、乙兩同學間恰好間隔2人的排法共有多少種?
解析:(1)第一步、將甲、乙和丙三人捆綁成一個大元素與另外4人的排列為種,
第二步、釋放大元素,即甲、乙和丙在捆綁成的大元素內(nèi)的排法有種,所以共種;
(2)第一步、先排除甲、乙和丙之外4人共種方法,第二步、甲、乙和丙三人排在4人排好后產(chǎn)生的5個空擋中的任何3個都符合要求,排法有種,所以共有種;(3)先排甲、乙,有種排法,甲、乙兩人中間插入的2人是從其余5人中選,有種排法,將已經(jīng)排好的4人當作一個大元素作為新人參加下一輪4人組的排列,有種排法,所以總的排法共有種.
附:1、(20__遼寧卷)用1、2、3、4、5、6、7、8組成沒有重復數(shù)字的八位數(shù),要求1和2相鄰,3與4相鄰,5與6相鄰,而7與8不相鄰,這樣的八位數(shù)共有個.(用數(shù)字作答)
解析:第一步、將1和2捆綁成一個大元素,3和4捆綁成一個大元素,5和6捆綁成一個大元素,第二步、排列這三個大元素,第三步、在這三個大元素排好后產(chǎn)生的4個空擋中的任何2個排列7和8,第四步、釋放每個大元素(即大元素內(nèi)的每個小元素在捆綁成的大元素內(nèi)部排列),所以共有個數(shù).
2、(20__.重慶理)某校高三年級舉行一次演講賽共有10位同學參賽,其中一班有3位,
二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學恰
好被排在一起(指演講序號相連),而二班的2位同學沒有被排在一起的概率為()
A.B.C.D.
解析:符合要求的基本事件(排法)共有:第一步、將一班的3位同學捆綁成一個大元素,第二步、這個大元素與其它班的5位同學共6個元素的全排列,第三步、在這個大元素與其它班的5位同學共6個元素的全排列排好后產(chǎn)生的7個空擋中排列二班的2位同學,第四步、釋放一班的3位同學捆綁成的大元素,所以共有個;而基本事件總數(shù)為個,所以符合條件的概率為.故選(B).
3、(20__京春理)某班新年聯(lián)歡會原定的5個節(jié)目已排成節(jié)目單,開演前又增加了兩個新節(jié)目.如果將這兩個節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為()
A.42B.30C.20D.12
解析:分兩類:增加的兩個新節(jié)目不相鄰和相鄰,兩個新節(jié)目不相鄰采用插空法,在5個節(jié)目產(chǎn)生的6個空擋排列共有種,將兩個新節(jié)目捆綁作為一個元素叉入5個節(jié)目產(chǎn)生的6個空擋中的一個位置,再釋放兩個新節(jié)目捆綁成的大元素,共有種,再將兩類方法數(shù)相加得42種方法.故選(A).
三.機會均等排列問題(即某兩或某些元素按特定的方式或順序排列的排列問題)
解決機會均等排列問題通常是先對所有元素進行全排列,再借助等可能轉(zhuǎn)化,即乘以符合要求的某兩(或某些)元素按特定的方式或順序排列的排法占它們(某兩(或某些)元素)全排列的比例,稱為等機率法或?qū)⑻囟樞虻呐帕袉栴}理解為組合問題加以解決.
例4、7位同學站成一排.
(1)甲必須站在乙的左邊?
(2)甲、乙和丙三個同學由左到右排列?
解析:(1)7位同學站成一排總的排法共種,包括甲、乙在內(nèi)的7位同學排隊只有甲站在乙的左邊和甲站在乙的右邊兩類,它們的機會是均等的,故滿足要求的排法為,本題也可將特定順序的排列問題理解為組合問題加以解決,即先在7個位置中選出2個位置安排甲、乙,由于甲在乙的左邊共有種,再將其余5人在余下的5個位置排列有種,得排法數(shù)為種;
(2)參見(1)的分析得(或).
高中數(shù)學教案怎么篇2
教材第108頁例1,練習二十四第1、2題。
二、教材分析:
“滲透集合知識”是人教版《義務(wù)教育課程試驗教科書數(shù)學》三年級下冊第九單元《數(shù)學廣角》第一課時的教學內(nèi)容。小學生從一開始學習數(shù)學,就已經(jīng)在運用集合的思想方法了。例如,學生在一年級學習數(shù)數(shù)時,把1個人、2朵花、3枝鉛筆等等用一條封閉的曲線圈起來表示,這樣表示的數(shù)學概念更直觀、形象,給學生留下的印象更深刻。又如,我們學習過的分類實際上就是集合理論的基礎(chǔ)。本節(jié)課教學的例1是借助學生熟悉的題材,滲透集合的思想,并利用直觀圖的方式求出兩個小組的總?cè)藬?shù)。在教學例1時,我注重了三個方面的問題。(1)集合的理解。(2)有關(guān)計算。(3)鞏固練習。基于以上的安排,結(jié)合新課程標準,我確定了本節(jié)課的教學目標:
三、教學目標:
(1)知識與技能:初步體會集合的思想方法,能夠借助直觀圖及利用集合的思想方法解決簡單的實際問題。
(2)過程與方法:使學生能借助具體內(nèi)容,體會集合的思想方法,利用集合的思想方法去解決問題。
(3)情感態(tài)度與價值觀:培養(yǎng)學生觀察思考問題的能力。
四、重難點
重點:初步體會集合的思想方法。
突破方法:借助具體內(nèi)容,初步體會集合的思想方法。
難點:用集合直觀圖來表示事物。
突破方法:通過動手操作,利用集合直觀圖來表示事物。
五、教法學法
集合問題屬人教課改版小學數(shù)學第六冊的智力游戲,所以學生對它的掌握程度允許有差異性,即學生能掌握到什么程度就到什么程度,所以設(shè)計的集合問題有較簡單的,一題多法的,還有課后讓學生繼續(xù)研究集合問題的實踐題目,使每個學生各取所需,各有所得,各有所樂,同時培養(yǎng)學生的創(chuàng)造意識和實踐能力;同時由于集合問題中各部分之間的關(guān)系較復雜和抽象,所以設(shè)計讓學生在操作活動中領(lǐng)會集合問題的基本結(jié)構(gòu),并根據(jù)確立的教學目標和學生的認知特點,在教學設(shè)計中,我將特別注重以下幾個方面:
1、創(chuàng)設(shè)情境,適時引導
數(shù)學來源于生活,并應用于生活。我通過學生熟悉的隊列問題導入新課,使學生置身于熟悉的生活情境中,多種感官被調(diào)動起來,主動參與學習過程。
2、設(shè)置認知沖突,感知體驗集合圖
以“參加兩個興趣小組的一共有多少人?”這一問題沖突為線索,讓學生想想可能會出現(xiàn)的情況,當學生解答過程中出現(xiàn)分歧時,進而引導學生借助一種圖(集合圖)來理解解決這一問題,讓學生充分感知體驗到集合圖的作用。
六、教學準備:導學卡、數(shù)字卡片。
七、教學流程:
1、創(chuàng)設(shè)情景(引出目標)
2、自主探究(感知目標)
3、鞏固加深(鞏固目標)
4、課堂小結(jié)(再現(xiàn)目標)
(一)情境引入、小故事引出大學問(理解重復)
我是用了一道同學們兒時的問題,在站隊的時候,有一個小朋友從左數(shù)是第5個,從右數(shù)還是第5個,算一算這個隊一共多少個同學?這個情景的設(shè)計,是讓學生充分理解重復。把枯燥的數(shù)學知識貫穿于小學生實際生活當中,引發(fā)學生的學習興趣,點燃他們求知欲望的火花,從而進入最佳的學習狀態(tài),為主動探究新知識聚集動力。
(二)探索新知(體會集合)
1、在教學例1時,我大膽的將例題進行了改寫,我沒有按照常規(guī)的教學方法先出示統(tǒng)計表告訴學生參加語文興趣小組和數(shù)學興趣小組的學生名單,讓他們通過觀察統(tǒng)計表得出信息,參加語文小組的有5人,參加數(shù)學小組的有7人,然后讓學生提出問題并解決問題。而是直接告訴了學生參加兩個興趣小組的人數(shù),然后讓他們算一算參加兩個小組的一共有多少人?學生列出算式5+7=12(人),此時我不去及時評判,目的在于我要讓學生猜想可能會發(fā)生的情況,然后等學生掌握了新知識后,自己去發(fā)現(xiàn)、自己去解正,為鍛煉學生的判斷能力有意設(shè)局的。
2、接下來引導學生用圖示的方法表示兩個課外小組的人員組成情況。在這個環(huán)節(jié)我設(shè)計了一個對號入座的活動,請一名男生和一名女生到臺前去貼號,再貼號的過程中當問到有什么好辦法能一眼看出來兩個組的人數(shù)時?很自然的就引出了集合圈,讓學生理解了集合的意義,導出了課題《集合》。很快學生發(fā)現(xiàn),既參加了語文小組又參加了數(shù)學小組的兩名學生,安排在中間的位置是最合適的,這樣就組成三個部分,如中間部分表示既參加語文興趣小組又參加數(shù)學興趣小組的同學,另外兩邊一邊是只參加語文興趣小組的同學,一邊是只參加數(shù)學興趣小組的同學。
3、經(jīng)過學生和教師共同完成集合,再次的確定兩個學生既參加了語文小組又參加了數(shù)學小組,計算時重復了,進而讓學生進行小組合作,討論交流得出在計算參加語文小組和數(shù)學小組總?cè)藬?shù)時,一定要減去重復的數(shù)據(jù)2,得出正確的算式5+7—2=12(人),在這個過程中,還要體現(xiàn)算法的多樣化,并不是只有這一種列示方法。這一過程,鍛煉了學生的觀察能力和思維能力以及運用已有知識解答新問題的&39;能力,培養(yǎng)了學生運用數(shù)學知識的意識;不但知其然,而且知其所以然。
(三)鞏固加深
這是教學中不可缺少的環(huán)節(jié),這一環(huán)節(jié)是學生鞏固知識,形成技能,技巧,發(fā)展智力的重要過程,還要確保學習任務(wù)的圓滿完成。因此,練習的鞏固我主要設(shè)計了兩道習題。第一道題讓學生把動物的序號填在合適的位置,一邊是只會游泳的,一邊是只會飛的,還要讓學生說出中間部分表示的是什么?第二題是讓學生算算文具商店兩天一共進了多少種貨?這道題中兩天進的貨是以圖畫的形式出現(xiàn)的,這就要求學生在完成的過程中一定要認真觀察,養(yǎng)成細心的好習慣。
(四)總結(jié)
讓學生真正成為學習的主人,對所學的內(nèi)容理解深刻,記憶牢固。同時,還培養(yǎng)了學生歸納概括事物本質(zhì)屬性的能力。只要學生在平時多觀察,就會發(fā)現(xiàn)在日常生活中,有很多事物具有雙重性,或者在數(shù)量上是重復的。我們可以運用畫集合圈的方法來分析類別,再計算它們的數(shù)量;但是在計算總數(shù)時必須減去重復的數(shù)量;還可以將左中右圈里的數(shù)量相加。
高中數(shù)學教案怎么篇3
教學內(nèi)容:簡單的排列和組合
教學目標:
1.知識能力目標:
①通過觀察、猜測、比較、實驗等活動,找出最簡單的事物的排列數(shù)和組合數(shù)。
②初步培養(yǎng)有序地全面地思考問題的能力。
③培養(yǎng)初步的觀察、分析、及推理能力。
2.情感態(tài)度目標:
①感受數(shù)學與生活的密切聯(lián)系,激發(fā)學習數(shù)學、探索數(shù)學的濃厚興趣。
②初步培養(yǎng)有順序地、全面地思考問題的意識。
③使學生在數(shù)學活動中養(yǎng)成與人合作的良好習慣。
教學重點:
經(jīng)歷探索簡單事物排列與組合規(guī)律的過程。
教學難點:
初步理解簡單事物排列與組合的不同。
教學準備:
多媒體課件、數(shù)字卡片、1角、2角、5角的人民幣。
教學過程:
一、創(chuàng)設(shè)情境,引發(fā)探究
師:今天老師帶你們?nèi)ヒ粋€很有趣的地方,哪呢?我們今天要到“數(shù)學廣角”里去走一走、看一看。
二、操作探究,學習新知。
(一)組合問題
l、看一看,說一說
師:今天老師給大家?guī)砹藥准恋囊路銈儊硖暨x吧。(課件出示主題圖)
師引導思考:這么多漂亮的衣服,你們用一件上裝在搭配一件下裝可以怎么穿呢?(指名學生說一說)
2、想一想,擺一擺
(l)引導討論:有這么多種不同的穿法,那怎樣才能做到不遺漏、不重復呢?
①學生小組討論交流,老師參與小組討論。
②學生匯報
(2)引導操作:小組同學互相合作,把你們設(shè)計的穿法有序的貼在紙板上。(要求:小組長拿出學具衣服圖片、紙板。)
①學生小組合作操作擺,教師巡視參與小組活動。
②學生展示作品,介紹搭配方案。
③生生互相評價。
(3)師引導觀察:
第一種方案(按上裝搭配下裝)有幾種穿法?(4種)
第二種方案(按下裝搭配上裝)有幾種穿法?(4種)
師小結(jié):不管是用上裝搭配下裝,還是用下裝搭配上裝,只要做到有序搭配就能夠不重復、不遺漏的把所有的方法找出來。在今后的學習和生活中,我們還會遇到許多這樣的問題,我們都可以運用有序的思考方法來解決它們。、操作探究,學習新知。
(二)排列問題
1、初步感知排列
(1)師:我們穿上漂亮的衣服,來到了數(shù)學廣角,可是這有一扇密碼門,(出示課件:密碼門)我們只要說對密碼,就可以到數(shù)學廣角游玩了。看小精靈給了我們提示(點小精靈)你們猜密碼是什么?
(2)學生猜密碼(情景預設(shè):有的學生說是12,有的學生說是21。)
(3)試密碼,打開密碼門,進入數(shù)學廣角樂園。
2、合作探究排列
(1)師問:數(shù)學廣角樂園美不美呀?(學生回答)它雖然很美,可處處充滿著挑戰(zhàn),你們愿意接受嗎?(學生回答)那么我們先到數(shù)學樂園里去看一看吧!(點數(shù)學樂園)
(2)師:同學們,我們到了數(shù)學樂園里看到了什么呀?(回答)現(xiàn)在我們每個人都當一個小魔術(shù)師看誰的本領(lǐng)大?誰能把1、2、3這三個數(shù)字變成兩位數(shù),看誰變得最多?
(3)學生活動,師巡視指導
(4)學生匯報擺法,師板書。。
方法一:每次拿出兩張數(shù)字卡片能擺出不同的兩位數(shù);
方法二:固定十位上的數(shù)字,交換個位數(shù)字得到不同的.兩位數(shù);
方法三:固定個位上的數(shù)字,交換十位數(shù)字得到不同的兩位
(5)小結(jié)。
三、課堂實踐,鞏固新知
1、握手游戲:
師:同學們真棒!都能把數(shù)字1、2、3組成不同的兩位數(shù),而且不重復、不遺漏。下面老師帶大家到運動樂園去看一看。(出示課件)看小朋友們在干什么?(生回答)
師:看到他們握手,老師有一個問題需要大家?guī)椭鉀Q一下。
(1)出示問題
(2)小組活動:握手
(3)抽生上臺表演
(4)小結(jié)。
2、乒乓球比賽
三個人進行乒乓球比賽要舉行幾場?
(1)小組討論
(2)學生匯報
(3)小結(jié)
3、生活樂園
看來數(shù)學廣角處處充滿挑戰(zhàn)一點不假,你們愿不愿意接受新的挑戰(zhàn)?(生)那我們一起到生活樂園去看一看吧!出示《生活樂園》課件。
(1)看課件
(2)學生活動
(3)學生匯報,師相機演示課件。
四、全課總結(jié)
今天我們到數(shù)學樂園玩的開不開心?看到了什么?你有什么收獲?
高中數(shù)學教案怎么篇4
本節(jié)課是《等比數(shù)列的前n項和》的第一課時,學生在學習了等比數(shù)列的概念、等差與等比數(shù)列的通項公式及等差數(shù)列的前n項和公式前提下學習的,對于本節(jié)課所需的知識點和探究方法都有了一定的儲備。這節(jié)課我充分利用情境,激發(fā)學生興趣,順利導入本節(jié)課的內(nèi)容。
本節(jié)課我用心準備、精心設(shè)計、潛心專研,是我上好這節(jié)課的前提。在教學過程中,我充分體現(xiàn)了教學目標,抓住了教學重點,解決了教學難點,更重要的是,全班學生心、神、情、與我深度融合。這節(jié)課的.內(nèi)容是“等差數(shù)列的前n項和”與“等比數(shù)列”內(nèi)容的延續(xù),為學生后面學綜合數(shù)列的求和做了鋪墊,重點是推導等比數(shù)列的前n項和的公式以及公式的簡單應用,難點是用錯位相減法推導等比數(shù)列的前n項和公式以及公式應用中對q與1的討論。本節(jié)課我注重從“知識傳授”的傳統(tǒng)模式轉(zhuǎn)變?yōu)椤耙詫W生為主體”的參與模式,注重數(shù)學思想方法的滲透和良好的思維品質(zhì)的養(yǎng)成,注重學生創(chuàng)造精神和實踐能力的培養(yǎng),這在一定的程度上,激活了學生的思維,但對教師的挑戰(zhàn)也是不言而喻的,不僅要透徹理解教材的意圖,還要有寬厚的知識積累和深厚的自學功底。
在等比數(shù)列求和的教學時,開始我給同學們說了一個故事,“在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學家計算,結(jié)果出來后,國王大吃一驚。”為什么呢?同學們很好奇,于是有計算器的同學拿出了計算器,結(jié)果沒有計算完,計算器就算不出來了。激發(fā)學生的興趣,調(diào)動學習的積極性,于是引入主題,等比數(shù)列求和。
首先讓學生回憶等差數(shù)列的求和公式的推導方法,結(jié)合自己的預習談?wù)勛约簩φn本上等比數(shù)列求和公式推導過程的理解,其本質(zhì)是什么?這樣做的目的是什么?此時教師根據(jù)學生們的討論和展示,適時點撥,指出問題的關(guān)鍵。在用錯位相減法推出等比數(shù)列前n項和公式過程中,做差后提醒同學們,接下來要做什么工作,注意什么,學生們自然知道分母不能為零,因而知道了等比數(shù)列前n項和公式是分情況討論的,為什么會有公比為1和公比不為1兩種情況。此時再提醒學生等差數(shù)列求和公式是一個公式的兩種形式,而等比數(shù)列求和公式是兩種不同情況下的公式。然后是對求和公式的簡單應用。所以讓學生經(jīng)歷等比數(shù)列前n項和公式的推導過程成了本節(jié)課的重點與難點,在改善學生的學習方式上,是讓學生提出問題并解決問題來進行自主學習、合作學習與探究學習。
在教學環(huán)節(jié)上我利用小組合作學習、學生自主學習、小組討論、學生展示、師生點評,教師總結(jié)升華,當堂檢測等環(huán)節(jié),有效地實現(xiàn)本節(jié)課的教學目標。在教學評價上我關(guān)注學生,不單純看學生是否會解題,關(guān)鍵是看學生是否動腦,看學生的思維過程來肯定和鼓勵,如在解決情景問題的過程中,學生躍躍欲試、情緒高漲、討論激烈,可能會探究出多種解決方案,適時地鼓勵與評價,使學生的進取心得到增強,是激發(fā)學生學習數(shù)學興趣的有效途徑。我通過對學生的評價,將知識點和思想方法又得到強化。
總之,這節(jié)課也有不足,容量大,知識豐富,滲透歸納與推理、錯位相減法、從特殊到一般、類比推理、分類討論等數(shù)學思想,對學生要求高。但通過課堂反應,教學效果好,這是我感到欣慰的地方。
高中數(shù)學教案怎么篇5
教學目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號及術(shù)語。
教學過程:
一、閱讀下列語句:
1)全體自然數(shù)0,1,2,3,4,5,
2)代數(shù)式
3)拋物線上所有的點
4)今年本校高一(1)(或(2))班的全體學生
5)本校實驗室的所有天平
6)本班級全體高個子同學
7)著名的科學家
上述每組語句所描述的對象是否是確定的?
二、
1)集合:
2)集合的元素:
3)集合按元素的個數(shù)分,可分為1)__________2)_________
三、集合中元素的三個性質(zhì):
1)___________2)___________3)_____________
四、元素與集合的關(guān)系:1)____________2)____________
五、特殊數(shù)集專用記號:
1)非負整數(shù)集(或自然數(shù)集)______2)正整數(shù)集_____3)整數(shù)集_______4)有理數(shù)集______5)實數(shù)集_____6)空集____
六、集合的表示方法:
1)
2)
3)
七、例題講解:
例1、中三個元素可構(gòu)成某一個三角形的三邊長,那么此三角形一定不是()
a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形
例2、用適當?shù)姆椒ū硎鞠铝屑希缓笳f出它們是有限集還是無限集?
1)地球上的四大洋構(gòu)成的集合;
2)函數(shù)的全體值的集合;
3)函數(shù)的全體自變量的集合;
4)方程組解的集合;
5)方程解的集合;
6)不等式的解的集合;
7)所有大于0且小于10的奇數(shù)組成的集合;
8)所有正偶數(shù)組成的集合;
例3、用符號或填空:
1)______q,0_____n,_____z,0_____
2)______,_____
3)3_____,
4)設(shè),,則
例4、用列舉法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的數(shù)
2.圖中陰影部分點(含邊界)的坐標的集合
課堂練習:
例6、設(shè)含有三個實數(shù)的集合既可以表示為,也可以表示為,則的值等于___________
例7、已知:,若中元素至多只有一個,求的取值范圍。
思考題:數(shù)集a滿足:若,則,證明1):若2,則集合中還有另外兩個元素;2)若則集合a不可能是單元素集合。
小結(jié):
作業(yè)班級姓名學號
1.下列集合中,表示同一個集合的是()
a.m=,n=b.m=,n=
c.m=,n=d.m=,n=
2.m=,x=,y=,,.則()
a.b.c.d.
3.方程組的解集是____________________。
4.在(1)難解的題目,(2)方程在實數(shù)集內(nèi)的解,(3)直角坐標平面內(nèi)第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________。
5.設(shè)集合a=,b=,
c=,d=,e=。
其中有限集的個數(shù)是____________。
6.設(shè),則集合中所有元素的和為
7.設(shè)x,y,z都是非零實數(shù),則用列舉法將所有可能的值組成的集合表示為
8.已知f(x)=x2-ax+b,(a,br),a=,b=,
若a=,試用列舉法表示集合b=
9.把下列集合用另一種方法表示出來:
(1)(2)
(3)(4)
10.設(shè)a,b為整數(shù),把形如a+b的一切數(shù)構(gòu)成的集合記為m,設(shè),試判斷x+y,x-y,xy是否屬于m,說明理由。
11.已知集合a=
(1)若a中只有一個元素,求a的值,并求出這個元素;
(2)若a中至多只有一個元素,求a的取值集合。
12.若-3,求實數(shù)a的值。
高中數(shù)學教案怎么篇6
橢圓的簡單幾何性質(zhì)中的考查點:
(一)、對性質(zhì)的考查:
1、范圍:要注意方程與函數(shù)的區(qū)別與聯(lián)系;與橢圓有關(guān)的求最值是變量的取值范圍;作橢圓的草圖。
2、對稱性:橢圓的中心及其對稱性;判斷曲線關(guān)于x軸、y軸及原點對稱的依據(jù);如果曲線具有關(guān)于x軸、y軸及原點對稱中的任意兩種,那么它也具有另一種對稱性;注意橢圓不因坐標軸改變的固有性質(zhì)。
3、頂點:橢圓的頂點坐標;一般二次曲線的頂點即是曲線與對稱軸的交點;橢圓中a、b、c的幾何意義(橢圓的特征三角形及離心率的三角函數(shù)表示)。
4、離心率:離心率的定義;橢圓離心率的取值范圍:(0,1);橢圓的離心率的變化對橢圓的影響:當e趨向于1時:c趨向于a,此時,橢圓越扁平;當e趨向于0時:c趨向于0,此時,橢圓越接近于圓;當且僅當a=b時,c=0,兩焦點重合,橢圓變成圓。
(二)、課本例題的變形考查:
1、近日點、遠日點的概念:橢圓上任意一點p(x,y)到橢圓一焦點距離的最大值:a+c與最小值:a-c及取最值時點p的坐標;
2、橢圓的第二定義及其應用;橢圓的準線方程及兩準線間的距離、焦準距:焦半徑公式。
3、已知橢圓內(nèi)一點m,在橢圓上求一點p,使點p到點m與到橢圓準線的距離的和最小的求法。
4、橢圓的參數(shù)方程及橢圓的離心角:橢圓的參數(shù)方程的簡單應用:
5、直線與橢圓的位置關(guān)系,直線與橢圓相交時的弦長及弦中點問題。
高中數(shù)學教案怎么篇7
一、教材分析(說教材):
1.教材所處的地位和作用:
本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《》是中數(shù)學教材第冊第章第節(jié)內(nèi)容。在此之前學生已學習了基礎(chǔ),這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內(nèi)容是在中,占據(jù)的地位。以及為其他學科和今后的學習打下基礎(chǔ)。
2.教育教學目標:
根據(jù)上述教材分析,考慮到學生已有的認知結(jié)構(gòu)心理特征,制定如下教學目標:
(1)知識目標:
(2)能力目標:通過教學初步培養(yǎng)學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結(jié)協(xié)作,語言表達能力以及通過師生雙邊活動,初步培養(yǎng)學生運用知識的能力,培養(yǎng)學生加強理論聯(lián)系實際的能力,(3)情感目標:通過的教學引導學生從現(xiàn)實的生活經(jīng)歷與體驗出發(fā),激發(fā)學生學習興趣。
3.重點,難點以及確定依據(jù):
下面,為了講清重難上點,使學生能達到本節(jié)課設(shè)定的目標,再從教法和學法上談?wù)劊?/p>
二、教學策略(說教法)
1.教學手段:
如何突出重點,突破難點,從而實現(xiàn)教學目標。在教學過程中擬計劃進行如下操作:教學方法。基于本節(jié)課的特點:應著重采用的教學方法。
2.教學方法及其理論依據(jù):堅持“以學生為主體,以教師為主導”的原則,根據(jù)學生的心理發(fā)展規(guī)律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎(chǔ)差的學生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效的開發(fā)各層次學生的潛在智能,力求使學生能在原有的基礎(chǔ)上得到發(fā)展。同時通過課堂練習和課后作業(yè),啟發(fā)學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關(guān)的數(shù)學知識,學習基礎(chǔ)性的知識和技能,在教學中積極培養(yǎng)學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調(diào)動學生的學習積極性,激發(fā)來自學生主體的最有力的動力。
3.學情分析:(說學法)
(1)學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發(fā)展情況)抓住學生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發(fā)學生興趣,有效地培養(yǎng)學生能力,促進學生個性發(fā)展。生理上表少年好動,注意力易分散
(2)知識障礙上:知識掌握上,學生原有的知識,許多學生出現(xiàn)知識遺忘,所以應全面系統(tǒng)的去講述;學生學習本節(jié)課的知識障礙,知識學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。
(3)動機和興趣上:明確的學習目的,老師應在課堂上充分調(diào)動學生的學習積極性,激發(fā)來自學生主體的最有力的動力
最后我來具體談?wù)勥@一堂課的教學過程:
4.教學程序及設(shè)想:
(1)由引入:把教學內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學生產(chǎn)生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經(jīng)驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。
(2)由實例得出本課新的知識點
(3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于學生的思維能力。
(4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
(5)總結(jié)結(jié)論,強化認識。知識性的內(nèi)容小結(jié),可把課堂教學傳授的知識盡快化為學生的素質(zhì),數(shù)學思想方法的小結(jié),可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應用,并且逐步培養(yǎng)學生良好的個性品質(zhì)目標。
(6)變式延伸,進行重構(gòu),重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。
(7)板書
(8)布置作業(yè)。
針對學生素質(zhì)的差異進行分層訓練,既使學生掌握基礎(chǔ)知識,又使學有余力的學生有所提高,
教學程序:
(一)課堂結(jié)構(gòu):復習提問,導入講授課,課堂練習,鞏固新課,布置作業(yè)等五部分
高中數(shù)學集合教學反思
集合這章內(nèi)容,教學參考書上安排的課時為五課時,我們的導學案也是安排五課時,實際教學時,由于對學生的實際情況估計不足,第一課時的導學案用了兩課時才完成。集合這一章的特點是概念不多,但這章所涉及到的內(nèi)容很廣,學生學習本章內(nèi)容時,不僅要理解本章的概念,還要理解與本章內(nèi)容相關(guān)聯(lián)的其他內(nèi)容,這些內(nèi)容有初中學習過的內(nèi)容、有生活中的方方面面的相關(guān)知識,再加上高中學習方法與初中不同,邏輯思維能力要求較高,因此學生感覺學起來比較困難。針對這種情況,我在實際教學時,首先要求學生準確理解概念,如:集合的元素具有三個性質(zhì):確定性、互異性、無序性。集合的關(guān)系、運算等都是從元素的角度定義的,所以解集合問題時,教會學生對元素的性質(zhì)進行分析,反復訓練,讓學生通過實例體會這三個性質(zhì)。
第二,掌握相關(guān)的符號語言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時,集合中的元素是什么,這是一個教學難點。第二個難點是集合的運算—交集和并集。突破難點充分運用數(shù)形結(jié)合思想,集合間的關(guān)系和運算,以數(shù)形結(jié)合思想為指導,借助圖形思考,可以使各集合間的關(guān)系直觀明了,使抽象的集合運算建立在直觀的基礎(chǔ)上,使解題思路清晰明朗,直觀簡捷,有利于問題的解決。
第三,指導學生理解并掌握自然語言、符號語言、圖形語言這三種語言,靈活準確地進行語言轉(zhuǎn)換,可以幫助學生提高分析問題,解決問題的能力。
第四,集合問題涉及到的其他內(nèi)容,遇到了講透,不拓展。
高中數(shù)學教案怎么篇8
教學目標
1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進行初步的應用.
(1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象.
(2) 能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認識對數(shù)函數(shù)的性質(zhì),初步學會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題.
2.通過對數(shù)函數(shù)概念的學習,樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學習,滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學生的觀察,分析,歸納等邏輯思維能力.
3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學生進行對稱美,簡潔美等審美教育,調(diào)動學生學習數(shù)學的積極性.
教學建議
教材分析
(1) 對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學生已經(jīng)學過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對上述知識的應用,也是對函數(shù)這一重要數(shù)學思想的進一步認識與理解.對數(shù)函數(shù)的概念,圖象與性質(zhì)的學習使學生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關(guān)自然科學領(lǐng)域中實際問題的重要工具,是學生今后學習對數(shù)方程,對數(shù)不等式的基礎(chǔ).
(2) 本節(jié)的教學重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì).難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì).由于對數(shù)函數(shù)的概念是一個抽象的形式,學生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應成為教學的重點.
(3) 本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應圍繞著這條主線展開.而通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學生不適應,把握不住關(guān)鍵,所以應是本節(jié)課的難點.
教法建議
(1) 對數(shù)函數(shù)在引入時,就應從學生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù) 的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).
(2) 在本節(jié)課中結(jié)合對數(shù)函數(shù)教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數(shù)這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.
高中數(shù)學教案怎么篇9
一、教學內(nèi)容
本節(jié)主要內(nèi)容為:經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進行含有30°、45°、60°角的三角函數(shù)值的計算。
二、教學目標
1、經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進行有關(guān)推理,進一步體會三角函數(shù)的意義。
2、能夠進行含有30°、45°、60°角的三角函數(shù)值的計算。
3、能夠根據(jù)30°、45°、60°角的三角函數(shù)值,說出相應的銳角的大小。
三、過程與方法
通過進行有關(guān)推理,探索30°、45°、60°角的三角函數(shù)值。在具體教學過程中,教師可在教材的基礎(chǔ)上適當拓展,使得內(nèi)容更為豐富.教師可以運用和學生共同探究式的教學方法,學生可以采取自主探討式的學習方法.
四、教學重點和難點
重點:進行含有30°、45°、60°角的三角函數(shù)值的計算
難點:記住30°、45°、60°角的三角函數(shù)值
五、教學準備
教師準備
預先準備教材、教參以及多媒體課件
學生準備
教材、同步練習冊、作業(yè)本、草稿紙、作圖工具等
六、教學步驟
教學流程設(shè)計
教師指導學生活動
1.新章節(jié)開場白.1.進入學習狀態(tài).
2.進行教學.2.配合學習.
3.總結(jié)和指導學生練習.3記錄相關(guān)內(nèi)容,完成練習.
教學過程設(shè)計
1、從學生原有的認知結(jié)構(gòu)提出問題
2、師生共同研究形成概念
3、隨堂練習
4、小結(jié)
5、作業(yè)
板書設(shè)計
1、敘述三角函數(shù)的意義
2、30°、45°、60°角的三角函數(shù)值
3、例題
七、課后反思
本節(jié)課基本上能夠突出重點、弱化難點,在時間上也能掌控得比較合理,學生也比較積極投入學習中,但是學生好像并不是掌握得很好,在今后的教學中應該再加強關(guān)于這方面的學習。
高中數(shù)學教案怎么篇10
教學目標:
1、橢圓是圓錐曲線的一種,是高中數(shù)學教學中的重點和難點,所以這部分內(nèi)容中的知識點學生必須達到理解、應用的水平;
2、利用投影、計算機模擬動點的運動,增強直觀性,激勵學生的學習動機,培養(yǎng)學生的數(shù)學想象和抽象思維能力。
教學重點:對橢圓定義的理解,其中a>c容易出錯。
教學難點:方程的推導過程。
教學過程(www.fwsir.com):
(1)復習
提問:動點軌跡的一般求法?
(通過回憶性質(zhì)的提問,明示這節(jié)課所要學的內(nèi) 容與原來所學知識之間的內(nèi)在聯(lián)系。并為后面橢圓的標準方程的推導作好準備。)
(2)引入
舉例:橢圓是常見的圖形,如:汽車油罐的橫截面,立體幾何中圓的直觀圖,天體中,行星繞太陽運行的軌道等等;
計算機:動態(tài)演示行星運行的軌道。
(進一步使學生明確學習橢圓的重要性和必要性,借計算機形成生動的直觀,使學生印象加深,以便更好地掌握橢圓的形狀。)
(3)教學實施
投影:橢圓的定義:
平面內(nèi)與兩個定點F1、F2的距離的和等于常數(shù)(大于F1F2)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離叫做焦距(一般用2c表示)
常數(shù)一般用2表示。(講解定義時要注意條件:)
計算機:動態(tài)模擬動點軌跡的形成過程。
提問:如何求軌跡的方程?
(引導學生推導橢圓的標準方程)
板書:橢圓的標準方程的推導過程。(略)
(推導中注意:1)結(jié)合已畫出的圖形建立坐標系,容易為學生所接受;2)在推導過程中,要抓住“怎樣消去方程中的根式”這一關(guān)鍵問題,演算雖較繁,也能迎刃而解;3)其中焦點為F1(,0)、F2(c,0),;4)如果焦點在軸上,焦點為F1(0,)、F2(0,c),只要將方程中,互換就可得到它的`方程)
投影:橢圓的標準方程:
()
()
投影:例1平面內(nèi)兩個定點的距離是8,寫出到這兩個定點的距離的和是10的點的軌跡方程
(由橢圓的定義可知:所求軌跡為橢圓;則只要求出、、即可)
形成性練習:課本P74:2,3
(4)小結(jié) 本節(jié)課學習了橢圓的定義及標準方程,應注意以下幾點:
①橢圓的定義中,
②橢圓的標準方程中,焦點的位置看,的分母大小來確定
③、、的幾何意義
(5)作業(yè)
P80:2,4(1)(3)
高中數(shù)學教案怎么篇11
一 教材分析
本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。
根據(jù)上述教材內(nèi)容分析,考慮到學生已有的認知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學目標:
認知目標:在創(chuàng)設(shè)的問題情境中,引導學生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。
能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養(yǎng)學生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
情感目標:面向全體學生,創(chuàng)造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調(diào)動學生的主動性和積極性,給學生成功的體驗,激發(fā)學生學習的興趣。
教學重點:正弦定理的內(nèi)容,正弦定理的證明及基本應用。
教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。
二 教法
根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學業(yè)生的發(fā)展為本,遵照學生的認識規(guī)律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發(fā)引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發(fā)他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當?shù)奶崾竞椭笇АM黄齐y點的方法:抓住學生的能力線聯(lián)系方法與技能使學生較易證明正弦定理,另外通過例題和練習來突破難點
三 學法:
指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質(zhì)的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學生的主體地位,增強學生由特殊到一般的數(shù)學思維能力,形成了實事求是的科學態(tài)度,增強了鍥而不舍的求學精神。
四 教學過程
第一:創(chuàng)設(shè)情景,大概用2分鐘
第二:實踐探究,形成概念,大約用25分鐘
第三:應用概念,拓展反思,大約用13分鐘
(一)創(chuàng)設(shè)情境,布疑激趣
“興趣是的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。
(二)探尋特例,提出猜想
1.激發(fā)學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。
2.那結(jié)論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。
3.讓學生總結(jié)實驗結(jié)果,得出猜想:
在三角形中,角與所對的邊滿足關(guān)系
這為下一步證明樹立信心,不斷的使學生對結(jié)論的認識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴格的理論證明。
2.鼓勵學生通過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。
3.提示學生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標法來證明
(四)歸納總結(jié),簡單應用
1.讓學生用文字敘述正弦定理,引導學生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學美的享受。
2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學生知識后用于實際的價值觀。
(五)講解例題,鞏固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡單,結(jié)果為解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。
(六)課堂練習,提高鞏固
1.在△ABC中,已知下列條件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
學生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。
(七)小結(jié)反思,提高認識
通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?
1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想。
2.它表述了三角形的邊與對角的正弦值的關(guān)系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。
(從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調(diào)研究性學習方法,注重學生的主體地位,調(diào)動學生積極性,使數(shù)學教學成為數(shù)學活動的教學。)
(八)任務(wù)后延,自主探究
如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預習下一節(jié)內(nèi)容。
五 板書設(shè)計
板書設(shè)計可以讓學生一目了然本節(jié)課所學的知識,證明正弦定理的方法以及正弦定理可以解決的兩類問題。
高中數(shù)學教案怎么篇12
一、教學目標
1.知識與能力目標
①使學生理解數(shù)列極限的概念和描述性定義。
②使學生會判斷一些簡單數(shù)列的極限,了解數(shù)列極限的“e-N"定義,能利用逐步分析的方法證明一些數(shù)列的極限。
③通過觀察運動和變化的過程,歸納總結(jié)數(shù)列與其極限的特定關(guān)系,提高學生的數(shù)學概括能力和抽象思維能力。
2.過程與方法目標
培養(yǎng)學生的極限的思想方法和獨立學習的能力。
3.情感、態(tài)度、價值觀目標
使學生初步認識有限與無限、近似與精確、量變與質(zhì)變的辯證關(guān)系,培養(yǎng)學生的辯證唯物主義觀點。
二、教學重點和難點
教學重點:數(shù)列極限的概念和定義。
教學難點:數(shù)列極限的“ε―N”定義的理解。
三、教學對象分析
這節(jié)課是數(shù)列極限的第一節(jié)課,足學生學習極限的入門課,對于學生來說是一個全新的內(nèi)容,學生的思維正處于由經(jīng)驗型抽象思維向理論型抽象思維過渡階段,在《立體幾何》內(nèi)容求球的表面積和體積時對極限思想已有接觸,而學生在以往的數(shù)學學習中主要接觸的是關(guān)于“有限”的問題,很少涉及“無限”的問題。極限這一抽象概念能夠使他們做基于直觀的理解,并引導他們作出描述性定義“當n無限增大時,數(shù)列{an}中的項an無限趨近于常數(shù)A,也就是an與A的差的絕對值無限趨近于0”,并能用這個定義判斷一些簡單數(shù)列的極限。但要使他們在一節(jié)課內(nèi)掌握“ε-N”語言求極限要求過高。因此不宜講得太難,能夠通過具體的幾個例子,歸納研究一些簡單的數(shù)列的極限。使學生理解極限的基本概念,認識什么叫做數(shù)列的極限以及數(shù)列極限的定義即可。
四、教學策略及教法設(shè)計
本課是采用啟發(fā)式講授教學法,通過多媒體課件演示及學生討論的方法進行教學。通過學生比較熟悉的一個實際問題入手,引起學生的注意,激發(fā)學生的學習興趣。然后通過具體的兩個比較簡單的數(shù)列,運用多媒體課件演示向?qū)W生展示了數(shù)列中的各項隨著項數(shù)的增大,無限地趨向于某個常數(shù)的過程,讓學生在觀察的基礎(chǔ)上討論總結(jié)出這兩個數(shù)列的特征,從而得出數(shù)列極限的一個描述性定義。再在教師的引導下分析數(shù)列極限的各種不同情況。從而對數(shù)列極限有了直觀上的認識,接著讓學生根據(jù)數(shù)列中各項的情況判斷一些簡單的數(shù)列的極限。從而達到深化定義的效果。最后進行練習鞏固,通過這樣的一個完整的教學過程,由觀察到分析、由定量到定性,由直觀到抽象,并借助于多媒體課件的演示,使得學生逐步地了解極限這個新的概念,為下節(jié)課的極限的運算及應用做準備,為以后學習高等數(shù)學知識打下基礎(chǔ)。在整個教學過程中注意突出重點,突破難點,達到教學目標的要求。
五、教學過程
1.創(chuàng)設(shè)情境
課件展示創(chuàng)設(shè)情境動畫。
今天我們將要學習一個很重要的新的知識。
情境
1、我國古代數(shù)學家劉徽于公元263年創(chuàng)立“割圓術(shù)”,“割之彌細,所失彌少。割之又割,以至不可割,則與圓周合體而無所失矣”。
情境
2、我國古代哲學家莊周所著的《莊子?天下篇》引用過一句話:一尺之棰,日取其半,萬世不竭。也就是說拿一根木棒,將它切成一半,拿其中一半來再切成一半,得到四分之一,再切成一半,就得到了八分之???如此下去,無限次地切,每次都切一半,問是否會切完?
大家都知道,這是不可能切完的,但是每次切了以后,木棒都比原來的少了一半,也就是說木棒的長度越來越短,但永遠不會變成零。從而引出極限的概念。
2.定義探究
展示定義探索(一)動畫演示。
問題1:請觀察以下無窮數(shù)列,當n無限增大時,a,I的變化趨勢有什么特點?
(1)1/2,2/3,3/4,?n/n-1(2)0.9,0.99,0.999,0.9999,1-1/10n??
問題2:觀察課件演示,請分析以上兩個數(shù)列隨項數(shù)n的增大項有那些特點?
師生一起歸納總結(jié)出以下結(jié)論:數(shù)列(1)項數(shù)n無限增大時,項無限趨近于1;數(shù)列(2)項數(shù)n無限增大時,項無限趨近于1。
那么就把1叫數(shù)列(1)的極限,1叫數(shù)列(2)的極限。這兩個數(shù)列只是形式不同,它們都是隨項數(shù)n的無限增大,項無限趨近于某一確定常數(shù),這個常數(shù)叫做這個數(shù)列的極限。
那么,什么叫數(shù)列的極限呢?對于無窮數(shù)列an,如果當n無限增大時,an無限趨向于某一個常數(shù)A,則稱A是數(shù)列an的極限。
提出問題3:怎樣用數(shù)學語言來定量描述呢?怎樣用數(shù)學語言來描述上述數(shù)列的變化趨勢?
展示定義探索(二)動畫演示,師生共同總結(jié)發(fā)現(xiàn)在數(shù)軸上兩點間距離越小,項與1越趨近,因此可以借助兩點間距離無限小的方式來描述項無限趨近常數(shù)。無論預先指定多么小的正數(shù)e,如取e=O-1,總能在數(shù)列中找到一項am,使得an項后面的所有項與1的差的絕對值都小于ε,若取£=0。0001,則第6項后面的所有項與1的差的絕對值都小于ε,即1是數(shù)列(1)的極限。最后,師生共同總結(jié)出數(shù)列的極限定義中應包含哪量(用這些量來描述數(shù)列1的極限)。
數(shù)列的極限為:對于任意的ε>0,如果總存在自然數(shù)N,當n>N時,不等式|an-A|n的極限。
定義探索動畫(一):
課件可以實現(xiàn)任意輸入一個n值,可以計算出相應的數(shù)列第n項的值,并且動畫演示數(shù)列的變化過程。如圖1所示是課件運行時的一個畫面。
定義探索動畫(二)課件可以實現(xiàn)任意輸入一個n值,可以計算出相應的數(shù)列第n項的值和Ian一1I的值,并且動畫演示出第an項和1之間的距離。如圖2所示是課件運行時的一個畫面。
3.知識應用
這里舉了3道例題,與學生一塊思考,一起分析作答。
例1.已知數(shù)列:
1,-1/2,1/3,-1/4,1/5??,(-1)n+11/n,??
(1)計算an-0(2)第幾項后面的所有項與0的差的絕對值都小于0.017都小于任意指定的正數(shù)。
(3)確定這個數(shù)列的極限。
例2.已知數(shù)列:
已知數(shù)列:3/2,9/4,15/8??,2+(-1/2)n,??。
猜測這個數(shù)列有無極限,如果有,應該是什么數(shù)?并求出從第幾項開始,各項與這個極限的差都小于0.1,從第幾項開始,各項與這個極限的差都小于0.017
例3.求常數(shù)數(shù)列一7,一7,一7,一7,??的極限。
5.知識小結(jié)
這節(jié)課我們研究了數(shù)列極限的概念,對數(shù)列極限有了初步的認識。數(shù)列極限研究的是無限變化的趨勢,而通過對數(shù)列極限定義的探討,我們看到這一過程又是通過有限來把握的,有限與無限、近似與精確、量變與質(zhì)變之間的辯證關(guān)系在這里得到了充分的體現(xiàn)。
課后練習:
(1)判斷下列數(shù)列是否有極限,如果有的話請求出它的極限值。①an=4n+l/n;②an=4-(1/3)m;③an=(-1)n/3n;④aan=-2;⑤an=n;⑥an=(-1)n。
(2)課本練習1,2。
6.探究性問題
設(shè)計研究性學習的思考題。
提出問題:
芝諾悖論:阿基里斯是《荷馬史詩》中的善跑英雄。奔跑中的阿基里斯永遠也無法超過在他前面慢慢爬行的烏龜,因為當阿基里斯到達烏龜?shù)钠鹋茳c時,烏龜已經(jīng)走在前面一小段路了,阿基里斯又必須趕過這一小段路,而烏龜又向前走了。這樣,阿基里斯可無限接近它,但不能追到它。假定阿基里斯跑步的速度是烏龜速度的10倍,阿基里斯與烏龜賽跑的路程是1公里。如果讓烏龜先跑0.1公里,當阿基里斯追到O.1公里的地方,烏龜又向前跑了0.01公里。當阿基里斯追到0.01公里的地方,烏龜又向前跑了0.001公里??這樣一直追下去,阿基里斯能追上烏龜嗎?
這里是研究性學習內(nèi)容,以學生感興趣的悖論作為課后作業(yè),鞏固本節(jié)所學內(nèi)容,進一步提高了學生學習數(shù)列的極限的興趣。同時也為學生創(chuàng)設(shè)了課下交流與討論的情境,逐步培養(yǎng)學生相互合作、交流和討論的習慣,使學生感受到了數(shù)學來源于生活,又服務(wù)于生活的實質(zhì),逐步養(yǎng)成用數(shù)學的知識去解決生活中遇到的實際問題的習慣。
高中數(shù)學教案怎么篇13
一、教材分析
1.教材所處的地位和作用
在學習了隨機事件、頻率、概率的意義和性質(zhì)及用概率解決實際問題和古典概型的概念后,進一步體會用頻率估計概率思想。它是對古典概型問題的一種模擬,也是對古典概型知識的深化,同時它也是為了更廣泛、高效地解決一些實際問題、體現(xiàn)信息技術(shù)的優(yōu)越性而新增的內(nèi)容。
2.教學的重點和難點
重點:正確理解隨機數(shù)的概念,并能應用計算器或計算機產(chǎn)生隨機數(shù)。
難點:建立概率模型,應用計算器或計算機來模擬試驗的方法近似計算概率,解決一些較簡單的現(xiàn)實問題。
二、教學目標分析
1、知識與技能:
(1)了解隨機數(shù)的概念;
(2)利用計算機產(chǎn)生隨機數(shù),并能直接統(tǒng)計出頻數(shù)與頻率。
2、過程與方法:
(1)通過對現(xiàn)實生活中具體的概率問題的探究,感知應用數(shù)學解決問題的方法,體會數(shù)學知識與現(xiàn)實世界的聯(lián)系,培養(yǎng)邏輯推理能力;
(2)通過模擬試驗,感知應用數(shù)字解決問題的方法,自覺養(yǎng)成動手、動腦的良好習慣
3、情感態(tài)度與價值觀:
通過數(shù)學與探究活動,體會理論來源于實踐并應用于實踐的辯證唯物主義觀點.
三、教學方法與手段分析
1、教學方法:本節(jié)課我主要采用啟發(fā)探究式的教學模式。
2、教學手段:利用多媒體技術(shù)優(yōu)化課堂教學
四、教學過程分析
㈠創(chuàng)設(shè)情境、引入新課
情境1:假設(shè)你作為一名食品衛(wèi)生工作人員,要對某超市內(nèi)的80袋小包裝餅干中抽取10袋進行衛(wèi)生達標檢驗,你打算如何操作?
預設(shè)學生回答:
⑴采用簡單隨機抽樣方法(抽簽法)
⑵采用簡單隨機抽樣方法(隨機數(shù)表法)
教師總結(jié)得出:隨機數(shù)就是在一定范圍內(nèi)隨機產(chǎn)生的數(shù),并且得到這個范圍內(nèi)每一數(shù)的機會一樣。(引入課題)
「設(shè)計意圖」(1)回憶統(tǒng)計知識中利用隨機抽樣方法如抽簽法、隨機數(shù)表法等進行抽樣的步驟和特征;(2)從具體試驗中了解隨機數(shù)的含義。
情境2:在拋硬幣和擲骰子的試驗中,是用頻率估計概率。假如現(xiàn)在要作10000次試驗,你打算怎么辦?大家可能覺得這樣做試驗花費時間太多了,有沒有其他方法可以代替試驗呢?
「設(shè)計意圖」當需要隨機數(shù)的量很大時,用手工試驗產(chǎn)生隨機數(shù)速度太慢,從而說明利用現(xiàn)代信息技術(shù)的重要性,體現(xiàn)利用計算器或計算機產(chǎn)生隨機數(shù)的必要性。
㈡操作實踐、了解新知
教師:向?qū)W生介紹計算器的操作,讓他們了解隨機函數(shù)的原理。可事先編制幾個小問題,在課堂上帶著學生用計算器(科學計算器或圖形計算器)操作一遍,讓學生熟悉如何用計算器產(chǎn)生隨機數(shù)。
「設(shè)計意圖」通過操作熟悉計算器操作流程,在明白原理后,通過讓學生自己按照規(guī)則操作,熟悉計算器產(chǎn)生隨機數(shù)的操作流程,了解隨機數(shù)。
問題1:拋一枚質(zhì)地均勻的硬幣出現(xiàn)正面向上的概率是50,你能設(shè)計一種利用計算器模擬擲硬幣的試驗來驗證這個結(jié)論嗎?
思考:隨著模擬次數(shù)的不同,結(jié)果是否有區(qū)別,為什么?
「設(shè)計意圖」⑴設(shè)計概率模型是解決概率問題的難點,也是能解決概率問題的關(guān)鍵,是數(shù)學建模的第一步。⑵拋硬幣是最熟悉、最簡單的問題,很自然會想到把正面向上、反面向上這兩個基本事件用兩個隨機數(shù)來代替。(題目讓學生通過熟悉50想到用隨機數(shù)0,1來模擬,為后面問題4每天下雨的概率為40的概率建模作第一次小鋪墊。)⑶熟悉利用計算器模擬試驗的操作流程,為解決后面例題模擬下雨作好鋪墊。
問題2:(1)剛才我們利用了計算器來產(chǎn)生隨機數(shù),我們知道計算機有許多軟件有統(tǒng)計功能,你知道哪些軟件具有隨機函數(shù)這個功能?
(2)你會利用統(tǒng)計軟件Excel來產(chǎn)生隨機數(shù)0,1嗎?你能設(shè)計一種利用計算機模擬擲硬幣的試驗嗎?
「設(shè)計意圖」⑴了解有許多統(tǒng)計軟件都有隨機函數(shù)這個功能,并與前面第一章所學的用程序語言編寫程序相聯(lián)系;⑵Excel是學生比較熟悉的統(tǒng)計軟件,也可讓學生回顧初中用Excel畫統(tǒng)計圖的一些功能和知識,其次讓學生掌握多種隨機模擬試驗方法。
問題3:(1)你能在Excel軟件中畫試驗次數(shù)從1到100次的頻率分布折線圖嗎?
(2)當試驗次數(shù)為1000,1500時,你能說說出現(xiàn)正面向上的頻率有些什么變化?
「設(shè)計意圖」⑴應用隨機模擬方法估計古典概型中隨機事件的概率值;
⑵體會頻率的隨機性與相對穩(wěn)定性,經(jīng)歷用計算機產(chǎn)生數(shù)據(jù),整理數(shù)據(jù),分析數(shù)據(jù),畫統(tǒng)計圖的全過程,使學生相信統(tǒng)計結(jié)果的真實性、隨機性及規(guī)律性。
㈢講練結(jié)合、鞏固新知
問題4:天氣預報說,在今后的三天中,每一天下雨的概率均為40,這三天中恰有兩天下雨的概率是多少?
問1:能用古典概型的計算公式求解嗎?
你能說明一下這為什么不是古典概型嗎?
問2:你如何模擬每一天下雨的概率為40?
「設(shè)計意圖」⑴問題分層提出,降低本題難度。如何模擬每一天下雨的概率40是解決這道題的關(guān)鍵,是隨機模擬方法應用的重點,也是難點之一。
⑵鞏固用隨機模擬方法估計未知量的基本思想,明確利用隨機模擬方法也可解決不是古典概型而比較復雜的概率應用題。
歸納步驟:第一步,設(shè)計概率模型;
第二步,進行模擬試驗;
方法一:(隨機模擬方法--計算器模擬)利用計算器隨機函數(shù);
方法二:(隨機模擬方法--計算機模擬)
第三步,統(tǒng)計試驗的結(jié)果。
課堂檢測將一枚質(zhì)地均勻的硬幣連擲三次,出現(xiàn)"2個正面朝上、1個反面朝上"和"1個正面朝上、2個反面朝上"的概率各是多少?并用隨機模擬的方法做100次試驗,計算各自的頻數(shù)。
「設(shè)計意圖」通過練習,進一步鞏固學生對本節(jié)課知識的掌握。
㈣歸納小結(jié)
(1)你能歸納利用隨機模擬方法估計概率的步驟嗎?
(2)你能體會到隨機模擬的優(yōu)勢嗎?請舉例說說。
「設(shè)計意圖」⑴通過問題的思考和解決,使學生理解模擬方法的優(yōu)點,并充分利用信息技術(shù)的優(yōu)勢;⑵是對知識的進一步理解與思考,又是對本節(jié)內(nèi)容的回顧與總結(jié)。
㈤布置練習:
課本練習3、4
「設(shè)計意圖」課后作業(yè)的布置是為了檢驗學生對本節(jié)課內(nèi)容的理解和運用程度,并促使學生進一步鞏固和掌握所學內(nèi)容。
[內(nèi)容結(jié)束]
高中數(shù)學教案怎么篇14
教學目標:
1.了解復數(shù)的幾何意義,會用復平面內(nèi)的點和向量來表示復數(shù);了解復數(shù)代數(shù)形式的加、減運算的幾何意義.
2.通過建立復平面上的點與復數(shù)的一一對應關(guān)系,自主探索復數(shù)加減法的幾何意義.
教學重點:
復數(shù)的幾何意義,復數(shù)加減法的幾何意義.
教學難點:
復數(shù)加減法的幾何意義.
教學過程:
一、問題情境
我們知道,實數(shù)與數(shù)軸上的點是一一對應的,實數(shù)可以用數(shù)軸上的點來表示.那么,復數(shù)是否也能用點來表示呢?
二、學生活動
問題1任何一個復數(shù)a+bi都可以由一個有序?qū)崝?shù)對(a,b)惟一確定,而有序?qū)崝?shù)對(a,b)與平面直角坐標系中的點是一一對應的,那么我們怎樣用平面上的點來表示復數(shù)呢?
問題2平面直角坐標系中的點A與以原點O為起點,A為終點的向量是一一對應的,那么復數(shù)能用平面向量表示嗎?
問題3任何一個實數(shù)都有絕對值,它表示數(shù)軸上與這個實數(shù)對應的點到原點的距離.任何一個向量都有模,它表示向量的長度,那么相應的,我們可以給出復數(shù)的模(絕對值)的概念嗎?它又有什么幾何意義呢?
問題4復數(shù)可以用復平面的向量來表示,那么,復數(shù)的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個復數(shù)差的模有什么幾何意義?
三、建構(gòu)數(shù)學
1.復數(shù)的幾何意義:在平面直角坐標系中,以復數(shù)a+bi的實部a為橫坐標,虛部b為縱坐標就確定了點Z(a,b),我們可以用點Z(a,b)來表示復數(shù)a+bi,這就是復數(shù)的幾何意義.
2.復平面:建立了直角坐標系來表示復數(shù)的平面.其中x軸為實軸,y軸為虛軸.實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù).
3.因為復平面上的點Z(a,b)與以原點O為起點、Z為終點的向量一一對應,所以我們也可以用向量來表示復數(shù)z=a+bi,這也是復數(shù)的幾何意義.
4.復數(shù)加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個復數(shù)差的模就是復平面內(nèi)與這兩個復數(shù)對應的兩點間的距離.同時,復數(shù)加減法的法則與平面向量加減法的坐標形式也是完全一致的。
高中數(shù)學教案怎么篇15
在前一段我講了30度、45度、60度特殊角的三角函數(shù)值,它是北師大版九年級數(shù)學下冊的一節(jié)課,在前一節(jié)剛講過正弦、余弦、正切三角函數(shù)的定義和求法。現(xiàn)把我對本節(jié)課的做法和想法與大家交流一下,希望能得到同行和專家的指點,以期取得更大的進步。
一、說教學目標
1、經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進行有關(guān)的推理。進一步體會三角函數(shù)的意義;能夠進行30°、45°、60°角的三角函數(shù)值的計算;能夠根據(jù)30°、45°、60°的三角函數(shù)值說明相應的銳角的大小。
2、發(fā)展學生觀察、分析、發(fā)現(xiàn)的能力;培養(yǎng)學生把實際問題轉(zhuǎn)化為數(shù)學問題的能力。
3、積極參與數(shù)學活動,對數(shù)學產(chǎn)生好奇心。培養(yǎng)學生獨立思考問題的習慣。
二、說教學重點
教學重點:探索特殊銳角三角函數(shù)值的過程,進行這些三角函數(shù)值的計算并會比較不同銳角三角函數(shù)值大小
在引入時我采用創(chuàng)設(shè)情境法,“為了測量一棵大樹的高度,準備了如下測量工具:(1)含30、60度角的直角三角尺(2)皮尺。請你設(shè)計一個方案,來測量一棵大樹的高度。這樣會增強學生的學習欲望,使學生對本節(jié)內(nèi)容更感興趣。
三、說教學設(shè)計:
1、讓學生自主研習,獨立探究。
(1)觀察一副三角尺,其中有幾個銳角?他們分別等于多少度?
(2)sin30度等于多少呢?你是怎樣得到的?cos30度呢,tan30度呢?
2、讓學生合作學習、生生互動
(1)請同學們完成下表:30°、45°、60°角的三角函數(shù)值(表格略)
(2)觀察表格中函數(shù)值的特點。先看第一列30°、45°、60°角的正弦值,你能發(fā)現(xiàn)什么規(guī)律呢?第二列、第三列呢?
(3)同桌之間可互相檢查一下對30°、45°、60°角的三角函數(shù)值的記憶情況。
3、精講細評,師生合作(先由學生獨立完成)
(1)計算:sin30°+cos45°;sin260°+cos260°—tan45°。
(2)鐘表上的鐘擺長度為25Cm,當鐘擺向兩邊擺動時,擺角恰好為60°,且兩邊的擺動角度相同,求它擺至最高位置時與其擺至最低位置時的高度之差。(結(jié)果精確到0。1Cm)
分析:引導學生自己根據(jù)題意畫出示意圖,培養(yǎng)學生把實際問題轉(zhuǎn)化為數(shù)學問題的能力
4、延伸遷移,形成技能
(1)計算:sin60°—tan45°;cos60°+tan60°;
(2)某商場有一自動扶梯,其傾斜角為30°。高為7m,扶梯的長度是多少?
自主小結(jié):
講課后我讓學生自主小結(jié)本節(jié)收獲,并給他們提出困惑的時間和機會
在本節(jié)課中我感覺學生整體來說收獲不小,有百分之八十的學生都會進行計算,只是對這些三角函數(shù)值的記憶還有欠缺,課下還需時間加以鞏固。課堂中學生積極性也很高,能體會到數(shù)學在生活中的應用廣泛,學習數(shù)學對解決實際生活問題的幫助,體會到學習數(shù)學的重要性。
高中數(shù)學教案怎么篇16
重點難點教學:
1.正確理解映射的概念;
2.函數(shù)相等的兩個條件;
3.求函數(shù)的定義域和值域。
一.教學過程:
1. 使學生熟練掌握函數(shù)的概念和映射的定義;
2. 使學生能夠根據(jù)已知條件求出函數(shù)的定義域和值域; 3. 使學生掌握函數(shù)的三種表示方法。
二.教學內(nèi)容:
1.函數(shù)的定義
設(shè)A、B是兩個非空的數(shù)集,如果按照某種確定的對應關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)()fx和它對應,那么稱:fAB?為從集合A到集合B的一個函數(shù)(function),記作:
(),yfA
其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數(shù)值,函數(shù)值的集合{()|}fA?叫值域(range)。顯然,值域是集合B的子集。
注意:
① “y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;
②函數(shù)符號“y=f(x)”中的f(x)表示與x對應的函數(shù)值,一個數(shù),而不是f乘x.
2.構(gòu)成函數(shù)的三要素 定義域、對應關(guān)系和值域。
3、映射的定義
設(shè)A、B是兩個非空的集合,如果按某一個確定的對應關(guān)系f,使對于集合A中的任意
一個元素x,在集合B中都有確定的元素y與之對應,那么就稱對應f:A→B為從 集合A到集合B的一個映射。
4. 區(qū)間及寫法:
設(shè)a、b是兩個實數(shù),且a
(1) 滿足不等式axb??的實數(shù)x的集合叫做閉區(qū)間,表示為[a,b];
(2) 滿足不等式axb??的實數(shù)x的集合叫做開區(qū)間,表示為(a,b);
5.函數(shù)的三種表示方法 ①解析法 ②列表法 ③圖像法
高中數(shù)學教案怎么篇17
第二教時教材:
1、復習
2、《課課練》及《教學與測試》中的有關(guān)內(nèi)容目的:復習集合的概念;鞏固已經(jīng)學過的內(nèi)容,并加深對集合的理解。
過程:
一、復習:(結(jié)合提問)
1.集合的概念含集合三要素
2.集合的表示、符號、常用數(shù)集、列舉法、描述法
3.集合的分類:有限集、無限集、空集、單元集、二元集
4.關(guān)于“屬于”的概念
二、例一用適當?shù)姆椒ū硎鞠铝屑希?/p>
1.平方后仍等于原數(shù)的數(shù)集解:{x x2=x}={0,1}
2.比2大3的數(shù)的集合解:{x x=2+3}={5}
3.不等式x2-x-6<0的整數(shù)解集解:{xZx2-x-6<0}={xZ-2<x<3}={-1,0,1,2}
4.過原點的直線的集合解:{(x,y)y=kx}
5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)4x2+9y2-4x+12y+5=0}={(x,y)(2x-1)2+(3y+2)2=0}={(x,y)(1/2,-2/3)}
6.使函數(shù)y=有意義的實數(shù)x的集合解:{x x2+x-60}={x x2且x3,xR}
三、處理蘇大《教學與測試》第一課含思考題、備用題
四、處理《課課練》
五、作業(yè)《教學與測試》第一課練習題