初一數學教案范例
教案可以幫助教師更好地了解學生,從而更好地滿足學生的學習需求。初一數學教案范例怎么才能寫好?這里分享一些初一數學教案范例,方便大家學習。
初一數學教案范例篇1
教學目標
1,在現實背景中理解有理數加法的意義。
2,經歷探索有理數加法法則的過程,理解有理數的加法法則。
3,能積極地參與探究有理數加法法則的活動,并學會與他人交流合作。
4,能較為熟練地進行有理數的加法運算,并能解決簡單的實際間題。
5,在教學中適當滲透分類討論思想
教學難點
異號兩數相加
知識重點
和的符號的確定
教學過程
(師生活動)設計理念
設置情境
引入課題回顧用正負數表示數量的實際例子;
在足球比賽中,如果把進球數記為正數,失球數記為負數,它們的和叫做凈勝球數。若紅隊進4個球,失2個球,則紅隊的勝球數,可以怎樣表示?藍隊的勝球數呢?
師:如何進行類似的有理數的加法運算呢?這就是我們這節課一起與大家探討的問題。
(出示課題)讓學生感受到在實際問題中做加法運算的數可能超出正數的范圍,體會學習有理數加法的必要性,激發學生探究新知的興趣。
分析問題
探究新知如果是球隊在某場比賽中上半場失了兩個球,下
半場失了3個球,那么它的得勝球是幾個呢?算式應該
怎么列?若這支球隊上半場進了2個球,下半場失了3個球,又如何列出算式,求它的得勝球呢?
(學生思考回答)
思考:請同學們想想,這支球隊在這場比賽中還可
能出現其他的什么情況?你能列出算式嗎?與同伴交流。
學生相互交流后,教師進一步引導學生可以把兩個有理數相加歸納為同號兩數相加、異號兩數相加、一個數同零相加這三種情況。
2,借助數軸來討論有理數的加法。I
一個物體向左右方向運動,我們規定向左運動為負,向右為正,向右運動5m,記作5m,向左運動5m,記作—5m。
(1)(小組合作)把我們已經得出的幾種有理數相加的情況在數軸上用運動的方向表示出來,并求出結果,解釋它的意義。
(2)交流匯報。(對學習小組的匯報結果,數軸用實物投影儀展示,算式由教師寫在黑板上)
(3)說一說有理數相加應注意什么?(符號,絕對值)能用自己的語言歸納如何相加嗎?
(4)在學生歸納的基礎上,教師出示有理數加法法則。
有理數加法法則:
1,同號兩數相加,取相同的符號,并把絕對值相加。
2,絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
3,一個數同。相加,仍得這個數。再次創設足球比賽情境,一方面與引題相呼應,聯系密切,另一方面讓學生在此情境中感受到有理數相加的幾種不同情形,并能將它分類,滲透分類討論思想。
估計學生能順利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(—),0+(+),0+(一)。
但不能把它歸的為同號異號等三類,所以此處需教師。點拔、指扎,體現教師的引導者作用。
①假設原點0為第一次運動起點,第二次運動的起點是第一次運動的終點。②若學生在學習小組內不能很好地參與探究,也可以讓其參照教科書第21頁的“探究”自主進行。③讓學生感受“數學模型”的思想。④學會與同伴交流,并在交流中獲益。培養學生的語言表達能力和歸納能力,也許學生說得不夠嚴謹,但這并不重要,重要的足能用自己的語言表達自己所發現的規律
解決問題解決問題
例1計算:
(1)(—3)+(—9);(2)(—5)+13;
(3)0十(—7);(4)(—4。7)+3。9。
教師板演,讓學生說出每一步運算所依據的法則。
請同學們比較,有理數的加法運算與小學時候學的加法有什么異同?(如:有理數加法計算中要注意符號,和不一定大于加數等等)
例2足球循環賽中,紅隊4:1勝黃隊,黃隊1:0勝藍隊藍隊1:0勝紅隊,計算各隊的凈勝球數。
(讓學生讀數,理解題意,思考解決方案,然后由學生口述,教師板書)
學生活動:請學生說一說在生活中用到有理數加法的例子。注意點:(1)下先確定是哪種類型的加法再定符號,最后算絕對位。(2)教教師板演的例通要完整體現過程,并要求學生在剛開始學的時候要把中間的過
程寫完整。(3)體現化歸思想。(4)這里增加了兩道題目,要是讓學生能較為熟練地運用法則進行計算。
拓寬學生視野,讓學
生體會到數學與生活的密切聯系。
課堂練習教科書第23頁練習
小結與作業
課堂小結通過這節課的學習,你有哪些收獲,學生自己總結。
本課作業必做題:閱讀教科書第20~22頁,教科書第31習題1。3第1、12、第13題。
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,在本節課的設計中,注重引導學生參與探究、歸納(用自己的語言敘迷)有理數加法法則的過程。
2,注意滲透數學思想方法。數學思想方法的滲透不可能立即見效,也不可能靠一朝一夕讓學生理解、掌握,所以,本節課在這一方面主要是讓學生感知研究數學問題的一般方法(分類、辯析、歸納、化歸等)。如在探究加法法則時,有意識地把各種情況先分為三類(同號、異號,一個數同0相加);在運用法則時,當和的符號確定以后,有理數的加法就轉化為算術的加減法。
3,注意學生合作學習的學習方式,讓學生在與他人合作中受益,學會交流,學會傾聽
別人的意見和建議。
附板書:1。3。1有理數的加法(一)
初一數學教案范例篇2
教學目的
1.理解用一元一次方程解工程問題的本質規律;通過對“工程問題”的分析進一步培養學生用代數方法解決實際問題的能力。
2.理解和掌握基本的數學知識、技能、數學思想方法,獲得廣泛的數學活動經驗,提高解決問題的能力。
重點、難點
重點:工程中的工作量、工作的效率和工作時間的關系。
難點:把全部工作量看作“1”。
教學過程
一、復習提問
1.一件工作,如果甲單獨做2小時完成,那么甲獨做I小時完成全部工作量的多少?
2.一件工作,如果甲單獨做。小時完成,那么甲獨做1小時,完成全部工作量的多少?
3.工作量、工作效率、工作時間之間有怎樣的關系?
二、新授
閱讀教科書第18頁中的問題6。
分析:1.這是一個關于工程問題的實際問題,在這個問題中,已經知道了什么? 已知:制作一塊廣告牌,師傅單獨完成需4天,徒弟單獨做要6天。
2.怎樣用列方程解決這個問題?本題中的等量關系是什么?
[等量關系是:師傅做的工作量+徒弟做的工作量=1)
[先要求出師傅與徒弟各完成的工作量是多少?]
兩人的工效已知,因此要先求他們各自所做的天數,因此,設師傅做了x天,則徒弟做(x+1)天,根據等量關系列方程。 解方程得 x=2
師傅完成的工作量為= ,徒弟完成的工作量為=
所以他們兩人完成的工作量相同,因此每人各得225元。
三、鞏固練習
一件工作,甲獨做需30小時完成,由甲、乙合做需24小時完成,現由甲獨做10小時;請你提出問題,并加以解答。
例如 (1)剩下的乙獨做要幾小時完成?
(2)剩下的由甲、乙合作,還需多少小時完成?
(3)乙又獨做5小時,然后甲、乙合做,還需多少小時完成?
四、小結
1.本節課主要分析了工作問題中工作量、工作效率和工作時間之間的關系,即 工作量=工作效率×工作時間
工作效率= 工作時間=
2.解題時要全面審題,尋找全部工作,單獨完成工作量和合作完成工作量的一個等量關系列方程。
五、作業
教科書習題6.3.3第1、2題。
初一數學教案范例篇3
教 學 設 計
教學后記
課 題
數據的收集(2)
教
學
目
標
知識與技能
讓學生經歷調查與收集數據的過程,從中體會到數據在解決現實世界的問題中是有用的,學會收集數據,掌握收集數據的方法,利用數據解決問題。
過程和方法
組織學生開展調查,收集自己感興趣的數據,課堂上集體討論,在合作探究活動中獲取知識,感受知識。
情感、態度與價值觀
感興趣于探究活動,愿意和他人交流,學會表達,學會質疑,逐步養成用數據說話的習慣。
重點、難點
重點:認識數據的重要性,掌握數據收集的方法。
難點:如何收集數據,利用數據來解決問題。
教
學
策
略
教法選擇
教師以主持人的身份,開展課堂活動,引導學生獨立思考、合作探索、參與交流,發表意見。
學法引導
通過詳細閱讀課文,聯系生活實際,親身實踐、自主探索,了解收集數據的過程、方法和用途并收集數據。
課堂組織形式
課堂活動課:教師引導,學生分組討論,代表發言學生參與辯論,課堂展開調查,師生共同小結。
教
學
過
程
一、課堂導入
寓言小故事:通過寓言小故事引入教學,使學生的注意力進入到課堂的活動中,調動同學們的學習積極性,認識到數據的收集在生活中是有用的。
二、分組討論
分小組討論:把學生分成六個討論小組,每位同學把自己經歷調查所收集到的數據,和小組同學一起討論,在小組中闡述自己的想法,介紹收集數據的過程和方法,選出有代表性的數據,進行修改認證。
三、集體分享
選派代表發言:每一個討論小組派一至三位代表把本組有代表性的數據收集公布,闡述調查的問題,數據收集的對象、方法和過程,和同學們一起探討數據的作用,分享調查的成果。學生或老師提出質疑,共同評價,達成共識。
四、課堂調查
課堂開展調查研究:在分享學生數據收集的基礎上,師生合作交流,通過課堂調查,用唱票的方法,了解學生對老師的評價,用數據說話。
五、反思提高
活動過程 小結:對整個數據收集的過程做一個小結,學生發表自己的見解,總結數據收集的方法,了解到實驗次數增多對結果產生的影響,明白數據在解決現實生活問題是有用的這個道理。
六、課后作業
1、把收集的數據加以整理,寫出一份報告。
2、課本第188頁習題5.1第1、2題,可以到其它班級收集數據。
3、閱讀課本第189~192頁
備注:
初一數學教案范例篇4
學習目標
1.通過動手觀察、操作、推斷、交流等數學活動,進一步發展空間觀念毛
2.在具體情境中了解鄰補角、對頂角, 能找出圖形中的一個角的鄰補角和對頂角
重點、難點
重點:鄰補角、對頂角的概念,對頂角性質與應用.
難點:理解對頂角相等的性質的探索.
教學過程
一、復習導入
教師在輕松歡快的音樂中演示第五章章首圖片為主體的課件.
學生欣賞圖片,閱讀其中的文字.
師生共同總結:我們生活的世界中,蘊涵著大量的相交線和平行線. 本章要研究相交線所成的角和它的特征,相交線的一種特殊形式即垂直,垂線的性質, 研究平行線的性質和平行的判定以及圖形的平移問題.
二、自學指導
觀察剪刀剪布的過程,引入兩條相交直線所成的角
握緊把手時,隨著兩個把手之間的角逐漸變小,剪刀刃之間的角邊相應變小. 如果改變用力方向,隨著兩個把手之間的角逐漸變大,剪刀刃之間的角也相應變大.
三、 問題導學
認識鄰補角和對頂角,探索對頂角性質
(1).學生畫直線AB、CD相交于點O,并說出圖中4個角,兩兩相配共能組成幾對角? 各對角的位置關系如何?根據不同的位置怎么將它們分類?
學生思考并在小組內交流,全班交流.
∠AOC和∠BOC有一條公共邊OC,它們的另一邊互為反向延長線.
∠AOC和∠BOD有公共的頂點O,而是∠AOC的兩邊分別是∠BOD兩邊的反向延長線.
( 2).學生用量角器分別量一量各個角的度數,以發現各類角的度數有什么關系,學生得出有"相鄰"關系的兩角互補,"對頂"關系的兩角相等.
(3).概括形成鄰補角、對頂角概念.
有一條公共邊,而且另一邊互為反向延長線的兩個角叫做鄰補角.
如果兩個角有一個公共頂點, 而且一個角的兩邊分別是另一角兩邊的反向延長線,那么這兩個角叫對頂角.
四、典題訓練
1.例:如圖,直線a,b相交,∠1=40°,求∠2,∠3,∠4的度數.
2.:判斷下列圖中是否存在對頂角.
小結
自我檢測
一、判斷題:
1.如果兩個角有公共頂點和一條公共邊,而且這兩角互為補角, 那么它們互為鄰補角. ( )
2.兩條直線相交,如果它們所成的鄰補角相等,那么一對對頂角就互補. ( )
二、填空題:
1.如圖1,直線AB、CD、EF相交于點O,∠BOE的對頂角是_______,∠COF 的鄰補角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,則∠BOC=_________.
(1) (2)
2.如圖2,直線AB、CD相交于點O,∠COE=90°,∠AOC=30°,∠FOB=90°, 則∠EOF=________.
三、解答題:
1.如圖,直線AB、CD相交于點O.
(1)若∠AOC+∠BOD=100°,求各角的度數.
(2)若∠BOC比∠AOC的2倍多33°,求各角的度數.毛
2.兩條直線相交,如果它們所成的一對對頂角互補, 那么它的所成的各角的度數是多少?
初一數學教案范例篇5
學習目標:
1、會進行包括小數或分數的有理數的加減混合運算。
2、熟練地進行有理數加減混合運算,并利用運算律簡化運算。
3、會比較“加減法統一為加法”與“省略加號的代數和”兩種計算形式。
學習重難點:
1、準確迅速地進行有理數的加減混合運算,加減運算法則和加法運算律。
2、減法直接轉化為加法及混合運算的準確性,省略加號與括號的代數和計算。
學習過程:
任務一:溫故知新
1、完成課本44頁習題2、7的第1、2題,寫在作業本上。
2、6有理數的加減混合運算》課時練習
一、選擇題(共10題)
1、下列關于有理數的加法說法錯誤的是()
A、同號兩數相加,取相同的符號,并把絕對值相加
B、異號兩數相加,絕對值相等時和為0
C、互為相反數的兩數相加得0
D、絕對值不等時,取絕對值較小的數的符號作為和的符號
答案:D
解析:解答:D選項應該是有理數相加時,如果絕對值不等時,取絕對值較小的數的&39;符號作為和的符號
分析:考查有理數的的加法法則
《2、6有理數的加減混合運算》同步練習
2、有一架直升飛機從海拔1000米的高原上起飛,第一次上升了1500米,第二次上升上-1200米,第三次上升了1100米,第四次上升了-1700米,求此時這架飛機離海平面多少米?
3、10名學生體檢測體重,以50千克為基準,超過的數記為正,不足的數記為負,稱得結果如下(單位:千克):2,3,-7、5,-3,5,-8,3、5,4、5,8,-1、5
這10名學生的總體重為多少?10名學生的平均體重為多少?
初一數學教案范例篇6
一、教學目標:
1、了解作為證明基礎的幾條公理的內容,掌握證明的基本步驟和書寫格式。
2、經歷“探索-發現-猜想-證明”的過程。能夠用綜合法證明等腰三角形的關性質定理和判定定理。
3、結合實例體會反證法的含義。
二、教學重點:
了解作為證明基礎的幾條公理的內容,通過等腰三角形性質證明,掌握證明的基本步驟和書寫格式。
教學難點:能夠用綜合法證明等腰三角形的關性質定理和判定定理(特別是證明等腰三角形性質時輔助線做法)。
三、教學方法:
觀察法。
四、教學過程:
復習:
1、什么是等腰三角形?
2、你會畫一個等腰三角形嗎?并把你畫的等腰三角形栽剪下來。
3、試用折紙的辦法回憶等腰三角形有哪些性質?
新課講解:
在《證明(一)》一章中,我們已經證明了有關平行線的一些結論,運用下面的公理和已經證明的定理,我們還可以證明有關三角形的一些結論。
同學們和我一起來回憶上學期學過的公理
本套教材選用如下命題作為公理:
1.兩直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;
2.兩條平行線被第三條直線所截,同位角相等;
3.兩邊夾角對應相等的兩個三角形全等;(SAS)
4.兩角及其夾邊對應相等的兩個三角形全等;(ASA)
5.三邊對應相等的兩個三角形全等;(SSS)
6.全等三角形的對應邊相等,對應角相等.
由公理5、3、4、6可容易證明下面的推論:
推論兩角及其中一角的對邊對應相等的兩個三角形全等。(AAS)證明過程:
已知:∠A=∠D,∠B=∠E,BC=EF
求證:△ABC≌△DEF
證明:∵∠A+∠B+∠C=180°,
∠D+∠E+∠F=180°
(三角形內角和等于180°)
∴∠C=180°-(∠A+∠B)
∠F=180°-(∠D+∠E)
又∵∠A=∠D,∠B=∠E(已知)
∴∠C=∠F
又∵BC=EF(已知)
∴△ABC≌△DEF(ASA)
定理:等腰三角形的兩個底角相等。
這一定理可以簡單敘述為:等邊對等角。已知:如圖,在ABC中,AB=AC。
初一數學教案范例篇7
●教學內容
七年級上冊課本11----12頁1.2.4絕對值
●教學目標
1.知識與能力目標:借助于數軸,初步理解絕對值的概念,能求一個數的絕對值,初步學會求絕對值等于某一個正數的有理數。
2.過程與方法目標:通過從數形兩個側面理解絕對值的意義,初步了解數形結合的思想方法。通過應用絕對值解決實際問題,體會絕對值的意義。
3.情感態度與價值觀:通過應用絕對值解決實際問題,培養學生濃厚的學習興趣,使學生能積極參與數學學習活動,對數學有好奇心與求知欲。
●教學重點與難點
教學重點:絕對值的幾何意義和代數意義,以及求一個數的絕對值。
教學難點:絕對值定義的得出、意義的理解,以及求絕對值等于某一個正數的有理數。
●教學準備
多媒體課件
●教學過程
一、創設問題情境
1、兩只小狗從同一點O出發,在一條筆直的街上跑,一只向右跑10米到達A點,另一只向左跑10米到達B點。若規定向右為正,則A處記作-__________,B處記作__________。
以O為原點,取適當的單位長度畫數軸,并標出A、B的位置。
(用生動有趣的引例吸引學生,即復習了數軸和相反數,又為下文作準備)。
2、這兩只小狗在跑的過程中,有沒有共同的地方?在數軸上的A、B兩點又有什么特征?(從形和數兩個角度去感受絕對值)。
3、在數軸上找到-5和5的點,它們到原點的距離分別是多少?表示-和的點呢?
小結:在實際生活中,有時存在這樣的情況,無需考慮數的正負性質,比如:在計算小狗所跑的路程中,與小狗跑的方向無關,這時所走的路程只需用正數,這樣就必須引進一個新的概念-———絕對值。
二、建立數學模型
1、絕對值的概念
(借助于數軸這一工具,師生共同討論,引出絕對值的概念)
絕對值的幾何定義:一個數在數軸上對應的點到原點的距離叫做這個數的絕對值。比如:-5到原點的距離是5,所以-5的絕對值是5,記|-5|=5;5的絕對值是5,記做|5|=5。
注意:①與原點的關系 ②是個距離的概念
2..練習1:請學生舉一個生活中的實際例子,說明解決有的問題只需考慮的數絕對值。[溫度上升了5度,用 +5表示的話,那么下降了5度,就用-5 表示,如果我們不去考慮它的意義(即:上升還是下降),只考慮數量(即:溫度)的變化,我們可以說:溫度的變化都是5度。銀行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我們不去考慮它的意義(即:存入還是取出),只考慮數量的多少,我們可以說:金額都是100元。]
(通過應用絕對值解決實際問題,體會絕對值的意義與作用,感受數學在生活中的價值。)
三、應用深化知識
1、例題求解
例1、求下列各數的絕對值
-1.6 , , 0, -10, +10
2、根據上述題目,讓學生歸納總結絕對值的特點。(教師進行補充小結)
特點:1、一個正數的絕對值是它本身
2、一個負數的絕對值是它的相反數
3、零的絕對值是零
4、互為相反數的兩個數的絕對值相等
3.出示題目
(1) -3的符號是_______,絕對值是______;
(2) +3的符號是_______,絕對值是______;
(3) -6.5的符號是_______,絕對值是______;
(4) +6.5的符號是_______,絕對值是______;
學生口答。
師:上面我們看到任何一個有理數都是由符號,和絕對值兩個部分構成。現在老師有一個問題想問問大家,在上一節課中我們規定只有符號不同的兩個數稱互為相反數。那么大家在今天學習了絕對值以后,你能給相反數一個新的解釋嗎?
5、練習3:回答下列問題
①一個數的絕對值是它本身,這個數是什么數?
②一個數的絕對值是它的相反數,這個數是什么數?
③一個數的絕對值一定是正數嗎?
④一個數的絕對值不可能是負數,對嗎?
⑤絕對值是同一個正數的數有兩個,它們互為相反數,這句話對嗎?
(由學生口答完成,進一步鞏固絕對值的概念)
6、例2.求絕對值等于4的數
(讓學生考慮這樣的數有幾個,是怎樣得出這個結果的呢?對后一個問題由學生去討論,啟發學生從數與形兩個方面考慮,培養學生的發散思維能力。)
分析:
①從數字上分析
∵|+4|=4, |-4|=4 ∴絕對值等于4的數是+4和-4畫一個數軸(如下圖)
②從幾何意義上分析,畫一個數軸(如下圖)
因為數軸上到原點的距離等于4個單位長度的點有兩個,即表示+4的點P和表示-4的點M
所以絕對值等于4的數是+4和-4.
6、練習:做書上12頁課內練習1、2兩題。
四、歸納小結
1、本節課我們學習了什么知識?
2、你覺得本節課有什么收獲?
3、由學生自行總結在自主探究,合作學習中的體會。
五、課后作業
1、讓學生去尋找一些生活中只考慮絕對值的實際例子。
2、課本15頁的作業題。
初一數學教案范例篇8
教材分析
1.這節的重點為:去括號。因此,本節所學的知識實際上就是對前面所學知識的一個鞏固和深化,要突破這個重點,只有在掌握方法的前提下,通過一定的練習來掌握。
2.去括號是整式加減的一個重要內容,也是下一章一元一次方程的直接基礎,也是今后繼續學習整式的乘除、因式分解、方程,以及分式、函數等的重要基礎。
學情分析
去括號法則是教材上的教學內容,學生學習時會經常出現錯用法則的現象。實驗表明:完全可以用乘法分配律取代去括號法則.這是由于:
(1)“去括號法則”,增加了記憶負擔和出錯的機會,容易出錯;
(2)去括號的法則增加了解題長度,降低了學習效率;
(3)用乘法分配律去括號的學習是同化而非順應,易于理解與掌握;
(4)用乘法分配律去括號是回歸本質,返璞歸真,且既可減少學習時間,又能提高運算的正確率。
教學目標
1.熟練掌握去括號時符號的變化規律;
2.能正確運用去括號進行合并同類項;
3.理解去括號的依據是乘法分配律。
教學重點和難點
重點
去括號時符號的變化規律。
難點
括號外的因數是負數時符號的變化規律。
教學過程
一、創設情景問題
青藏鐵路線上,列車在凍土地段的行駛速度是100千米/時,在非凍土地段的形式速度可以達到120千米/時。
請問:(3)在格爾木到拉薩路段,列車通過凍土地段比通過非凍土地段多用0.5小時,如果通過凍土地段需要t小時,則這段鐵路的全長可以怎么樣表示?凍土地段與非凍土地段相差多少千米?
解:這段鐵路的全長為100t+120(t-0.5)(千米)
凍土地段與非凍土地段相差100t-120(t-0.5)(千米)。
提出問題,如何化簡上面的兩個式子?引出本節課的學習內容。
二、探索新知
1.回顧:
1你記得乘法分配率嗎?怎么用字母來表示呢?
a(b+c)=ab+ac
2-(-2)=(-1)__(-2)=2+(-3)=(+1)__(-3)=-3
2.探究
計算(試著把括號去掉)
(1)13+(7-5)(2)13-(7-5)
類比數的運算,去掉下面式子的括號
(3)a+(b-c)(4)a-(b-c)
3.解決問題
100t+120(t-0.5)=100t-120(t-0.5)=
思考:
去掉括號前,括號內有幾項、是什么符號?去括號后呢?
去括號的依據是什么?
三、知識點歸納
去括號法則:
如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同;
如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反.
注意事項
(1)去括號規律要準確理解,去括號應對括號的每一項的符號都予考慮,做到要變都變;要不變,則誰也不變;
(2)括號內原有幾項去掉括號后仍有幾項.
四、例題精講
例4化簡下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
五、鞏固練習
課本P68練習第一題.
六、課堂小結
1.今天你收獲了什么?
2.你覺得去括號時,應特別注意什么?
七、布置作業
課本P71習題2.2第2題
初一數學教案范例篇9
1.知識與技能
會用代數式表示簡單的問題中的數量關系,能用合并同類項,去括號等法則驗證所探索的規律。
2.過程與方法
經歷探索數量關系,運用符號表示規律,通過運算驗證規律的過程,培養學生觀察、分析、推理的能力。
3.情感態度與價值觀
培養學生不怕困難、勇于探索的學習態度,合作交流的意識和能力,感受符號運算的作用。
老師:請同學們觀察并找出規律
學生獨立完成
老師:請同學們拿出你們的學具按要求親自動手擺一擺,算一算。
學生:老師,擺幾個三角形呀?
老師:先擺一個,再擺兩個、三個、四個。關注學生與他人進行合作與交流的意識。
鼓勵每個同學盡可能獨立思考,并與同伴進行交流,教師關注學生在探索數量關系活動中的參與態度、思維水平和抽象能力:分析:
三角形個數12345
火柴棍根數357911
教師演示,學生觀察
老師:每增加一個三角形,火柴棍根數增加多少?
學生:2根
老師:火柴棍根數是一組怎樣的數?
生:連續奇數。
師:奇數可用整式2n+1(或2n-1)表示。
師:從多角度思考,也可以分析表格中火柴棍根數與三角形個數之間的關系生:怎樣找?
師:如3=2×1+1,5=2×2+1
生:哦,明白了
師:從而得排n個三角形需要火柴棍根數為什么?
生:2n+1
師:請同學們親自拼一拼,想一想,在探索規律的過程中從多個角度進行考慮,并與同伴進行交流。
生:好
關注學生在活動中的參與態度,能否積極地從事數量關系的探索過程,不要以教師的演示代替學生的實際活動。
提出問題后,學生分四人小組進行討論,并派代表在班組交流。
師:當n≤100時,n本筆記本所需錢數為多少?
生:2.3n元,
師:當n>100時,n本筆記本需要多少元?
生:2.2n元。
生:觀察這兩個整式,當n=100時,需花錢230元,而當n=101時,只需花錢2.2×101=222.2(元),出現多買比少買反而付錢少的情況,所以如果需要100本筆記本,應該購買101本能省錢。
師:請同學們繼續探索,至少需要多少本時,可以按上面方式購買。
組織學生按四人小組,進行探究,鼓勵每個學生盡可能獨立思考,并與同伴進行交流。
師:請同學們再找幾個方框試試,看自己的規律是否還成立
生:好
教學時,也可以先開放,讓學生發現月歷中數與數之間的關系,再討論淺色方框中數字和與該方框正中間的關系課本。讓學生獨立完成之后,再小組討論,讓學生自己整理這節課的內容。
初一數學教案范例篇10
教學目標
1.利用10的乘方,進行科學記數,會用科學記數法表示大于10的數;(重點)
2.能將用科學記數法表示的數還原為原數.(重點)
教學過程
一、情境導入
在悉尼舉行的國際天文學聯合會大會上,天文學家指出整個可見宇宙空間大約有700萬億億顆恒星,這個數字比地球上所有沙漠和海灘上的沙礫總和數量還要多.
如果想在字面上表示出這一數字,需要在“7”后面加上22個“0”.即約為“70000000000000000000000”顆.
生活中,我們還常會遇到一些比較大的數.例如:
1.據報載,20__年我國將發展固定寬帶接入新用戶25000000戶.
2.全球每年大約有577000000000000m3的水從海洋和陸地轉化為大氣中的水汽.
3.拒絕“餐桌浪費”刻不容緩,據統計,全國每年浪費糧食總量約50000000000千克.
像這些較大的數據,書寫和閱讀都有一定的難度,那么有沒有這樣一種表示方法,使得這些大數易寫、易讀、易于計算呢?
二、合作探究
探究點一:用科學記數法表示大數
例1我區深入實施環境污染整治,關停和整改了一些化工企業,使得每年排放的污水減少了167000噸,將167000用科學記數法表示為()
A.167×103B.16.7×104
C.1.67×105D.1.6710×106
解析:根據科學記數法的表示形式,先確定a,再確定n,解此類題的關鍵是a,n的確定.167000=1.67×105,故選C.
方法總結:科學記數法的表示形式為a×10n,其中1≤a<10,n為整數,表示時關鍵要正確確定a的值以及n的值.
例220__年3月發生了一件舉國悲痛的空難事件——馬航失聯,該飛機上有中國公民154名.噩耗傳來后,我國為了搜尋生還者及找到失聯飛機,花費了大量的人力物力,已花費人民幣大約934千萬元.把934千萬元用科學記數法表示為______元()
A.9.34×102B.0.934×103
C.9.34×109D.9.34×1010
解析:934千萬=9340000000=9.34×109.故選C.
方法總結:對用帶“萬”“千萬”“億”等單位的數用科學記數法表示時,要化成不帶單位的數,再用科學記數法表示.
探究點二:將用科學記數法表示的數轉換為原數
例3已知下列用科學記數法表示的數,寫出原來的數:
(1)2.01×104;(2)6.070×105;(3)-3×103.
解析:(1)將2.01的小數點向右移動4位即可;(2)將6.070的小數點向右移動5位即可;(3)將-3擴大1000倍即可.
解:(1)2.01×104=20100;
(2)6.070×105=607000;
(3)-3×103=-3000.
方法總結:將科學記數法a×10n表示的數,“還原”成通常表示的數,就是把a的小數點向右移動n位所得到的.數.
三、板書設計
科學記數法:
(1)把大于10的數表示成a×10n的形式.
(2)a的范圍是1≤a<10,n是正整數.
(3)n比原數的整數位數少1.
教學反思
本節課的特點是實際性強,和我們的日常生活聯系緊密,從學生的生活經驗和已有的知識出發,創設生動有趣的情境,引導學生開展觀察、討論、交流等活動.把學生被動接受知識的過程變為主動探究發現的過程,使知識的發生與發展在每一位學生各自的體驗和自主學習中逐漸展現.
初一數學教案范例篇11
教學目的
1.通過對多個實際問題的分析,使學生體會到一元一次方程作為實際問題的數學模型的作用。
2.使學生會列一元一次方程解決一些簡單的應用題。
3.會判斷一個數是不是某個方程的解。
重點、難點
1.重點:會列一元一次方程解決一些簡單的應用題。
2.難點:弄清題意,找出“相等關系”。
教學過程
一、復習提問
一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?
解:設小紅能買到工本筆記本,那么根據題意,得
1.2x=6
因為1.2×5=6,所以小紅能買到5本筆記本。
二、新授:
問題1:某校初中一年級328名師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的客車多少輛? (讓學生思考后,回答,教師再作講評)
算術法:(328-64)÷44=264÷44=6(輛)
列方程:設需要租用x輛客車,可得。
44x+64=328 (1)
解這個方程,就能得到所求的結果。
問:你會解這個方程嗎?試試看?
問題2:在課外活動中,張老師發現同學們的年齡大多是13歲,就問同學:“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”
通過分析,列出方程:13+x=(45+x)
問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發?
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,
因為左邊=右邊,所以x=3就是這個方程的解。
這種通過試驗的方法得出方程的解,這也是一種基本的數學思想方法。也可以據此檢驗一下一個數是不是方程的解。
問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?動手試一試,大家發現了什么問題?
同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數,該從何試起?如何試驗根本無法人手,又該怎么辦?
三、鞏固練習
教科書第3頁練習1、2。
四、小結。本節課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。
五、作業 。教科書第3頁,習題6.1第1、3題。
初一數學教案范例篇12
回顧與反思
師生共同討論得出結論,教師指出注意的問題
沙場練兵
一、比一比看誰最快、最棒:
1、-0.4ab3的系數是次數是。
2、多項式3x2+2x-3x-4的最高次項是,同類項是,常數項是。
3、去括號3a-(2ab-3b2+4)=
4、與2a-1的和為7a2-4a+1的多項式是
二、應用知識,提高能力,你一定行:
已知小明的年齡是歲,小紅的年齡比小明的2倍少4歲,小華的年齡比小紅的年齡的一半多一歲,求三個人的年齡和。
學生搶答
學生獨立思考,然后在本上做,找一名同學板書。
培養學生運算能力和分析問題解決問題的能力。
回顧與反思
本節課的學習你有哪些收獲?
應注意什么問題?(出示本章的知識結構圖:)
師生互動梳理知識。弄清本章所學的概念、法則和有關的知識內容以及它們之間的聯系與區別,并寫出知識結構圖。
布置
作業P1926、8、11
板書設計:
回顧與反思
一、知識結構
二、1、整式有關概念注:單次
三、整式加減(注:同類項的確定,去括號的應注意問題)
教學反思:
本節課在學生充分思考的基礎上,開展小組交流和全班交流。使學生在反思交流的過程中,師生共同建立知識體系得出本章知識結構圖,在整個過程中不僅注重對知識的總結,更注重對知識形成過程的反思歸納。留給了學生充足的時間和空間,反思知識的發生發展過程。但由于留給學生時間較長,課時感到很緊張,今后要注意改進。
初一數學教案范例篇13
教學目標:
1、明白生活中存在著無數表示相反意義的量,能舉例說明;
2、能體會引進負數的必要性和意義,建立正數和負數的數感。
重點:通過列舉現實世界中的“相反意義的量”的例子來引進正數和負數,要求學生理解正數和負數的意義,為以后通過實例引進有理數的大小比較、加法和乘法法則打基礎。
難點:對負數的意義的理解。
教學過程:
一、知識導向:本節課是一個從小學過渡的知識點,主要是要抓緊在數范圍上擴充,對引進“負數”這一概念的必要性及意義的理解。
二、新課拆析:1、回顧小學中有關數的范圍及數的分類,指出小學中的“數”是為了滿足生產和生活的需要而產生發展起來的。如:0,1,2,3,…,,
2、能讓學生舉例出更多的有關生活中表示相反意義的量,能發現事物之間存在的對立面。
如:汽車向東行駛3千米和向西行駛2千米
溫度是零上10°C和零下5°C;收入500元和支出237元;水位升高1.2米和下降0.7米;3、上面所列舉的表示相反意義量,我們也許就會發現:如果只用原來所學過的數很難區分具有相反意義的量。
一般地,對于具有相反意義的量,我們可把其中一種意義的量規定為正的,用過去學過的數表示;把與它意義相反的量規定為負的,用過去學過的`數(零除外)前面放上一個“—”號來表示。
如:在表示溫度時,通常規定零上為“正”,零下為“負”即零上10°C表示為10°C,零下5°C表示為-5°C概括:我們把這一種新數,叫做負數,如:-3,-45,…過去學過的那些數(零除外)叫做正數,如:1,2.2…零既不是正數,也不是負數例:下面各數中,哪些數是正數,哪些數是負數,1,2.3,-5.5,68,-,0,-11,+123,…
三、階梯訓練:P18練習:1,2,3,4。
四、知識小結:
從本節課所學的內容中,應能從數的角度來區分小學與初中的異同點,通過運用發現相反意義量,能理解引進“負數”的必要性及其意義。
五、作業鞏固:
1、每個同學分別舉出5個生活中表示相反意義量的的例子;并用正、負數來表示;2、分別舉出幾個正數與負數(最少6個)。3、P20習題2.1:1題。
初一數學教案范例篇14
教學目的
讓學生通過獨立思考,積極探索,從而發現;初步體會數形結合思想的作用。
重點、難點
1.重點:通過分析圖形問題中的數量關系,建立方程解決問題。
2.難點:找出“等量關系”列出方程。
教學過程
一、復習提問
1.列一元一次方程解應用題的步驟是什么?
2.長方形的周長公式、面積公式。
二、新授
問題3.用一根長60厘米的鐵絲圍成一個長方形。
(1)使長方形的寬是長的專,求這個長方形的長和寬。
(2)使長方形的寬比長少4厘米,求這個長方形的面積。
(3)比較(1)、(2)所得兩個長方形面積的大小,還能圍出面積更大的長方形嗎?
不是每道應用題都是直接設元,要認真分析題意,找出能表示整個題意的等量關系,再根據這個等量關系,確定如何設未知數。
(3)當長方形的長為18厘米,寬為12厘米時
長方形的面積=18×12=216(平方厘米)
當長方形的長為17厘米,寬為13厘米時
長方形的面積=221(平方厘米)
∴(1)中的長方形面積比(2)中的長方形面積小。
問:(1)、(2)中的長方形的長、寬是怎樣變化的?你發現了什么?如果把(2)中的寬比長少“4厘米”改為3厘米、2厘米、1厘米、0.5厘米長方形的面積有什么變化?猜想寬比長少多少時,長方形的面積呢?并加以驗證。
實際上,如果兩個正數的和不變,當這兩個數相等時,它們的積,通過以后的學習,我們就會知道其中的道理。
三、鞏固練習
教科書第14頁練習1、2。
第l題等量關系是:圓柱的體積=長方體的體積。
第2題等量關系是:玻璃杯中的水的體積十瓶內剩下的水的體積=原來整瓶水的體積。
四、小結
運用方程解決問題的關鍵是抓住等量關系,有些等量關系是隱藏的,不明顯,要聯系實際,積極探索,找出等量關系。
五、作業
教科書第16頁,習題6.3.1第1、2、3。
初一數學教案范例篇15
教學目標:
1.通過對“零”的意義的探討,進一步理解正數和負數的概念,能利用正負數正確表示具有相反意義的量(規定了向指定方向變化的量);
2.進一步體驗正負數在生產生活中的廣泛應用,提高解決實際問題的能力.
教學重點:深化對正負數概念的理解.
教學難點:正確理解和表示向指定方向變化的量.
教與學互動設計:
(一)知識回顧和理解
通過對上節課的學習,我們知道在實際生產和生活中存在著具有兩種不同意義的量,為了區分它們,我們用正數和負數來分別表示它們.
[問題1]:“零”為什么既不是正數也不是負數呢?
學生思考討論,借助舉例說明.
參考例子:用正數、負數和零表示零上溫度、零下溫度和零度.
思考 “0”在實際問題中有什么意義?
歸納 “0”在實際問題中不僅表示“沒有”的意思,它還具有一定的實際意義.
如:水位不升不降時的水位變化,記作:0 m.
[問題2]:引入負數后,數按照“具有兩種相反意義的量”來分,可以分成幾類?分別是什么?
(二)深化理解,解決問題
[問題3]:(課本P3例題)
【例1】(1)一個月內,小明體重增加2 kg,小華體重減少1kg,小強體重無變化,寫出他們這個月的體重增長值;
【例2】(2)某年,下列國家的商品進出口總額比上年的變化情況是:
美國減少6.4%,德國增長1.3%,
法國減少2.4%,英國減少3.5%,
意大利增長0.2%,中國增長7.5%.
寫出這些國家這一年商品進出口總額的增長率.
解后語:在同一個問題中,分別用正數和負數表示的量具有相反的意義.寫出體重的增長值和進出口的增長率就暗示著用正數來表示增長的量.類似的還有水位上升、收入上漲等等.我們要在解決問題時注意體會這些指明方向的量,正確地用正負數表示它們.
鞏固練習
1.通過例題(2)提醒學生審題時要注意要求,題中求的是增長率,不是增長值.
2.讓學生再舉出一些常見的具有相反意義的量.
3.1990~1995年下列國家年平均森林面積(單位:千米2)的變化情況是:
中國減少866,印度增長72,
韓國減少130,新西蘭增長434,
泰國減少3247, 孟加拉減少88.
(1)用正數和負數表示這六國1990~1995年平均森林面積的增長量;
(2)如何表示森林面積減少量,所得結果與增長量有什么關系?
(3)哪個國家森林面積減少最多?
(4)通過對這些數據的分析,你想到了什么?
閱讀與思考
(課本P6)用正數和負數表示加工允許誤差.
問題:1.直徑為30.032 mm和直徑為29.97 mm的零件是否合格?
2.你知道還有哪些事件可以用正負數表示允許誤差嗎?請舉例.
(三)應用遷移,鞏固提高
1.甲冷庫的溫度是-12℃,乙冷庫的溫度比甲冷庫低5 ℃,則乙冷庫的溫度是 .
2.一種零件的內徑尺寸在圖紙上是9±0.05(單位:mm),表示這種零件的標準尺寸是9 mm,加工要求不超過標準尺寸多少?最小不小于標準尺寸多少?
3.摩托車廠本周計劃每天生產250輛摩托車,由于工人實行輪休,每天上班的人數不一定相等,實際每天生產量(與計劃量相比)的增減值如下表:
星期 一 二 三 四
增減 -5 +7 -3 +4
根據上面的記錄,問:哪幾天生產的摩托車比計劃量多?星期幾生產的摩托車最多,是多少輛?星期幾生產的摩托車最少,是多少輛?
類比例題,要求學生注意書寫格式,體會正負數的應用.
(四)課時小結(師生共同完成)
初一數學教案范例篇16
尊敬的各位領導、老師:
大家好!
今天我說課的課題是有理數的加法。本節課選自湖南教育出版社出版的數學七年級(上)第一章第四節第一課時的內容。下面我就從教材分析、教法學法、教學程序和教學反思四個方面向大家介紹我對本節課的理解與設計。
教材分析
(一)地位和作用
有理數的加法是小學算術加法運算的拓展,是初中數學的起始部分,也是初中數學運算最重要,最基礎的內容。熟練掌握有理數的加法運算是學習有理數其它運算的前提,同時,也為后面學習實數、代數式運算、方程、不等式、函數等知識奠定基礎、有理數的加法運算是建構在生產、生活實例上,有較強的生活價值,體現了數學來源于實踐,又反作用于實踐。
就本章而言,有理數的加法是本章的重點。學生能否接受和形成在有理數范圍內進行的各種運算的思考方式(確定結果的符號和絕對值),關鍵在于這一節的學習。
(二)教學目標
1、知識與能力目標:
(1)了解有理數加法的意義。
(2)理解并掌握的有理數加法的法則,并會運用法則進行準確運算,提高學生的運算能力。
2、過程與方法目標:
(1)經歷法則探索的過程,培養學生歸納總結知識的能力。
(2)體驗初步的算法思想。(轉化)
(3)在探索過程中感受數形結合和分類討論的數學思想。
(4)滲透由特殊到一般的唯物辯證法思想。
3、情感與態度目標:
(1)讓學生體會到數學知識來源于生活,服務于生活,培養學生對數學的熱愛。
(2)培養學生協作意識,體驗成功,樹立學習自信心。
(三)教學重點、難點:
重點:理解和運用有理數的加法法則。
難點:異號兩數相加的法則。
教法與學法
我在本節課主要采用“引導——發現教學法”,并借助多媒體課件來展開教學。學生主要采用“合作探究學習法”來學習本節內容。
教學程序:
我采用的教學模式分為“引——探——結——用”四個環節。
(一)、引出課題(2分鐘)
例如,足球比賽中,可以把進球數記為正數,失球數記為負數,它們的和叫做凈勝球數。
如果,紅隊進4個球,失2個球;藍隊進1個球,失1個球。則紅隊的凈勝球數為4+(-2),
藍隊的凈勝球數為1+(-1)。
這里用到正數和負數的加法。
那么,怎樣計算4+(-2)呢?
此環節大約2分鐘。
(二)、探索規律、得出法則。(15分鐘)
現規定正能量為正,負能量為負。
(1)若兩個好人攜帶正能量分別為+20、+30,
則相加的結果是()。
寫成算式:(+20)+(+30)=()
(2)若兩個壞人攜帶負能量分別為—20、—30,
則相加的結果是()。
寫成算式:(—20)+(—30)=()
這兩個算式,運算有什么特點呢?
同號兩數相加,好比作同伙人:正數+正數,正能量增大;
負數+負數,負能量增大。
最后概括為①定符號;②把絕對值相加。
(3)若一個好人攜帶正能量+30一個壞人攜帶負能量—10。
則兩人較量的結果是()贏,還剩()能量。
寫成算式:(+30)+(—10)=()。
(4)若一個好人攜帶正能量+20一個壞人攜帶負能量—40。
則兩人較量的結果是()贏,還剩()能量。
寫成算式:(+20)+(—40)=()。
這組算式,運算有什么特點呢?
異號兩數相加,好比兩人在打仗,誰的力量強大,誰就贏。如果正能量大,符號就定為正;如果負能量大,符號就定為負,又讓學生理解兩人打仗,彼此力量會彼此抵消,彼此消損。那么贏的一方還剩多少能量呢?故而把絕對值做減法。強調用大的絕對值減去小的絕對值。
最后概括為①定符號;②把絕對值相減。
再看兩種特殊情形:
(5)若一個好人攜帶正能量+30,一個壞人攜帶負能量—30。則兩人較量的結果是(),還剩()能量。
寫成算式:(—30)+(+30)=()。
(6)20+0=()0+(—15)=()
新課程倡導讓學生從“要我學”向“我會學”轉變,而教師是學生學習的組織者、引導者和合作者。由于教材上利用數軸和絕對值來探究法則過于抽象,不易引起學生的興趣。借鑒之下,我選用了學生感興趣的卡通動畫人物,激發學生的學習興趣,營造一種輕松愉快的學習氛圍;我讓學生來當裁判,學生必須把6次的情況都完成后,才能得到結果,這樣每個學生的注意力一直會很集中。若學生有困難,則小組內探討交流、補充,讓學生能逐步引導概括出有理數的加法法則。上述過程,大約20分鐘的時間,將突出重點,突破難點。
(三)小結(3分鐘)
有理數的加法法則
1、同號兩數相加:
取加數的符號,并把絕對值相加。
2、異號兩數相加:
取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。
3、互為相反數的兩個數相加得0。
4、一個數同零相加:仍得這個數
(四)、用
1、加深理解,鞏固法則。(5分鐘)
(1)填表
(2)思考:在進行有理數加法運算時,應分幾步完成?
此題的設計是為了學生更好地理解、掌握有理數加法法則。同時,讓學生知道,凡是有理數運算都要首先確定結果的符號。學生獨立完成表格后,我將解題步驟,分步板書在黑板上,讓學生對解題格式引起重視。
2、變式訓練,應用法則。(15分鐘)
數學家皮亞杰認為:“不斷的訓練才能夠逐漸的發展出一個合理的數學模型”。練習和科學的重復練習始終是數學學習的有效辦法。為了讓學生熟練應用法則準確計算,我設計了2個例題、例1是同號兩數相加;例2是異號兩數相加。這兩種最典型的類型,以起到鞏固法則和規范格式的&39;作用。我讓學生嘗試獨立完成,讓基礎組的學生板演后,并讓別的學生找錯誤,這樣充分調動了學生的積極性,活躍了課堂氣氛。同時,通過學生糾錯的過程,讓學生對錯誤加深記憶,將知識轉化為技能。
3、小組闖關,檢測目標。(5分鐘)
在新課程下,教學的本質是學習活動,學生是否有效的學習,教學目標是否落實到位,檢測目標成為一節課的一個重要環節。
我設計了兩個闖關小游戲。一個是學生口答搶答,另一個是男生出題女生搶答,反之女生出題男生搶答,通過男女同學競爭中鞏固、應用法則。