初一數學教案下載
設計教案的過程對教師來說也是一種學習和成長的機會,這有助于提升教師的專業素養。下面是一些初一數學教案下載免費閱讀下載,希望對大家寫初一數學教案下載有用。
初一數學教案下載篇1
【學習目標】
1、理解什么是一元一次方程。
2、理解什么是方程的解及解方程,學會檢驗一個數值是不是方程的解的方法。
【重點難點】能驗證一個數是否是一個方程的解。
1.某工廠加強節能措施,去年下半年與上半年相比,月平均用電量減少2000度,全年用電15萬度,如果設上半年每月平均用電x度,那么所列方程正確的是()
A.6x+6(x-2000)=150000
B.6x+6(x+2000)=150000
C.6x+6(x-2000)=15
D.6x+6(x+2000)=15
2.李紅買了8個蓮蓬,付50元,找回38元.設每個蓮蓬的價格為x元,根據題意,列出方程為________.
3.一個正方形花圃邊長增加2m,所得新正方形花圃的`周長是28m,則原正方形花圃的邊長是多少?(只列方程)
《3.1.等式的性質》同步四維訓練含答案
知識點一:等式的性質1
1.下列變形錯誤的是(D)
A.若a=b,則a+c=b+c
B.若a+2=b+2,則a=b
C.若4=x-1,則x=4+1
D.若2+x=3,則x=3+2
2.已知m+a=n+b,根據等式的性質變形為m=n,那么a,b必須符合的條件是(C)
A.a=-b
B.-a=b
C.a=b
D.a,b可以是任意有理
《3.1從算式到方程》同步練習含解析
7.解:把x=3代入方程,得:15-a=3,
解得:a=12.
故選B.
根據方程解的定義,將方程的解代入方程,就可得一個關于字母a的一元一次方程,從而可求出a的值.
本題考查了方程的解的定義,解決本題的關鍵在于:根據方程的解的定義將x=3代入,從而轉化為關于a的一元一次方程.
8.解:A、7x-4=3x是方程;
B、4x-6不是等式,不是方程;
C、4+3=7沒有未知數,不是方程;
D、2x<5不是等式,不是方程;
故選:A.
根據方程的定義:含有未知數的等式叫方程解答即可.數或整式
初一數學教案下載篇2
教學目標
1、整理前兩個學段學過的整數、分數(包括小數)的知識,掌握正數和負數的概念;
2、能區分兩種不同意義的量,會用符號表示正數和負數;
3、體驗數學發展的一個重要原因是生活實際的需要,激發學生學習數學的興趣。
教學難點 正確區分兩種不同意義的量。
知識重點 兩種相反意義的量
教學過程
(師生活動)設計理念
設置情境
引入課題上課開始時,教師應通過具體的例子,簡要說明在前兩個學段我們已經學過的數,并由此請學生思考:生活中僅有這些“以前學過的數”夠用了嗎?下面的例子僅供參考。
師:今天我們已經是七年級的學生了,我是你們的數學老師。下面我先向你們做一下自我介紹,我的名字是__,身高1.73米,體重58.5千克,今年40歲。我們的班級是七(13)班,有60個同學,其中男同學有22個,占全班總人數的37%…
問題1:老師剛才的介紹中出現了幾個數?分別是什么?你能將這些數按以前學過的數的分類方法進行分類嗎?
學生活動:思考,交流
師:以前學過的數,實際上主要有兩大類,分別是整數和分數(包括小數)。
問題2:在生活中,僅有整數和分數夠用了嗎?
請同學們看書(觀察本節前面的幾幅圖中用到了什么數,讓學生感受引入負數的必要性)并思考討論,然后進行交流。
(也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)
學生交流后,教師歸納:以前學過的數已經不夠用了,有時候需要一種前面帶有“-”的新數。先回顧小學里學過的數的類型,歸納出我們已經學了整數和分數,然后,舉一些實際生活中·共有相反意義的量,說明為了表示相反意義的量,我們需要引入負數,這樣做強調了數學的嚴密性,但對于學生來說,更多地感到了數學的枯燥乏味為了既復習小學里學過的數,又能激發學生的學習興趣,所以創設如下的問題情境,以盡量貼近學生的實際。這個問題能激發學生探究的欲望,學生自己看書學習是培養學生自主學習的重要途徑,都應予以重視。
以上的情境和實例使學生體會生活中處處有數學,通過實例,使學生獲取大量的感性材料,為正確建立相反意義的量奠定基礎。
分析問題
探究新知問題3:前面帶有“一”號的新數我們應怎樣命名它呢?為什么要引人負數呢?通常在日常生活中我們用正數和負數分別表示怎樣的量呢?
這些問題都必須要求學生理解。
教師可以用多媒體出示這些問題,讓學生帶著這些問題看書自學,然后師生交流。
這階段主要是讓學生學會正數和負數的表示。
強調:用正,負數表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數量,而且是同類的量。這些問題是這節課的主要知識,教師要清楚地向學生說明,并且要注意語言的準確與規范,要舍得花時間讓學充分發表想法。
舉一反三思維拓展經過上面的討論交流,學生對為什么要引人負數,對怎樣用正數和負數表示兩種相反意義的量有了初步的理解,教師可以要求學生舉出實際生活中類似的例子,以加深對正數和負數概念的理解,并開拓思維。
問題4:請同學們舉出用正數和負數表示的例子。
問題5:你是怎樣理解“正整數”“負整數,’正分數”和“負分數”的呢?請舉例說明。
能否舉出例子是學生對知識掌握程度的體現,也能進一步幫助學生理解引負數的必要性
課堂練習教科書第5頁練習
小結與作業
課堂小結
圍繞下面兩點,以師生共同交流的方式進行:
1、0由于實際問題中存在著相反意義的量,所以要引人負數,這樣數的范圍就擴大了;
2、正數就是以前學過的0以外的數(或在其前面加“+”),負數就是在以前學過的0以外的數前面加“-”。
本課作業教科書第7頁習題1.1第1,2,4,5(第3題作為下節課的思考題。
作業可設必做題和選做題,體現要求的層次性,以滿足不同學生的需要。
本課教育評注(課堂設計理念,實際教學效果及改進設想)
密切聯系生活實際,創設學習情境。本課是有理數的第一節課時。引人負數是數的范圍的一次重要擴充,學生頭腦中關于數的結構要做重大調整(其實是一次知識的順應過程),而負數相對于以前的數,對學生來說顯得更抽象,因此,這個概念并不是一下就能建立的。為了接受這個新的數,就必須對原有的數的結構進行整理,引人幣的舉例就是這個目的。
負數的產生主要是因為原有的數不夠用了(不能正確簡潔地表示數量),書本的例子或圖片中出現的的負數就是讓學生去感受和體驗這一點。使學生接受生活生產實際中確實存在著兩種相反意義的量是本課的教學難點,所以在教學中可以多舉幾個這方面的例子,并且所舉的例子又應該符合學生的年齡和思維特點。當學生接受了這個事實后,引入負數(為了區分這兩種相反意義的量)就是順理成章的事了。
這個教學設計突出了數學與實際生活的緊密聯系,使學生體會到數學的應用價值,體現了學生自主學習、合作交流的教學理念,書本中的圖片和例子都是生活生產中常見的事實,學生容易接受,所以應該讓學生自己看書、學習,并且鼓勵學生討論交流,教師作適當引導就可以了。
初一數學教案下載篇3
【學習過程】
一、閱讀教材
二、獨立完成下列預習作業:
1、單項式和多項式統稱整式.
2、表示÷的商,可以表示為.
3、長方形的面積為10,長為7cm,寬應為cm;長方形的面積為S,長為a,寬應為.
4、把體積為20的水倒入底面積為33的圓柱形容器中,水面高度為cm;把體積為V的水倒入底面積為S的圓柱形容器中,水面高度為.
一般地,如果A、B表示兩個整式,并且B中含有字母,那么式子叫做分式.
◆◆分式和整式統稱有理式◆◆
三、合作交流,解決問題:
分式的分母表示除數,由于除數不能為0,故分式的分母不能為0,即當B≠0時,分式才有意義.分子分母相等時分式的值為1、分子分母互為相反數時分式的值為-1.
1、當x時,分式有意義;
2、當x時,分式有意義;
3、當b時,分式有意義;
4、當x、y滿足時,分式有意義;
四、課堂測控:
1、下列各式,,,,,,,,x+y,,,,,0中,
是分式的有;
是整式的有;
是有理式的有
3、下列各式中,無論x取何值,分式都有意義的是()
A.B.C.D.
4、當x時,分式的值為零
5、當x時,分式的值為1;當x時,分式的值為-1.
初一數學教案下載篇4
教學目標
1.利用10的乘方,進行科學記數,會用科學記數法表示大于10的數;(重點)
2.能將用科學記數法表示的數還原為原數.(重點)
教學過程
一、情境導入
在悉尼舉行的國際天文學聯合會大會上,天文學家指出整個可見宇宙空間大約有700萬億億顆恒星,這個數字比地球上所有沙漠和海灘上的沙礫總和數量還要多.
如果想在字面上表示出這一數字,需要在“7”后面加上22個“0”.即約為“70000000000000000000000”顆.
生活中,我們還常會遇到一些比較大的數.例如:
1.據報載,20__年我國將發展固定寬帶接入新用戶25000000戶.
2.全球每年大約有577000000000000m3的水從海洋和陸地轉化為大氣中的水汽.
3.拒絕“餐桌浪費”刻不容緩,據統計,全國每年浪費糧食總量約50000000000千克.
像這些較大的數據,書寫和閱讀都有一定的難度,那么有沒有這樣一種表示方法,使得這些大數易寫、易讀、易于計算呢?
二、合作探究
探究點一:用科學記數法表示大數
例1我區深入實施環境污染整治,關停和整改了一些化工企業,使得每年排放的污水減少了167000噸,將167000用科學記數法表示為()
A.167×103B.16.7×104
C.1.67×105D.1.6710×106
解析:根據科學記數法的表示形式,先確定a,再確定n,解此類題的關鍵是a,n的確定.167000=1.67×105,故選C.
方法總結:科學記數法的表示形式為a×10n,其中1≤a<10,n為整數,表示時關鍵要正確確定a的值以及n的值.
例220__年3月發生了一件舉國悲痛的空難事件——馬航失聯,該飛機上有中國公民154名.噩耗傳來后,我國為了搜尋生還者及找到失聯飛機,花費了大量的人力物力,已花費人民幣大約934千萬元.把934千萬元用科學記數法表示為______元()
A.9.34×102B.0.934×103
C.9.34×109D.9.34×1010
解析:934千萬=9340000000=9.34×109.故選C.
方法總結:對用帶“萬”“千萬”“億”等單位的數用科學記數法表示時,要化成不帶單位的數,再用科學記數法表示.
探究點二:將用科學記數法表示的數轉換為原數
例3已知下列用科學記數法表示的數,寫出原來的數:
(1)2.01×104;(2)6.070×105;(3)-3×103.
解析:(1)將2.01的小數點向右移動4位即可;(2)將6.070的小數點向右移動5位即可;(3)將-3擴大1000倍即可.
解:(1)2.01×104=20100;
(2)6.070×105=607000;
(3)-3×103=-3000.
方法總結:將科學記數法a×10n表示的數,“還原”成通常表示的數,就是把a的小數點向右移動n位所得到的.數.
三、板書設計
科學記數法:
(1)把大于10的數表示成a×10n的形式.
(2)a的范圍是1≤a<10,n是正整數.
(3)n比原數的整數位數少1.
教學反思
本節課的特點是實際性強,和我們的日常生活聯系緊密,從學生的生活經驗和已有的知識出發,創設生動有趣的情境,引導學生開展觀察、討論、交流等活動.把學生被動接受知識的過程變為主動探究發現的過程,使知識的發生與發展在每一位學生各自的體驗和自主學習中逐漸展現.
初一數學教案下載篇5
4.1從問題到方程:教案
【學習目標】
1.探索實際問題中的數量關系,并學會用方程描述;
2.通過對多種實際問題中數量關系的分析,初步感受方程是刻畫現實世界的有效模型;
3.通過觀察,歸納一元一次方程的概念.
【導學提綱】
1.左右兩個圖形中的天平都是平衡的,請回答以下問題:
(1)你能知道左圖中的食鹽有多少克嗎?你是怎么知道的?
(2)右圖中兩個相同小球的質量相等,你能知道這兩個小球的質量嗎?
4.1從問題到方程:同步練習
1.(20__?哈爾濱)某車間有26名工人,每人每天可以生產800個螺釘或1000個螺母,1個螺釘需要配2個螺母,為使每天生產的螺釘和螺母剛好配套.設安排x名工人生產螺釘,則下面所列方程正確的是()
A.2×1000(26﹣x)=800xB.1000(13﹣x)=800x
C.1000(26﹣x)=2×800xD.1000(26﹣x)=800x
【分析】題目已經設出安排x名工人生產螺釘,則(26﹣x)人生產螺母,由一個螺釘配兩個螺母可知螺母的個數是螺釘個數的.2倍從而得出等量關系,就可以列出方程.
【解答】解:設安排x名工人生產螺釘,則(26﹣x)人生產螺母,由題意得
1000(26﹣x)=2×800x,故C答案正確,
故選C
【點評】本題是一道列一元一次方程解的應用題,考查了列方程解應用題的步驟及掌握解應用題的關鍵是建立等量關系.
《4.1從問題到方程》測試
1.某學校組織600名學生分別到野生動物園和植物園開展社會實踐活動,到野生動物園的人數比到植物園人數的2倍少30人,若設到植物園的人數為x人,依題意,可列方程為_____.
2.某項工程,甲隊單獨完成要30天,乙隊單獨完成要20天,若甲隊先做若干天后,由乙隊接替完成剩余的任務,兩隊共用25天,求甲隊單獨工作的天數,設甲隊單獨工作的天數為x,則可列方程為_____.
3.某車間有26名工人,每人每天可以生產800個螺釘或1000個螺母,一個螺釘需要配兩個螺母,為使每天生產的螺釘和螺母剛好配套.設安排x名工人生產螺釘,根據題意可列方程得_____.
4.某商店換季促銷,將一件標價為240元的T恤8折售出,仍獲利20%,若設這件T恤的成本是x元,根據題意,可得到的方程是_____.
初一數學教案下載篇6
一、教學目標設計
[知識與技能目標]
1、借助數軸,初步理解絕對值的概念,能求一個數的絕對值,會利用絕對值比較兩個負數的大小。
2、通過應用絕對值解決實際問題,體會絕對值的意義和作用。
[過程與方法目標]
限度的發揮學生的主體參與,讓學生在教師的引導啟發,師生的交流與探索下,輕松愉快地學到新知識。
[情感態度與價值觀]
借助數軸解決數學問題,有意識地形成“腦中有圖,心中有數”的數形結合思想,讓學生采取自主探索,合作交流的學習方式。
二、教材解讀
借助數軸引出對絕對值的概念,并通過計算、觀察、交流、發現絕對值的性質特征,利用絕對值來比較兩個負數的大小。
讓學生直觀理解絕對值的含義,不要在絕對值符號內部出現多重符號和
字母,多鼓勵學生通過觀察、歸納、驗證。
、教學過程設計與分析
一、情境導入
[課件展示,激趣感知]
博物館、農場到學校與學校到博物館農場的距離的關系。
[媒體展示課件,認知生活中的有些問題]
不考慮相反意義,只考慮具體數值。
[創設情境,實例導入]利用動畫展示,讓學生在有趣的圖畫中感受絕對值激發學生的興趣。
實物的形象符合學生心理,學生興趣很高,踴躍發言,95%的學生能順利的解決問題。
師生互動
[提出問題,引發討論]
1、引導學生得出絕對值定義及表示方法。
2、同桌之間互相舉例。
[展示:啟發學生交流了解絕對值]
歸納絕對值概念,教師指出表示方法。
[師生互動、探索新知]:學生根據情境感知初步認知絕對值,并通過對其概念的理解求解一個數的絕對值。
同桌之間舉例,效果良好,體現了“自主——協作”學習。
閱讀課文,互動探索
求解各數的絕對值后討論
1、想一想互為相反數的兩個數的絕對值有什么關系?學生舉例,并進行觀察、比較、歸納。
2、議一議一個數的絕對值與這個數有什么關系?小組討論、交流教師引導學生用自己的語言描述所得結論教師質疑:一個數的絕對值是否為負數?學生通過分析理解絕對值的內在涵義。
閱讀課文:從各數的絕對值歸納絕對值的代數意義。
[閱讀課文:“想一想]提出問題,引起學生的思考。
[閱讀課文:“議一議]
學生分析各類數的絕對值與本身的關系,并對教師的質疑進行深究。
[趣引妙答,思路點撥]通過學生舉例思考,對互為相反數的兩個數的絕對值進行觀察對比,從而得到它們的關系。
學生從“特殊——一般”分類歸納絕對值的代數意義,并通過歸納總結出絕對值的內在涵義,體現學生的主體性。
積極調動學生的思維,使學生在協商、討論中將問題逐漸明朗化、具體化,在共享集體思維成果的基礎上達到對當前所學內容比較全面、正確的理解。
3、做一做
[激趣探知]
教師出示過關題目
學生通過自主探索最終找到兩個負數比較大小的方法,絕對值大的反而小。
師生歸納兩頁數比較大小的兩種方法。
[探索用絕對值比較兩負數的方法]
體驗概念的形式過程
舊知識的引用,讓學生在輕松愉快的環境中獲取新知,從已有知識逐漸到新知識,不但可激發學生的興趣,并且培養學生的探索精神,同時分解了本節的難點。
從舊知識層層引入,學生興趣十足,提高了教學效果,突破了難點,學生接受輕而易舉。
鞏固練習
[絕對值比較兩負數大小的運用]
情境:比較下列每組數的大小。
[媒體展示,出示習題]:
運用絕對值比較負數大小。
[變成訓練,鞏固反饋]
繼續對絕對值比較負數大小進行鞏固練習。
由以上練習層層深入,學生解決問題的能力大大提高,并且印象深刻。
知識延伸
[學生探究,教師點撥]
[媒體展示]
絕對值定義,代數意義及內在涵義的的靈活應用。
[知識延伸,目標升華]
充分發揮學生的自主探索能力,使學生能夠深入、細致的理解知識點。
學生能夠互相評點,共同探索,既發展了自主學習能力,又強化了協作精神。
七、教學板書設計
初一數學教案下載篇7
1.教學重點、難點
重點:列代數式。
難點:弄清楚語句中各數量的意義及相互關系。
2.本節知識結構:
本小節是在前面代數式概念引出之后,具體講述如何把實際問題中的數量關系用代數式表示出來。課文先進一步說明代數式的概念,然后通過由易到難的三組例子介紹列代數式的方法。
3.重點、難點分析:
列代數式實質是實現從基本數量關系的語言表述到代數式的一種轉化。列代數式首先要弄清語句中各種數量的意義及其相互關系,然后把各種數量用適當的字母來表示,最后再把數及字母用適當的運算符號連接起來,從而列出代數式。
如:用代數式表示:比的2倍大2的數。
分析本題屬于“…比…多(大)…或…比…少(?。钡念愋停紫纫プ∵@幾個關鍵詞。然后從中找出誰是大數,誰是小數,誰是差。比的2倍大2的數換個方式敘述為所求的數比的2倍大2。大和比前邊的量,即所求的數為大數,那么比和大之間量,即的2倍則為小數,大后邊的量2即為差。所以本小題是已知小數和差求大數。因為大數=小數+差,所以所求的數為:2+2.
4.列代數式應注意的問題:
(1)要分清語言敘述中關鍵詞語的意義,理清它們之間的數量關系。如要注意題中的“大”,“小”,“增加”,“減少”,“倍”,“倒數”,“幾分之幾”等詞語與代數式中的加,減,乘,除的&39;運算間的關系。
(2)弄清運算順序和括號的使用。一般按“先讀先寫”的原則列代數式。
(3)數字與字母相乘時數字寫在前面,乘號省略不寫,字母與字母相乘時乘號省略不寫。
(4)在代數式中出現除法時,用分數線表示。
5.教法建議:
列代數式是本章教學的一個難點,學生不容易掌握,這樣老師在上課時,首先要讓學生理解代數式的本質,弄清語句中各種數量的意義及其相互關系,然后設計一定數量的練習題,由易到難,螺旋式上升,使學生能夠正確列出代數式。
初一數學教案下載篇8
教材分析
1.這節的重點為:去括號。因此,本節所學的知識實際上就是對前面所學知識的一個鞏固和深化,要突破這個重點,只有在掌握方法的前提下,通過一定的練習來掌握。
2.去括號是整式加減的一個重要內容,也是下一章一元一次方程的直接基礎,也是今后繼續學習整式的乘除、因式分解、方程,以及分式、函數等的重要基礎。
學情分析
去括號法則是教材上的教學內容,學生學習時會經常出現錯用法則的現象。實驗表明:完全可以用乘法分配律取代去括號法則.這是由于:
(1)“去括號法則”,增加了記憶負擔和出錯的機會,容易出錯;
(2)去括號的法則增加了解題長度,降低了學習效率;
(3)用乘法分配律去括號的學習是同化而非順應,易于理解與掌握;
(4)用乘法分配律去括號是回歸本質,返璞歸真,且既可減少學習時間,又能提高運算的正確率。
教學目標
1.熟練掌握去括號時符號的變化規律;
2.能正確運用去括號進行合并同類項;
3.理解去括號的依據是乘法分配律。
教學重點和難點
重點
去括號時符號的變化規律。
難點
括號外的因數是負數時符號的變化規律。
教學過程
一、創設情景問題
青藏鐵路線上,列車在凍土地段的行駛速度是100千米/時,在非凍土地段的形式速度可以達到120千米/時。
請問:(3)在格爾木到拉薩路段,列車通過凍土地段比通過非凍土地段多用0.5小時,如果通過凍土地段需要t小時,則這段鐵路的全長可以怎么樣表示?凍土地段與非凍土地段相差多少千米?
解:這段鐵路的全長為100t+120(t-0.5)(千米)
凍土地段與非凍土地段相差100t-120(t-0.5)(千米)。
提出問題,如何化簡上面的兩個式子?引出本節課的學習內容。
二、探索新知
1.回顧:
1你記得乘法分配率嗎?怎么用字母來表示呢?
a(b+c)=ab+ac
2-(-2)=(-1)__(-2)=2+(-3)=(+1)__(-3)=-3
2.探究
計算(試著把括號去掉)
(1)13+(7-5)(2)13-(7-5)
類比數的運算,去掉下面式子的括號
(3)a+(b-c)(4)a-(b-c)
3.解決問題
100t+120(t-0.5)=100t-120(t-0.5)=
思考:
去掉括號前,括號內有幾項、是什么符號?去括號后呢?
去括號的依據是什么?
三、知識點歸納
去括號法則:
如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同;
如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反.
注意事項
(1)去括號規律要準確理解,去括號應對括號的每一項的符號都予考慮,做到要變都變;要不變,則誰也不變;
(2)括號內原有幾項去掉括號后仍有幾項.
四、例題精講
例4化簡下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
五、鞏固練習
課本P68練習第一題.
六、課堂小結
1.今天你收獲了什么?
2.你覺得去括號時,應特別注意什么?
七、布置作業
課本P71習題2.2第2題
初一數學教案下載篇9
教學目標:
1、明白生活中存在著無數表示相反意義的量,能舉例說明;
2、能體會引進負數的必要性和意義,建立正數和負數的數感。
重點:通過列舉現實世界中的“相反意義的量”的例子來引進正數和負數,要求學生理解正數和負數的意義,為以后通過實例引進有理數的大小比較、加法和乘法法則打基礎。
難點:對負數的意義的理解。
教學過程:
一、知識導向:本節課是一個從小學過渡的知識點,主要是要抓緊在數范圍上擴充,對引進“負數”這一概念的必要性及意義的理解。
二、新課拆析:1、回顧小學中有關數的范圍及數的分類,指出小學中的“數”是為了滿足生產和生活的需要而產生發展起來的。如:0,1,2,3,…,,
2、能讓學生舉例出更多的有關生活中表示相反意義的量,能發現事物之間存在的對立面。
如:汽車向東行駛3千米和向西行駛2千米
溫度是零上10°C和零下5°C;收入500元和支出237元;水位升高1.2米和下降0.7米;3、上面所列舉的表示相反意義量,我們也許就會發現:如果只用原來所學過的數很難區分具有相反意義的量。
一般地,對于具有相反意義的量,我們可把其中一種意義的量規定為正的,用過去學過的數表示;把與它意義相反的量規定為負的,用過去學過的`數(零除外)前面放上一個“—”號來表示。
如:在表示溫度時,通常規定零上為“正”,零下為“負”即零上10°C表示為10°C,零下5°C表示為-5°C概括:我們把這一種新數,叫做負數,如:-3,-45,…過去學過的那些數(零除外)叫做正數,如:1,2.2…零既不是正數,也不是負數例:下面各數中,哪些數是正數,哪些數是負數,1,2.3,-5.5,68,-,0,-11,+123,…
三、階梯訓練:P18練習:1,2,3,4。
四、知識小結:
從本節課所學的內容中,應能從數的角度來區分小學與初中的異同點,通過運用發現相反意義量,能理解引進“負數”的必要性及其意義。
五、作業鞏固:
1、每個同學分別舉出5個生活中表示相反意義量的的例子;并用正、負數來表示;2、分別舉出幾個正數與負數(最少6個)。3、P20習題2.1:1題。
初一數學教案下載篇10
教學目標和要求:
1.理解單項式及單項式系數、次數的概念.
2.會準確迅速地確定一個單項式的系數和次數.
3.初步培養學生觀察、分析、抽象、概括等思維能力和應用意識.
4.通過小組討論、合作學習等方式,經歷概念的形成過程,培養學生自主探索知識和合作交流能力.
教學重點和難點:
重點:掌握單項式及單項式的系數、次數的概念,并會準確迅速地確定一個單項式的系數和次數.難點:單項式概念的建立.
教學過程:
一、復習引入:
1、列代數式
(數學教學要緊密聯系學生的生活實際,這是新課程標準所賦予的任務.讓學生列代數式不僅復習前面的知識,更是為下面給出單項式埋下伏筆,同時使學生受到較好的思想品德教育.)
2、請學生說出所列代數式的意義.
3、請學生觀察所列代數式包含哪些運算,有何共同運算特征.
由小組討論后,經小組推薦人員回答,教師適當點撥.
(充分讓學生自己觀察、自己發現、自己描述,進行自主學習和合作交流,可極大的激發學生學習的積極性和主動性,滿足學生的表現欲和探究欲,使學生學得輕松愉快,充分體現課堂教學的開放性.)
二、講授新課:
1.單項式:
通過特征的描述,引導學生概括單項式的概念,從而引入課題:單項式,并歸納得出單項式的概念:由數與字母的乘積組成的代數式稱為單項式.然后教師補充,單獨一個數或一個字母也是單項式,
如a,5.
2.練習:判斷下列各代數式哪些是單項式?
(1);(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5.
(加強學生對不同形式的單項式的直觀認識,同時利用練習中的單項式轉入單項式的系數和次數的教學)
3.單項式系數和次數:
直接引導學生進一步觀察單項式結構,總結出單項式是由數字因數和字母因數兩部分組成的.以
四個單項式a2h,2πr,abc,-m為例,讓學生說出它們的數字因數是什么,從而引入單項式系數的概念并板書,接著讓學生說出以上幾個單項式的字母因數是什么,各字母指數分別是多少,從而引入單項式次數的概念.
單項式的系數:單項式中的數字因數叫做這個單項式的系數.
單項式的&39;次數:一個單項式中,所有字母的指數的和叫做這個單項式的次數.
4.例題:
例1:判斷下列各代數式是否是單項式.如不是,請說明理由;如是,請指出它的系數和次數.①x+1;②;③πr2;④-a2b
答:①不是,因為原代數式中出現了加法運算;
②不是,因為原代數式是1與x的商;
③是,它的系數是π,次數是2;
④是,它的系數是-,次數是3.
例2:下面各題的判斷是否正確?
①-7xy2的系數是7;②-x2y3與x3沒有系數;③-ab3c2的次數是0+3+2;
④-a3的系數是-1;⑤-32x2y3的次數是7;⑥πr2h的系數是.
答:①錯,應是?7;②錯;?x2y3系數為?1,x3系數為1;③錯,次數應該是1+3+2;④正確;⑤錯,次數為2+3=5;⑥正確
強調應注意以下幾點:
①圓周率π是常數;
②當一個單項式的系數是1或-1時,“1”通常省略不寫,如x2,-a2b等;
③單項式次數只與字母指數有關.
5.游戲:
規則:一個小組學生說出一個單項式,然后指定另一個小組的學生回答他的系數和次數;然后交換,看兩小組哪一組回答得快而準.
(學生自行編題是一種創造性的思維活動,它可以改變一味由教師出題的形式,且由編題學生指定某位同學回答,可使課堂氣氛活躍,學生思維活躍,使學生能夠透徹理解知識,同時培養同學之間的競爭意識.)
三、課堂小結:
①單項式及單項式的系數、次數.
②根據教學過程反饋的信息對出現的問題有針對性地進行小結.
③通過判斷一個單項式的系數、次數,培養學生理解運用新知識的能力,已達到本節課的教學目的.
教學后記:
本節課是研究整式的起始課,它是進一步學習多項式的基礎,因此對單項式有關概念的理解和掌握情況,將直接影響到后續學習.為突出重點,突破難點,教學中要加強直觀性,即為學生提供足夠的感知材料,豐富學生的感性認識,幫助學生認識概念,同時也要注重分析,亦即在剖析單項式結構時,借助反例練習,抓住概念易混淆處和判斷易出錯處,強化認識,幫助學生理解單項式系數、次數,為進一步學習新知做好鋪墊.
針對七年級學生學習熱情高,但觀察、分析、認識問題能力較弱的特點,教學時將以啟發為主,同時輔之以討論、練習、合作交流等學習活動,達到掌握知識的目的,并逐步培養起學生觀察、分析、抽象、概括的能力,為進一步學習同類項打下堅實的基礎.
初一數學教案下載篇11
本節課是人教版七年級上冊第三章第一節的內容,主要的教學目標是使學生了解什么是方程,什么是一元一次方程;體會字母表示數的好處,體會從算式到方程是數學的一大進步;會將實際問題抽象為數學問題,通過找相等關系列方程解決問題。方程的概念在小學階段已經出現過,如何讓學生在已有的知識基礎上更高一個層次認識方程、運用方程呢?我的教學策略是:第一步,創造一個問題情境引發學生的認知失衡。第二步,通過一個生活實例讓學生進行思考、分析、總結歸納出新知識。第三步,介紹新知識的文化背景,對學生進行數學文化的滲透,同時為學習有關概念進行鋪墊。第四步,通過講練結合的方式突破本節課的難點——找相等關系列方程。現對本節課的教學過程進行反思:
一、成功之處
1、對學生進行了數學文化的滲透。方程的概念在小學已經出現過,初一再次學習方程應該讓學生們更高一個層次認識方程,因此通過介紹字母表示未知數的文化背景,在文化層面上讓學生進一步理解數學、喜愛數學,展示數學的文化魅力。
2、分層次設置練習題,逐步突破難點。初一學生在解應用題時,主要存在三個方面的困難:(1)抓不住相等關系;(2)找出相等關系后不會列方程;(3)習慣用算術解法,對用代數方法分析應用題不適應。其中,第一個方面是主要的,解決了它,另兩個方面就都好解決了。為此我在“練一練”的環節里設置了A與B兩組練習,A組練習的題目已經幫學生設定了未知數,重點訓練學生找相等關系、列方程;B組練習的題目要求學生獨立設未知數列方程,要求學生能突破用算術解法解應用題的思維定勢,學會通過閱讀題目、理解題意、進而找出等量關系、列出方程解決問題的方法。
3、恰當使用了多媒體教學設備。在課件制作上考慮到初一學生的年齡特點,使用了許多卡通動畫效果,有效地吸引學生的注意力。多媒體設備的使用不僅大大地提高了課堂容量,而且還可以展示學生的作品(課堂練習的解答),及時糾正學生書面表達的錯誤,規范解題格式,改掉小學生重結果輕過程,解題格式不規范,解題步驟混亂等不良現象。
4、營造了寬松、和諧的課堂氛圍。本節課的教學從始至終,教師都是面帶笑容地與學生進行互動,讓學生充分發表自己的看法,及時給學生鼓勵與肯定,消除學生由小學升入初中因環境變化而引起的心里障礙,激活學生的思維,保持學生參與課堂學習的積極性。
二、不足之處
1、教學容量偏大,以致沒有充分的時間引導學生對如何找相等關系進行總結歸納。本節課在引出一元一次方程的概念以后,設計了一組判斷題對一元一次方程的概念進行辨析。課后我想到這節課的難點是如何找相等關系列方程,應該淡化概念,如果刪去這道練習題就可以讓學生有更充分的時間去總結歸納找相等關系的方法,從而突破本節課的難點。
2、對學生情況不夠熟悉。因為本節課是初一學生入學后一個月進行的,所以我對許多學生還叫不出名字,雖然課堂上可以用手指著某某同學回答問題,但是課后仔細想來,做好中小學數學教學的銜接工作不僅僅是教學內容設計上的銜接,而應該是多方位的銜接,其中就包括教師應盡快了解、熟悉學生,這樣可以幫助消除學生剛升入初中的許多不適應。
三、對中小學數學教學銜接的思考
(1)加強新舊知識的聯系
初中的許多數學知識都是小學知識的延續與提高,因此要搞好中小學數學教學真正意義上的銜接,每一位教師都應該熟悉并掌握《數學課程標準》的教材體系,而且我們還要認識到處理好中小學數學教學的銜接問題并非只是小學與初一老師的事情,其實整個中學階段有很多的知識點都是在小學的知識基礎上進行拓展和延伸的,如初二學習的“軸對稱”及“等腰三角形”的知識在小學都出現過。
(2)滲透數學文化的教育,保持學生學習數學的興趣
從小學到初中,教學內容更抽象,更加符號化,有一些學生在努力學習數學的同時,逐漸地厭煩、冷漠數學,這主要是應試教育環境下的數學教學,對數學知識的積累、數學技巧的訓練等工具性價值的過分關注,使數學學習越來越枯燥無味,所以我們教師應該讓學生一進入中學的課堂,就展現給學生一個多姿多彩的數學世界,在課堂教學中時時體現數學作為一種人類文化的魅力,保持住學生對數學的學習興趣。
初一數學教案下載篇12
●教學內容
七年級上冊課本11----12頁1.2.4絕對值
●教學目標
1.知識與能力目標:借助于數軸,初步理解絕對值的概念,能求一個數的絕對值,初步學會求絕對值等于某一個正數的有理數。
2.過程與方法目標:通過從數形兩個側面理解絕對值的意義,初步了解數形結合的思想方法。通過應用絕對值解決實際問題,體會絕對值的意義。
3.情感態度與價值觀:通過應用絕對值解決實際問題,培養學生濃厚的學習興趣,使學生能積極參與數學學習活動,對數學有好奇心與求知欲。
●教學重點與難點
教學重點:絕對值的幾何意義和代數意義,以及求一個數的絕對值。
教學難點:絕對值定義的得出、意義的理解,以及求絕對值等于某一個正數的有理數。
●教學準備
多媒體課件
●教學過程
一、創設問題情境
1、兩只小狗從同一點O出發,在一條筆直的街上跑,一只向右跑10米到達A點,另一只向左跑10米到達B點。若規定向右為正,則A處記作-__________,B處記作__________。
以O為原點,取適當的單位長度畫數軸,并標出A、B的位置。
(用生動有趣的引例吸引學生,即復習了數軸和相反數,又為下文作準備)。
2、這兩只小狗在跑的過程中,有沒有共同的地方?在數軸上的A、B兩點又有什么特征?(從形和數兩個角度去感受絕對值)。
3、在數軸上找到-5和5的點,它們到原點的距離分別是多少?表示-和的點呢?
小結:在實際生活中,有時存在這樣的情況,無需考慮數的正負性質,比如:在計算小狗所跑的路程中,與小狗跑的方向無關,這時所走的路程只需用正數,這樣就必須引進一個新的概念-———絕對值。
二、建立數學模型
1、絕對值的概念
(借助于數軸這一工具,師生共同討論,引出絕對值的概念)
絕對值的幾何定義:一個數在數軸上對應的點到原點的距離叫做這個數的絕對值。比如:-5到原點的距離是5,所以-5的絕對值是5,記|-5|=5;5的絕對值是5,記做|5|=5。
注意:①與原點的關系 ②是個距離的概念
2..練習1:請學生舉一個生活中的實際例子,說明解決有的問題只需考慮的數絕對值。[溫度上升了5度,用 +5表示的話,那么下降了5度,就用-5 表示,如果我們不去考慮它的意義(即:上升還是下降),只考慮數量(即:溫度)的變化,我們可以說:溫度的變化都是5度。銀行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我們不去考慮它的意義(即:存入還是取出),只考慮數量的多少,我們可以說:金額都是100元。]
(通過應用絕對值解決實際問題,體會絕對值的意義與作用,感受數學在生活中的價值。)
三、應用深化知識
1、例題求解
例1、求下列各數的絕對值
-1.6 , , 0, -10, +10
2、根據上述題目,讓學生歸納總結絕對值的特點。(教師進行補充小結)
特點:1、一個正數的絕對值是它本身
2、一個負數的絕對值是它的相反數
3、零的絕對值是零
4、互為相反數的兩個數的絕對值相等
3.出示題目
(1) -3的符號是_______,絕對值是______;
(2) +3的符號是_______,絕對值是______;
(3) -6.5的符號是_______,絕對值是______;
(4) +6.5的符號是_______,絕對值是______;
學生口答。
師:上面我們看到任何一個有理數都是由符號,和絕對值兩個部分構成?,F在老師有一個問題想問問大家,在上一節課中我們規定只有符號不同的兩個數稱互為相反數。那么大家在今天學習了絕對值以后,你能給相反數一個新的解釋嗎?
5、練習3:回答下列問題
①一個數的絕對值是它本身,這個數是什么數?
②一個數的絕對值是它的相反數,這個數是什么數?
③一個數的絕對值一定是正數嗎?
④一個數的絕對值不可能是負數,對嗎?
⑤絕對值是同一個正數的數有兩個,它們互為相反數,這句話對嗎?
(由學生口答完成,進一步鞏固絕對值的概念)
6、例2.求絕對值等于4的數
(讓學生考慮這樣的數有幾個,是怎樣得出這個結果的呢?對后一個問題由學生去討論,啟發學生從數與形兩個方面考慮,培養學生的發散思維能力。)
分析:
①從數字上分析
∵|+4|=4, |-4|=4 ∴絕對值等于4的數是+4和-4畫一個數軸(如下圖)
②從幾何意義上分析,畫一個數軸(如下圖)
因為數軸上到原點的距離等于4個單位長度的點有兩個,即表示+4的點P和表示-4的點M
所以絕對值等于4的數是+4和-4.
6、練習:做書上12頁課內練習1、2兩題。
四、歸納小結
1、本節課我們學習了什么知識?
2、你覺得本節課有什么收獲?
3、由學生自行總結在自主探究,合作學習中的體會。
五、課后作業
1、讓學生去尋找一些生活中只考慮絕對值的實際例子。
2、課本15頁的作業題。
初一數學教案下載篇13
學習目標:
1、學會用計算器進行有理數的除法運算.
2、掌握有理數的混合運算順序.
3、通過探究、練習,養成良好的學習習慣
學習重點:有理數的混合運算
學習難點:運算順序的確定與性質符號的處理
教學方法:觀察、類比、對比、歸納
教學過程
一、學前準備
1、計算
1)(—0.0318)÷(—1.4)2)2+(—8)÷2
二、探究新知
1、由上面的問題1,計算方便嗎?想過別的方法嗎?
2、由上面的問題2,你的計算方法是先算法,再算法。
3、結合問題1,閱讀課本P36—P37頁內容(帶計算器的同學跟著操作、練習)
4、結合問題2,你先猜想,有理數的混合運算順序應該是?
5、閱讀P36,并動手做做
三、新知應用
1、計算
1)、18—6÷(—2)×2)11+(—22)—3×(—11)
3)(—0.1)÷×(—100)
2、師生小結
四、回顧與反思
請你回顧本節課所學習的主要內容
3頁
五、自我檢測
1、選擇題
1)若兩個有理數的和與它們的積都是正數,則這兩個數()
A.都是正數B.是符號相同的非零數C.都是負數D.都是非負數
2)下列說法正確的是()
A.負數沒有倒數B.正數的倒數比自身小
C.任何有理數都有倒數D.-1的倒數是-1
3)關于0,下列說法不正確的是()
A.0有相反數B.0有絕對值
C.0有倒數D.0是絕對值和相反數都相等的數
4)下列運算結果不一定為負數的是()
A.異號兩數相乘B.異號兩數相除
C.異號兩數相加D.奇數個負因數的乘積
5)下列運算有錯誤的是()
A.÷(-3)=3×(-3)B.
C.8-(-2)=8+2D.2-7=(+2)+(-7)
6)下列運算正確的是()
A.;B.0-2=-2;C.;D.(-2)÷(-4)=2
2、計算
1)6—(—12)÷(—3)2)3×(—4)+(—28)÷7
3)(—48)÷8—(—25)×(—6)4)
六、作業
1、P39第7題(4、5、7、8)、第8題
2、選做題:P39第10、11、12、1314、15題
初一數學教案下載篇14
一、教學目標
1、知識與技能
(1)理解圓與圓的位置的種類;
(2)利用平面直角坐標系中兩點間的距離公式求兩圓的連心線長;
(3)會用連心線長判斷兩圓的位置關系.
2、過程與方法
設兩圓的連心線長為,則判別圓與圓的位置關系的依據有以下幾點:
(1)當時,圓與圓相離;
(2)當時,圓與圓外切;
(3)當時,圓與圓相交;
(4)當時,圓與圓內切;
(5)當時,圓與圓內含;
3、情態與價值觀
讓學生通過觀察圖形,理解并掌握圓與圓的位置關系,培養學生數形結合的思想.
二、教學重點、難點:
重點與難點:用坐標法判斷圓與圓的位置關系.
問題設計意圖師生活動
1.初中學過的平面幾何中,圓與圓的位置關系有幾類?結合學生已有知識以驗,啟發學生思考,激發學生學習興趣.教師引導學生回憶、舉例,并對學生活動進行評價;學生回顧知識點時,可互相交流.
2.判斷兩圓的位置關系,你有什么好的方法嗎?
引導學生明確兩圓的位置關系,并發現判斷和解決兩圓的位置教師引導學生閱讀教科書中的相關內容,注意個別輔導,解答學生疑難,并引導學生自己總結解題的方法.
初一數學教案下載篇15
教案
第一章有理數
(1)本周小張一共用掉了多少錢?存進了多少錢?
根據上面的記錄,問:哪幾天生產的摩托車比計劃量多?星期幾生產的摩托車最多,是多少輛?星期幾生產的摩托車最少,是多少輛?
夯實基礎
(1)序號為幾的零件最接近標準?
④-(-)0.025.
第2課時加法運算律
教學目標:
1.能運用加法運算律簡化加法運算.
2.理解加法運算律在加法運算中的作用,適當進行推理訓練.
教學重點:如何運用加法運算律簡化運算.
教學難點:靈活運用加法運算律.
教與學互動設計:
(一)情境創設,導入新課
思考:在小學里,我們學過的加法運算有哪些運算律?它們的內容是什么?能否舉一兩個例子來?那這些加法運算律還適用于有理數范圍嗎?今天,我們一起來探究這個問題.
(二)合作交流,解讀探究
計算:20+(-30)與(-30)+20兩次得到的和相同嗎?
得出結論:20+(-30)=(-30)+20
換幾組數去試:得到加法交換律:a+b=(學生填).
其實,學生在小學中就已經接觸到運算律,此時,可以讓學生回憶在小學中除了學習了加法的交換律,還學習了加法的哪種運算律?(結合律)
計算:(1)[8+(-5)]+(-4);
(2)8+[(-5)+(-4)].
得出結論:加法結合律:(a+b)+c=.
【例1】計算:
16+(-25)+24+(-35)
【例2】課本P20例3
說明:把互為相反數的一對數結合起來相加,可以使運算簡化,這種方法是使用加法交換律和加法結合律.
總結:在進行多個有理數相加時,在下列情況下一般可以用加法交換律和加法結合律簡化運算:①有些加數相加后可以得到整數時,可以先行相加;②有相反數可以互相消去,和為0,可以先行相加;③有許多正數和負數相加時,可以先把符號相同的&39;數相加,即正數和正數相加,負數和負數相加,再把一個正數和一個負數相加.
(三)應用遷移,鞏固提高
【例3】利用有理數的加法運算律計算,使運算簡便.
(1)(+9)+(-7)+(+10)+(-3)+(-9)
(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)
(3)(+1)+(-2)+(+3)+(-4)+…+(+20__)+(-20__)
【例4】某出租司機某天下午營運全是在東西走向的人民大道上進行的,如果規定向東為正,向西為負,他這天下午行車里程如下:(單位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.
(1)他將最后一名乘客送到目的地,該司機與下午出發點的距離是多少千米?
(2)若汽車耗油量為a公升/千米,這天下午汽車共耗油多少公升?
(四)總結反思,拓展升華
本節課我們探索了有理數的加法交換律和結合律.靈活運用加法的運算律會使運算簡便.一般情況下,我們將互為相反數的數相結合,同分母的分數相結合,能湊整數的數相結合,正數負數分別相加,從而使計算簡便.
(五)課堂跟蹤反饋
夯實基礎
1.運用加法的運算律計算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最適當的是()
A.[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]
B.[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]
C.[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]
D.[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]
2.計算:(-2)+4+(-6)+8+…+(-98)+100.
提升能力
3.小李到銀行共辦理了四筆業務,第一筆存入了120元,第二筆支取了85元,第三筆支取了70元,第四筆存入了130元.如果將這四筆業務合并為一筆,請你替他策劃一下這一筆業務該怎樣做?
4.某檢修小組乘汽車沿公路檢修線路,約定前進為正,后退為負.某天自A地出發到收工時所走路線(單位:千米)為:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.
(1)問收工時距A地多遠?
(2)若每千米路程耗油0.2升,問從A地出發到收工共耗油多少升?
第3課時有理數的減法
教學目標:
1.經歷探索有理數減法法則的過程,理解有理數減法法則.
2.會熟練進行有理數減法運算.
教學重點:有理數減法法則和運算.
教學難點:有理數減法法則的推導.
教與學互動設計
(一)創設情景,導入新課
觀察溫度計:
你能從溫度計看出4℃比-3℃高出多少度嗎?
學生普遍能直觀地看出4℃比-3℃高7℃,進一步地假定某地一天的氣溫是-3~4℃,那么溫差(減最低氣溫,單位℃)如何用算式表示?
按照剛才觀察到的結果,可知4-(-3)=7①,而4+(+3)=7②,∴由①②可知:4-(-3)=4+(+3)③,上述結論的獲得應放手讓學生回答.
(二)動手實踐,發現新知
觀察、探究、討論:從③式能看出減-3相當于加哪個數嗎?
結論:減去-3等于加上-3的相反數+3.
(三)類比探究,總結提高
如果將4換成-1,還有類似于上述的結論嗎?
先讓學生直觀觀察,然后教師再利用“減法是與加法相反的運算”引導學生換一個角度去驗算.
計算(-1)-(-3)就是要求一個數x,使x與-3相加得-1,因為2與-3相加得-1,所以x應是2,即(-1)-(-3)=2①,
又因為(-1)+(+3)=2②,
由①②有(-1)-(-3)=-1+(+3)③,
即上述結論依然成立.
試一試:如果把4換成0、-5,用上面的方法考慮0-(-3),(-5)-(-3),這些數減-3的結果與它加上+3的結果相同嗎?
讓學生利用“減法是加法的相反運算”得出結果,再與加法算式的結果進行比較,從而得出這些數減-3的結果與它們加+3的結果相同的結論.
再試:把減數-3換成正數,結果又如何呢?
計算9-8與9+(-8);15-7與15+(-7)
從中又能有新發現嗎?
讓學生通過計算總結如下結論:減去一個正數等于加上這個正數的相反數.
歸納:由上述實驗可發現,有理數的減法可以轉化為加法來進行.
減法法則:減去一個數,等于加上這個數的相反數.
用字母表示:a-b=a+(-b).
(在上述實驗中,逐步滲透了一種重要的數學思想方法——轉化)
(四)例題分析,運用法則
【例】計算:
(1)(-3)-(-5);(2)0-7;
(3)7.2-(-4.8);(4)-3-5.
(五)總結鞏固,初步應用
總結這節課我們學習了哪些數學知識和數學思想?你能說一說嗎?
教師引導學生回憶本節課所學內容,學生回憶交流,教師和學生一起補充完善,使學生更加明晰所學的知識.
初一數學教案下載篇16
教學目標
1.理解有理數加法的意義,掌握有理數加法法則中的符號法則和絕對值運算法則;
2.能根據有理數加法法則熟練地進行有理數加法運算,弄清有理數加法與非負數加法的區別;
3.三個或三個以上有理數相加時,能正確應用加法交換律和結合律簡化運算過程;
4.通過有理數加法法則及運算律在加法運算中的運用,培養學生的運算能力;
5.本節課通過行程問題說明法則的合理性,然后又通過實例說明如何運用法則和運算律,讓學生感知到數學知識來源于生活,并應用于生活。
教學建議
(一)重點、難點分析
本節教學的重點是依據法則熟練進行運算。難點是法則的理解。
(1)加法法則本身是一種規定,教材通過行程問題讓學生了解法則的合理性。
(2)具體運算時,應先判別題目屬于運算法則中的哪個類型,是同號相加、異號相加、還是與0相加。
(3)如果是同號相加,取相同的符號,并把絕對值相加。如果是異號兩數相加,應先判別絕對值的大小關系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號取絕對值較大的加數的符號,和的絕對值就是較大的絕對值與較小的絕對值的差。一個數與0相加,仍得這個數。
(二)知識結構
(三)教法建議
1.對于基礎比較差的同學,在學習新課以前可以適當復習小學中算術運算以及正負數、相反數、絕對值等知識。
2.法則是規定的,而教材開始部分的行程問題是為了說明加法法則的合理性。
3.應強調加法交換律“a+b=b+a”中字母a、b的任意性。
4.計算三個或三個以上的加法算式,應建議學生養成良好的運算習慣。不要盲目動手,應該先仔細觀察式子的特點,深刻認識加數間的相互關系,找到合理的運算步驟,再適當運用加法交換律和結合律可以使加法運算更為簡化。
5.可以給出一些類似“兩數之和必大于任何一個加數”的判斷題,以明確由于負數參與加法運算,一些算術加法中的正確結論在有理數加法運算中未必也成立。
6.在探討導出法則的行程問題時,可以嘗試發揮多媒體教學的作用。用動畫演示人或物體在同一直線上兩次運動的過程,讓學生更好的理解有理數運算法則。
教學設計示例
(第一課時)
教學目的
1.使學生理解有理數加法的意義,初步掌握有理數加法法則,并能準確地進行運算.
2.通過運算,培養學生的運算能力.
教學重點與難點
重點:熟練應用法則進行加法運算.
難點:法則的理解.
教學過程
(一)復習提問
1.有理數是怎么分類的?
2.有理數的絕對值是怎么定義的?一個有理數的絕對值的幾何意義是什么?
3.有理數大小比較是怎么規定的?下列各組數中,哪一個較大?利用數軸說明?
-3與-2;|3|與|-3|;|-3|與0;
-2與|+1|;-|+4|與|-3|.
(二)引入新課
在小學算術中學過了加、減、乘、除四則運算,這些運算是在正有理數和零的范圍內的運算.引入負數之后,這些運算法則將是怎樣的呢?我們先來學運算.
(三)進行新課 (板書課題)
例1 如圖所示,某人從原點0出發,如果第一次走了5米,第二次接著又走了3米,求兩次行走后某人在什么地方?
兩次行走后距原點0為8米,應該用加法.
為區別向東還是向西走,這里規定向東走為正,向西走為負.這兩數相加有以下三種情況:
1.同號兩數相加
(1)某人向東走5米,再向東走3米,兩次一共走了多少米?
這是求兩次行走的路程的和.
5+3=8
用數軸表示如圖
從數軸上表明,兩次行走后在原點0的東邊.離開原點的距離是8米.因此兩次一共向東走了8米.
可見,正數加正數,其和仍是正數,和的絕對值等于這兩個加數的絕對值的和.
(2)某人向西走5米,再向西走3米,兩次一共向東走了多少米?
顯然,兩次一共向西走了8米
(-5)+(-3)=-8
用數軸表示如圖
從數軸上表明,兩次行走后在原點0的西邊,離開原點的距離是8米.因此兩次一共向東走了-8米.
可見,負數加負數,其和仍是負數,和的絕對值也是等于兩個加數的絕對值的和.
總之,同號兩數相加,取相同的符號,并把絕對值相加.
例如,(-4)+(-5),……同號兩數相加
(-4)+(-5)=-( ),…取相同的符號
4+5=9……把絕對值相加
∴ (-4)+(-5)=-9.
口答練習:
(1)舉例說明算式7+9的實際意義?
(2)(-20)+(-13)=?
(3)
2.異號兩數相加
(1)某人向東走5米,再向西走5米,兩次一共向東走了多少米?
由數軸上表明,兩次行走后,又回到了原點,兩次一共向東走了0米.
5+(-5)=0
可知,互為相反數的兩個數相加,和為零.
(2)某人向東走5米,再向西走3米,兩次一共向東走了多少米?
由數軸上表明,兩次行走后在原點o的東邊,離開原點的距離是2米.因此,兩次一共向東走了2米.
就是 5+(-3)=2.
(3)某人向東走3米,再向西走5米,兩次一共向東走了多少米?
由數軸上表明,兩次行走后在原點o的西邊,離開原點的距離是2米.因此,兩次一共向東走了-2米.
就是 3+(-5)=-2.
請同學們想一想,異號兩數相加的法則是怎么規定的?強調和的符號是如何確定的?和的絕對值如何確定?
最后歸納
絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0.
例如(-8)+5……絕對值不相等的異號兩數相加
8>5
(-8)+5=-( )……取絕對值較大的加數符號
8-5=3 ……用較大的絕對值減去較小的絕對值
∴(-8)+5=-3.
口答練習
用算式表示:溫度由-4℃上升7℃,達到什么溫度.
(-4)+7=3(℃)
3.一個數和零相加
(1)某人向東走5米,再向東走0米,兩次一共向東走了多少米?
顯然,5+0=5.結果向東走了5米.
(2)某人向西走5米,再向東走0米,兩次一共向東走了多少米?
容易得出:(-5)+0=-5.結果向東走了-5米,即向西走了5米.
請同學們把(1)、(2)畫出圖來
由(1),(2)得出:一個數同0相加,仍得這個數.
總結有理數加法的三個法則.學生看書,引導他們看有理數加法運算的三種情況.
有理數加法運算的三種情況:
特例:兩個互為相反數相加;
(3)一個數和零相加.
每種運算的法則強調:(1)確定和的符號;(2)確定和的絕對值的方法.
(四)例題分析
例1 計算(-3)+(-9).
分析:這是兩個負數相加,屬于同號兩數相加,和的符號與加數相同(應為負),和的絕對值就是把絕對值相加(應為3+9=12)(強調相同、相加的特征).
解:(-3)+(-9)=-12.
例2
分析:這是異號兩數相加,和的符號與絕對值較大的加數的符號相同(應為負),和的絕對值等于較大絕對值減去較小絕對值..(強調“兩個較大”“一個較小”)
解:
解題時,先確定和的符號,后計算和的絕對值.
(五)鞏固練習
1.計算(口答)
(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);
(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;
2.計算
(1)5+(-22); (2)(-1.3)+(-8)
(3)(-0.9)+1.5; (4)2.7+(-3.5)
探究活動
題目 (1)在1,2,3,4四個數的前面添加正號或負號,使它們的和為0;
(2)在1,2,3,…,11,12十二個數的前面添加正號或負號,使它們的和為零;
(3)在1,2,3,4,…,99,100一百個數的前面添加正號或負號,使它們的和為0;
(4) 在解決這個問題的過程中,你能總結出一些什么數學規律?
參考答案 我們不妨不妨以第二問為例探討,比如,在12,11,10,5這四個數的前面添加負號,則這12個數的和是:-12-11-10+9+8+7+6-5+4+3+2+1=2.
現在我們將各數的符號加以調整,考慮到將一個正數變號,其和就要減少這個正數的兩倍,因此可得到兩個(明顯的)解答:
(1)得+1變為-1,有-12-11-10+9+8+7+6-5+4+3+2-1=0; ①
(2)將(+6-5)變為-(6-5),有-12-11-10+9+8+7-6+5+4+3+2+1=0.②
又如,在11,10,8,7,5這五個數的前面添加負號,得
12-11-10-9-8-7+6-5+4+3+2+1=-4,
我們就有多種調整的方法,如將-8與+6變號,有
12-11-10+9+8-7-6-5+4+3+2+1=0. ③
經過幾次試驗,我們發現了規律:欲使十二個數的和為零,其中正數的和的絕對值與負數的和的絕對值必須相等.但
1+2+3+4+5+6+7+8+9+10+11+12=78
因此我們應該使各正數的和的絕對值與各負數的和的絕對值均為
為了簡便起見,我們把①式所表示的一個解答記為(12,11,10,5,1),那么②,③兩式所表示的解答就分別記為(12,11,10,6)與(11,10,7,6,5).
同時我們還發現:如果(12,11,10,5,1)是一個解答,那么(9,8,7,6,4,3,2)也必定是一個解答.同樣,對應于②,③兩式,還分別有另兩個解答:(9,8,7,5,4,3,2,1)與(12,9,8,4,3,2,1).這個規律我們不妨叫做對偶律.
此外我們還可發現,由于的三個數12,11,10其和33<39,因此必須再增加一個數6,才有解答(12,11,10,6),也就是說:添加負號的數至少要有四個;反過來,根據對偶律得:添加負號的數最多不超過八個.
掌握了上述幾條規律,我們就能夠在很短的時間內得到許多解答.最后讓我們告訴你,第(2)問的解答個數并非無數多,其總數是124個.
初一數學教案下載篇17
教學目標:
在熟悉的生活情景中,能用正數和負數表示生活中具有相反意義的量、知道負數的寫法和讀法,會用負數表示一些日常生活中的量。
使學生經歷數學化,符號化的過程,體會負數產生的必要性。
感受正、負數和生活的密切聯系,享受創造性學習的樂趣.
教學重點:
體會負數的意義,學會用正、負數表示日常生活中具有相反意義的量。
教學難點:
體會負數的意義,通過描述性定義認識正數、負數和“0”。
教學過程:
一、感受相反方向的數量,經歷負數產生的過程。
1、回憶小學學過那些數:自然數,分數出示信息:看數的產生過程,現實中負數學習的必要。
2、引入負數的概念
3、總結正負數
(1)這些數很特別,都帶上了符號,它們是一種“新數”。-9、-4.5等都叫負數;+7、+988等都叫正數。你會讀嗎?請你讀給大家聽。注意“-”叫負號,“+”叫正號。
(2)讀給你的同伴聽。
(3)把你新認識的負數再寫兩個,讀一讀。
下面讓我們走進正數和負數的世界,進一步了解它們。(板書課題)
二、借助實際生活情境的直觀,豐富對正負數的認識。
1、負數有什么用?用正數或負數表示下列數量。(1向東走200米,用+200米表示;那么向西走200米元用表示。
2.說說實際問題中負數的確定
(1.)表示海拔高度
(2.)解釋溫度中正負數的含義
(3)做練習三
3、怎樣理解具有相反意義的量
三、理解0
1、0既不是正數也不是負數。0是正負數的分界。
2、0只表示沒有嗎?
1)空罐中的金幣數量;
2)溫度中的0℃;
3)海平面的高度;
4)標準水位;
5)身高比較的基準;
6.)正數和負數的界點;
3、總結
0既不是正數,也不是負數;0是正數負數的分界。
0是整數,0是偶數,0是最小的自然數。
四、探究活動(出示課件):
1.探究活動一:東、西為兩個相反方向,如果-4米表示一個物體向西運動4米,那么+2米表示什么?物體原地不動記為什么?
若將28計為0,則可將27計為-1,試猜想若將27計為0,28應計為。
2、探究活動二:某大樓地面上共有20層,地面下共有5層,若用正數、負數表示這棟樓房每層的樓層號,則地面上的最高層表示為,地面下的最低層表示為,某人乘電梯從地下最低層升至地上6層,電梯一共運行了層。
3、探究活動三:用正數和負數表示的相反意義的量,其中正確的是()
A、2003年全球財富500強中對主要零售業的統計,大榮公司年收入為25320100萬美元下列,利潤為-195200萬美元,該公司虧損額為195200萬美元。
B、如果+9.6表示比海平面高9.6米,那么-19.2米表示比海平面低-19.2米。
C、收入30元與下降2米是具有相反意義的量。
D、一天早晨的氣溫是-4℃,中午比早晨上升4℃,所以中午的氣溫是+4℃。
E、收入與支出是具有相反意義的量
F、如果收入增加18元記作+18元,那么-50元表示支出減少50元
4、探究活動四:如果用一個字母表示一個數,那a可能是什么樣的數?一定是正數嗎?
答:不一定,a可能是正數,可能是負數,也可能是0
五、探索與思考:
1、例1:一個月內,小明體重增加-2kg,小華體重減少-1kg,小強體重無變化,寫出他們這個月的體重增長值;
2、例2-1小的整數如下列這樣排列
第一列第二列第三列第四列
-2-3-4-5
-9-8-7-6
-10-11-12-13
-17-16-15-14
............
在上述的這些數中,觀察它們的規律,回答數-100將在哪一列.
3、例3
2001年下列國家的商品進出口總額比上一年的變化情況是:美國減少6.4%,德國增長1.3%,法國減少2.4%,英國減少3.5%,意大利增長0.2%,中國增長7.5%.寫出這些國家2001年商品進出口總額的增長率.
思考:負”與“正”相對,增長-2就是減少2;增長-1,是什么意思?什么情況下增長是0?
六、應用與提高
1.、有一批食品罐頭,標準質量為每聽500g,現抽取10聽樣品進行檢測,結果如下表。(單位:g)
質量497501503498496495500499501505
質量誤差分別為:
如果在罐頭的標簽上注有:“質量:500g”,則在所抽取的罐頭中是否有不合格的?
七、課堂練習
1、下列說法中正確的個數是()
1)、帶正號的數是正數,帶負號的數是負數
2)、任意一個正數,前面加上“-”號,就是一個負數
30、0是最小的正數、
4)、大于0的數是正數
5)、字母a既是正數,也是負數
A.0B.1C.2.D.3
2.判斷
(1)0是整數()
(2)自然數一定是整數()
(3)0一定是正整數()
(4)整數一定是自然數()
3.說明下面這些話的意義:
①溫度上升+3℃
②溫度下降+3℃
③收入+4.25元
④支出—4.2元
4、“小明這次數學考試成績下降-20分”這句話的意思是什么?
5.1)向東走+5m,-6m,0m表示的實際意義是什么呢?
(2)某水泥廠計劃每月生產水泥1000t,一月份實際生產了950t,二月份實際生產了1000t,三月份實際生產了1100t,用正數和負數表示每月超額完成計劃的噸數各是多少?
八、課堂小結:
1.正數:以前學過的數中,除0外的數叫做正數;如:+5,+0.23,8818
2.負數:在正數前面加上“-”號的數叫做負數;如:-5,-0.54
3、0既不是正數,也不是負數。
4、一個數前面的“+”、“-”號叫做它的符號
5、在同一個問題中,分別用正數與負數表示具有相反的意義的量.
附板書:
正數和負數
正數>0>負數
+既不是正數-
正號也不是負數負號
課后反思:
本節課是讓學生在現實情境中了解正負數的意義,會用正、負數描述日常生活中相反意義的量。
1、練習貼近生活實際,促進學生對所學知識的有效應用聯系生活實際的練習,如“分析質量問題,溫度問題?!罢{查體重”使學生體會到數學源于生活,又應用于生活,讓學生感受到數學的作用,又對數學產生親切感。
2、這節課可以用信息技術來創設情境,激發學生的學習興趣。用一個相對完整的事把溫度、收入支出和海拔三個關鍵詞串在一起。這樣,學生對所學的知識會更有興趣。
3、這節課還可以借助信息技術來理解相對意義的量。例如:,出示珠穆朗瑪峰和吐魯番盆地的照片,與海平面比,一高一低。這些都是相對意義的量。有了這些形象的照片,就更有利于學生相對意義的量的理解。
4、融入多種學習方式,促進有效教學的開展
引導學生自主探索學習,給學生充足時間去嘗試,交流方法,讓學生從不同角度去分析和解決問題,做到學生間的思想溝通,集思廣益,尋找答案,解決問題,體現了學生解決數學問題思維的多樣化,個性化。另外,在課堂教學中努力做到:師生互動,生生互動,全班交流,共同學習。
5、在本節課的教學中,還存在著諸多不足,比如如何更好地安排時間,將知識落到實處?”“交流時,如何選擇個別交流與集體交流?老師的評價怎么才能更到位。”我想這些都是今后我要努力的方向。
初一數學教案下載篇18
教學目標:
1通過學生身邊可以嘗試、探索的場景,經歷有理數加法法則得出的過程,理解有理數加法法則的合理性。2能進行簡單的有理數加法運算。3發展觀察、歸納、猜測驗證等能力。
重點難點:
重點:有理數加法法則的得出,和的符號的確定;難點:異號兩數相加
教學過程
一激情引趣,導入新課
1我們早知道正有理數和零可以做加法運算,所有的有理數是否都可以進行加法運算呢?這就是我們這節課要研究的問題,先來分析一下,所有的有理數相加的時候有哪些情況呢?請你想一想
2從前有一個文盲記錄家里的收入和支出的時候是這樣的,用一顆紅豆代表收入一文錢,用一顆黑豆代表支出一文錢,有一個月他發現記賬的盒子里有10顆紅豆6顆黑豆,他發現紅豆比黑豆多了4顆,于是他不僅知道了這個月結余了4文錢還知道了自己這個月的收入和支出情況。我們可以用一個圖形來表示他這種記賬方式?!啊稹?,“●”分別表紅豆和黑豆。
,這個圖形其實就是一個有理數的加法算式:(+10)+(-6)=+4下面我們借助數軸來理解有理數的加法運算。
二合作交流,探究新知
以原點為起點,規定向東的方向為正方向,向西的方向為負方向,一個單位代表1千米
1同號兩數相加
小亮從O點出發,先向西移動2個千米休息一會兒,再向西移動3個千米,兩次走路的總效果等于從點O出發向_____走了_______千米,用式子表示為_______________.
從上,你發現了嗎,同號兩數相加結果的符號怎么確定?結果的絕對值怎么確定?請把你的發現填在下面的框里。
同號兩數相加,取__________的符號,并把它們的_____________相加。
2異號兩數相加
(1)小明先從點O出發,先向東走4千米,發現口袋里的鑰匙丟了,急急忙忙掉頭向西走了1千米,找到了掉在路邊的鑰匙,小明這兩次走路的效果總等于從點O出發向___走了____千米,用式子表示為_________________________.
(2)小李先從點O出發,先向東走了1米,突然想起今天家里有事,趕緊掉頭向西往家里走,走了3千米到達家中,小李兩次走路的總效果等于等于吃哦從點O出發,向___走了
_____千米。用式子表達為_______________________.
從上面例子,你發現了異號兩數怎么做嗎?把你的結論填在下框中。
異號兩數相加,絕對值不相等時,取__________________的符號,并用_________的絕對值
減去_______________的絕對值。
3一個數和零相加,以及互為相反數相加
(1)某個人第一批貨獲得利潤3萬元,第二批貨物保本,這兩批貨物總的利潤是多少萬元?
(2)某人第一批貨物的利潤是5萬元,第二批貨物虧損5萬元,這兩批貨物總的利潤是多少?
從上問題,你發現了什么?把你的結論寫在下框中,
互為相反數的兩個相加得_______,一個數和零相加,任得____________________.
三應用遷移,拓展提高
例1計算(1)(-8)+(-12)(2)(-3.75)+(-0.25)
(3)(-5)+9(4)(–10)+7
例2計算(1)(-3)+(2)(-)+(-)
例3填空
(1)-7+____=0(2)(+)+______=-(3)____+(-)=(4)__+=
四課堂練習,鞏固提高
P21
五反思小結鞏固提高
有理數的加法法則有哪些?請你把它們寫在下面:
1
2
3
4
六作業p24-25A組1-4B1