初一數學教案設計
初一數學教案設計篇1
教學目的
1.理解用一元一次方程解工程問題的本質規律;通過對“工程問題”的分析進一步培養學生用代數方法解決實際問題的能力。
2.理解和掌握基本的數學知識、技能、數學思想方法,獲得廣泛的數學活動經驗,提高解決問題的能力。
重點、難點
重點:工程中的工作量、工作的效率和工作時間的關系。
難點:把全部工作量看作“1”。
教學過程
一、復習提問
1.一件工作,如果甲單獨做2小時完成,那么甲獨做I小時完成全部工作量的多少?
2.一件工作,如果甲單獨做。小時完成,那么甲獨做1小時,完成全部工作量的多少?
3.工作量、工作效率、工作時間之間有怎樣的關系?
二、新授
閱讀教科書第18頁中的問題6。
分析:1.這是一個關于工程問題的實際問題,在這個問題中,已經知道了什么? 已知:制作一塊廣告牌,師傅單獨完成需4天,徒弟單獨做要6天。
2.怎樣用列方程解決這個問題?本題中的等量關系是什么?
[等量關系是:師傅做的工作量+徒弟做的工作量=1)
[先要求出師傅與徒弟各完成的工作量是多少?]
兩人的工效已知,因此要先求他們各自所做的天數,因此,設師傅做了x天,則徒弟做(x+1)天,根據等量關系列方程。 解方程得 x=2
師傅完成的工作量為= ,徒弟完成的工作量為=
所以他們兩人完成的工作量相同,因此每人各得225元。
三、鞏固練習
一件工作,甲獨做需30小時完成,由甲、乙合做需24小時完成,現由甲獨做10小時;請你提出問題,并加以解答。
例如 (1)剩下的乙獨做要幾小時完成?
(2)剩下的由甲、乙合作,還需多少小時完成?
(3)乙又獨做5小時,然后甲、乙合做,還需多少小時完成?
四、小結
1.本節課主要分析了工作問題中工作量、工作效率和工作時間之間的關系,即 工作量=工作效率×工作時間
工作效率= 工作時間=
2.解題時要全面審題,尋找全部工作,單獨完成工作量和合作完成工作量的一個等量關系列方程。
五、作業
教科書習題6.3.3第1、2題。
初一數學教案設計篇2
學習目標:
1.理解平行線的意義兩條直線的兩種位置關系;
2.理解并掌握平行公理及其推論的內容;
3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;
學習重點:探索和掌握平行公理及其推論.
學習難點:對平行線本質屬性的理解,用幾何語言描述圖形的性質
一、學習過程:預習提問
兩條直線相交有幾個交點?
平面內兩條直線的位置關系除相交外,還有哪些呢?
(一)畫平行線
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"畫"。
3、請你根據此方法練習畫平行線:
已知:直線a,點B,點C.
(1)過點B畫直線a的平行線,能畫幾條?
(2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?
(二)平行公理及推論
1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;
②過點C畫直線a的平行線,能畫 條;
③你畫的直線有什么位置關系? 。
②探索:如圖,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?
二、自我檢測:(一)選擇題:
1、下列推理正確的是 ( )
A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d
C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c
2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數為( )
A.0個 B.1個 C.2個 D.3個
(二)填空題:
1、在同一平面內,與已知直線L平行的直線有 條,而經過L外一點,與已知直線L平行的直線有且只有 條。
2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的位置關系:
(1)L1與L2 沒有公共點,則 L1與L2 ;
(2)L1與L2有且只有一個公共點,則L1與L2 ;
(3)L1與L2有兩個公共點,則L1與L2 。
3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。
4、平面內有a 、b、c三條直線,則它們的交點個數可能是 個。
三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.
初一數學教案設計篇3
教學目標:
1.通過對“零”的意義的探討,進一步理解正數和負數的概念,能利用正負數正確表示具有相反意義的量(規定了向指定方向變化的量);
2.進一步體驗正負數在生產生活中的廣泛應用,提高解決實際問題的能力.
教學重點:深化對正負數概念的理解.
教學難點:正確理解和表示向指定方向變化的量.
教與學互動設計:
(一)知識回顧和理解
通過對上節課的學習,我們知道在實際生產和生活中存在著具有兩種不同意義的量,為了區分它們,我們用正數和負數來分別表示它們.
[問題1]:“零”為什么既不是正數也不是負數呢?
學生思考討論,借助舉例說明.
參考例子:用正數、負數和零表示零上溫度、零下溫度和零度.
思考 “0”在實際問題中有什么意義?
歸納 “0”在實際問題中不僅表示“沒有”的意思,它還具有一定的實際意義.
如:水位不升不降時的水位變化,記作:0 m.
[問題2]:引入負數后,數按照“具有兩種相反意義的量”來分,可以分成幾類?分別是什么?
(二)深化理解,解決問題
[問題3]:(課本P3例題)
【例1】(1)一個月內,小明體重增加2 kg,小華體重減少1kg,小強體重無變化,寫出他們這個月的體重增長值;
【例2】(2)某年,下列國家的商品進出口總額比上年的變化情況是:
美國減少6.4%,德國增長1.3%,
法國減少2.4%,英國減少3.5%,
意大利增長0.2%,中國增長7.5%.
寫出這些國家這一年商品進出口總額的增長率.
解后語:在同一個問題中,分別用正數和負數表示的量具有相反的意義.寫出體重的增長值和進出口的增長率就暗示著用正數來表示增長的量.類似的還有水位上升、收入上漲等等.我們要在解決問題時注意體會這些指明方向的量,正確地用正負數表示它們.
鞏固練習
1.通過例題(2)提醒學生審題時要注意要求,題中求的是增長率,不是增長值.
2.讓學生再舉出一些常見的具有相反意義的量.
3.1990~1995年下列國家年平均森林面積(單位:千米2)的變化情況是:
中國減少866,印度增長72,
韓國減少130,新西蘭增長434,
泰國減少3247, 孟加拉減少88.
(1)用正數和負數表示這六國1990~1995年平均森林面積的增長量;
(2)如何表示森林面積減少量,所得結果與增長量有什么關系?
(3)哪個國家森林面積減少最多?
(4)通過對這些數據的分析,你想到了什么?
閱讀與思考
(課本P6)用正數和負數表示加工允許誤差.
問題:1.直徑為30.032 mm和直徑為29.97 mm的零件是否合格?
2.你知道還有哪些事件可以用正負數表示允許誤差嗎?請舉例.
(三)應用遷移,鞏固提高
1.甲冷庫的溫度是-12℃,乙冷庫的溫度比甲冷庫低5 ℃,則乙冷庫的溫度是 .
2.一種零件的內徑尺寸在圖紙上是9±0.05(單位:mm),表示這種零件的標準尺寸是9 mm,加工要求不超過標準尺寸多少?最小不小于標準尺寸多少?
3.摩托車廠本周計劃每天生產250輛摩托車,由于工人實行輪休,每天上班的人數不一定相等,實際每天生產量(與計劃量相比)的增減值如下表:
星期 一 二 三 四
增減 -5 +7 -3 +4
根據上面的記錄,問:哪幾天生產的摩托車比計劃量多?星期幾生產的摩托車最多,是多少輛?星期幾生產的摩托車最少,是多少輛?
類比例題,要求學生注意書寫格式,體會正負數的應用.
(四)課時小結(師生共同完成)
初一數學教案設計篇4
教學目的
讓學生通過獨立思考,積極探索,從而發現;初步體會數形結合思想的作用。
重點、難點
1.重點:通過分析圖形問題中的數量關系,建立方程解決問題。
2.難點:找出“等量關系”列出方程。
教學過程
一、復習提問
1.列一元一次方程解應用題的步驟是什么?
2.長方形的周長公式、面積公式。
二、新授
問題3.用一根長60厘米的鐵絲圍成一個長方形。
(1)使長方形的寬是長的專,求這個長方形的長和寬。
(2)使長方形的寬比長少4厘米,求這個長方形的面積。
(3)比較(1)、(2)所得兩個長方形面積的大小,還能圍出面積更大的長方形嗎?
不是每道應用題都是直接設元,要認真分析題意,找出能表示整個題意的等量關系,再根據這個等量關系,確定如何設未知數。
(3)當長方形的長為18厘米,寬為12厘米時
長方形的面積=18×12=216(平方厘米)
當長方形的長為17厘米,寬為13厘米時
長方形的面積=221(平方厘米)
∴(1)中的長方形面積比(2)中的長方形面積小。
問:(1)、(2)中的長方形的長、寬是怎樣變化的?你發現了什么?如果把(2)中的寬比長少“4厘米”改為3厘米、2厘米、1厘米、0.5厘米長方形的面積有什么變化?猜想寬比長少多少時,長方形的面積呢?并加以驗證。
實際上,如果兩個正數的和不變,當這兩個數相等時,它們的積,通過以后的學習,我們就會知道其中的道理。
三、鞏固練習
教科書第14頁練習1、2。
第l題等量關系是:圓柱的體積=長方體的體積。
第2題等量關系是:玻璃杯中的水的體積十瓶內剩下的水的體積=原來整瓶水的體積。
四、小結
運用方程解決問題的關鍵是抓住等量關系,有些等量關系是隱藏的,不明顯,要聯系實際,積極探索,找出等量關系。
五、作業
教科書第16頁,習題6.3.1第1、2、3。
初一數學教案設計篇5
教學目標:
1、了解證明的必要性,知道推理要有依據;熟悉綜合法證明的格式,能說出證明的步驟.
2、能用符號語言寫出一個命題的題設和結論.
3、通過對真命題的分析,加強推理能力的訓練,培養學生邏輯思維能力.
教學重點:證明的步驟與格式.
教學難點:將文字語言轉化為幾何符號語言.
教學過程:
一、復習提問
1、命題“兩直線平行,內錯角相等”的題設和結論各是什么?
2、根據題設,應畫出什么樣的圖形?(答:兩條平行線a、b被第三條直線c所截)
3、結論的內容在圖中如何表示?(答:在圖中標出一對內錯角,并用符號表示)
二、例題分析
例1、 證明:兩直線平行,內錯角相等.
已知:a∥b,c是截線.
求證:∠1=∠2.
分析:要證∠1=∠2,
只要證∠3=∠2即可,因為
∠3與∠1是對頂角,根據平行線的性質,
易得出∠3=∠2.
證明:∵a∥b(已知),
∴∠3=∠2(兩直線平行,同位角相等).
∵∠1=∠3(對頂角相等),
∴∠1=∠2(等量代換).
例2、 證明:鄰補角的平分線互相垂直.
已知:如圖,∠AOB+∠BOC=180°,
OE平分∠AOB,OF平分∠BOC.
求證:OE⊥OF.
分析:要證明OE⊥OF,只要證明∠EOF=90°,即∠1+∠2=90°即可.
三、課堂練習:
1、平行于同一條直線的兩條直線平行.
2、兩條平行線被第三條直線所截,同位角的平分線互相平行.
四、歸納小結
主要通過學生回憶本節課所學內容,從知識、技能、數學思想方法等方面加以歸納,有利于學生掌握、運用知識.然后見投影儀.
五、布置作業
課本P143 5、(2),7.
六、課后思考:
1、垂直于同一條直線的兩條直線的位置關系怎樣?
2、兩條平行線被第三條直線所截,內錯角的平分線位置關系怎樣?
3、兩條平行線被第三條直線所截,同旁內角的平分線位置關系怎樣?
初一數學教案設計篇6
學習目標
1. 理解有序數對的應用意義,了解平面上確定點的常用方法
2. 培養用數學的意識,激發學習興趣.
學習重點: 理解有序數對的意義和作用
學習難點: 用有序數對表示點的位置
學習過程
一.問題導入
1.一位居民打電話給供電部門:"衛星路第8根電線桿的路燈壞了,"維修人員很快修好了路燈同學們欣賞下面圖案.
2.地質部門在某地埋下一個標志樁,上面寫著"北緯44.2°,東經125.7°"。
3.某人買了一張8排6號的電影票,很快找到了自己的座位。
分析以上情景,他們分別利用那些數據找到位置的。
你能舉出生活中利用數據表示位置的例子嗎?
二.概念確定
有序數對:用含有兩個數的詞表示一個確定的位置,其中各個數表示不同的含義,我們把這種有順序的兩個數a與b組成的數對,叫做有序數對,記作(a,b)
利用有序數對,可以很準確地表示出一個位置。
1.在教室里,根據座位圖,確定數學課代表的位置
2.教材40頁練習
三.方法歸類
常見的確定平面上的點位置常用的方法
(1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。
(2)以某一點為觀察點,用方位角、目標到這個點的距離這兩個數來確定目標所在的位置。
1.如圖,A點為原點(0,0),則B點記為(3,1)
2.如圖,以燈塔A為觀測點,小島B在燈塔A北偏東45,距燈塔3km 處。
例2 如圖是某次海戰中敵我雙方艦艇對峙示意圖,對我方艦艇來說:
(1)北偏東方向上有哪些目標?要想確定敵艦B的位置,還需要什么數據?
(2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?
(3)要確定每艘敵艦的位置,各需要幾個數據?
[鞏固練習]
1. 如圖是某城市市區的一部分示意圖,對市政府來說:
北偏東60的方向有哪些單位?要想確定單位的位置。還需要哪些數據?火車站與學校分別位于市政府的什么方向,怎樣確定他們的位置?
結合實際問題歸納方法
學生嘗試描述位置
2. 如圖,馬所處的位置為(2,3).
(1) 你能表示出象的位置嗎?
(2) 寫出馬的下一步可以到達的位置。
[小結]
1. 為什么要用有序數對表示點的位置,沒有順序可以嗎?
2. 幾種常用的表示點位置的方法.
[作業]
必做題:教科書44頁:1題
初一數學教案設計篇7
教學目標:
1、 知道有理數加法的意義和法則
2、 會用有理數加法法則正確地進行有理數的加法運算
3、 經歷有理數加法法則的探究過程,體會分類和歸納的數學思想方法
教學重點: 有理數加法則的探索及運用
教學難點: 異號兩數相加的法則的理解及運用
教學過程:
一、 創設情境
展示足球賽圖片,你知道足球賽中“凈勝球”是怎么回事嗎?
(學生口答,教師介紹凈勝球的算法:只要把各場比賽的結果相加就可以得到,由此揭示課題。)
二、 探求新知
1、甲、乙兩隊進行足球比賽,
(1)、如果上半場贏了3球,下半場又贏了2球,那么全場累計凈勝幾球?
(2)、如果上半場贏了3球,下半場輸了2球,那么全場累計凈勝幾球?
足球比賽中贏球個數與輸球個數是一對相反意義的量.若規定贏球為正,輸球為負,例如贏3球記為“+3”,輸2球記為“-2”,你能把上述結果用加法算式表示出來嗎?
(學生根據生活經驗得到兩種情況下的凈勝球數,從而列出算式:(+3)+(+2)= +5;(+3)+(-2)= +1,教師板書。)
(3)、除了上面所說的“贏了再贏”,“先贏后輸”,你還能說出其它可能的幾種情況并用加算式表示嗎?
(引導學生聯系生活實際思考輸贏球其它可能的情況,盡可能完整地說出所有的可能,由此感受兩個有理數相加的各種情況,讓學生自由發言,相互補充,教師板書算式:(-3)+(+2)= -1,(-3)+(-2)= -5,(-3)+0= -3,0+(+2)=+2,教師還可根據學生回答情況補充:上半場贏了3球,下半場輸了3球;上半場打平,下半場也打平,最后的凈勝球情況,由學生說出結果并列出算式:(+3)+(-3)= 0,0+0=0 )
2、你能舉出一些運用有理數加法的實際例子嗎?
(學生列舉實例并根據具體意義寫出算式)
3、學生活動:
(1)、把筆尖放在數軸原點處,先向正方向移動3個單位長度,再向正方向移動2個單位長度,這時筆尖的位置表示什么數?你能用數軸和加法算式表示以上過程及結果嗎?
(2)、把筆尖放在數軸原點個單位長度,再向負方向移動2個單位長度,這時筆尖的位置表示什么數?你能用數軸和加法算式表示以上過程及結果嗎?
(3)、你還能再做一些類似的活動,并寫出相應的算式嗎?
(教師示范活動(1)的操作過程,學生列出算式并完成(2)(3),得到一組算式,教師板書。這一活動目的是讓學生從“形”的角度,直觀感受有理數的加法法則。)
4、 歸納法則:
觀察上述算式,和小學學過的加法運算有什么區別?你能歸納出有理數的加法法則嗎?
(由前面所學的內容學生已經知道:有理數由符號和絕對值兩部分組成,所以兩個有理數的相加時,確定和時也需要分別確定和的符號和絕對值,教師可引導學生對照情境中輸贏球的情況分別探索和的符號和絕對值如何確定,學生相互交流,自由發言,不斷完善。通過探索有理數加法法則的過程,學生體會分類和歸納的數學思想方法。)
5、 例題精講:
例1 、計算
(1)、 (-5)+(-3) (2)、(-8)+(+2);; (3)、(+6)+(-4)
(4)、 5+(-5); (5)、 0+(-2); (學生口答計算結果,并對照法則說說是如何確定和的符號和絕對值的,教師板書解題過程,讓學生體會“運算有據”。)
解:(1)、(-5)+(-3)
= -(5+3) (同號兩數相加,取相同的符號,并把絕對值相減)
= -8
(2)、(-8)+(+2)
= -(8-2) (異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。)
= -6
(4)、5+(-5);
=0 (互為相反的兩數之和為0)
6、 訓練鞏固:
1、 p33練一練2
(學生利用撲克完成本題,通過游戲進一步鞏固有理數加法法則,體現“做中學”的新課程理念。)
7、 延伸拓展:
(1)、一個數是2的相反數,另一個數的絕對值是5,求這兩個數的和
(2)、在小學里,計算兩個數相加時,它們的和總是小于任何一個加數,學了有理數的加法法則后,你認為這個結論還成立嗎?請你舉例說明
(這兩題都具有一定的挑戰性,第(1)題可讓學生進一步體會分類的數學思想方法。第(2)題具有開放性,可讓學生在探索的過程中進一步理解法則。)
三、課堂小結:
學生回顧本節課所學內容,談談自己對有理數加法法則的理解及如何進行有理數加法運算。
四、布置作業:
1、 課本p41 第1題
2、 列舉一些生活中運用有理數加法的實際例子,并相互交流。
初一數學教案設計篇8
教學目的:
(一)知識點目標:
1.了解正數和負數是怎樣產生的。
2.知道什么是正數和負數。
3.理解數0表示的量的意義。
(二)能力訓練目標:
1.體會數學符號與對應的思想,用正、負數表示具有相反意義的量的符號化方法。
2.會用正、負數表示具有相反意義的量。
(三)情感與價值觀要求:
通過師生合作,聯系實際,激發學生學好數學的熱情。
教學重點:知道什么是正數和負數,理解數0表示的量的意義。
教學難點:理解負數,數0表示的量的意義。
教學方法:師生互動與教師講解相結合。
教具準備:地圖冊(中國地形圖)。
教學過程:
引入新課:
1.活動:由兩組各派兩名同學進行如下活動:一名按老師的指令表演,另一名在黑板上速記,看哪一組記得最快?
內容:老師說出指令:
向前兩步,向后兩步;
向前一步,向后三步;
向前兩步,向后一步;
向前四步,向后兩步。
如果學生不能引入符號表示,教師可和一個小組合作,用符號表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[師]其實,在我們的生活中,運用這樣的符號的地方很多,這節課,我們就來學習這種帶有特殊符號、表示具有實際意義的數-----正數和負數。
講授新課:
1.自然數的產生、分數的產生。
2.章頭圖。問題見教材。讓學生思考-3~3℃、凈勝球數與排名順序、±0.5、-9的意義。
3、正數、負數的定義:我們把以前學過的0以外的數叫做正數,在這些數的前面帶有“一”時叫做負數。根據需要有時在正數前面也加上“十”(正號)表示正數。
舉例說明:3、2、0.5、 等是正數(也可加上“十”)
-3、-2、-0.5、- 等是負數。
4、數0既不是正,也不是負數,0是正數和負數的分界。
0℃是一個確定的溫度,海拔為0的高度是海平面的平均高度,0的意義已不僅表示“沒有”。
5、讓學生舉例說明正、負數在實際中的應用。展示圖片(又見教材P5圖1.1-2-3)讓學生觀察地形圖上的標注和記錄支出、存入信息的本地某銀行的存折,說出你知道的信息。
鞏固提高:練習:課本P5練習
課時小結:這節課我們學習了哪些知識?你能說一說嗎?
課后作業:課本P7習題1.1的第1、2、4、5題。
活動與探究:在一次數學測驗中,某班的平均分為85分,把高于平均分的高出部分記為正數。
(1)美美得95分,應記為多少?
(2)多多被記作一12分,他實際得分是多少?
課后反思