高二數學教案內容
教案可以幫助教師更好地評估學生的學習效果,從而更好地調整教學策略。小編給大家分享高二數學教案內容參考,方便大家參考高二數學教案內容怎么寫。
高二數學教案內容篇1
【教學目標】
1.知識與技能
(1)學生通過自主學習,初步理解集合的概念,理解元素與集合間的關系,了解集合元素的確定性、互異性,無序性,知道常用數集及其記法;
(2)掌握集合的常用表示法——列舉法和描述法。
2.過程與方法
通過實例了解集合的含義,體會元素與集合的“屬于”關系,能選擇合適的語言(如自然語言、圖形語言、集合語言)描述不同的具體問題,提高語言轉換和抽象概括能力,樹立用集合語言表示數學內容的意識。
3.情態與價值
在掌握基本概念的基礎上,能夠解決相關問題,獲得數學學習的成就感,提高學生分析問題和解決問題的能力,培養學生的應用意識。
【重點難點】
1.教學重點:集合的基本概念與表示方法。
2.教學難點:選擇合適的方法正確表示集合。
【教學思路】
通過實例以及學生熟悉的數集,引入集合的概念,進而給出集合的表示方法,學生通過自我體會、自主學習、自我總結達到掌握本節課內容的目的。教學過程按照“提出問題——學生討論——歸納總結——獲得新知——自我檢測”環節安排。
高二數學教案內容篇2
【教學目標】
1.使學生了解立體幾何研究的對象、內容:
2.使學生初步理解立體幾何中的主要數學思想方法(類比思想、轉化思想、展開思想)
3.培養學生空間想象能力,初步建立空間概念
【教學重點】
空間概念的建立與立體幾何中的主要數學思想方法
【教學難點】
空間概念的建立
【教學過程】
一.引入新課
1.請同學們用六根長度相等的火柴搭正三角形,試試看,最多達成幾個正三角形?學生動手試驗后,教師總結:在平面內最多只能搭成兩個,而在空間能搭成四個。同時,向學生展示正四面體骨架模型,再讓學生看圖1.
2.請同學們想一想,是否存在三條直線兩兩互相垂直?若存在請舉出實際中的例子。
學生討論后,教師總結:在同一平面內不存在,因為a⊥c,b⊥c,得到a∥b;但在空間是存在的,如教室墻角處的三條直線AB,AC,AD兩兩互相垂直(如圖2)。請同學們觀察正方體(向學生展示正方體模型)中一個頂點處的三條棱之間的關系,也是兩兩互相垂直的(如圖3)
3.小結:現實世界中許多問題,只在平面內研究是很不夠的,還需要在空間這個更廣闊的領域內來考慮,這就是我們將要學習的新課程--立體幾何(板書課題)二、講授新課
1.立體幾何的研究對象、內容
提問1:平面幾何的研究對象、內容是什么?答:對象是平面圖形,具體說是研究點、線、面;內容是平面圖形的畫法、形狀、位置關系、大小計算及應用。提問2:立體幾何的研究對象、內容又是什么?讓學生觀察正方體、圓柱、正四面體骨架等,引導學生與平面幾何進行類比。在學生回答的基礎上,教師小結為:立體幾何的研究對象--空間圖形(由空間的點、線、面組成)立體幾何的研究內容--空間圖形的畫法、形狀、位置關系、大小計算及應用,是平面幾何的推廣
2.空間圖形與平面圖形的畫法的不同點提問:同學們雖然還沒有掌握空間圖形的畫法,但已經見到了老師畫的正方體、圓柱、正四面體的直觀圖,同學們想一想,空間圖形與平面圖形的畫法有什么不同?經過分析,平面圖形的畫法是真實的,而空間圖形的直觀圖是不真實的,如正方體的底面本是正方形,但在直觀圖中都畫成平行四邊形。圓柱的底面本是圓,但在直觀圖中都畫成了橢圓。
例:1)說出下列各角的度數:∠B1A1C1、∠B1C1A1、∠BCB1的度數
2)計算∠BC1A1的大小
3)設AB=a,試求正方體的表面積和體積
分析:通過解答上述問題,同學們已經看到:在研究空間圖形時,不能依據對圖形的直覺作出判斷,而應依據正確的推理、計算作出結論。
三.立體幾何中的主要思想方法
1.類比思想
例1.判斷下列命題是否正確(a、b、c表示直線)
高二數學教案內容篇3
一教學內容分析:
本節內容在教材中有著重要的地位與作用,線性規劃是利用數學為工具來研究一定的人、財、物、時、空等資源在一定的條件下,如何精打細算巧安排,用最少的資源,取得的經濟效益,這一部分內容體現了數學的工具性、應用性,同時滲透了化歸,數形結合的數學思維和解決實際問題的一種重要的解題方法——數學建模法。
二學生學習情況分析:
把實際問題轉化為線性規劃問題,并結合出解答是本節的重點和難點,對許多學生來說,解數學應用題的最常見的困難是不會持實際問題轉化或數學問題,即不會建模,對學生而言,解決應用問題的障礙主要有三類:①不能正確理解題意思,弄清各元素之間的關系;②不能弄清問題的主次關系,因而抓不住問題的本質,無法建立數學模型;③孤立考慮單個問題情境,不能多聯想。
三設計思想:
注意學生的探究過程,讓學生體驗探究問題的成就感,一切以學生的探究活動為主,以問題是驅動,激發學生學習樂趣。
四教學目標:
1、使學生了解線性規劃的意義以及約束條件、目標函數、可行域、可行解、解等基本概念;了解線性規劃問題的圖解法,并能應用它解決一些簡單的實際問題。
2、通過本節內容的學習,培養學生觀察、聯想以及作圖的能力等。滲透集合,化歸,數形結合的數學思想,提問“建模”和解決實際問題的能力。
五教學重點和難點:
教學重點:求線性目標函數的最值問題,培養學生“用數學”的意識,即線性規劃在實際生活中的應用。
教學難點:把實際問題轉化為線性規劃問題,并結合出解答。
六教學過程:
(一)問題引入
某工廠用A、B兩種配件生產甲、乙兩種產品,每生產一會一件甲產品使用4個A配件耗時1個小時,每生產一件乙產品使用4個B配件耗時2小時,該廠每天最多可以配件廠獲得16個A配件和12個B配件,按每天工作8小時計算,該廠所有可能的月生產安排是什么?由學生列出不等關系,并畫出平面區域,由此引入新課。
(二)問題深入,推進新課
①引領學生自主探索引入問題中的實際問題,怎樣安排才有意義?
②若生產一件甲產品獲利2萬元,生產一件乙產品獲利3萬元,采用哪種生產安排利潤?
設計意圖:
由實際問題出發激發學生學習興趣,在探究過程中,看似簡單的問題,學生容易抓不住問題的主干,需要適時的引導。
(三)揭示本質深化認識
提出問題:
①上述探索的問題中,Z的幾何意義是什么?結合圖形說明
②結合以上探究,理解什么是目標函數?線性目標函數?什么是線性規劃?弄清什么是可行域解?可行域?解?
③你能根據以上探究總結出解決線性規劃問題的一般步驟嗎?
(四)應用示例
高二數學教案內容篇4
1.本節課的重點是理解算法的概念,體會算法的思想,難點是掌握簡單問題算法的表述.
2.本節課要重點掌握的規律方法
(1)掌握算法的特征,見講1;
(2)掌握設計算法的一般步驟,見講2;
(3)會設計實際問題的算法,見講3.
3.本節課的易錯點
(1)混淆算法的特征,如講1.
(2)算法語言不規范致誤,如講3.
課下能力提升(一)
[學業水平達標練]
題組1算法的含義及特征
1.下列關于算法的說法錯誤的是()
A.一個算法的步驟是可逆的
B.描述算法可以有不同的方式
C.設計算法要本著簡單方便的原則
D.一個算法不可以無止境地運算下去
解析:選A由算法定義可知B、C、D對,A錯.
2.下列語句表達的是算法的有()
①撥本地電話的過程為:1提起話筒;2撥號;3等通話信號;4開始通話或掛機;5結束通話;
②利用公式V=Sh計算底面積為3,高為4的三棱柱的體積;
③x2-2x-3=0;
④求所有能被3整除的正數,即3,6,9,12,….
A.①②B.①②③
C.①②④D.①②③④
解析:選A算法通常是指按照一定規則解決某一類問題的明確和有限的步驟.①②都各表達了一種算法;③只是一個純數學問題,不是一個明確步驟;④的步驟是無窮的,與算法的有窮性矛盾.
3.下列各式中S的值不可以用算法求解的是()
A.S=1+2+3+4
B.S=12+22+32+…+1002
C.S=1+12+…+110000
D.S=1+2+3+4+…
解析:選DD中的求和不符合算法步驟的有限性,所以它不可以用算法求解,故選D.
題組2算法設計
4.給出下面一個算法:
第一步,給出三個數x,y,z.
第二步,計算M=x+y+z.
第三步,計算N=13M.
第四步,得出每次計算結果.
則上述算法是()
A.求和B.求余數
C.求平均數D.先求和再求平均數
解析:選D由算法過程知,M為三數之和,N為這三數的平均數.
5.(2016?東營高一檢測)一個算法步驟如下:
S1,S取值0,i取值1;
S2,如果i≤10,則執行S3,否則執行S6;
S3,計算S+i并將結果代替S;
S4,用i+2的值代替i;
S5,轉去執行S2;
S6,輸出S.
運行以上步驟后輸出的結果S=()
A.16B.25
C.36D.以上均不對
解析:選B由以上計算可知:S=1+3+5+7+9=25,答案為B.
6.給出下面的算法,它解決的是()
第一步,輸入x.
第二步,如果x<0,則y=x2;否則執行下一步.
第三步,如果x=0,則y=2;否則y=-x2.
第四步,輸出y.
A.求函數y=x2?x<0?,-x2?x≥0?的函數值
B.求函數y=x2?x<0?,2?x=0?,-x2?x>0?的函數值
C.求函數y=x2?x>0?,2?x=0?,-x2?x<0?的函數值
D.以上都不正確
解析:選B由算法知,當x<0時,y=x2;當x=0時,y=2;當x>0時,y=-x2.故選B.
7.試設計一個判斷圓(x-a)2+(y-b)2=r2和直線Ax+By+C=0位置關系的算法.
解:算法步驟如下:
第一步,輸入圓心的坐標(a,b)、半徑r和直線方程的系數A、B、C.
第二步,計算z1=Aa+Bb+C.
第三步,計算z2=A2+B2.
第四步,計算d=z1z2.
第五步,如果d>r,則輸出“相離”;如果d=r,則輸出“相切”;如果d
8.某商場舉辦優惠促銷活動.若購物金額在800元以上(不含800元),打7折;若購物金額在400元以上(不含400元)800元以下(含800元),打8折;否則,不打折.請為商場收銀員設計一個算法,要求輸入購物金額x,輸出實際交款額y.
解:算法步驟如下:
第一步,輸入購物金額x(x>0).
第二步,判斷“x>800”是否成立,若是,則y=0.7x,轉第四步;否則,執行第三步.
第三步,判斷“x>400”是否成立,若是,則y=0.8x;否則,y=x.
第四步,輸出y,結束算法.
題組3算法的實際應用
9.國際奧委會宣布2020年夏季奧運會主辦城市為日本的東京.據《中國體育報》報道:對參與競選的5個夏季奧林匹克運動會申辦城市進行表決的操作程序是:首先進行第一輪投票,如果有一個城市得票數超過總票數的一半,那么該城市將獲得舉辦權;如果所有申辦城市得票數都不超過總票數的一半,則將得票最少的城市淘汰,然后進行第二輪投票;如果第二輪投票仍沒選出主辦城市,將進行第三輪投票,如此重復投票,直到選出一個主辦城市為止,寫出投票過程的算法.
解:算法如下:
第一步,投票.
第二步,統計票數,如果一個城市得票數超過總票數的一半,那么該城市就獲得主辦權,否則淘汰得票數最少的城市并轉第一步.
第三步,宣布主辦城市.
[能力提升綜合練]
1.小明中午放學回家自己煮面條吃,有下面幾道工序:①洗鍋、盛水2分鐘;②洗菜6分鐘;③準備面條及佐料2分鐘;④用鍋把水燒開10分鐘;⑤煮面條和菜共3分鐘.以上各道工序,除了④之外,一次只能進行一道工序.小明要將面條煮好,最少要用()
A.13分鐘B.14分鐘
C.15分鐘D.23分鐘
解析:選C①洗鍋、盛水2分鐘+④用鍋把水燒開10分鐘(同時②洗菜6分鐘+③準備面條及佐料2分鐘)+⑤煮面條和菜共3分鐘=15分鐘.解決一個問題的算法不是的,但在設計時要綜合考慮各個方面的因素,選擇一種較好的算法.
2.在用二分法求方程零點的算法中,下列說法正確的是()
A.這個算法可以求方程所有的零點
B.這個算法可以求任何方程的零點
C.這個算法能求方程所有的近似零點
D.這個算法并不一定能求方程所有的近似零點
解析:選D二分法求方程零點的算法中,僅能求方程的一些特殊的近似零點(滿足函數零點存在性定理的條件),故D正確.
3.(2016?青島質檢)結合下面的算法:
第一步,輸入x.
第二步,判斷x是否小于0,若是,則輸出x+2,否則執行第三步.
第三步,輸出x-1.
當輸入的x的值為-1,0,1時,輸出的結果分別為()
A.-1,0,1B.-1,1,0
C.1,-1,0D.0,-1,1
解析:選C根據x值與0的關系選擇執行不同的步驟.
4.有如下算法:
第一步,輸入不小于2的正整數n.
第二步,判斷n是否為2.若n=2,則n滿足條件;若n>2,則執行第三步.
第三步,依次從2到n-1檢驗能不能整除n,若不能整除,則n滿足條件.
則上述算法滿足條件的n是()
A.質數B.奇數
C.偶數D.合數
解析:選A根據質數、奇數、偶數、合數的定義可知,滿足條件的n是質數.
5.(2016?濟南檢測)輸入一個x值,利用y=x-1求函數值的算法如下,請將所缺部分補充完整:
第一步:輸入x;
第二步:________;
第三步:當x<1時,計算y=1-x;
第四步:輸出y.
解析:以x-1與0的大小關系為分類準則知第二步應填當x≥1時,計算y=x-1.
答案:當x≥1時,計算y=x-1
6.已知一個算法如下:
第一步,令m=a.
第二步,如果b<m,則m=b.<p="">
第三步,如果c<m,則m=c.<p="">
第四步,輸出m.
如果a=3,b=6,c=2,則執行這個算法的結果是________.
解析:這個算法是求a,b,c三個數中的最小值,故這個算法的結果是2.
答案:2
7.下面給出了一個問題的算法:
第一步,輸入a.
第二步,如果a≥4,則y=2a-1;否則,y=a2-2a+3.
第三步,輸出y的值.
問:(1)這個算法解決的是什么問題?
(2)當輸入的a的值為多少時,輸出的數值最小?最小值是多少?
解:(1)這個算法解決的是求分段函數
y=2a-1,a≥4,a2-2a+3,a<4的函數值的問題.
(2)當a≥4時,y=2a-1≥7;
當a<4時,y=a2-2a+3=(a-1)2+2≥2,
∵當a=1時,y取得最小值2.
∴當輸入的a值為1時,輸出的數值最小為2.
8.“韓信點兵”問題:韓信是漢高祖手下的大將,他英勇善戰,謀略超群,為漢朝的建立立下了不朽功勛.據說他在一次點兵的時候,為保住軍事秘密,不讓敵人知道自己部隊的軍事實力,采用下述點兵方法:①先令士兵從1~3報數,結果最后一個士兵報2;②又令士兵從1~5報數,結果最后一個士兵報3;③又令士兵從1~7報數,結果最后一個士兵報4.這樣韓信很快算出自己部隊里士兵的總數.請設計一個算法,求出士兵至少有多少人.
解:第一步,首先確定最小的滿足除以3余2的正整數:2.
第二步,依次加3就得到所有除以3余2的正整數:2,5,8,11,14,17,20,….
第三步,在上列數中確定最小的滿足除以5余3的正整數:8.
第四步,然后在自然數內在8的基礎上依次加上15,得到8,23,38,53,….
第五步,在上列數中確定最小的滿足除以7余4的正整數:53.
即士兵至少有53人.
高二數學教案內容篇5
一、教材分析
1、坐標變換是化簡曲線方程,以便于討論曲線的性質和畫出曲線的一種重要方法。這一節教材主要講坐標軸的平移,要求學生在正確理解新舊坐標之間的關系的基礎上掌握平移公式;并能利用平移公式對新舊坐標系中點的坐標和曲線的方程進行互化。這就是本節課的教學目的之一。
2、本教材的重點是平移公式的推導及其簡單應用。為了解決重點,教學中先以圓(x-3)2+(y-2)2=52化為x&39;2+y&39;2=52這個例子引入來說明,雖然點的位置沒有改變曲線的位置、形狀和大小沒有改變,但是由于坐標系的改變,點的坐標和曲線的方程也隨著改變,而且適當地變換坐標系,曲線的方程就可以化簡,以此指明平移坐標軸的意義和作用,并由此引出平移的定義,導出平移公式。在推導平移公式時,先從特殊到一般,通過觀察、歸納、猜想和推導,得出平移公式,還引導學生運用代數中剛學過的復數的幾何意義來證明,既開闊視野,溝通學科知識,又培養學生的思維能力,同時還可通過一組練習,讓學生正用、逆用、變用平移公式,達到進一步加深理解、熟練掌握公式的目的,進而培養學生的發現、推理能力和教學思想方法。
3、本節教材的難點是平移公式兩種形式何時運用,學生易產生混淆,教學中應通過實例讓學生自己領會,并及時加以小結,掌握其規律,加強公式的記憶并培養靈活運用知識的能力。
4、本節寓德于教的要點,主要是通過事物變化過程的內在聯系,認識變與不變的矛盾對立統一規律,對學生進行辯證唯物主義的教育。
二、教學過程
(一)提出問題
教師先在黑板上畫出圖形,讓學生觀察、思考并提問以下問題:
1、如圖,點O&39;和○O&39;關于坐標系xoy的坐標和方程各是什么?點O&39;和○O&39;關于坐標系x&39;o&39;y&39;的坐標和方程各是什么?兩個方程,那一個較為簡單?
(學生回答,教師在黑板上板書:)
直角坐標系點O&39;的坐標○O&39;的方程
<在xoy中(3,2);(x-3)2+(y-2)2=52
在x&39;o&39;y&39;中(0,0)x&39;2+y&39;2=52
兩個方程,顯然后一個方程簡單。
(二)引入新課
(繼續提問)
1、從上面的例子可以看出什么?
(答)(1)對于同一點或同一曲線,由于選取的坐標系不同,點的坐標功曲線的方程也不同。
(2)把一個坐標系變換為另一個適當的坐標系,可以使曲線的方程簡化,便于研究曲線的性質。
教師繼續提出新的話題,即如何把一個坐標系變換為另一個適當的坐標系呢?我們再從上面的例子來觀察坐標系
xoy與x&39;o&39;y&39;有何異同點呢?(提問)
(答)(1)坐標軸的方向和長度單位都相同--不變
(2)坐標系的原點的位置不同--變
(教師歸納)這種坐標系的變換叫做坐標軸的平移,簡稱移軸。
(讓學生打開課本閱讀移軸的定義,教師在黑板上板書)
(板書)坐標軸的平移
(三)講授新課
(板書)1、坐標軸平移的定義
2、坐標軸平移公式
思路:(1)以特殊到一般,在已畫出的圖形上任取四個點(分別在第一、二、三、四系限或坐標軸上)讓學生分別寫出在新、舊坐標系里的坐標,并觀察、分析出它們的關系。
(答)坐標平面上任意一點在原坐標系中坐標和在新坐標系中的坐檔,歸納出來有如下關系:
(板書)原系橫坐標x=新系橫坐標x&39;+3
原系縱坐標y=新系縱坐標y&39;+2
現在把(3,2)推廣到一般(h,k)能否得出x=x&39;+h
y=y&39;+k
這個公式呢?(讓學生自己動手證明)
思路(2)第一步用有向線段的數量表示x,y,h,k,x&39;,和y&39;,
第二步據圖進行推導
第三步由推出的公式x=x&39;+h(1)再推出x&39;=x-h
y=y&39;+ky&39;=y-h
小結:這兩個公式都叫做平移(移軸)公式。同學們還可以運用代數中學過的向量加、減法則,建立復平面來證明(留給學生課后自己作練習)
3、平移公式的應用
(1)利用平移公式求在新坐標內點的新坐標
例與練:①平移坐標軸,把原點平移到O&39;(-4,3),求A(0,0),B(4,-5)的新坐標;C(5,-7),D(4,-6)的舊坐標。
②平移坐標軸,把原點平移到O&39;()使A(2,4)的新坐標為(3,2);B(-4,0)的舊坐標為(0,3)
(2)利用平移公式化簡方程
例與練:(課本例)平移坐軸,把原點移到O&39;(2,-1),求下列曲線關于新坐標系的方程,并畫出新舊坐標軸和曲線。
(x-2)
①x=2②y=-1③(x+2)2/9+(y+1)2/4=1
分析:解①②時用分別把x=2,y=-1代入公式
(2)得x&39;=0y&39;=0(比課本中的解法簡單)而在解③時,卻要用公式(1)分別用x=+2,y=y&39;-1代入原方程得出新方程x&39;/9+y&39;/4=1(引導學生正確作出圖)
小結:從例中可以看出,要把方程(x-2)2/9+(y+1)2/4
化為簡單的方程x&39;2/9+y&39;2/4=1,可把x-2=x&39;y+1=y&39;,得出應
把坐標原點平移到(2,-1),由此可推廣,形如(x-h)2/a2+(y-k)2/b2的方程如何化簡。
選擇題1.坐標軸平移后,下列各數值中發生變化的是()
(A)某兩點的距離(B)某線權中點的坐標
(C)某兩條直線的夾角(D)某三角形的面積
答案選(C)從此題可看出,坐標軸平移后,與坐標有關的量發生變化,但圖形本身的幾何性質不變。
選擇題2:曲線x2+y2+2x-4y+1=0在新坐標系中的方程是x&39;2+y&39;2=4,則新坐標系原點在舊坐標系中的坐標是()
(A)(-1,2)(B)(1,-2)(C)2,-1)(D)(-2,1)
分析:把x2+y2+2x-4y+1=0配方為(x+1)2+(y-2)2=4
由x+1=x&39;===h=-1y-2=y&39;===k=2故應選(A)
(四)教師小結:今天講的主要內容是坐標軸平移的意義,平移公式及其簡單應用。移軸的目的在幾何上是使曲線圖形的中心(或頂點)與原點重合,使圖形"居中",而在代數上則是將一般二元二次方程通過代數變形(變量代換),消去其中的一次項,從而使方程簡化,這個問題,下一節課將作更具體深入的研究與探討。
平移公式的兩種形式何時應用較好方便,一般說來,由點的舊坐標求其新坐標時用(2)較方便,而由曲線的原方程求其新方程時用(1)較方便,但這也不是固定不變的,如例2中把方程x=2化為新方程,直接代入(2),馬上就可求出x&39;=0這個新方程。
平移坐標軸,可以簡化曲線的方程,但不含改變曲線原來的性質與不變,可以看出其中的辯證關系和內在規律。
(五)布置作業(略)
三、課后附記
1、本節課曾在福州市教育學院組織的青年教師培訓班的觀摩課上講授,反映較好,從學生的作業反饋及下節課的復習提問,利用坐標軸的平移化簡二元二次方程中,引用平移公式進行運算,學生都能較熟練掌握,在半期考中,關于平移公式的應用題得分率在90%以上,說明本節課的效果較好,但因本教材在整個圓錐曲線教材內容中占的分量不重,公式較少使用,容易出現反生與遺忘,因此在平時教學中可適時加以引用。
2、本節課的設計遵照"一體三重五環節"的福八中數學教學的特色,重視發揮學生的主體與教師的主導作用,重視"過程"的教學,盡量做到:提出問題,循循誘導;疏通思路,耐心開導;解題練習,精心指導;存在不足,熱情輔導;掌握過程,盡心引導;真正體現重情善導的教風與特色。
高二數學教案內容篇6
教學目標:
1、知識目標:使學生理解指數函數的定義,初步掌握指數函數的圖像和性質。
2、能力目標:通過定義的引入,圖像特征的觀察、發現過程使學生懂得理論與實踐的辯證關系,適時滲透分類討論的數學思想,培養學生的探索發現能力和分析問題、解決問題的能力。
3、情感目標:通過學生的參與過程,培養他們手腦并用、多思勤練的良好學習習慣和勇于探索、鍥而不舍的治學精神。
教學重點、難點:
1、重點:指數函數的圖像和性質
2、難點:底數a的變化對函數性質的影響,突破難點的關鍵是利用多媒體
動感顯示,通過顏色的區別,加深其感性認識。
教學方法:引導——發現教學法、比較法、討論法
教學過程:
一、事例引入
T:上節課我們學習了指數的運算性質,今天我們來學習與指數有關的函數。什么是函數?
S:--------
T:主要是體現兩個變量的關系。我們來考慮一個與醫學有關的例子:大家對“非典”應該并不陌生,它與其它的傳染病一樣,有一定的潛伏期,這段時間里病原體在機體內不斷地繁殖,病原體的繁殖方式有很多種,分裂就是其中的一種。我們來看一種球菌的分裂過程:
C:動畫演示(某種球菌分裂時,由1分裂成2個,2個分裂成4個,------。一個這樣的球菌分裂x次后,得到的球菌的個數y與x的函數關系式是:y=2x)
S,T:(討論)這是球菌個數y關于分裂次數x的函數,該函數是什么樣的形式(指數形式),
從函數特征分析:底數2是一個不等于1的正數,是常量,而指數x卻是變量,我們稱這種函數為指數函數——點題。
二、指數函數的定義
C:定義:函數y=ax(a>0且a≠1)叫做指數函數,x∈R.。
問題1:為何要規定a>0且a≠1?
S:(討論)
C:(1)當a<0時,ax有時會沒有意義,如a=﹣3時,當x=
就沒有意義;
(2)當a=0時,ax有時會沒有意義,如x=-2時,
(3)當a=1時,函數值y恒等于1,沒有研究的必要。
鞏固練習1:
下列函數哪一項是指數函數()
A、y=x2B、y=2x2C、y=2xD、y=-2x
高二數學教案內容篇7
一、教材分析
教材的地位和作用
期望是概率論和數理統計的重要概念之一,是反映隨機變量取值分布的特征數,學習期望將為今后學習概率統計知識做鋪墊。同時,它在市場預測,經濟統計,風險與決策等領域有著廣泛的應用,為今后學習數學及相關學科產生深遠的影響。
教學重點與難點
重點:離散型隨機變量期望的概念及其實際含義。
難點:離散型隨機變量期望的實際應用。
[理論依據]本課是一節概念新授課,而概念本身具有一定的抽象性,學生難以理解,因此把對離散性隨機變量期望的概念的教學作為本節課的教學重點。此外,學生初次應用概念解決實際問題也較為困難,故把其作為本節課的教學難點。
二、教學目標
[知識與技能目標]
通過實例,讓學生理解離散型隨機變量期望的概念,了解其實際含義。
會計算簡單的離散型隨機變量的期望,并解決一些實際問題。
[過程與方法目標]
經歷概念的建構這一過程,讓學生進一步體會從特殊到一般的思想,培養學生歸納、概括等合情推理能力。
通過實際應用,培養學生把實際問題抽象成數學問題的能力和學以致用的數學應用意識。
[情感與態度目標]
通過創設情境激發學生學習數學的情感,培養其嚴謹治學的態度。在學生分析問題、解決問題的過程中培養其積極探索的精神,從而實現自我的價值。
三、教法選擇
引導發現法
四、學法指導
“授之以魚,不如授之以漁”,注重發揮學生的主體性,讓學生在學習中學會怎樣發現問題、分析問題、解決問題。
高二數學教案內容篇8
教學目標
1.掌握平面向量的數量積及其幾何意義;
2.掌握平面向量數量積的重要性質及運算律;
3.了解用平面向量的數量積可以處理有關長度、角度和垂直的問題;
4.掌握向量垂直的條件.
教學重難點
教學重點:平面向量的數量積定義
教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用
教學工具
投影儀
教學過程
復習引入:
向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數λ,使=λ
課堂小結
(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?
(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節課中的表現怎樣?你的體會是什么?
課后作業
P107習題2.4A組2、7題
課后小結
(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?
(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節課中的表現怎樣?你的體會是什么?
高二數學教案內容篇9
學習目標:
1、了解本章的學習的內容以及學習思想方法2、能敘述隨機變量的定義
3、能說出隨機變量與函數的關系,4、能夠把一個隨機試驗結果用隨機變量表示
重點:能夠把一個隨機試驗結果用隨機變量表示
難點:隨機事件概念的透徹理解及對隨機變量引入目的的認識:
環節一:隨機變量的定義
1.通過生活中的一些隨機現象,能夠概括出隨機變量的定義
2能敘述隨機變量的定義
3能說出隨機變量與函數的區別與聯系
一、閱讀課本33頁問題提出和分析理解,回答下列問題?
1、了解一個隨機現象的規律具體指的是什么?
2、分析理解中的兩個隨機現象的隨機試驗結果有什么不同?建立了什么樣的對應關系?
總結:
3、隨機變量
(1)定義:
這種對應稱為一個隨機變量。即隨機變量是從隨機試驗每一個可能的結果所組成的
到的映射。
(2)表示:隨機變量常用大寫字母.等表示.
(3)隨機變量與函數的區別與聯系
函數隨機變量
自變量
因變量
因變量的范圍
相同點都是映射都是映射
環節二隨機變量的應用
1、能正確寫出隨機現象所有可能出現的結果2、能用隨機變量的描述隨機事件
例1:已知在10件產品中有2件不合格品。現從這10件產品中任取3件,其中含有的次品數為隨機變量的學案.這是一個隨機現象。(1)寫成該隨機現象所有可能出現的結果;(2)試用隨機變量來描述上述結果。
變式:已知在10件產品中有2件不合格品。從這10件產品中任取3件,這是一個隨機現象。若Y表示取出的3件產品中的合格品數,試用隨機變量描述上述結果
例2連續投擲一枚均勻的硬幣兩次,用X表示這兩次正面朝上的次數,則X是一個隨機變
量,分別說明下列集合所代表的隨機事件:
(1){X=0}(2){X=1}
(3){X<2}(4){X>0}
變式:連續投擲一枚均勻的硬幣三次,用X表示這三次正面朝上的次數,則X是一個隨機變量,X的可能取值是?并說明這些值所表示的隨機試驗的結果.
練習:寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機變量的結果。
(1)從學校回家要經過5個紅綠燈路口,可能遇到紅燈的次數;
(2)一個袋中裝有5只同樣大小的球,編號為1,2,3,4,5,現從中隨機取出3只球,被取出的球的號碼數;
小結(對標)
高二數學教案內容篇10
教學目標
(一)教學知識點
1.經歷探索積的乘方的運算法則的過程,進一步體會冪的意義。
2.理解積的乘方運算法則,能解決一些實際問題。
(二)能力訓練要求
1.在探究積的乘方的運算法則的過程中,發展推理能力和有條理的表達能力。
2.學習積的乘方的運算法則,提高解決問題的能力。
(三)情感與價值觀要求
在發展推理能力和有條理的語言、符號表達能力的同時,進一步體會學習數學的興趣,提高學習數學的信心,感受數學的簡潔美。
教學重點
積的乘方運算法則及其應用。
教學難點
冪的運算法則的靈活運用。
教學方法
自學—引導相結合的方法。
同底數冪的乘法、冪的乘方、積的乘方成一個體系,研究方法類同,有前兩節課做基礎,本節課可放手讓學生自學,教師引導學生總結,從而讓學生真正理解冪的運算方法,能解決一些實際問題。
教具準備
投影片.
教學過程
Ⅰ.提出問題,創設情境
[師]還是就上節課開課提出的問題:若已知一個正方體的棱長為1.1×103cm,你能計算出它的體積是多少嗎?
[生]它的體積應是V=(1.1×103)3cm3。
[師]這個結果是冪的乘方形式嗎?
[生]不是,底數是1.1和103的乘積,雖然103是冪,但總體來看,我認為應是積的乘方才有道理。
[師]你分析得很有道理,積的乘方如何運算呢?能不能找到一個運算法則?有前兩節課的探究經驗,老師想請同學們自己探索,發現其中的奧秒。
Ⅱ.導入新課
老師列出自學提綱,引導學生自主探究、討論、嘗試、歸納。
出示投影片
1.填空,看看運算過程用到哪些運算律,從運算結果看能發現什么規律?
(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()
(2)(ab)3=______=_______=a()b()
(3)(ab)n=______=______=a()b()(n是正整數)
2.把你發現的規律用文字語言表述,再用符號語言表達。
3.解決前面提到的正方體體積計算問題。
4.積的乘方的運算法則能否進行逆運算呢?請驗證你的想法。
5.完成課本P170例3。
學生探究的經過:
1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意義;第②步是用乘法的交換律和結合律;第③步是用同底數冪的乘法法則。同樣的方法可以算出(2)、(3)題。
高二數學教案內容篇11
1.教材結構分析
《圓的方程》安排在高中數學第二冊(上)第七章第六節.圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用.圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用.
2.學情分析
圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的.但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難.另外學生在探究問題的能力,合作交流的意識等方面有待加強.
根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:
3.教學目標
(1)知識目標:①掌握圓的標準方程;
②會由圓的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程;
③利用圓的標準方程解決簡單的實際問題.
(2)能力目標:①進一步培養學生用代數方法研究幾何問題的能力;
②加深對數形結合思想的理解和加強對待定系數法的運用;
③增強學生用數學的意識.
(3)情感目標:①培養學生主動探究知識、合作交流的意識;
②在體驗數學美的過程中激發學生的學習興趣.
根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:
4.教學重點與難點
(1)重點:圓的標準方程的求法及其應用.
(2)難點:①會根據不同的已知條件求圓的標準方程;
②選擇恰當的坐標系解決與圓有關的實際問題.
為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析:
【二】教法學法分析
1.教法分析為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上.另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程.
2.學法分析通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解.通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓.通過應用圓的標準方程,熟悉用待定系數法求的過程.
下面我就對具體的教學過程和設計加以說明:
【三】教學過程與設計
整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節:
創設情境啟迪思維深入探究獲得新知應用舉例鞏固提高
反饋訓練形成方法小結反思拓展引申
下面我從縱橫兩方面敘述我的教學程序與設計意圖.
首先:縱向敘述教學過程
(一)創設情境——啟迪思維
問題一已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?
通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決.一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題.用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望.這樣獲取的知識,不但易于保持,而且易于遷移.
通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節.
(二)深入探究——獲得新知
問題二1.根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
2.如果圓心在,半徑為時又如何呢?
這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程.然后再讓學生對圓心不在原點的情況進行探究.我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法.
得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節.
(三)應用舉例——鞏固提高
I.直接應用內化新知
問題三1.寫出下列各圓的標準方程:
(1)圓心在原點,半徑為3;
(2)經過點,圓心在點.
2.寫出圓的圓心坐標和半徑.
我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備.
II.靈活應用提升能力
問題四1.求以點為圓心,并且和直線相切的圓的方程.
2.求過點,圓心在直線上且與軸相切的圓的方程.
3.已知圓的方程為,求過圓上一點的切線方程.
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經過圓上一點的切線的方程是什么?
我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程.第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓.第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間.最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮.
III.實際應用回歸自然
問題五如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m).
我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識.
(四)反饋訓練——形成方法
問題六1.求過原點和點,且圓心在直線上的圓的標準方程.
2.求圓過點的切線方程.
3.求圓過點的切線方程.
接下來是第四環節——反饋訓練.這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心.另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果.
(五)小結反思——拓展引申
1.課堂小結
把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法
①圓心為,半徑為r的圓的標準方程為:
圓心在原點時,半徑為r的圓的標準方程為:.
②已知圓的方程是,經過圓上一點的切線的方程是:.
2.分層作業
(A)鞏固型作業:教材P81-82:(習題7.6)1,2,4.(B)思維拓展型作業:試推導過圓上一點的切線方程.
3.激發新疑
問題七1.把圓的標準方程展開后是什么形式?
2.方程表示什么圖形?
在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了.在知識的拓展中再次掀起學生探究的熱情.另外它為下節課研究圓的一般方程作了重要的準備.
以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計:
橫向闡述教學設計
(一)突出重點抓住關鍵突破難點
求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的同時突破了難點.
第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心.最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五.這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破.
(二)學生主體教師主導探究主線
本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終.從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的.另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務.
(三)培養思維提升能力激勵創新
為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力.在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行.
以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變.最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”.
高二數學教案內容篇12
教學目標
1、知識與技能:
(1)推廣角的概念、引入大于角和負角;
(2)理解并掌握正角、負角、零角的定義;
(3)理解任意角以及象限角的概念;
(4)掌握所有與角終邊相同的角(包括角)的表示方法;
(5)樹立運動變化觀點,深刻理解推廣后的角的概念;
(6)揭示知識背景,引發學生學習興趣;
(7)創設問題情景,激發學生分析、探求的學習態度,強化學生的參與意識。
2、過程與方法:
通過創設情境:“轉體,逆(順)時針旋轉”,角有大于角、零角和旋轉方向不同所形成的角等,引入正角、負角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標系,引入象限角、非象限角的概念及象限角的&39;判定方法;列出幾個終邊相同的角,畫出終邊所在的位置,找出它們的關系,探索具有相同終邊的角的表示;講解例題,總結方法,鞏固練習。
3、情態與價值:
通過本節的學習,使同學們對角的概念有了一個新的認識,即有正角、負角和零角之分。角的概念推廣以后,知道角之間的關系。理解掌握終邊相同角的表示方法,學會運用運動變化的觀點認識事物。
教學重難點
重點:理解正角、負角和零角的定義,掌握終邊相同角的表示法。
難點:終邊相同的角的表示。
高二數學教案內容篇13
一、教學目標
1、在初中學過原命題、逆命題知識的基礎上,初步理解四種命題。
2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。
3、通過對四種命題之間關系的學習,培養學生邏輯推理能力
4、初步培養學生反證法的數學思維。
二、教學分析
重點:四種命題;難點:四種命題的關系
1.本小節首先從初中數學的命題知識,給出四種命題的概念,接著,講述四種命題的關系,最后,在初中的基礎上,結合四種命題的知識,進一步講解反證法。
2.教學時,要注意控制教學要求。本小節的內容,只涉及比較簡單的命題,不研究含有邏輯聯結詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,
3.“若p則q”形式的命題,也是一種復合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學生,只要求能分清命題“若p則q”中的條件與結論就可以了,不必考慮p與q是命題,還是開語句。
三、教學手段和方法(演示教學法和循序漸進導入法)
1.以故事形式入題
2多媒體演示
四、教學過程
(一)引入:一個生活中有趣的與命題有關的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。
這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊涵的數學思想嗎?通過這節課的學習我們就能揭開它的廬山真面,學生的興奮點被緊緊抓住,躍躍欲試!
設計意圖:創設情景,激發學生學習興趣
(二)復習提問:
1.命題“同位角相等,兩直線平行”的條件與結論各是什么?
2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?
3.原命題真,逆命題一定真嗎?
“同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.
學生活動:
口答:(l)若同位角相等,則兩直線平行;(2)若一個四邊形是正方形,則它的四條邊相等.
設計意圖:通過復習舊知識,打下學習否命題、逆否命題的基礎.
(三)新課講解:
1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結論作為條件,條件作為結論,得到的命題就叫做原命題的逆命題。
2.把命題“同位角相等,兩直線平行”的條件與結論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。
3.把命題“同位角相等,兩直線平行”的條件與結論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的逆否命題。
高二數學教案內容篇14
活動1、提出問題
一個運動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運動場的負責人要準備多少面積的草皮嗎?
問題:10+20是什么運算?
活動2、探究活動
下列3個小題怎樣計算?
問題:1)-還能繼續往下合并嗎?
2)看來二次根式有的能合并,有的不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?
二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數相同的進行合并。
活動3
練習1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數)
創設問題情景,引起學生思考。
學生回答:這個運動場要準備(10+20)平方米的草皮。
教師提問:學生思考并回答教師出示課題并說明今天我們就共同來研究該如何進行二次根式的加減法運算。
我們可以利用已學知識或已有經驗來分組討論、交流,看看+到底等于什么?小組展示討論結果。
教師引導驗證:
①設=,類比合并同類項或面積法;
②學生思考,得出先化簡,再合并的解題思路
③先化簡,再合并
學生觀察并歸納:二次根式化為最簡二次根式后,被開方數相同的能合并。
教師巡視、指導,學生完成、交流,師生評價。
提醒學生注意先化簡成最簡二次根式后再判斷。
高二數學教案內容篇15
教學目標
1.掌握平面向量的數量積及其幾何意義;
2.掌握平面向量數量積的重要性質及運算律;
3.了解用平面向量的數量積可以處理有關長度、角度和垂直的問題;
4.掌握向量垂直的條件.
教學重難點
教學重點:平面向量的數量積定義
教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用
教學工具
投影儀
教學過程
一、復習引入:
1.向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數λ,使=λ
五,課堂小結
(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?
(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節課中的表現怎樣?你的體會是什么?
六、課后作業
P107習題2.4A組2、7題
課后小結
(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?
(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節課中的表現怎樣?你的體會是什么?
課后習題
作業
P107習題2.4A組2、7題
高二數學教案內容篇16
一、指導思想:
在學校教學工作意見指導下,在年級部工作的框架下,認真落實學校對備課組工作的各項要求,嚴格執行學校的各項教育教學制度和要求,強化數學教學研究,提高全組老師的教學、教研水平,明確任務,團結協作,圓滿完成教學教研任務。
二、教材簡析
使用人教版《普通高中課程標準實驗教科書數學(A版)》,教材在堅持我國數學教育優良傳統的前提下,認真處理繼承、借鑒、發展、創新之間的關系,體現基礎性、時代性、典型性和可接受性等,具有親和力、問題性、科學性、思想性、應用性、聯系性等特點。
三、教學任務
本學期上半期授課內容為《選修1—2》和《選修4—4》,中段考后進入第一輪復習。
四、學生基本情況及教學目標
認真貫徹高中數學新課標精神,樹立新的教學理念,以雙基教學為主要內容,堅持抓兩頭、帶中間、整體推進,使每個學生的數學能力都得到提高和發展。
高二文科學生共有10個班,其中尖尖班2個,8個平行重點班。尖尖班的學生重點是數學尖子生的培養,沖刺高考數學高分為目標。平行班學生的主要任務有兩點,第一點:保證重點學生的數學成績穩步上升,成為學生的優勢科目;第二點:加強數學學習比較困難學生的輔導培養,增加其信息并逐步縮小數學成績差距。
五、教法分析:
1、選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發學生看個究竟的沖動,以達到培養其興趣的目的。
2、通過觀察,思考,探究等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。
3、在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養成其邏輯思維的習慣。
六、教學措施:
1、認真落實,搞好集體備課。每兩周進行一次集體備課。各組老師根據自已承擔的任務,提前一周進行單元式的備課,并出好本周的單頁練習。教研會時,由一名老師作主要發言人,對本周的教材內容作分析,然后大家研究討論其中的重點、難點、教學方法等。
2、詳細計劃,保證練習質量。教學中用配備資料《導學案》,要求學生按教學進度完成相應的習題,教師要提前向學生指出不做的題,以免影響學生的時間,每周以內容滾動式編一份練習試卷,學生完成后老師要收齊批改,對存在的普遍性問題要安排時間講評。
3、抓好第二課堂,穩定數學優生,培養數學能力興趣。尖尖班的教學進度可適當調整,教學難度要有所提升;其他各班要培育好本班的優生,注意激發學生的學習興趣,隨時注意學生學習方法的指導。備課組也將組織學生上培優班。
4、加強輔導工作。對已經出現數學學習困難的學生,教師的下班輔導十分重要。教師教學中,要盡快掌握班上學生的數學學習情況,有針對性地進行輔導工作,既要注意照顧好班上優生層,更不能忽視班上的困難學生。并根據需要在年級開設數學困難生補充輔導班。
高二數學教案內容篇17
教學目標
一、知識與技能
(1)理解并掌握弧度制的定義;
(2)領會弧度制定義的合理性;
(3)掌握并運用弧度制表示的弧長公式、扇形面積公式;
(4)熟練地進行角度制與弧度制的換算;
(5)角的集合與實數集之間建立的一一對應關系.
(6)使學生通過弧度制的學習,理解并認識到角度制與弧度制都是對角度量的方法,二者是辨證統一的,而不是孤立、割裂的關系.
二、過程與方法
創設情境,引入弧度制度量角的大小,通過探究理解并掌握弧度制的定義,領會定義的合理性.根據弧度制的定義推導并運用弧長公式和扇形面積公式.以具體的實例學習角度制與弧度制的互化,能正確使用計算器.
三、情態與價值
通過本節的學習,使同學們掌握另一種度量角的單位制---弧度制,理解并認識到角度制與弧度制都是對角度量的方法,二者是辨證統一的,而不是孤立、割裂的關系.角的概念推廣以后,在弧度制下,角的集合與實數集之間建立了一一對應關系:即每一個角都有的一個實數(即這個角的弧度數)與它對應;反過來,每一個實數也都有的一個角(即弧度數等于這個實數的角)與它對應,為下一節學習三角函數做好準備
教學重難點
重點:理解并掌握弧度制定義;熟練地進行角度制與弧度制地互化換算;弧度制的運用.
難點:理解弧度制定義,弧度制的運用.
高二數學教案內容篇18
教學目的:
掌握圓的標準方程,并能解決與之有關的問題
教學重點:
圓的標準方程及有關運用
教學難點:
標準方程的靈活運用
教學過程:
一、導入新課,探究標準方程
二、掌握知識,鞏固練習
練習:
說出下列圓的方程
⑴圓心(3,-2)半徑為5
⑵圓心(0,3)半徑為3
指出下列圓的圓心和半徑
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
判斷3x-4y-10=0和x2+y2=4的位置關系
圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數的數學方法)
練習:
1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)
四、小結練習P771,2,3,4
五、作業P811,2,3,4
高二數學教案內容篇19
教學目標
(1)掌握一元二次不等式的解法;
(2)知道一元二次不等式可以轉化為一元一次不等式組;
(3)了解簡單的分式不等式的解法;
(4)能利用二次函數與一元二次方程來求解一元二次不等式,理解它們三者之間的內在聯系;
(5)能夠進行較簡單的分類討論,借助于數軸的直觀,求解簡單的含字母的一元二次不等式;
(6)通過利用二次函數的圖象來求解一元二次不等式的解集,培養學生的數形結合的數學思想;
(7)通過研究函數、方程與不等式之間的內在聯系,使學生認識到事物是相互聯系、相互轉化的,樹立辨證的世界觀.
教學重點:一元二次不等式的解法;
教學難點:弄清一元二次不等式與一元二次方程、二次函數的關系.
教與學過程設計
第一課時
Ⅰ.設置情境
問題:
①解方程
②作函數的圖像
③解不等式
【置疑】在解決上述三問題的基礎上分析,一元一次函數、一元一次方程、一元一次不等式之間的關系。能通過觀察一次函數的圖像求得一元一次不等式的解集嗎?
【回答】函數圖像與x軸的交點橫坐標為方程的根,不等式的解集為函數圖像落在x軸上方部分對應的橫坐標。能。
通過多媒體或其他載體給出下列表格。扼要講解怎樣通過觀察一次函數的圖像求得一元一次不等式的解集。注意色彩或彩色粉筆的運用
在這里我們發現一元一次方程,一次不等式與一次函數三者之間有著密切的聯系。利用這種聯系(集中反映在相應一次函數的圖像上!)我們可以快速準確地求出一元一次不等式的解集,類似地,我們能不能將現在要求解的一元二次不等式與二次函數聯系起來討論找到其求解方法呢?
Ⅱ.探索與研究
我們現在就結合不等式的求解來試一試。(師生共同活動用“特殊點法”而非課本上的“列表描點”的方法作出的圖像,然后請一位程度中下的同學寫出相應一元二次方程及一元二次不等式的解集。)
【答】方程的解集為
不等式的解集為
【置疑】哪位同學還能寫出的解法?(請一程度差的同學回答)
【答】不等式的解集為
我們通過二次函數的圖像,不僅求得了開始上課時我們還不知如何求解的那個第(5)小題的解集,還求出了的解集,可見利用二次函數的圖像來解一元二次不等式是個十分有效的方法。
下面我們再對一般的一元二次不等式與來進行討論。為簡便起見,暫只考慮的情形。請同學們思考下列問題:
如果相應的一元二次方程分別有兩實根、惟一實根,無實根的話,其對應的二次函數的圖像與x軸的位置關系如何?(提問程度較好的學生)
【答】二次函數的圖像開口向上且分別與x軸交于兩點,一點及無交點。
現在請同學們觀察表中的二次函數圖,并寫出相應一元二次不等式的解集。(通過多媒體或其他載體給出以下表格)
【答】的解集依次是
的解集依次是
它是我們今后求解一元二次不等式的主要工具。應盡快將表中的結果記住。其關鍵就是抓住相應二次函數的圖像。
課本第19頁上的例1.例2.例3.它們均是求解二次項系數的一元二次不等式,卻都沒有給出相應二次函數的圖像。其解答過程雖很簡練,卻不太直觀。現在我們在課本預留的位置上分別給它們補上相應二次函數圖像。
(教師巡視,重點關注程度稍差的同學。)
Ⅲ.演練反饋
1.解下列不等式:
(1)(2)
(3)(4)
2.若代數式的值恒取非負實數,則實數x的取值范圍是。
3.解不等式
(1)(2)
參考答案:
1.(1);(2);(3);(4)R
2.
3.(1)
(2)當或時,,當時,
當或時,。
Ⅳ.總結提煉
這節課我們學習了二次項系數的一元二次不等式的解法,其關鍵是抓住相應二次函數的圖像與x軸的交點,再對照課本第39頁上表格中的結論給出所求一元二次不等式的解集。
(五)、課時作業
(P20.練習等3、4兩題)
(六)、板書設計