小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數學教案 >

高三數學教案大全

時間: 新華 數學教案

教案可以幫助教師合理規劃教學時間,安排教學環節和教學資源,使教學過程有序、連貫。小編給大家分享高三數學教案大全參考,方便大家參考高三數學教案大全怎么寫。

高三數學教案大全篇1

【教學目標】

1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。

2.能根據幾何結構特征對空間物體進行分類。

3.提高學生的觀察能力;培養學生的空間想象能力和抽象括能力。

【教學重難點】

教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。

教學難點:柱、錐、臺、球的結構特征的概括。

【教學過程】

1.情景導入

教師提出問題,引導學生觀察、舉例和相互交流,提出本節課所學內容,出示課題。

2.展示目標、檢查預習

3.合作探究、交流展示

(1)引導學生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?

(2)組織學生分組討論,每小組選出一名同學發表本組討論結果。在此基礎上得出棱柱的主要結構特征。有兩個面互相平行;其余各面都是平行四邊形;每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

(3)提出問題:請列舉身邊的棱柱并對它們進行分類

(4)以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。

(5)讓學生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關的概念及圓柱的表示。

(6)引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。

(7)教師指出圓柱和棱柱統稱為柱體,棱臺與圓臺統稱為臺體,圓錐與棱錐統稱為錐體。

4.質疑答辯,排難解惑,發展思維,教師提出問題,讓學生思考。

(1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)

(2)棱柱的任何兩個平面都可以作為棱柱的底面嗎?

(3)圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?

(4)棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?

(5)繞直角三角形某一邊的幾何體一定是圓錐嗎?

5.典型例題

例:判斷下列語句是否正確。

⑴有一個面是多邊形,其余各面都是三角形的幾何體是棱錐。

⑵有兩個面互相平行,其余各面都是梯形,則此幾何體是棱柱。

答案AB

6.課堂檢測:

課本P8,習題1.1A組第1題。

7.歸納整理

由學生整理學習了哪些內容

高三數學教案大全篇2

尊敬的各位教師,大家好,我是()場的()號考生。

今日,我說課的資料是()

對于本節課,我將從教什么、怎樣教、為什么這么教來闡述本次說課。

一、說教材

教材是連接教師和學生的紐帶,在整個教學過程中起著至關重要的作用,所以,先談談我對教材的理解。

正弦函數的性質是選自北師大版高中數學必修四第一章三角函數第五節正弦函數的性質與圖象5.3正弦函數的性質的資料,主要資料便是正弦函數的性質,教材經過作圖、觀察、誘導公式等方法得出正弦函數y=sinx的性質。并且教材突出了正弦函數圖象的重要性,能夠幫忙學生更深刻的認識、理解、記憶正弦函數的性質。

二、說學情

合理把握學情是上好一堂課的基礎,本次課所應對的學生群體具有以下特點。

高中的學生掌握了必須的基礎知識,思維較敏捷,動手本事較強,但理解本事、自主學習本事較缺乏?;诖?,本節課注重引導學生動腦思考,更富有啟發性。并且學生的自尊心較強,所以對學生的評價注重先揚后抑,鼓勵學生多多發言,還能夠對學生進行正確引導。

三、說教學目標

根據以上對教材的分析以及對學情的把握,我制定了如下三維目標:

(一)知識與技能

會用正弦函數圖象研究和理解正弦函數的性質,能熟練運用正弦函數的性質解決問題。

(二)過程與方法

經過正弦函數的圖象,探索正弦函數的性質,提升邏輯思考、歸納總結的本事。

(三)情感態度價值觀

經過本節的學習體驗數學的嚴謹性,養成細心觀察、認真分析、嚴謹認真的良好思維習慣和不斷探求新知識的精神。

四、說教學重難點

本著新課程標準,吃透教材,了解學生特點的基礎上我確定了以下重難點

(一)教學重點

由正弦函數的圖象得到正弦函數的性質。

(二)教學難點

正弦函數的周期性和單調性。

五、說教法和學法

此刻的文盲不是不懂字的人,而是沒有掌握學習方法的人。因而在本節課我將采用講授法、探究法、練習法等教學方法,我在教學過程中異常重視對學生的引導,讓學生從機械的學答中向學問轉變,從學會到會學,成為真正學習的主人。

高三數學教案大全篇3

學習對數函數的教案設計

教學目標

1. 在指數函數及反函數概念的基礎上,使學生掌握對數函數的概念,能正確描繪對數函數的圖像,掌握對數函數的性質,并初步應用性質解決簡單問題.

2. 通過對數函數的學習,樹立相互聯系,相互轉化的觀點,滲透數形結合,分類討論的思想.

3. 通過對數函數有關性質的研究,培養學生觀察,分析,歸納的思維能力,調動學生學習的積極性.

教學重點,難點

重點是理解對數函數的定義,掌握圖像和性質.

難點是由對數函數與指數函數互為反函數的關系,利用指數函數圖像和性質得到對數函數的圖像和性質.

教學方法

啟發研討式

教學用具

投影儀

教學過程

一. 引入新課

今天我們一起再來研究一種常見函數.前面的幾種函數都是以形式定義的方式給出的,今天我們將從反函數的角度介紹新的函數.

反函數的實質是研究兩個函數的關系,所以自然我們應從大家熟悉的函數出發,再研究其反函數.這個熟悉的函數就是指數函數.

提問:什么是指數函數?指數函數存在反函數嗎?

由學生說出 是指數函數,它是存在反函數的.并由一個學生口答求反函數的過程:

由 得 .又 的值域為 ,

所求反函數為 .

那么我們今天就是研究指數函數的反函數-----對數函數.

二.對數函數的圖像與性質 (板書)

1. 作圖方法

提問學生打算用什么方法來畫函數圖像?學生應能想到利用互為反函數的兩個函數圖像之間的關系,利用圖像變換法畫圖.同時教師也應指出用列表描點法也是可以的,讓學生從中選出一種,最終確定用圖像變換法畫圖.

由于指數函數的圖像按 和 分成兩種不同的類型,故對數函數的圖像也應以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.

具體操作時,要求學生做到:

(1) 指數函數 和 的圖像要盡量準確(關鍵點的`位置,圖像的變化趨勢等).

(2) 畫出直線 .

(3) 的圖像在翻折時先將特殊點 對稱點 找到,變化趨勢由靠近 軸對稱為逐漸靠近 軸,而 的圖像在翻折時可提示學生分兩段翻折,在 左側的先翻,然后再翻在 右側的部分.

學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出和 的圖像.(此時同底的指數函數和對數函數畫在同一坐標系內)如圖:

2. 草圖.

教師畫完圖后再利用投影儀將 和 的圖像畫在同一坐標系內,如圖:

然后提出讓學生根據圖像說出對數函數的性質(要求從幾何與代數兩個角度說明)

3. 性質

(1) 定義域:

(2) 值域:

由以上兩條可說明圖像位于 軸的右側.

(3) 截距:令 得 ,即在 軸上的截距為1,與 軸無交點即以 軸為漸近線.

(4) 奇偶性:既不是奇函數也不是偶函數,即它不關于原點對稱,也不關于 軸對稱.

(5) 單調性:與 有關.當 時,在 上是增函數.即圖像是上升的

當 時,在 上是減函數,即圖像是下降的.

之后可以追問學生有沒有最大值和最小值,當得到否定答案時,可以再問能否看待何時函數值為正?學生看著圖可以答出應有兩種情況:

當 時,有 ;當 時,有 .

學生回答后教師可指導學生巧記這個結論的方法:當底數與真數在1的同側時函數值為正,當底數與真數在1的兩側時,函數值為負,并把它當作第(6)條性質板書記下來.

最后教師在總結時,強調記住性質的關鍵在于要腦中有圖.且應將其性質與指數函數的性質對比記憶.(特別強調它們單調性的一致性)

對圖像和性質有了一定的了解后,一起來看看它們的應用.

三.鞏固練習

練習:若 ,求 的取值范圍.

四.小結

五.作業 略

高三數學教案大全篇4

【教學目標】:

(1)知識目標:

通過實例,了解聯結詞“且”、“或”的含義;

(2)過程與方法目標:

了解含有邏輯聯結詞“且”、“或”復合命題的構成形式,以及會對新命題作出真假的判斷;

(3)情感與能力目標:

在知識學習的基礎上,培養學生簡單推理的技能.

【教學重點】:

通過數學實例,了解邏輯聯結詞“或”、“且”的含義,使學生能正確地表述相關數學內容.

【教學難點】:

簡潔、準確地表述“或”命題、“且”等命題,以及對新命題真假的判斷.

【教學過程設計】:

教學環節教學活動設計意圖

情境引入問題:

下列三個命題間有什么關系?

(1)12能被3整除;

(2)12能被4整除;

(3)12能被3整除且能被4整除;通過數學實例,認識用用邏輯聯結詞“且”聯結兩個命題可以得到一個新命題;

知識建構歸納總結:

一般地,用邏輯聯結詞“且”把命題p和命題q聯結起來,就得到一個新命題,

記作,讀作“p且q”.

引導學生通過通過一些數學實例分析,概括出一般特征。

1、引導學生閱讀教科書上的例1中每組命題p,q,讓學生嘗試寫出命題,判斷真假,糾正可能出現的邏輯錯誤。學習使用邏輯聯結詞“且”聯結兩個命題,根據“且”的含義判斷邏輯聯結詞“且”聯結成的新命題的真假。

2、引導學生閱讀教科書上的例2中每個命題,讓學生嘗試改寫命題,判斷真假,糾正可能出現的邏輯錯誤。

歸納總結:

當p,q都是真命題時,是真命題,當p,q兩個命題中有一個是假命題時,是假命題,

學習使用邏輯聯結詞“且”改寫一些命題,根據“且”的含義判斷原先命題的真假。

引導學生通過通過一些數學實例分析命題p和命題q以及命題的真假性,概括出這三個命題的真假性之間的一般規律。

高三數學教案大全篇5

(一)引入:

(1)情景1

王老漢的疑惑:秋收過后,村中擁入了不少生意人,收購大豆與紅薯,精明的王老漢上了心,一打聽,頓時喜上眉梢.村中大豆的收購價是5元/千克,紅薯的收購價是

2元/千克,而送到縣城每千克大豆可獲利1.2元,每千克紅薯可獲利0.6元,王老漢決定明天就帶上家中僅有的1000元現金,踏著可載重350千克的三輪車開始自己的發財大計,可明天應該收購多少大豆與紅薯呢?王老漢決定與家人合計.回家一討論,問題來了.孫女說:“收購大豆每千克獲利多故應收購大豆”,孫子說:“收購紅薯每元成本獲利多故應收購紅薯”,王老漢一聽,好像都對,可誰說得更有理呢?精明的王老漢心中更糊涂了。

【問題情景使學生感受到數學是來自現實生活的,讓學生體會從實際問題中抽象出數學問題的過程;通過情景我們不僅能從中引出本堂課的內容“二元一次不等式(組)的概念,及其所表示的平面區域”,也為后面的內容“簡單的線性規劃問題”埋下了伏筆.】

(2)問題與探究

師:同學們,你們能用具體的數字體現出王老漢的兩個孫子的收購方案嗎?

生,討論并很快給出答案.(師,記錄數據)

師:請你們各自為王老漢設計一種收購方案.

生,獨立思考,并寫出自己的方案.(師,查看學生各人的設計方案并有針對性的請幾個同學說出自己的方案并記錄,注意:要特意選出2個不合理的方案)

師:這些同學的方案都是對的嗎?

生,討論并找出其中不合理的方案.

師:為什么這些方案就不行呢?

生,討論后并回答

師:滿足什么條件的方案才是合理的呢?

生,討論思考.(師,引導學生設出未知量,列出起約束作用的不等式組)

師,讓幾個學生上黑板列出不等式組,并對之分析指正

(教師用多媒體展示所列不等式組,并介紹二元一次不等式,二元一次不等式組的概念.)

師:同學們還記得什么是方程的解嗎?你能說出二元一次方程二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的一組解嗎?

生,討論并回答(教師記錄幾組,并引導學生表示成有序實數對形式.)

師:同學們能說出什么是不等式(組)的解嗎?你能說出二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的一組解嗎?

生,討論并回答(教師對于學生的回答指正并有選擇性的記錄幾組比較簡單的數據,對于這些數據要事先設計好并在課件的坐標系中標出備用)

(教師對引例中給出的不等式組介紹,并指出上面的正確的設計方案都是不等式組的解.進而介紹二元一次不等式(組)解與解集的概念)

師:我們知道每一組有序實數對都對應于平面直角坐標系上的一個點,你能把上面記錄的不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解在平面直角坐標系上標記出來嗎?

生,討論并在下面作圖(師巡視檢查并對個別同學的錯誤進行指正)

師,利用多媒體課件展示平面直角坐標系及不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解所對應的一些點,讓學生觀察并思考討論:不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解在平面直角坐標系中的位置有什么特點?(由于點太少,我們的學生可能得不出結論)

師,引導學生在同一平面直角坐標系中畫出方程二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解所對應的圖形(一條直線,指導學生用與坐標軸的兩個交點作出直線),再提出問題:二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解為坐標的點在平面直角坐標系中的位置有什么特點?

生,提出猜想:直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計分得的左下半平面.

【教師通過幾個簡單的問題,讓學生產生了利用平面區域表示二元一次不等式的想法,而后再讓學生大膽的猜想,細心的論證,讓他們從中讓體會到對新知識進行科學探索的全過程.】

師:這個結論正確嗎?你能說出理由來嗎?

生,分組討論,并利用自己的數學知識去探究.(由于沒有給出一個固定的方向,所以各人用的方法不一,有的可能用特殊點再去檢驗,有的可能會試著用坐標軸的正方向去說明,也有的可能會用直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計下方的點與對應直線上的點對照比較的方法進行說明)

師,在巡視的基礎上請運用不同方法的同學闡述自己的理由,并對于正確的作法給予表揚,然后用多媒體展示出利用與直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計橫坐標相同而縱坐標不同的點對應分析的方法進行證明.

師:直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的右上半平面應怎么表示?

生:表示為二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計,(很快回答)

師:從中你能得出什么結論?

生,討論并得到一般性結論(教師總結糾正)

(教師總結并用多媒體展示,二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計表示直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的某側所有點組成的平面區域,因不包含邊界故直線畫成虛線;二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計表示的平面區域因包含邊界故直線畫成實線.)

師:點O(0,0)是不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計一個解嗎?據此你能說出不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計對應的平面區域相對與直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的位置嗎?

生,作圖分析,討論并回答(師,對學生的回答進行分析)

師:結合上面問題請同學們歸納出作不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計對應的平面區域的過程.

生,討論并回答(師,對于學生的答案給以分析,并肯定其中正確的結論)

師:你們能說出作二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計對應的平面區域的過程嗎?

生,討論并回答(教師總結并用多媒體展示:直線定界,特殊點定域)

師:若點P(3,-1),點Q(2,4)在直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的異側,你能用數學語言表示嗎?

生,討論,思考(教師巡視,并觀察學生的解答過程,最后引導學生得出:一個是不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解,一個是不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解)

師:你能在這個條件下求出二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的范圍嗎?

生.討論分析,最后得到不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計并求解.

師:若把上面問題改為點在同側呢?請同學們課后完成.

【在教師的幫助下學生通過自己的分析得出了正確的結論,讓他們從中體會到了獲取新知后的成就感,從而增加了對數學的學習興趣.同時也讓他們體會人們在認識新生事物時從特殊到一般,再從一般到特殊的認知過程.】

(二)實例展示:

例1、畫出不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計表示的平面區域.

例2、用平面區域表示不等式組二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解集.

【通過利用多媒體對實例的展示讓學生體會到畫出不等式表示的平面區域的基本流程:直線定界,特殊點定域,而不等式(組)表示的平面區域是各個不等式表示的平面區域的公共部分.同時對具體作圖中的細節問題進行點拔.】

(三)練習:

學生練習P86第1-3題.

【及時鞏固所學,進一步體會畫出不等式(組)表示的平面區域的基本流程】

(四)課后延伸:

師:我們在今天主要解決了在給出不等式(組)的情況下如何用平面區域來表示出來的問題.如果反過來給出了平面區域你能寫出相關的不等式(組)嗎?例如你能寫出A(2,4),B(2,0),C(1,2)三點構成的三角形內部區域對應的不等式組嗎?

你能寫出不等式形如二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計這種不等式表示的平面區域?

(五)小結與作業:

二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計表示直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計某側所有點組成的平面區域,畫出不等式(組)表示的平面區域的基本流程:直線定界,特殊點定域(一般找原點)

作業:第93頁A組習題1、2,

補充作業:若線段PQ的兩個端點坐標為P(3,-1),Q(2,4),且直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計與線段PQ

高三數學教案大全篇6

知識結構

重難點分析

本節的重點是菱形的性質和判定定理。菱形是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是“有一組鄰邊相等”,因而就增加了一些特殊的性質和不同于平行四邊形的判定方法。菱形的這些性質和判定定理即是平行四邊形性質與判定的延續,又是以后要學習的正方形的基礎。

本節的難點是菱形性質的靈活應用。由于菱形是特殊的平行四邊形,所以它不但具有平行四邊形的性質,同時還具有自己獨特的性質。如果得到一個平行四邊形是菱形,就可以得到許多關于邊、角、對角線的條件,在實際解題中,應該應用哪些條件,怎樣應用這些條件,常常讓許多學生手足無措,教師在教學過程 中應給予足夠重視。

教法建議

根據本節內容的特點和與平行四邊形的關系,建議教師在教學過程 中注意以下問題:

1.菱形的.知識,學生在小學時接觸過一些,可由小學學過的知識作為引入。

2.菱形在現實中的實例較多,在講解菱形的性質和判定時,教師可自行準備或由學生準備一些生活實例來進行判別應用了哪些性質和判定,既增加了學生的參與感又鞏固了所學的知識.

3. 如果條件允許,教師在講授這節內容前,可指導學生按照教材148頁圖4-33所示,制作一個平行四邊形作為教學過程 中的道具,既增強了學生的動手能力和參與感,有在教學中有切實的體例,使學生對知識的掌握更輕松些.

4. 在對性質的講解中,教師可將學生分成若干組,每個學生分別對事先準備后的圖形進行邊、角、對角線的測量,然后在組內進行整理、歸納.

5. 由于菱形和菱形的性質定理證明比較簡單,教師可引導學生分析思路,由學生來進行具體的證明.

6.在菱形性質應用講解中,為便于理解掌握,教師要注意題目的層次安排。

一、教學目標

1.掌握菱形概念,知道菱形與平行四邊形的關系.

2.掌握菱形的性質.

3.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.

4.通過教具的演示培養學生的學習興趣.

5.根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想.

6.通過菱形性質的學習,體會菱形的圖形美.

二、教法設計

觀察分析討論相結合的方法

三、重點·難點·疑點及解決辦法

1.教學重點:菱形的性質定理.

2.教學難點 :把菱形的性質和直角三角形的知識綜合應用.

3.疑點:菱形與矩形的性質的區別.

四、課時安排

1課時

五、教具學具準備

教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具

六、師生互動活動設計

教師演示教具、創設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥

七、教學步驟

【復習提問】

1.什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?

2.矩形中對角線與大邊的夾角為 ,求小邊所對的兩條對角線的夾角.

3.矩形的一個角的平分線把較長的邊分成 、 ,求矩形的周長.

【引入新課】

我們已經學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,這時可將事先按課本中圖4-38做成的一個短邊也可以活動的教具進行演示,如圖,改變平行四邊形的邊,使之一組鄰進相等,引出菱形概念.

【講解新課】

1.菱形定義:有一組鄰邊相等的平行四邊形叫做菱形.

講解這個定義時,要抓住概念的本質,應突出兩條:

(1)強調菱形是平行四邊形.

(2)一組鄰邊相等.

2.菱形的性質:

教師強調,菱形既然是特殊的平行四邊形,因此它就具有平行四邊形的一切性質,此外由于它比平行四邊形多了“一組鄰邊相等”的條件,和矩形類似,也比平行四邊形增加了一些特殊性質.

下面研究菱形的性質:

師:同學們根據菱形的定義結合圖形猜一下菱形有什么性質(讓學生們討論,并引導學生分別從邊、角、對角線三個方面分析).

生:因為菱形是有一組鄰邊相等的平行四邊形,所以根據平行四邊形對邊相等的性質可以得到.

菱形性質定理1:菱形的四條邊都相等.

由菱形的四條邊都相等,根據平行四邊形對角線互相平分,可以得到

菱形性質定理2:菱形的對角線互相垂直并且每一條對角線平分一組對角.

引導學生完成定理的規范證明.

師:觀察右圖,菱形 被對角線分成的四個直角三角形有什么關系?

生:全等.

師:它們的底和高和兩條對角線有什么關系?

生:分別是兩條對角線的一半.

師:如果設菱形的兩條對角線分別為 、 ,則菱形的面積是什么?

生:

教師指出當不易求出對角線長時,就用平行四邊形面積的一般計算方法計算菱形面積.

例2 已知:如右圖, 是△ 的角平分線, 交 于 , 交 于 .

求證:四邊形 是菱形.

(引導學生用菱形定義來判定.)

例3 已知菱形 的邊長為 , ,對角線 , 相交于點 ,如右圖,求這個菱形的對角線長和面積.

(1)按教材的方法求面積.

(2)還可以引導學生求出△ 一邊上的高,即菱形的高,然后用平行四邊形的面積公式計算菱形的面積.

【總結、擴展】

1.小結:(打出投影)(圖4)

(1)菱形、平行四邊形、四邊形的從屬關系:

(2)菱形性質:圖5

①具有平行四邊形的所有性質.

②特有性質:四條邊相等;對角線互相垂直,且平分每一組對角.

八、布置作業

教材P158中6、7、8,P196中10

九、板書設計

標題

菱形定義……

菱形性質 例2…… 小結:

性質定理1:…… 例3…… ……

性質定理2:……

十、隨堂練習

教材P151中1、2、3

補充

1.菱形的兩條對角線長分別是3和4,則周長和面積分別是___________、___________.

2.菱形周長為80,一對角線為20,則相鄰兩角的度數為___________、____________.

高三數學教案大全篇7

教學目標

1.理解等差數列的概念,掌握等差數列的通項公式,并能運用通項公式解決簡單的問題.

(1)了解公差的概念,明確一個數列是等差數列的限定條件,能根據定義判斷一個數列是等差數列,了解等差中項的概念;

(2)正確認識使用等差數列的各種表示法,能靈活運用通項公式求等差數列的首項、公差、項數、指定的項;

(3)能通過通項公式與圖像認識等差數列的性質,能用圖像與通項公式的關系解決某些問題.

2.通過等差數列的圖像的應用,進一步滲透數形結合思想、函數思想;通過等差數列通項公式的運用,滲透方程思想.

3.通過等差數列概念的歸納概括,培養學生的觀察、分析資料的能力,積極思維,追求新知的創新意識;通過對等差數列的研究,使學生明確等差數列與一般數列的內在聯系,從而滲透特殊與一般的辯證唯物主義觀點.

關于等差數列的教學建議

(1)知識結構

(2)重點、難點分析

①教學重點是等差數列的定義和對通項公式的認識與應用,等差數列是特殊的數列,定義恰恰是其特殊性、也是本質屬性的準確反映和高度概括,準確把握定義是正確認識等差數列,解決相關問題的前提條件.通項公式是項與項數的函數關系,是研究一個數列的重要工具,等差數列的通項公式的結構與一次函數的解析式密切相關,通過函數圖象研究數列性質成為可能.

②通過不完全歸納法得出等差數列的通項公式,所以是教學中的一個難點;另外,出現在一個等式中,運用方程的思想,已知三個量可以求出第四個量.由于一個公式中字母較多,學生應用時會有一定的困難,通項公式的靈活運用是教學的有一難點.

(3)教法建議

①本節內容分為兩課時,一節為等差數列的定義與表示法,一節為等差數列通項公式的應用.

②等差數列定義的引出可先給出幾組等差數列,讓學生觀察、比較,概括共同規律,再由學生嘗試說出等差數列的定義,對程度差的學生可以提示定義的結構:“……的數列叫做等差數列”,由學生把限定條件一一列舉出來,為等比數列的定義作準備.如果學生給出的定義不準確,可讓學生研究討論,用符合學生的定義但不是等差數列的數列作為反例,再由學生修改其定義,逐步完善定義.

③等差數列的定義歸納出來后,由學生舉一些等差數列的例子,以此讓學生思考確定一個等差數列的條件.

④由學生根據一般數列的表示法嘗試表示等差數列,前提條件是已知數列的首項與公差.明確指出其圖像是一條直線上的一些點,根據圖像觀察項隨項數的變化規律;再看通項公式,項可看作項數的一次型()函數,這與其圖像的形狀相對應.

⑤有窮等差數列的末項與通項是有區別的,數列的通項公式是數列第項與項數之間的函數關系式,有窮等差數列的項數未必是,即其末項未必是該數列的第項,在教學中一定要強調這一點.

⑥等差數列前項和的公式推導離不開等差數列的性質,所以在本節課應補充一些重要的性質;另外可讓學生研究等差數列的子數列,有規律的子數列會引起學生的興趣.

⑦等差數列是現實生活中廣泛存在的數列的數學模型,如教材中的例題、習題等,還可讓學生去搜集,然后彼此交流,提出相關問題,自己嘗試解決,為學生提供相互學習的機會,創設相互研討的課堂環境.

高三數學教案大全篇8

一、內容和內容解析

本節課是北師大版高中數學必修5中第三章第4節的內容。主要是二元均值不等式。它是在系統地學習了不等關系和不等式性質,掌握了不等式性質的基礎上展開的,作為重要的基本不等式之一,為后續的學習奠定基礎。要進一步了解不等式的性質及運用,研究最值問題,此時基本不等式是必不可缺的?;静坏仁皆谥R體系中起了承上啟下的作用,同時在生活及生產實際中有著廣泛的應用,因此它也是對學生進行情感價值觀教育的優良素材,所以基本不等式應重點研究。

教學中注意用新課程理念處理教材,學生的數學學習活動不僅要接受、記憶、模仿和練習,而且要自主探究、動手實踐、合作交流、閱讀自學,師生互動,教師發揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質、經歷過程。

就知識的應用價值上來看,基本不等式是從大量數學問題和現實問題中抽象出來的一個模型,在公式推導中所蘊涵的`數學思想方法如數形結合、抽象歸納、演繹推理、分析法證明等在各種不等式的研究中均有著廣泛的應用;另外,在解決函數最值問題中,基本不等式也起著重要的作用。

就內容的人文價值上來看,基本不等式的探究與推導需要學生觀察、分析、歸納,有助于培養學生創新思維和探索精神,是培養學生數形結合意識和提高數學能力的良好載體。

二、教學目標和目標解析

教學目標:了解基本不等式的幾何背景,能在教師的引導下探究基本不等式的證明過程,理解基本不等式的幾何解釋,并能解決簡單的最值問題;借助于信息技術強化數形結合的思想方法。

在教師的逐步引導下,能從較為熟悉的幾何圖形中抽象出基本不等式,實現對基本不等式幾何背景的初步了解。

學生已經學習了不等式的基本性質,可以運用作差法給出基本不等式的證明,同時,介紹并滲透分析法證明的思想方法,從而完成基本不等式的代數證明。

進一步通過探究幾何圖形,給出基本不等式的幾何解釋,加強學生數形結合的意識。

通過應用問題的解決,明確解決應用題的一般過程。這是一個過程性目標。借助例1,引導學生嘗試用基本不等式解決簡單的最值問題,體會和與積的相互轉化,進一步通過例2,引導學生領會運用基本不等式的三個限制條件(一正二定三相等)在解決最值問題中的作用,并用幾何畫板展示函數圖形,進一步深化數形結合的思想。結合變式訓練完善對基本不等式結構的理解,提升解決問題的能力,體會方法與策略。

三、教學問題診斷

在認知上,學生已經掌握了不等式的基本性質,并能夠根據不等式的性質進行數、式的大小比較,也具備了一定的平面幾何的基本知識。但是,倘若教師不加以引導,學生并不能自覺地通過已有的知識、記憶去發展和構建幾何圖形中的相等或不等關系,這就需要教師逐步地引導,并選用合理的手段去激活學生的思維,增強數形結合的思想意識。

另外,盡可能引領學生充分理解兩個基本不等式等號成立的條件,為利用基本不等式解決簡單的最值問題做好鋪墊。在用基本不等式解決最值時,學生往往容易忽視基本不等式,使用的前提條件a,b>0同時又要注意區別基本不等式的使用條件為,因此,在教學過程中,借助例題落實學生領會基本不等式成立的三個限制條件(一正二定三相等)在解決最值問題中的作用。而對于“一正二定三相等”的進一步強化和應用,將放于下一個課時的內容。

四、教學支持條件分析

為了能很好地展示幾何圖形,體會基本不等式的幾何背景,教學中需要有具體的圖形來幫助學生理解基本不等式的生成,感受數形結合的數學思想,所以,借助于幾何畫板軟件來加強幾何直觀十分必要,同時演示動畫幫助學生驗證基本不等式等號取到的情況,并用電腦3D技術展示基本不等式的又一幾何背景,加深對基本不等式的理解,增強教學效果。

五、教學設計流程圖

教學過程的設計從實際的問題情境出發,以基本不等式的幾何背景為著手點,以探究活動為主線,探求基本不等式的結構形式,并進一步給出幾何解釋,深化對基本不等式的理解。通過典型例題的講解,明確利用基本不等式解決簡單最值問題的應用價值。數形結合的思想貫穿于整個教學過程,并時刻體現在教學活動之中。

六、教法和預期效果分析

本節課通過6個教學環節,強調過程教學,在教師的引導下,啟動觀察、分析、感知、歸納、探究等思維活動,從各個層面認識基本不等式,并理解其幾何背景。課堂教學以學生為主體,基本不等式為主線,在學生原有的認知基本上,充分展示基本不等式這一知識的發生、發展及再創造的過程。

同時,以多媒體課件作為教學輔助手段,賦予學生直觀感受,便于觀察,從而把一個生疏的、內在的知識,變成一個可認知的、可交流的對象,提高了課堂效率。

通過這節課的學習,引領學生多角度、多方位地認識基本不等式,并了解它的幾何意義充分滲透數形結合的思想;能在教師的引導下,主動探索并了解基本不等式的證明過程,強化證明的各類方法;

會用基本不等式解決簡單的(小)值問題并注意等號取到的條件。在教學過程中始終圍繞教學目標進行評價,師生互動,在教學過程的不同環節中及時獲取教學反饋信息,以學生為主體,及時調節教學措施,完成教學目標,從而達到較為理想的教學效果。

高三數學教案大全篇9

高中數學菱形教案

一、教學目標

1.把握菱形的判定.

2.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.

3.通過教具的演示培養學生的學習愛好.

4.根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想.

二、教法設計

觀察分析討論相結合的方法

三、重點·難點·疑點及解決辦法

1.教學重點:菱形的判定方法.

2.教學難點:菱形判定方法的綜合應用.

四、課時安排

1課時

五、教具學具預備

教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具

六、師生互動活動設計

教師演示教具、創設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥

七、教學步驟

復習提問

1.敘述菱形的定義與性質.

2.菱形兩鄰角的比為1:2,較長對角線為 ,則對角線交點到一邊距離為________.

引入新課

師問:要判定一個四邊形是不是菱形最基本的判定方法是什么方法?

生答:定義法.

此外還有別的兩種判定方法,下面就來學習這兩種方法.

講解新課

菱形判定定理1:四邊都相等的四邊形是菱形.

菱形判定定理2:對角錢互相垂直的'平行四邊形是菱形.圖1

分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.

分析判定2:

師問:本定理有幾個條件?

生答:兩個.

師問:哪兩個?

生答:(1)是平行四邊形(2)兩條對角線互相垂直.

師問:再需要什么條件可證該平行四邊形是菱形?

生答:再證兩鄰邊相等.

(由學生口述證實)

證實時讓學生注重線段垂直平分線在這里的應用,

師問:對角線互相垂直的四邊形是菱形嗎?為什么?

可畫出圖,顯然對角線 ,但都不是菱形.

菱形常用的判定方法歸納為(學生討論歸納后,由教師板書):

注重:(2)與(4)的題設也是從四邊形出發,和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件.

例4 已知: 的對角錢 的垂直平分線與邊 、 分別交于 、 ,如圖.

求證:四邊形 是菱形(按教材講解).

總結、擴展

1.小結:

(1)歸納判定菱形的四種常用方法.

(2)說明矩形、菱形之間的區別與聯系.

2.思考題:已知:如圖4△ 中, , 平分 , , , 交 于 .

求證:四邊形 為菱形.

八、布置作業

教材P159中9、10、11、13(2)

九、板書設計

十、隨堂練習

教材P153中1、2、3

高三數學教案大全篇10

教學目標

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數的意義,能根據具體的問題,寫出符合要求的排列;

(3)會分析與數字有關的排列問題,培養學生的抽象能力和邏輯思維能力;

教學重點難點

重點是排列的定義、排列數并運用這個公式去解決有關排列數的應用問題。

難點是解有關排列的應用題。

教學過程設計

一、復習引入

上節課我們學習了兩個基本原理,請大家完成以下兩題的練習(用投影儀出示):

1.書架上層放著50本不同的社會科學書,下層放著40本不同的自然科學的書.

(1)從中任取1本,有多少種取法?

(2)從中任取社會科學書與自然科學書各1本,有多少種不同的取法?

2.某農場為了考察三個外地優良品種A,B,C,計劃在甲、乙、丙、丁、戊共五種類型的土地上分別進行引種試驗,問共需安排多少個試驗小區?

找一同學談解答并說明怎樣思考的的過程

第1(1)小題從書架上任取1本書,有兩類辦法,第一類辦法是從上層取社會科學書,可以從50本中任取1本,有50種方法;第二類辦法是從下層取自然科學書,可以從40本中任取1本,有40種方法.根據加法原理,得到不同的取法種數是50+40=90.第(2)小題從書架上取社會科學、自然科學書各1本(共取出2本),可以分兩個步驟完成:第一步取一本社會科學書,第二步取一本自然科學書,根據乘法原理,得到不同的取法種數是:50×40=2000.

第2題說,共有A,B,C三個優良品種,而每個品種在甲類型土地上實驗有三個小區,在乙類型的土地上有三個小區……所以共需3×5=15個實驗小區.

二、講授新課

學習了兩個基本原理之后,現在我們繼續學習排列問題,這是我們本節討論的重點.先從實例入手:

1.北京、上海、廣州三個民航站之間的直達航線,需要準備多少種不同飛機票?

由學生設計好方案并回答.

(1)用加法原理設計方案.

首先確定起點站,如果北京是起點站,終點站是上?;驈V州,需要制2種飛機票,若起點站是上海,終點站是北京或廣州,又需制2種飛機票;若起點站是廣州,終點站是北京或上海,又需要2種飛機票,共需要2+2+2=6種飛機票.

(2)用乘法原理設計方案.

首先確定起點站,在三個站中,任選一個站為起點站,有3種方法.即北京、上海、廣泛任意一個城市為起點站,當選定起點站后,再確定終點站,由于已經選了起點站,終點站只能在其余兩個站去選.那么,根據乘法原理,在三個民航站中,每次取兩個,按起點站在前、終點站在后的順序排列不同方法共有3×2=6種.

根據以上分析由學生(板演)寫出所有種飛機票

再看一個實例.

在航海中,船艦常以“旗語”相互聯系,即利用不同顏色的旗子發送出各種不同的信號.如有紅、黃、綠三面不同顏色的旗子,按一定順序同時升起表示一定的信號,問這樣總共可以表示出多少種不同的信號?

找學生談自己對這個問題的想法.

事實上,紅、黃、綠三面旗子按一定順序的一個排法表示一種信號,所以不同顏色的同時升起可以表示出來的信號種數,也就是紅、黃、綠這三面旗子的所有不同順序的排法總數.

首先,先確定位置的旗子,在紅、黃、綠這三面旗子中任取一個,有3種方法;

其次,確定中間位置的旗子,當位置確定之后,中間位置的旗子只能從余下的兩面旗中去取,有2種方法.剩下那面旗子,放在最低位置.

根據乘法原理,用紅、黃、綠這三面旗子同時升起表示出所有信號種數是:3×2×1=6(種).

根據學生的分析,由另外的同學(板演)寫出三面旗子同時升起表示信號的所有情況.(包括每個位置情況)

第三個實例,讓全體學生都參加設計,把所有情況(包括每個位置情況)寫出來.

由數字1,2,3,4可以組成多少個沒有重復數字的三位數?寫出這些所有的三位數.

根據乘法原理,從四個不同的數字中,每次取出三個排成三位數的方法共有4×3×2=24(個).

請板演的學生談談怎樣想的?

第一步,先確定百位上的數字.在1,2,3,4這四個數字中任取一個,有4種取法.

第二步,確定十位上的數字.當百位上的數字確定以后,十位上的數字只能從余下的三個數字去取,有3種方法.

第三步,確定個位上的數字.當百位、十位上的數字都確定以后,個位上的數字只能從余下的兩個數字中去取,有2種方法.

根據乘法原理,所以共有4×3×2=24種.

下面由教師提問,學生回答下列問題

(1)以上我們討論了三個實例,這三個問題有什么共同的地方?

都是從一些研究的對象之中取出某些研究的對象.

(2)取出的這些研究對象又做些什么?

實質上按著順序排成一排,交換不同的位置就是不同的情況.

(3)請大家看書,第×頁、第×行.我們把被取的對象叫做雙元素,如上面問題中的民航站、旗子、數字都是元素.

上面第一個問題就是從3個不同的元素中,任取2個,然后按一定順序排成一列,求一共有多少種不同的排法,后來又寫出所有排法.

第二個問題,就是從3個不同元素中,取出3個,然后按一定順序排成一列,求一共有多少排法和寫出所有排法.

第三個問題呢?

從4個不同的元素中,任取3個,然后按一定的順序排成一列,求一共有多少種不同的排法,并寫出所有的排法.

給出排列定義

請看課本,第×頁,第×行.一般地說,從n個不同的元素中,任取m(m≤n)個元素(本章只研究被取出的元素各不相同的情況),按著一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.

下面由教師提問,學生回答下列問題

(1)按著這個定義,結合上面的問題,請同學們談談什么是相同的排列?什么是不同的排列?

從排列的定義知道,如果兩個排列相同,不僅這兩個排列的元素必須完全相同,而且排列的順序(即元素所在的位置)也必須相同.兩個條件中,只要有一個條件不符合,就是不同的排列.

如第一個問題中,北京—廣州,上海—廣州是兩個排列,第三個問題中,213與423也是兩個排列.

再如第一個問題中,北京—廣州,廣州—北京;第二個問題中,紅黃綠與紅綠黃;第三個問題中231和213雖然元素完全相同,但排列順序不同,也是兩個排列.

(2)還需要搞清楚一個問題,“一個排列”是不是一個數?

生:“一個排列”不應當是一個數,而應當指一件具體的事.如飛機票“北京—廣州”是一個排列,“紅黃綠”是一種信號,也是一個排列.如果問飛機票有多少種?能表示出多少種信號.只問種數,不用把所有情況羅列出來,才是一個數.前面提到的第三個問題,實質上也是這樣的.

三、課堂練習

大家思考,下面的排列問題怎樣解?

有四張卡片,每張分別寫著數碼1,2,3,4.有四個空箱,分別寫著號碼1,2,3,4.把卡片放到空箱內,每箱必須并且只能放一張,而且卡片數碼與箱子號碼必須不一致,問有多少種放法?(用投影儀示出)

分析:這是從四張卡片中取出4張,分別放在四個位置上,只要交換卡片位置,就是不同的放法,是個附有條件的排列問題.

解法是:第一步把數碼卡片四張中2,3,4三張任選一個放在第1空箱.

第二步從余下的三張卡片中任選符合條件的一張放在第2空箱.

第三步從余下的兩張卡片中任選符合條件的一張放在第3空箱.

第四步把最后符合條件的一張放在第四空箱.具體排法,用下面圖表表示:

所以,共有9種放法.

四、作業

課本:P232練習1,2,3,4,5,6,7.

高三數學教案大全篇11

各位老師:

大家好!我叫______,來自____。我說課的題目是《概率的基本性質》,內容選自于高中教材新課程人教A版必修3第三章第一節,課時安排為三個課時,本節課內容為第三課時。下面我將從教材分析、教學目標分析、教法分析、教學過程分析四大方面來闡述我對這節課的分析和設計:

一、教材分析

1、教材所處的地位和作用

本節課主要包含了兩部分內容:一是事件的關系與運算,二是概率的基本性質,多以基本概念和性質為主。它是本冊第二章統計的延伸,又是后面"古典概型"及"幾何概型"的基礎。在整個教學中起到承上啟下的作用。同時也是新課改以來考查的熱點之一。

2、教學的重點和難點

重點:概率的加法公式及其應用;事件的關系與運算。

難點:互斥事件與對立事件的區別與聯系

二、教學目標分析

1.知識與技能目標

⑴了解隨機事件間的基本關系與運算;

⑵掌握概率的幾個基本性質,并會用其解決簡單的概率問題。

2、過程與方法:

⑴通過觀察、類比、歸納培養學生運用數學知識的綜合能力;

⑵通過學生自主探究,合作探究培養學生的動手探索的能力。

3、情感態度與價值觀:

通過數學活動,了解教學與實際生活的密切聯系,感受數學知識應用于現實世界的具體情境,從而激發學習數學的情趣。

三、教法分析

采用實驗觀察、質疑啟發、類比聯想、探究歸納的教學方法。

高三數學教案大全篇12

1.導數概念及其幾何意義

(1)了解導數概念的實際背景;

(2)理解導數的幾何意義.

2.導數的運算

(1)能根據導數定義,求函數y=c(c為常數),y=x,y=x2,y=x3,y=,y=的導數;

(2)能利用基本初等函數的導數公式和導數的四則運算法則求簡單函數的導數,能求簡單的復合函數(僅限于形如f(ax+b)的復合函數)的導數.

3.導數在研究函數中的應用

(1)了解函數單調性和導數的關系,能利用導數研究函數的單調性,會求函數的單調區間(其中多項式函數一般不超過三次);

(2)了解函數在某點取得極值的必要條件和充分條件;會用導數求函數的極大值、極小值(其中多項式函數一般不超過三次);會求閉區間上函數的最大值、最小值(其中多項式函數一般不超過三次).

4.生活中的優化問題

會利用導數解決某些實際問題.

5.定積分與微積分基本定理

(1)了解定積分的實際背景,了解定積分的基本思想,了解定積分的概念;

(2)了解微積分基本定理的含義.本章重點:

1.導數的概念;

2.利用導數求切線的斜率;

3.利用導數判斷函數單調性或求單調區間;

4.利用導數求極值或最值;

5.利用導數求實際問題最優解.

本章難點:導數的綜合應用.導數與定積分是微積分的核心概念之一,也是中學選學內容中較為重要的知識之一.由于其應用的廣泛性,為我們解決有關函數、數列問題提供了更一般、更有效的方法.因此,本章知識在高考題中常在函數、數列等有關最值不等式問題中有所體現,既考查數形結合思想,分類討論思想,也考查學生靈活運用所學知識和方法的能力.考題可能以選擇題或填空題的形式來考查導數與定積分的基本運算與簡單的幾何意義,而以解答題的形式來綜合考查學生的分析問題和解決問題的能力.

知識網絡

3.1導數的概念與運算

典例精析

題型一導數的概念

【例1】已知函數f(x)=2ln3x+8x,

求f(1-2Δx)-f(1)Δx的值.

【解析】由導數的定義知:

f(1-2Δx)-f(1)Δx=-2f(1-2Δx)-f(1)-2Δx=-2f′(1)=-20.

【點撥】導數的實質是求函數值相對于自變量的變化率,即求當Δx→0時,平均變化率ΔyΔx的極限.

【變式訓練1】某市在一次降雨過程中,降雨量y(mm)與時間t(min)的函數關系可以近似地表示為f(t)=t2100,則在時刻t=10min的降雨強度為()

A.15mm/minB.14mm/min

C.12mm/minD.1mm/min

【解析】選A.

題型二求導函數

【例2】求下列函數的導數.

(1)y=ln(x+1+x2);

(2)y=(x2-2x+3)e2x;

(3)y=3x1-x.

【解析】運用求導數公式及復合函數求導數法則.

(1)y′=1x+1+x2(x+1+x2)′

=1x+1+x2(1+x1+x2)=11+x2.

(2)y′=(2x-2)e2x+2(x2-2x+3)e2x

=2(x2-x+2)e2x.

(3)y′=13(x1-x1-x+x(1-x)2

=13(x1-x1(1-x)2

=13x(1-x)

【變式訓練2】如下圖,函數f(x)的圖象是折線段ABC,其中A、B、C的坐標分別為(0,4),(2,0),(6,4),則f(f(0))=;f(1+Δx)-f(1)Δx=(用數字作答).

【解析】f(0)=4,f(f(0))=f(4)=2,

由導數定義f(1+Δx)-f(1)Δx=f′(1).

當0≤x≤2時,f(x)=4-2x,f′(x)=-2,f′(1)=-2.

題型三利用導數求切線的斜率

【例3】已知曲線C:y=x3-3x2+2x,直線l:y=kx,且l與C切于點P(x0,y0)(x0≠0),求直線l的方程及切點坐標.

【解析】由l過原點,知k=y0x0(x0≠0),又點P(x0,y0)在曲線C上,y0=x30-3x20+2x0,

所以y0x0=x20-3x0+2.

而y′=3x2-6x+2,k=3x20-6x0+2.

又k=y0x0,

所以3x20-6x0+2=x20-3x0+2,其中x0≠0,

解得x0=32.

所以y0=-38,所以k=y0x0=-14,

所以直線l的方程為y=-14x,切點坐標為(32,-38).

【點撥】利用切點在曲線上,又曲線在切點處的切線的斜率為曲線在該點處的導數來列方程,即可求得切點的坐標.

【變式訓練3】若函數y=x3-3x+4的切線經過點(-2,2),求此切線方程.

【解析】設切點為P(x0,y0),則由

y′=3x2-3得切線的斜率為k=3x20-3.

所以函數y=x3-3x+4在P(x0,y0)處的切線方程為

y-y0=(3x20-3)(x-x0).

又切線經過點(-2,2),得

2-y0=(3x20-3)(-2-x0),①

而切點在曲線上,得y0=x30-3x0+4,②

由①②解得x0=1或x0=-2.

則切線方程為y=2或9x-y+20=0.

總結提高

1.函數y=f(x)在x=x0處的導數通常有以下兩種求法:

(1)導數的定義,即求ΔyΔx=f(x0+Δx)-f(x0)Δx的值;

(2)先求導函數f′(x),再將x=x0的值代入,即得f′(x0)的值.

2.求y=f(x)的導函數的幾種方法:

(1)利用常見函數的導數公式;

(2)利用四則運算的導數公式;

(3)利用復合函數的求導方法.

3.導數的幾何意義:函數y=f(x)在x=x0處的導數f′(x0),就是函數y=f(x)的曲線在點P(x0,y0)處的切線的斜率.

高三數學教案大全篇13

一、教材分析

1、教材內容

本節課是蘇教版第二章《函數概念和基本初等函數Ⅰ》2、1、3函數簡單性質的第一課時,該課時主要學習增函數、減函數的定義,以及應用__解決一些簡單問題、

2、教材所處地位、作用

函數的性質是研究函數的基石,函數的單調性是首先研究的一個性質、通過對本節課的學習,讓學生領會函數單調性的概念、掌握證明函數單調性的步驟,并能運用單調性知識解決一些簡單的實際問題、通過上述活動,加深對函數本質的認識、函數的單調性既是學生學過的函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性的基礎、此外在比較數的大小、函數的定性分析以及相關的數學綜合問題中也有廣泛的應用,它是整個高中數學中起著承上啟下作用的核心知識之一、從方法__的角度分析,本節教學過程中還滲透了探索發現、數形結合、歸納轉化等數學思想方法、

3、教學目標

(1)知識與技能:使學生理解函數單調性的概念,掌握判別函數單調性的方法;

(2)過程與方法:從實際生活問題出發,引導學生自主探索函數單調性的概念,應用圖象和單調性的__解決函數單調性問題,讓學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力

(3)情感態度價值觀:讓學生體驗數學的科學功能、符號功能和工具功能,培養學生直覺觀察、探索發現、科學論證的良好的數學思維品質

4、重點與難點

教學重點:

(1)函數單調性的概念;

(2)運用函數單調性的定義判斷一些函數的單調性

教學難點:

(1)函數單調性的知識形成;

(2)利用函數圖象、單調性的定義判斷和證明函數的單調性

二、教法分析與學法指導

本節課是一節較為抽象的數學概念課,因此,教法上要注意:

1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發了學生求知欲,調動了學生主體參與的積極性

2、在運用__解題的過程中,緊扣定義中的關鍵語句,通過學生的主體參與,逐個完成對各個難點的突破,以獲得各類問題的解決

3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用、具體體現在設問、講評和規范書寫等方面,要教會學生清晰的思維、嚴謹的推理,并成功地完成書面表達

4、采用投影儀、多媒體等現代教學手段,增大教學容量和直觀性

在學法上:

1、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和解決問題的能力

2、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的一個飛躍

高三數學教案大全篇14

概率統計

一、知識梳理

1.三種抽樣方法的聯系與區別:

類別共同點不同點相互聯系適用范圍

簡單隨機抽樣都是等概率抽樣從總體中逐個抽取總體中個體比較少

系統抽樣將總體均勻分成若干部分;按事先確定的規則在各部分抽取在起始部分采用簡單隨機抽樣總體中個體比較多

分層抽樣將總體分成若干層,按個體個數的比例抽取在各層抽樣時采用簡單隨機抽樣或系統抽樣總體中個體有明顯差異

(1)從含有N個個體的總體中抽取n個個體的樣本,每個個體被抽到的概率為

(2)系統抽樣的步驟:①將總體中的個體隨機編號;②將編號分段;③在第1段中用簡單隨機抽樣確定起始的個體編號;④按照事先研究的規則抽取樣本.

(3)分層抽樣的步驟:①分層;②按比例確定每層抽取個體的個數;③各層抽樣;④匯合成樣本.

(4)要懂得從圖表中提取有用信息

如:在頻率分布直方圖中①小矩形的面積=組距=頻率②眾數是矩形的中點的橫坐標③中位數的左邊與右邊的直方圖的面積相等,可以由此估計中位數的值

2.方差和標準差都是刻畫數據波動大小的數字特征,一般地,設一組樣本數據,,…,,其平均數為則方差,標準差

3.古典概型的概率公式:如果一次試驗中可能出現的結果有個,而且所有結果都是等可能的,如果事件包含個結果,那么事件的概率P=

特別提醒:古典概型的兩個共同特點:

○1,即試中有可能出現的基本事件只有有限個,即樣本空間Ω中的元素個數是有限的;

○2,即每個基本事件出現的可能性相等。

4.幾何概型的概率公式:P(A)=

特別提醒:幾何概型的特點:試驗的結果是無限不可數的;○2每個結果出現的可能性相等。

二、夯實基礎

(1)某單位有職工160名,其中業務人員120名,管理人員16名,后勤人員24名.為了解職工的某種情況,要從中抽取一個容量為20的樣本.若用分層抽樣的方法,抽取的業務人員、管理人員、后勤人員的人數應分別為____________.

(2)某賽季,甲、乙兩名籃球運動員都參加了

11場比賽,他們所有比賽得分的情況用如圖2所示的莖葉圖表示,

則甲、乙兩名運動員得分的中位數分別為()

A.19、13B.13、19C.20、18D.18、20

(3)統計某校1000名學生的數學會考成績,

得到樣本頻率分布直方圖如右圖示,規定不低于60分為

及格,不低于80分為優秀,則及格人數是;

優秀率為。

(4)在一次歌手大獎賽上,七位評委為歌手打出的分數如下:

9.48.49.49.99.69.49.7

去掉一個分和一個最低分后,所剩數據的平均值

和方差分別為()

A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.016

(5)將一顆骰子先后拋擲2次,觀察向上的點數,則以第一次向上點數為橫坐標x,第二次向上的點數為縱坐標y的點(x,y)在圓x2+y2=27的內部的概率________.

(6)在長為12cm的線段AB上任取一點M,并且以線段AM為邊的正方形,則這正方形的面積介于36cm2與81cm2之間的概率為()

三、高考鏈接

07、某班50名學生在一次百米測試中,成績全部介于13秒與19秒之間,將測試結果按如下方式分成六組:第一組,成績大于等于13秒且小于14秒;第二組,成績大于等于14秒且小于15秒

;第六組,成績大于等于18秒且小于等于19秒.右圖

是按上述分組方法得到的頻率分布直方圖.設成績小于17秒

的學生人數占全班總人數的百分比為,成績大于等于15秒

且小于17秒的學生人數為,則從頻率分布直方圖中可分析

出和分別為()

08、從某項綜合能力測試中抽取100人的成績,統計如表,則這100人成績的標準差為()

分數54321

人數2010303010

09、在區間上隨機取一個數x,的值介于0到之間的概率為().

08、現有8名奧運會志愿者,其中志愿者通曉日語,通曉俄語,通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.

(Ⅰ)求被選中的概率;(Ⅱ)求和不全被選中的概率.

高三數學教案大全篇15

教學目標

理解數列的概念,掌握數列的運用

教學重難點

理解數列的概念,掌握數列的運用

教學過程

【知識點精講】

1、數列:按照一定次序排列的一列數(與順序有關)

2、通項公式:數列的第n項an與n之間的函數關系用一個公式來表示an=f(n)。

(通項公式不)

3、數列的表示:

(1)列舉法:如1,3,5,7,9……;

(2)圖解法:由(n,an)點構成;

(3)解析法:用通項公式表示,如an=2n+1

(4)遞推法:用前n項的值與它相鄰的項之間的關系表示各項,如a1=1,an=1+2an-1

4、數列分類:有窮數列,無窮數列;遞增數列,遞減數列,擺動數列,常數數列;有界數列,__數列

5、任意數列{an}的前n項和的性質

高三數學教案大全篇16

一、抓好基礎。

數學習題無非就是數學概念和數學思想的組合應用,弄清數學基本概念、基本定理、基本方法是判斷題目類型、知識范圍的前提,是正確把握解題方法的依據。只有概念清楚,方法全面,遇到題目時,就能很快的得到解題方法,或者面對一個新的習題,就能聯想到我們平時做過的習題的方法,達到迅速解答。弄清基本定理是正確、快速解答習題的前提條件,特別是在立體幾何等章節的復習中,對基本定理熟悉和靈活掌握能使習題解答條理清楚、邏輯推理嚴密。反之,會使解題速度慢,邏輯混亂、敘述不清。

那么如何抓基礎呢?

1、看課本;

2、在做練習時遇到概念題是要對概念的內涵和外延再認識,注意從不同的側面去認識、理解概念。

3、理解定理的條件對結論的約束作用,反問:如果沒有該條件會使定理的結論發生什么變化?

4、歸納全面的解題方法。要積累一定的典型習題以保證解題方法的完整性。

5、認真做好我們網校同步課堂里面的每期的練習題,采用循環交替、螺旋式推進的方法,克服對基本知識基本方法的遺忘現象。

二、制定好計劃和奮斗目標。

復習數學時,要制定好計劃,不但要有本學期大的規劃,還要有每月、每周、每天的小計劃,計劃要與老師的復習計劃吻合,不能相互沖突,如按照老師的復習進度,今天復習到什么知識點,就應該在今天之內掌握該知識點,加深對該知識點的理解,研究該知識點考查的不同側面、不同角度。在每天的復習計劃里,要留有一定的時間看課本,看筆記,回顧過去知識點,思考老師當天講了什么知識,歸納當天所學的知識??梢哉f,每天的習題可以少做,但這些歸納、反思、回顧是必不可少的。望你在制定計劃時注意。

三、嚴防題海戰術,克服盲目做題而不注重歸納的現象。

做習題是為了鞏固知識、提高應變能力、思維能力、計算能力。學數學要做一定量的習題,但學數學并不等于做題,在各種考試題中,有相當的習題是靠簡單的知識點的堆積,利用公理化知識體系的演繹而就能解決的,這些習題是要通過做一定量的習題達到對解題方法的展移而實現的,但,隨著高考的改革,高考已把考查的重點放在創造型、能力型的考查上。因此要精做習題,注意知識的理解和靈活應用,當你做完一道習題后不訪自問:本題考查了什么知識點?什么方法?我們從中得到了解題的什么方法?這一類習題中有什么解題的通性?實現問題的完全解決我應用了怎樣的解題策略?只有這樣才會培養自己的悟性與創造性,開發其創造力。也將在遇到即將來臨的期末考試和未來的高考題目中那些綜合性強的題目時可以有一個科學的方法解決它。

數學是高考科目之一,故從初一開始就要認真地學習數學。進入高中以后,往往有不少同學不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。出現這樣的情況,原因很多。但主要是由于同學們不了解高中數學教學內容特點與自身學習方法有問題等因素所造成的。有不少同學把提高數學成績的希望寄托在大量做題上。我認為這是不妥當的,我認為,“不要以做題多少論英雄”,重要的不在做題多,而在于做題的效益要高。做題的目的在于檢查你學的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那么多做題的結果,反而鞏固了你的缺欠,因此,要在準確地把握住基本知識和方法的基礎上做一定量的練習是必要的。

其次要掌握正確的學習方法。鍛煉自己學數學的能力,轉變學習方式,要改變單純接受的學習方式,要學會采用接受學習與探究學習、合作學習、體驗學習等多樣化的方式進行學習,要在教師的指導下逐步學會“提出問題—實驗探究—開展討論—形成新知—應用反思”的學習方法。這樣,通過學習方式由單一到多樣的轉變,我們在學習活動中的自主性、探索性、合作性就能夠得到加強,成為學習的主人。

高三數學教案大全篇17

教學目標

知識目標等差數列定義等差數列通項公式

能力目標掌握等差數列定義等差數列通項公式

情感目標培養學生的觀察、推理、歸納能力

教學重難點

教學重點等差數列的概念的理解與掌握

等差數列通項公式推導及應用教學難點等差數列“等差”的理解、把握和應用

教學過程

由_《紅高粱》主題曲“酒神曲”引入等差數列定義

問題:多媒體演示,觀察————發現?

一、等差數列定義:

一般地,如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列。這個常數叫做等差數列的公差,通常用字母d表示。

例1:觀察下面數列是否是等差數列:…。

二、等差數列通項公式:

已知等差數列{an}的首項是a1,公差是d。

則由定義可得:

a2—a1=d

a3—a2=d

a4—a3=d

……

an—an—1=d

即可得:

an=a1+(n—1)d

例2已知等差數列的首項a1是3,公差d是2,求它的通項公式。

分析:知道a1,d,求an。代入通項公式

解:∵a1=3,d=2

∴an=a1+(n—1)d

=3+(n—1)×2

=2n+1

例3求等差數列10,8,6,4…的第20項。

分析:根據a1=10,d=—2,先求出通項公式an,再求出a20

解:∵a1=10,d=8—10=—2,n=20

由an=a1+(n—1)d得

∴a20=a1+(n—1)d

=10+(20—1)×(—2)

=—28

例4:在等差數列{an}中,已知a6=12,a18=36,求通項an。

分析:此題已知a6=12,n=6;a18=36,n=18分別代入通項公式an=a1+(n—1)d中,可得兩個方程,都含a1與d兩個未知數組成方程組,可解出a1與d。

解:由題意可得

a1+5d=12

a1+17d=36

∴d=2a1=2

∴an=2+(n—1)×2=2n

練習

1、判斷下列數列是否為等差數列:

①23,25,26,27,28,29,30;

②0,0,0,0,0,0,…

③52,50,48,46,44,42,40,35;

④—1,—8,—15,—22,—29;

答案:①不是②是①不是②是

2、等差數列{an}的前三項依次為a—6,—3a—5,—10a—1,則a等于()

A、1B、—1C、—1/3D、5/11

提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)

3、在數列{an}中a1=1,an=an+1+4,則a10=。

提示:d=an+1—an=—4

教師繼續提出問題

已知數列{an}前n項和為……

作業

P116習題3。21,2

高三數學教案大全篇18

1、直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

2、直線的斜率

①定義:傾斜角不是90°的&39;直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點的直線的斜率公式:

注意下面四點:

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

104986 主站蜘蛛池模板: 股指期货-期货开户-交易手续费佣金加1分-保证金低-期货公司排名靠前-万利信息开户 | 学习虾-免费的学习资料下载平台| 成都茶楼装修公司 - 会所设计/KTV装修 - 成都朗煜装饰公司 | 七维官网-水性工业漆_轨道交通涂料_钢结构漆 | 冷水机-工业冷水机-冷水机组-欧科隆品牌保障 | 北京森语科技有限公司-模型制作专家-展览展示-沙盘模型设计制作-多媒体模型软硬件开发-三维地理信息交互沙盘 | CTAB,表面活性剂1631溴型(十六烷基三甲基溴化铵)-上海升纬化工原料有限公司 | 专业生产动态配料系统_饲料配料系统_化肥配料系统等配料系统-郑州鑫晟重工机械有限公司 | 聚氨酯保温钢管_聚氨酯直埋保温管道_聚氨酯发泡保温管厂家-沧州万荣防腐保温管道有限公司 | 拉曼光谱仪_便携式|激光|显微共焦拉曼光谱仪-北京卓立汉光仪器有限公司 | 辐射色度计-字符亮度测试-反射式膜厚仪-苏州瑞格谱光电科技有限公司 | 北京包装设计_标志设计公司_包装设计公司-北京思逸品牌设计 | 外贸资讯网 - 洞悉全球贸易,把握市场先机 | 医用空气消毒机-医用管路消毒机-工作服消毒柜-成都三康王 | 外贸资讯网 - 洞悉全球贸易,把握市场先机 | 打包钢带,铁皮打包带,烤蓝打包带-高密市金和金属制品厂 | 鑫铭东办公家具一站式定制采购-深圳办公家具厂家直销 | 找果网 | 苹果手机找回方法,苹果iPhone手机丢了找回,认准找果网! | 电磁辐射仪-电磁辐射检测仪-pm2.5检测仪-多功能射线检测仪-上海何亦仪器仪表有限公司 | 模温机-油温机-电加热导热油炉-工业冷水机「欧诺智能」 | 雪花制冰机(实验室雪花制冰机)百科 | 印刷人才网 印刷、包装、造纸,中国80%的印刷企业人才招聘选印刷人才网! | 重庆网站建设,重庆网站设计,重庆网站制作,重庆seo,重庆做网站,重庆seo,重庆公众号运营,重庆小程序开发 | 河北码上网络科技|邯郸小程序开发|邯郸微信开发|邯郸网站建设 | 脉冲布袋除尘器_除尘布袋-泊头市净化除尘设备生产厂家 | 美名宝起名网-在线宝宝、公司、起名平台| 光栅尺厂家_数显表维修-苏州泽升精密机械 | 密封无忧网 _ 专业的密封产品行业信息网| 北京浩云律师事务所-企业法律顾问_破产清算等公司法律服务 | 硫化罐-胶管硫化罐-山东鑫泰鑫智能装备有限公司 | 济南品牌包装设计公司_济南VI标志设计公司_山东锐尚文化传播 | 全自动面膜机_面膜折叠机价格_面膜灌装机定制_高速折棉机厂家-深圳市益豪科技有限公司 | 盘扣式脚手架-附着式升降脚手架-移动脚手架,专ye承包服务商 - 苏州安踏脚手架工程有限公司 | 台湾HIWIN上银直线模组|导轨滑块|TBI滚珠丝杆丝杠-深圳汉工 | 衬氟止回阀_衬氟闸阀_衬氟三通球阀_衬四氟阀门_衬氟阀门厂-浙江利尔多阀门有限公司 | 铝箔袋,铝箔袋厂家,东莞铝箔袋,防静电铝箔袋,防静电屏蔽袋,防静电真空袋,真空袋-东莞铭晋让您的产品与众不同 | 石家庄装修设计_室内家装设计_别墅装饰装修公司-石家庄金舍装饰官网 | 真空冷冻干燥机_国产冻干机_冷冻干燥机_北京四环冻干 | 武汉不干胶印刷_标签设计印刷_不干胶标签印刷厂 - 武汉不干胶标签印刷厂家 | 旋振筛_不锈钢旋振筛_气旋筛_旋振筛厂家—新乡市大汉振动机械有限公司 | 稳尚教育加盟-打造高考志愿填报平台_新高考志愿填报加盟_学业生涯规划加盟 |