小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數學教案 >

高三數學教案范本

時間: 新華 數學教案

教案是教師為每節課制定的教學方案,其中包括每節課的重點、難點、教學內容、教學方法和教學目標等內容。優秀的高三數學教案范本要怎么寫?下面給大家整理高三數學教案范本,希望對大家能有幫助。

高三數學教案范本篇1

一、教學內容分析

本小節是普通高中課程標準實驗教科書數學5(必修)第三章第3小節,主要內容是利用平面區域體現二元一次不等式(組)的解集;借助圖解法解決在線性約束條件下的二元線性目標函數的最值與解問題;運用線性規劃知識解決一些簡單的實際問題(如資源利用,人力調配,生產安排等)。突出體現了優化思想,與數形結合的思想。本小節是利用數學知識解決實際問題的典例,它體現了數學源于生活而用于生活的特性。

二、學生學習情況分析

本小節內容建立在學生學習了一元不等式(組)及其應用、直線與方程的基礎之上,學生對于將實際問題轉化為數學問題,數形結合思想有所了解。但從數學知識上看學生對于涉及多個已知數據、多個字母變量,多個不等關系的知識接觸尚少,從數學方法上看,學生對于圖解法還缺少認識,對數形結合的思想方法的掌握還需時日,而這些都將成為學生學習中的難點。

三、設計思想

以問題為載體,以學生為主體,以探究歸納為主要手段,以問題解決為目的,以多媒體為重要工具,激發學生的動手、觀察、思考、猜想探究的興趣。注重引導學生充分體驗“從實際問題到數學問題”的數學建模過程,體會“從具體到一般”的抽象思維過程,從“特殊到一般”的探究新知的過程;提高學生應用“數形結合”的思想方法解題的能力;培養學生的分析問題、解決問題的能力。

四、教學目標

1、知識與技能:了解二元一次不等式(組)的概念,掌握用平面區域刻畫二元一次不等式(組)的方法;了解線性規劃的意義,了解線性約束條件、線性目標函數、可行解、可行域和解等概念;理解線性規劃問題的圖解法;會利用圖解法求線性目標函數的最值與相應解;

2、過程與方法:從實際問題中抽象出簡單的線性規劃問題,提高學生的數學建模能力;在探究的過程中讓學生體驗到數學活動中充滿著探索與創造,培養學生的數據分析能力、化歸能力、探索能力、合情推理能力;

3、情態與價值:在應用圖解法解題的過程中,培養學生的化歸能力與運用數形結合思想的能力;體會線性規劃的基本思想,培養學生的數學應用意識;體驗數學來源于生活而服務于生活的特性。

五、教學重點和難點

重點:從實際問題中抽象出二元一次不等式(組),用平面區域刻畫二元一次不等式組的解集及用圖解法解簡單的二元線性規劃問題;

難點:二元一次不等式所表示的平面區域的探究,從實際情境中抽象出數學問題的過程探究,簡單的二元線性規劃問題的圖解法的探究。

高三數學教案范本篇2

加法原理和乘法原理

教學目標

正確理解和掌握加法原理和乘法原理,并能準確地應用它們分析和解決一些簡單的問題,從而發展學生的思維能力,培養學生分析問題和解決問題的能力.

教學重點和難點

重點:加法原理和乘法原理.

難點:加法原理和乘法原理的準確應用.

教學用具

投影儀.

教學過程設計

(一)引入新課

從本節課開始,我們將要學習中學代數內容中一個獨特的部分——排列、組合、二項式定理.它們研究對象獨特,研究問題的方法不同一般.雖然份量不多,但是與舊知識的聯系很少,而且它還是我們今后學習概率論的基礎,統計學、運籌學以及生物的選種等都與它直接有關.至于在日常的工作、生活上,只要涉及安排調配的問題,就離不開它.

今天我們先學習兩個基本原理.

(二)講授新課

1.介紹兩個基本原理

先考慮下面的問題:

問題1:從甲地到乙地,可以乘火車,也可以乘汽車,還可以乘輪船.一天中,火車有4個班次,汽車有2個班次,輪船有3個班次.那么一天中乘坐這些交通工具從甲地到乙地,共有多少種不同的走法?

因為一天中乘火車有4種走法,乘汽車有2種走法,乘輪船有3種走法,每種走法都可以完成由甲地到乙地這件事情.所以,一天中乘坐這些交通工具從甲地到乙地共有4+2+3=9種不同的走法.

這個問題可以總結為下面的一個基本原理(打出片子——加法原理):

加法原理:做一件事,完成它可以有幾類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法.那么,完成這件事共有N=m1+m2+…+mn種不同的方法.

請大家再來考慮下面的問題(打出片子——問題2):

問題2:由A村去B村的道路有3條,由B村去C村的道路有2條(見下圖),從A村經B村去C村,共有多少種不同的走法?

這里,從A村到B村,有3種不同的走法,按這3種走法中的每一種走法到達B村后,再從B村到C村又各有2種不同的走法,因此,從A村經B村去C村共有3×2=6種不同的走法.

一般地,有如下基本原理(找出片子——乘法原理):

乘法原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法.那么,完成這件事共有N=m1×m2×…×mn種不同的方法.

2.淺釋兩個基本原理

兩個基本原理的用途是計算做一件事完成它的所有不同的方法種數.

比較兩個基本原理,想一想,它們有什么區別?

兩個基本原理的區別在于:一個與分類有關,一個與分步有關.

看下面的分析是否正確(打出片子——題1,題2):

題1:找1~10這10個數中的所有合數.第一類辦法是找含因數2的合數,共有4個;第二類辦法是找含因數3的合數,共有2個;第三類辦法是找含因數5的合數,共有1個.

1~10中一共有N=4+2+1=7個合數.

題2:在前面的問題2中,步行從A村到B村的北路需要8時,中路需要4時,南路需要6時,B村到C村的北路需要5時,南路需要3時,要求步行從A村到C村的總時數不超過12時,共有多少種不同的走法?

第一步從A村到B村有3種走法,第二步從B村到C村有2種走法,共有N=3×2=6種不同走法.

題2中的合數是4,6,8,9,10這五個,其中6既含有因數2,也含有因數3;10既含有因數2,也含有因數5.題中的分析是錯誤的.

從A村到C村總時數不超過12時的走法共有5種.題2中從A村走北路到B村后再到C村,只有南路這一種走法.

(此時給出題1和題2的目的是為了引導學生找出應用兩個基本原理的注意事項,這樣安排,不但可以使學生對兩個基本原理的理解更深刻,而且還可以培養學生的學習能力)

進行分類時,要求各類辦法彼此之間是相互排斥的,不論哪一類辦法中的哪一種方法,都能單獨完成這件事.只有滿足這個條件,才能直接用加法原理,否則不可以.

如果完成一件事需要分成幾個步驟,各步驟都不可缺少,需要依次完成所有步驟才能完成這件事,而各步要求相互獨立,即相對于前一步的每一種方法,下一步都有m種不同的方法,那么計算完成這件事的方法數時,就可以直接應用乘法原理.

也就是說:類類互斥,步步獨立.

(在學生對問題的分析不是很清楚時,教師及時地歸納小結,能使學生在應用兩個基本原理時,思路進一步清晰和明確,不再簡單地認為什么樣的分類都可以直接用加法,只要分步而不管是否相互聯系就用乘法.從而深入理解兩個基本原理中分類、分步的真正含義和實質)

(三)應用舉例

現在我們已經有了兩個基本原理,我們可以用它們來解決一些簡單問題了.

例1 書架上放有3本不同的數學書,5本不同的語文書,6本不同的英語書.

(1)若從這些書中任取一本,有多少種不同的取法?

(2)若從這些書中,取數學書、語文書、英語書各一本,有多少種不同的取法?

(3)若從這些書中取不同的科目的書兩本,有多少種不同的取法?

(讓學生思考,要求依據兩個基本原理寫出這3個問題的答案及理由,教師巡視指導,并適時口述解法)

(1)從書架上任取一本書,可以有3類辦法:第一類辦法是從3本不同數學書中任取1本,有3種方法;第二類辦法是從5本不同的語文書中任取1本,有5種方法;第三類辦法是從6本不同的英語書中任取一本,有6種方法.根據加法原理,得到的取法種數是

N=m1+m2+m3=3+5+6=14.故從書架上任取一本書的不同取法有14種.

(2)從書架上任取數學書、語文書、英語書各1本,需要分成三個步驟完成,第一步取1本數學書,有3種方法;第二步取1本語文書,有5種方法;第三步取1本英語書,有6種方法.根據乘法原理,得到不同的取法種數是N=m1×m2×m3=3×5×6=90.故,從書架上取數學書、語文書、英語書各1本,有90種不同的方法.

(3)從書架上任取不同科目的書兩本,可以有3類辦法:第一類辦法是數學書、語文書各取1本,需要分兩個步驟,有3×5種方法;第二類辦法是數學書、英語書各取1本,需要分兩個步驟,有3×6種方法;第三類辦法是語文書、英語書各取1本,有5×6種方法.一共得到不同的取法種數是N=3×5+3×6+5×6=63.即,從書架任取不同科目的書兩本的不同取法有63種.

例2 由數字0,1,2,3,4可以組成多少個三位整數(各位上的數字允許重復)?

解:要組成一個三位數,需要分成三個步驟:第一步確定百位上的數字,從1~4這4個數字中任選一個數字,有4種選法;第二步確定十位上的數字,由于數字允許重復,共有5種選法;第三步確定個位上的數字,仍有5種選法.根據乘法原理,得到可以組成的三位整數的個數是N=4×5×5=100.

答:可以組成100個三位整數.

教師的連續發問、啟發、引導,幫助學生找到正確的解題思路和計算方法,使學生的分析問題能力有所提高.教師在第二個例題中給出板書示范,能幫助學生進一步加深對兩個基本原理實質的理解,周密的考慮,準確的表達、規范的書寫,對于學生周密思考、準確表達、規范書寫良好習慣的形成有著積極的促進作用,也可以為學生后面應用兩個基本原理解排列、組合綜合題打下基礎.

(四)歸納小結

歸納什么時候用加法原理、什么時候用乘法原理:

分類時用加法原理,分步時用乘法原理.

應用兩個基本原理時需要注意分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的.

(五)課堂練習

P222:練習1~4.

(對于題4,教師有必要對三個多項式乘積展開后各項的構成給以提示)

(六)布置作業

P222:練習5,6,7.

補充題:

1.在所有的兩位數中,個位數字小于十位數字的共有多少個?

(提示:按十位上數字的大小可以分為9類,共有9+8+7+…+2+1=45個個位數字小于十位數字的兩位數)

2.某學生填報高考志愿,有m個不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不同的志愿,求該生填寫志愿的方式的種數.

(提示:需要按三個志愿分成三步,共有m(m-1)(m-2)種填寫方式)

3.在所有的三位數中,有且只有兩個數字相同的三位數共有多少個?

(提示:可以用下面方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個只有兩個數字相同的三位數)

4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不同的選法?

(提示:由于8+5=13>10,所以10人中必有3人既會英語又會日語.

(1)N=5+2+3;(2)N=5×2+5×3+2×3)

高三數學教案范本篇3

數學教案-直線

教學設計示例

一、素質教育目標

(一)知識教學點

1.了解直線的概念.

2.掌握直線的表示方法,直線的公理和相交直線的概念.

3.使學生熟悉簡單的幾何語句,并能畫出正確的圖形表示幾何語句.

(二)能力訓練點

通過一些幾何語句(如:某點在直線上,即直線“經過”這點;過兩點有且只有一條直線,“有且只有”的雙重含義,即存在性和惟一性)的教學,訓練學生準確地使用幾何語言,并能畫出正確的幾何圖形.學生通過“說”與“畫”的嘗試實踐,體驗領悟到“言”與“圖”的辯證統一.通過教學培養學生嚴謹的學習作風、嚴密的思考方法及邏輯思維能力,這也是學習好數學必備的基本素質.

(三)德育滲透點

通過直線公理的講解,舉出實例說明它的應用.使學生體驗到從實踐到理論,在理論指導下再進行實踐的認識過程,潛移默化地影響學生,形成其理論聯系實際的思想方法,激勵學生要勤于動腦、敢于實踐.

(四)美育滲透點

通過對模型的觀察,使學生體會物體的對稱美,通過學生自己動手畫直線體會直線美,逐步培養學生的幾何美,激發學生的學習興趣.

二、學法引導

1.教師教法:引導學生發現知識,并嘗試指導與閱讀相結合.

2.學生學法:自主式學習方法(學生自己閱讀書本知識,總結學習成果)和小組討論式學習方法.

三、重點、難點、疑點及解決辦法

(-)重點

直線的表示方法,直線的公理及相交線.

(二)難點

兩直線相交為什么只有一個交點的理解,直線公理的理解.

(三)疑點

兩直線相交為什么只有一個交點?

(四)解決辦法

通過實驗法解決直線公理的理解;通過逆向思維解決兩直線相交為什么只有一個交點的疑點.

四、課時安排

1課時

五、教具學具準備

投影儀或電腦、自制膠片(軟盤)、三角板、木條、鐵釘.

六、師生互動活動設計

七、教學步驟

(一)明確目標

通過知識點教學,使學生理解和掌握直線及其性質,通過畫圖及對幾何語言的認識培養學生圖形結合的數學思維方式.

(二)整體感知

以情境教學為主,教師引導和指導,學生積極參與,逐步領悟,教師概括總結和學生自我學習評價相結合,提高課堂教學效益,充分體現以學為主的原則.

(三)教學過程

創設情境,引出課題

問題:投影儀顯示本章開始的正十二面體的模型,學生觀察這一復雜圖形中有哪些是我們認識的簡單圖形?(學生會很快找出線段和角.)

演示:投影從正十二面體的模型中分離出某一部分,即線段、角.

引出課題:要掌握比較復雜的圖形知識,需要從較簡單的圖形學起.本章我們就學習最簡單的圖形知識,即線段和角的知識,也就是我們從復雜圖形中分離出來的兩個圖形.在這個基礎上,以后我們再學習相交線、三角形、四邊形等等.

【板書】第一章 線段 角 一、直線 射線 線段 1.1直線

探究新知

1.直線的概念

師:對于直線,我們并不陌生,小學就已經認識了它,你能否根據自己的理解,說出幾種日常生活中“直線”形象的例子嗎?

【教法說明】學生有小學的基礎,會很快說出一些實際例子,如:黑板邊緣、書本邊緣、拉直的線、筆直的公路等等.教師要調動學生學習的積極性,引導學生展開想像的翅膀,充分發揮他們的想像力.

演示:學生發言的同時,教師利用電腦顯示一些實例,如:黑板、書本、筆直公路等等.然后變換抽象成一直線.

師:我們在代數中,常用一條特殊的直線,你知道嗎?

(學生會回想起數軸的概念,規定了原點、正方向和單位長度的直線.)

師小結:同學們回答得都很好,幾何中的“直線”是向兩方無限延伸的,我們可以用直尺畫直線,但畫出的只是直線的一部分.

2.直線的表示方法

學生活動:學生閱讀課本第9頁第四自然段,總結直線的表示方法.

【教法說明】對于直線的表示方法很簡單,教師直接告訴學生,學生也會理解.但記憶不一定深,這種采取讓學生自己閱讀的方法,一是培養學生看書的習慣;二是培養學生的閱讀能力,使學生愛看書且會看書.自己學到的知識要比教師直接告訴的記憶深刻得多.

由學生小結,得出直線的兩種表示方法:

(1)用直線上的兩個大寫字母表示.如圖:記作直線 .

(2)用一個小寫字母表示.如圖:記作直線 .

【教法說明】用字母表示圖形,小學沒有介紹,現在學生初步接觸,所以教師這里要補充說明點的表示方法.同時指出:以后學習中,常用字母表示幾何圖形,便于說明與研究.

3.點和直線的位置

找一個學生在黑板上畫一直線,另一個學生在黑板上找一點.然后,引導全體學生討論:平面上一條直線和一個點會有幾種位置關系呢?

師生共同總結:

(1) 點在直線上,如圖,敘述方法:點 在直線 上,或直線 經過點 .

(2) 點在直線外,如圖,敘述方法:點 在直線 外,或直線 不經過點 .

【教法說明】在點和直線的位置關系中,要注意幾何語言的訓練.點在直線上和點在直線外,各有兩種不同的敘述方法,要反復練習,以培養他們幾何語言的表達能力.

4.直線的公理

實驗嘗試:用一個鐵釘把木條釘在小黑板上,讓學生轉動木條,并觀察現象.教師在木條上加上一個釘子,再讓學生轉動,并觀察現象.

提出問題:以上實驗你認為說明了什么道理?

學生活動:學生分組討論,相互糾正或補充.

師小結:經過一點有無數條直線,經過兩點有一條直線,并且只有一條直線.同時板書公理內容.

[板書]公理:經過兩點有一條直線,并且只有一條直線.簡言之,過兩點有且只有一條直線.

體驗證實:教師小結后讓學生在練習本上分別經過一點和兩點畫直線.

【教法說明】(1)學生通過實驗,對直線公理有認識,但欲言之而不能,或雖能表達出意思但不嚴密.此時離不開教師的引導,教師一定要強調幾何語言的嚴密性和準確性.向學生們講清“有且只有”的兩層含義.第一個“有”說明的是存在性,過兩點有直線存在.“只有”說明的是惟一性,經過兩點的直線不會多,只有一條.如果把直線公理說成是:“經過兩點有一條直線”就是錯誤的.了.(2)公理得出后,讓學生再次動手驗證,使學生體會到公理的科學性,培養學生對待事物的科學態度,也便于學生對公理的記憶.(3)通過教師指導下的實驗活動,激發了學生的學習興趣,培養了學生勇于探索的精神,提高獨立分析問題解決問題的能力.

解決問題:通過學生間的相互討論、教師補充等手段,使學生了解直線公理的應用,如:木匠怎樣在木料上畫線;植樹時怎樣能使樹坑排列整齊等等

【教法說明】通過公理在日常生活中的應用舉例,使學生明白科學來源于生活并服務于生活的道理.只有現在好好學習,積累本領,長大后才能更好地報效祖國.并體會從實踐到理論,再回到實踐的認識過程.

5.相交線

師:根據直線公理,過兩點有幾條直線?

(學生會答出:有且只有一條.)

師:反過來,兩條不同的直線可能同時經過兩個點嗎?

(學生容易答出:不能)

師:兩條不同的直線不可能同時過兩個點,也就是說,兩條不同的直線不能有兩個公共點,當然,也不能有更多的公共點.因此,我們得出一個新概念;

[板書]如果兩條直線有一個交點,我們叫這兩條直線相交.這個公共點叫做它們的交點,這兩條直線叫相交直線.

如圖,直線 和直線 相交于點 ,點 是直線 和直線 的交點.

【教法說明】兩直線相交為什么只有一個交點,是本節課的難點.從 公理入手提出問題,再反過來考慮,這種逆向思維的方法使學生易于理解,突破難點,問題得以解決.

反饋練習

(出示投影1)

1.問答題

(1)經過一點能否畫直線?能畫幾條?

(2)經過兩點能否畫直線?能畫幾條?

(3)只用直線上的一個點來表示直線是否可以?用直線上的兩個點表示直線呢?

2.讀出下列語句,并按照這些語句畫圖

(1)直線 經過點 .

(2)點 在直線 外.

(3)經過 點的三條直線.

(4)直線 與 相交于點 .

(5)直線 經過 、 、 三點,點 在點 與點 之間.

(6) 是直線 外一點,過 點有一直線 與直線 相交于點 .

【教法說明】問答題的目的是進一步理解鞏固直線公理,作圖的目的是訓練學生的 “言”與“圖”的轉化能力.

(四)總結、擴展

以提問的形式,歸納出以下知識點:

八、布置作業

預習下節內容

補充:按照下面的圖形說出幾何語句.

(1) (2)

(3) (4)

(5)

附答案

補充:(1)直線 過 ( 點在直線 上).

(2)點 在直線 外(直線 不過 點).

(3)直線 、 相交于點 .

(4)直線 過 、 、 三點.

(5)直線 、 、 、都過點 .

思考題:課本第16頁B組的第2題.

高三數學教案范本篇4

高三數學研究性學習教案

集合中元素的個數問題的研究

一、活動主題的提出 根據新課改課程標準及高中數學教學要求,為切實實施素質教育,改革教學方式與方法,變教教材為用教材,有機地開展校本課程,培養學生的綜合實踐能力和創新能力,培養學生的探索精神和用數學的意識,以教材中的閱讀與思考為素教材,推進高中數學研究性學習的進程,對該問題進行研究,旨在為深化課堂教學內容,促進性自主研究和學習,從而探討高中數學研究性學習的實施辦法。

二、活動的具體目標 1、知識目標:通過集合中元素的個數問題的研究,探求有限集合中元素個數間的關系,比較幾個集合中元素個數的多少的方法。 2、能力目標:能多方面、多角度、多層面來探究問題,運用知識來解決問題,培養學生的發散思維和創新思維能力。 3、情感目標:學該課題的'研究,激發學生的學習熱情和學習興趣,享受探索成功的樂趣,培養科學態度與科學精神。

三、活動的實施過程、方式 1、出示活動內容與思考的問題(5分鐘)

(1)、學校小賣部進了兩次貨,第一次進的貨是圓珠筆、鋼筆、橡皮、筆記本、方便面、汽水共6種,第二次進的貨是圓珠筆、鉛筆、火腿腸、方便面共4種,兩次一共進了幾種貨?回答兩次一共進了10(6+4)種,對嗎?應如何解答?有哪些方法?因此可以得出什么結論(集合中元素個數間的關系)?

(2)、學校先舉辦了一次田徑運動會,某班有8名同學參賽,又舉辦了一次球類運動會,這個班有12名同學參賽,兩次運動會都參賽的有3人。兩次運動會中,這個班共有多少名同學參賽?應如何解答?由此解出以下結論(集合中元素個數間的關系)?又如:某班共30人,其中15人喜愛籃球運動,10人喜愛乒乓球運動,8人對這兩項運動都不喜愛,則喜愛籃球運動但不喜愛乒乓球運動的人是多少?應如何解答?

(3)涉及三個及三個以上,集合的并、交問題,能用類似的結論嗎?應怎樣表達?如:學校開運動會,設 , , 。若參加一百米的同學有5人,參加二百米跑的同學有6人,參加四百米跑的同學有7人,參加一百、二百同學有2人,參加一百、四百的同學有3人,參加二百、四百的同學有5人,三項都參加的人有1人,求有多少人參賽? (4)設計比較集合 與集合B=中元素的個數的多少的方法。 2、活動分工及時間安排(25分鐘) 全班以大組為單位(共四個大組)來研究以上4個問題。第一大組研究(1)問題,第二大組研究(2)個問題,第三大組研究(3)個問題,第四大組研究(4)個問題。

要求每組由學生自行確定一位負責人,并由此同學組織具體活動,明確該同學是下步活動交流中心發言人。有余力的組可協助思考其它組的問題。教師下到各組視察,了解情況,并作必要的指導。

3、活動交流(15分鐘) 請每一小組中心發言人回答各自分配的問題,全班其它同學補充,教師引導學生概括,得出結論:

①列舉法 問題(1)涉及的集合元素個數較少而且具體,可用列舉法寫出,很快可解決此問題,并由特殊到一般的思維方式概括得出:

②圖解法 當集合元素個數較少而不具體時,據題意畫出集合的韋恩圖,從而解決實際問題如問題(2),并歸納得出: 這一結論。

③數形結合法 利用集合間的關系,結合示意圖,據未知可設適當的未知數,建立方程求解,如問題(2)中的第二個問題。設喜愛籃球運動但不喜愛乒乓球運動的人數為x,則兩項都喜愛的有(15-x)人,喜愛乒乓球而不喜愛籃球的有[10-(15-x)]人,據題意有:x+(15-x)+[10-(15-x)]+8=30,解得x=12。故喜愛籃球運動但不喜愛乒乓球運動的有12人。

④歸納、猜想法 通過對問題(3)的求解,并結合問題(1)、(2)的求解,歸納、猜想出: 。

⑤概念派生法 通過問題(4)的研究求解,大部分學生較易得出 A,因此,由真子集的概念得出集合B的元素的個數少于集合A的元素的個數。這個結論是由概念的內涵派生出來的。

⑥“對應”法 經研究討論,同學中有“集合A的元素個數等于集合B的元素個數”的結論。少數同學運用“對應”思想:,顯然有此結論。這是一個多好的想法啊!

四、活動評價 充分運用高中數學子教材資源“閱讀與思考”,廣泛開展第二課堂活動,能很好地調動學生的學習興趣,能很好地開發學生的創造潛能,有助于學生探究能力和創新能力的提高。通過本課題的研究,至少有以下成功之處:第一、深化了課堂知識,進一步鞏固和拓展了所學知識;第二、培養了學生探究能力,很好地改變了學生的學習方式、方法;第三、增強了學生運用知識解決問題的意識:該課題以解決問題為背景,通過分工與合作和恰當地引導,學生用知識的意識明顯增強,運用知識解決問題的能力明顯提高;第四、培養了學生的思維品質。通過問題(4)的研究,我們得出了不一樣的結論,但都有道理,學生向引發爭議,學生的批判性思維得到較好的發展。

五、注意事項 1、教師課題準備要充分。①要認真鉆研材料;②查閱相關資料或研究成果;③作好周密的活動計劃。切忌無準備或準備不充分就上課。 2、避免“活動研究課”上課學科化,要充分地讓學生自主的活動,不人為地牽制學生。 3、積極引導學生搞好“交流——合作”環節的活動,充分聽取學生的意見,讓學生自己總結作法和研究成果,切忌教師包辦,強加于人。 4、堅持引導學生寫好活動總結和體會,歸納研究方法與成果,忌只管上課不管下課,課后不鞏固。

高三數學教案范本篇5

教學目標

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數的意義,能根據具體的問題,寫出符合要求的排列;

(3)會分析與數字有關的排列問題,培養學生的抽象能力和邏輯思維能力;

教學重點難點

重點是排列的定義、排列數并運用這個公式去解決有關排列數的應用問題。

難點是解有關排列的應用題。

教學過程設計

一、復習引入

上節課我們學習了兩個基本原理,請大家完成以下兩題的練習(用投影儀出示):

1.書架上層放著50本不同的社會科學書,下層放著40本不同的自然科學的書.

(1)從中任取1本,有多少種取法?

(2)從中任取社會科學書與自然科學書各1本,有多少種不同的取法?

2.某農場為了考察三個外地優良品種A,B,C,計劃在甲、乙、丙、丁、戊共五種類型的土地上分別進行引種試驗,問共需安排多少個試驗小區?

找一同學談解答并說明怎樣思考的的過程

第1(1)小題從書架上任取1本書,有兩類辦法,第一類辦法是從上層取社會科學書,可以從50本中任取1本,有50種方法;第二類辦法是從下層取自然科學書,可以從40本中任取1本,有40種方法.根據加法原理,得到不同的取法種數是50+40=90.第(2)小題從書架上取社會科學、自然科學書各1本(共取出2本),可以分兩個步驟完成:第一步取一本社會科學書,第二步取一本自然科學書,根據乘法原理,得到不同的取法種數是:50×40=2000.

第2題說,共有A,B,C三個優良品種,而每個品種在甲類型土地上實驗有三個小區,在乙類型的土地上有三個小區……所以共需3×5=15個實驗小區.

二、講授新課

學習了兩個基本原理之后,現在我們繼續學習排列問題,這是我們本節討論的重點.先從實例入手:

1.北京、上海、廣州三個民航站之間的直達航線,需要準備多少種不同飛機票?

由學生設計好方案并回答.

(1)用加法原理設計方案.

首先確定起點站,如果北京是起點站,終點站是上海或廣州,需要制2種飛機票,若起點站是上海,終點站是北京或廣州,又需制2種飛機票;若起點站是廣州,終點站是北京或上海,又需要2種飛機票,共需要2+2+2=6種飛機票.

(2)用乘法原理設計方案.

首先確定起點站,在三個站中,任選一個站為起點站,有3種方法.即北京、上海、廣泛任意一個城市為起點站,當選定起點站后,再確定終點站,由于已經選了起點站,終點站只能在其余兩個站去選.那么,根據乘法原理,在三個民航站中,每次取兩個,按起點站在前、終點站在后的順序排列不同方法共有3×2=6種.

根據以上分析由學生(板演)寫出所有種飛機票

再看一個實例.

在航海中,船艦常以“旗語”相互聯系,即利用不同顏色的旗子發送出各種不同的信號.如有紅、黃、綠三面不同顏色的旗子,按一定順序同時升起表示一定的信號,問這樣總共可以表示出多少種不同的信號?

找學生談自己對這個問題的想法.

事實上,紅、黃、綠三面旗子按一定順序的一個排法表示一種信號,所以不同顏色的同時升起可以表示出來的信號種數,也就是紅、黃、綠這三面旗子的所有不同順序的排法總數.

首先,先確定位置的旗子,在紅、黃、綠這三面旗子中任取一個,有3種方法;

其次,確定中間位置的旗子,當位置確定之后,中間位置的旗子只能從余下的兩面旗中去取,有2種方法.剩下那面旗子,放在最低位置.

根據乘法原理,用紅、黃、綠這三面旗子同時升起表示出所有信號種數是:3×2×1=6(種).

根據學生的分析,由另外的同學(板演)寫出三面旗子同時升起表示信號的所有情況.(包括每個位置情況)

第三個實例,讓全體學生都參加設計,把所有情況(包括每個位置情況)寫出來.

由數字1,2,3,4可以組成多少個沒有重復數字的三位數?寫出這些所有的三位數.

根據乘法原理,從四個不同的數字中,每次取出三個排成三位數的方法共有4×3×2=24(個).

請板演的學生談談怎樣想的?

第一步,先確定百位上的數字.在1,2,3,4這四個數字中任取一個,有4種取法.

第二步,確定十位上的數字.當百位上的數字確定以后,十位上的數字只能從余下的三個數字去取,有3種方法.

第三步,確定個位上的數字.當百位、十位上的數字都確定以后,個位上的數字只能從余下的兩個數字中去取,有2種方法.

根據乘法原理,所以共有4×3×2=24種.

下面由教師提問,學生回答下列問題

(1)以上我們討論了三個實例,這三個問題有什么共同的地方?

都是從一些研究的對象之中取出某些研究的對象.

(2)取出的這些研究對象又做些什么?

實質上按著順序排成一排,交換不同的位置就是不同的情況.

(3)請大家看書,第×頁、第×行.我們把被取的對象叫做雙元素,如上面問題中的民航站、旗子、數字都是元素.

上面第一個問題就是從3個不同的元素中,任取2個,然后按一定順序排成一列,求一共有多少種不同的排法,后來又寫出所有排法.

第二個問題,就是從3個不同元素中,取出3個,然后按一定順序排成一列,求一共有多少排法和寫出所有排法.

第三個問題呢?

從4個不同的元素中,任取3個,然后按一定的順序排成一列,求一共有多少種不同的排法,并寫出所有的排法.

給出排列定義

請看課本,第×頁,第×行.一般地說,從n個不同的元素中,任取m(m≤n)個元素(本章只研究被取出的元素各不相同的情況),按著一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.

下面由教師提問,學生回答下列問題

(1)按著這個定義,結合上面的問題,請同學們談談什么是相同的排列?什么是不同的排列?

從排列的定義知道,如果兩個排列相同,不僅這兩個排列的元素必須完全相同,而且排列的順序(即元素所在的位置)也必須相同.兩個條件中,只要有一個條件不符合,就是不同的排列.

如第一個問題中,北京—廣州,上海—廣州是兩個排列,第三個問題中,213與423也是兩個排列.

再如第一個問題中,北京—廣州,廣州—北京;第二個問題中,紅黃綠與紅綠黃;第三個問題中231和213雖然元素完全相同,但排列順序不同,也是兩個排列.

(2)還需要搞清楚一個問題,“一個排列”是不是一個數?

生:“一個排列”不應當是一個數,而應當指一件具體的事.如飛機票“北京—廣州”是一個排列,“紅黃綠”是一種信號,也是一個排列.如果問飛機票有多少種?能表示出多少種信號.只問種數,不用把所有情況羅列出來,才是一個數.前面提到的第三個問題,實質上也是這樣的.

三、課堂練習

大家思考,下面的排列問題怎樣解?

有四張卡片,每張分別寫著數碼1,2,3,4.有四個空箱,分別寫著號碼1,2,3,4.把卡片放到空箱內,每箱必須并且只能放一張,而且卡片數碼與箱子號碼必須不一致,問有多少種放法?(用投影儀示出)

分析:這是從四張卡片中取出4張,分別放在四個位置上,只要交換卡片位置,就是不同的放法,是個附有條件的排列問題.

解法是:第一步把數碼卡片四張中2,3,4三張任選一個放在第1空箱.

第二步從余下的三張卡片中任選符合條件的一張放在第2空箱.

第三步從余下的兩張卡片中任選符合條件的一張放在第3空箱.

第四步把最后符合條件的一張放在第四空箱.具體排法,用下面圖表表示:

所以,共有9種放法.

四、作業

課本:P232練習1,2,3,4,5,6,7.

高三數學教案范本篇6

一、教材分析

1、教材內容

本節課是蘇教版第二章《函數概念和基本初等函數Ⅰ》2、1、3函數簡單性質的第一課時,該課時主要學習增函數、減函數的定義,以及應用__解決一些簡單問題、

2、教材所處地位、作用

函數的性質是研究函數的基石,函數的單調性是首先研究的一個性質、通過對本節課的學習,讓學生領會函數單調性的概念、掌握證明函數單調性的步驟,并能運用單調性知識解決一些簡單的實際問題、通過上述活動,加深對函數本質的認識、函數的單調性既是學生學過的函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性的基礎、此外在比較數的大小、函數的定性分析以及相關的數學綜合問題中也有廣泛的應用,它是整個高中數學中起著承上啟下作用的核心知識之一、從方法__的角度分析,本節教學過程中還滲透了探索發現、數形結合、歸納轉化等數學思想方法、

3、教學目標

(1)知識與技能:使學生理解函數單調性的概念,掌握判別函數單調性的方法;

(2)過程與方法:從實際生活問題出發,引導學生自主探索函數單調性的概念,應用圖象和單調性的__解決函數單調性問題,讓學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力

(3)情感態度價值觀:讓學生體驗數學的科學功能、符號功能和工具功能,培養學生直覺觀察、探索發現、科學論證的良好的數學思維品質

4、重點與難點

教學重點:

(1)函數單調性的概念;

(2)運用函數單調性的定義判斷一些函數的單調性

教學難點:

(1)函數單調性的知識形成;

(2)利用函數圖象、單調性的定義判斷和證明函數的單調性

二、教法分析與學法指導

本節課是一節較為抽象的數學概念課,因此,教法上要注意:

1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發了學生求知欲,調動了學生主體參與的積極性

2、在運用__解題的過程中,緊扣定義中的關鍵語句,通過學生的主體參與,逐個完成對各個難點的突破,以獲得各類問題的解決

3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用、具體體現在設問、講評和規范書寫等方面,要教會學生清晰的思維、嚴謹的推理,并成功地完成書面表達

4、采用投影儀、多媒體等現代教學手段,增大教學容量和直觀性

在學法上:

1、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和解決問題的能力

2、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的一個飛躍

高三數學教案范本篇7

1.導數概念及其幾何意義

(1)了解導數概念的實際背景;

(2)理解導數的幾何意義.

2.導數的運算

(1)能根據導數定義,求函數y=c(c為常數),y=x,y=x2,y=x3,y=,y=的導數;

(2)能利用基本初等函數的導數公式和導數的四則運算法則求簡單函數的導數,能求簡單的復合函數(僅限于形如f(ax+b)的復合函數)的導數.

3.導數在研究函數中的應用

(1)了解函數單調性和導數的關系,能利用導數研究函數的單調性,會求函數的單調區間(其中多項式函數一般不超過三次);

(2)了解函數在某點取得極值的必要條件和充分條件;會用導數求函數的極大值、極小值(其中多項式函數一般不超過三次);會求閉區間上函數的最大值、最小值(其中多項式函數一般不超過三次).

4.生活中的優化問題

會利用導數解決某些實際問題.

5.定積分與微積分基本定理

(1)了解定積分的實際背景,了解定積分的基本思想,了解定積分的概念;

(2)了解微積分基本定理的含義.本章重點:

1.導數的概念;

2.利用導數求切線的斜率;

3.利用導數判斷函數單調性或求單調區間;

4.利用導數求極值或最值;

5.利用導數求實際問題最優解.

本章難點:導數的綜合應用.導數與定積分是微積分的核心概念之一,也是中學選學內容中較為重要的知識之一.由于其應用的廣泛性,為我們解決有關函數、數列問題提供了更一般、更有效的方法.因此,本章知識在高考題中常在函數、數列等有關最值不等式問題中有所體現,既考查數形結合思想,分類討論思想,也考查學生靈活運用所學知識和方法的能力.考題可能以選擇題或填空題的形式來考查導數與定積分的基本運算與簡單的幾何意義,而以解答題的形式來綜合考查學生的分析問題和解決問題的能力.

知識網絡

3.1導數的概念與運算

典例精析

題型一導數的概念

【例1】已知函數f(x)=2ln3x+8x,

求f(1-2Δx)-f(1)Δx的值.

【解析】由導數的定義知:

f(1-2Δx)-f(1)Δx=-2f(1-2Δx)-f(1)-2Δx=-2f′(1)=-20.

【點撥】導數的實質是求函數值相對于自變量的變化率,即求當Δx→0時,平均變化率ΔyΔx的極限.

【變式訓練1】某市在一次降雨過程中,降雨量y(mm)與時間t(min)的函數關系可以近似地表示為f(t)=t2100,則在時刻t=10min的降雨強度為()

A.15mm/minB.14mm/min

C.12mm/minD.1mm/min

【解析】選A.

題型二求導函數

【例2】求下列函數的導數.

(1)y=ln(x+1+x2);

(2)y=(x2-2x+3)e2x;

(3)y=3x1-x.

【解析】運用求導數公式及復合函數求導數法則.

(1)y′=1x+1+x2(x+1+x2)′

=1x+1+x2(1+x1+x2)=11+x2.

(2)y′=(2x-2)e2x+2(x2-2x+3)e2x

=2(x2-x+2)e2x.

(3)y′=13(x1-x1-x+x(1-x)2

=13(x1-x1(1-x)2

=13x(1-x)

【變式訓練2】如下圖,函數f(x)的圖象是折線段ABC,其中A、B、C的坐標分別為(0,4),(2,0),(6,4),則f(f(0))=;f(1+Δx)-f(1)Δx=(用數字作答).

【解析】f(0)=4,f(f(0))=f(4)=2,

由導數定義f(1+Δx)-f(1)Δx=f′(1).

當0≤x≤2時,f(x)=4-2x,f′(x)=-2,f′(1)=-2.

題型三利用導數求切線的斜率

【例3】已知曲線C:y=x3-3x2+2x,直線l:y=kx,且l與C切于點P(x0,y0)(x0≠0),求直線l的方程及切點坐標.

【解析】由l過原點,知k=y0x0(x0≠0),又點P(x0,y0)在曲線C上,y0=x30-3x20+2x0,

所以y0x0=x20-3x0+2.

而y′=3x2-6x+2,k=3x20-6x0+2.

又k=y0x0,

所以3x20-6x0+2=x20-3x0+2,其中x0≠0,

解得x0=32.

所以y0=-38,所以k=y0x0=-14,

所以直線l的方程為y=-14x,切點坐標為(32,-38).

【點撥】利用切點在曲線上,又曲線在切點處的切線的斜率為曲線在該點處的導數來列方程,即可求得切點的坐標.

【變式訓練3】若函數y=x3-3x+4的切線經過點(-2,2),求此切線方程.

【解析】設切點為P(x0,y0),則由

y′=3x2-3得切線的斜率為k=3x20-3.

所以函數y=x3-3x+4在P(x0,y0)處的切線方程為

y-y0=(3x20-3)(x-x0).

又切線經過點(-2,2),得

2-y0=(3x20-3)(-2-x0),①

而切點在曲線上,得y0=x30-3x0+4,②

由①②解得x0=1或x0=-2.

則切線方程為y=2或9x-y+20=0.

總結提高

1.函數y=f(x)在x=x0處的導數通常有以下兩種求法:

(1)導數的定義,即求ΔyΔx=f(x0+Δx)-f(x0)Δx的值;

(2)先求導函數f′(x),再將x=x0的值代入,即得f′(x0)的值.

2.求y=f(x)的導函數的幾種方法:

(1)利用常見函數的導數公式;

(2)利用四則運算的導數公式;

(3)利用復合函數的求導方法.

3.導數的幾何意義:函數y=f(x)在x=x0處的導數f′(x0),就是函數y=f(x)的曲線在點P(x0,y0)處的切線的斜率.

高三數學教案范本篇8

【教學目標】:

(1)知識目標:

通過實例,了解聯結詞“且”、“或”的含義;

(2)過程與方法目標:

了解含有邏輯聯結詞“且”、“或”復合命題的構成形式,以及會對新命題作出真假的判斷;

(3)情感與能力目標:

在知識學習的基礎上,培養學生簡單推理的技能.

【教學重點】:

通過數學實例,了解邏輯聯結詞“或”、“且”的含義,使學生能正確地表述相關數學內容.

【教學難點】:

簡潔、準確地表述“或”命題、“且”等命題,以及對新命題真假的判斷.

【教學過程設計】:

教學環節教學活動設計意圖

情境引入問題:

下列三個命題間有什么關系?

(1)12能被3整除;

(2)12能被4整除;

(3)12能被3整除且能被4整除;通過數學實例,認識用用邏輯聯結詞“且”聯結兩個命題可以得到一個新命題;

知識建構歸納總結:

一般地,用邏輯聯結詞“且”把命題p和命題q聯結起來,就得到一個新命題,

記作,讀作“p且q”.

引導學生通過通過一些數學實例分析,概括出一般特征。

1、引導學生閱讀教科書上的例1中每組命題p,q,讓學生嘗試寫出命題,判斷真假,糾正可能出現的邏輯錯誤。學習使用邏輯聯結詞“且”聯結兩個命題,根據“且”的含義判斷邏輯聯結詞“且”聯結成的新命題的真假。

2、引導學生閱讀教科書上的例2中每個命題,讓學生嘗試改寫命題,判斷真假,糾正可能出現的邏輯錯誤。

歸納總結:

當p,q都是真命題時,是真命題,當p,q兩個命題中有一個是假命題時,是假命題,

學習使用邏輯聯結詞“且”改寫一些命題,根據“且”的含義判斷原先命題的真假。

引導學生通過通過一些數學實例分析命題p和命題q以及命題的真假性,概括出這三個命題的真假性之間的一般規律。

高三數學教案范本篇9

高三第一階段復習,也稱“知識篇”。在這一階段,學生重溫高一、高二所學課程,全面復習鞏固各個知識點,熟練掌握基本方法和技能;然后站在全局的高度,對學過的知識產生全新認識。在高一、高二時,是以知識點為主線索,依次傳授講解的,由于后面的相關知識還沒有學到,不能進行縱向聯系,所以,學的知識往往是零碎和散亂,而在第一輪復習時,以章節為單位,將那些零碎的、散亂的知識點串聯起來,并將他們系統化、綜合化,把各個知識點融會貫通。對于普通高中的學生,第一輪復習更為重要,我們希望能做高考試題中一些基礎題目,必須側重基礎,加強復習的針對性,講求實效。

一、內容分析說明

1、本小節內容是初中學習的多項式乘法的繼續,它所研究的二項式的乘方的展開式,與數學的其他部分有密切的聯系:

(1)二項展開式與多項式乘法有聯系,本小節復習可對多項式的變形起到復習深化作用。

(2)二項式定理與概率理論中的二項分布有內在聯系,利用二項式定理可得到一些組合數的恒等式,因此,本小節復習可加深知識間縱橫聯系,形成知識網絡。

(3)二項式定理是解決某些整除性、近似計算等問題的一種方法。

2、高考中二項式定理的試題幾乎年年有,多數試題的難度與課本習題相當,是容易題和中等難度的試題,考察的題型穩定,通常以選擇題或填空題出現,有時也與應用題結合在一起求某些數、式的近似值。

二、學校情況與學生分析

(1)我校是一所鎮普通高中,學生的基礎不好,記憶力較差,反應速度慢,普遍感到數學難學。但大部分學生想考大學,主觀上有學好數學的愿望。

(2)授課班是政治、地理班,學生聽課積極性不高,聽課率低(60﹪),注意力不能持久,不能連續從事某項數學活動。課堂上喜歡輕松詼諧的氣氛,大部分能機械的模仿,部分學生好記筆記。

三、教學目標

復習課二項式定理計劃安排兩個課時,本課是第一課時,主要復習二項展開式和通項。根據歷年高考對這部分的考查情況,結合學生的特點,設定如下教學目標:

1、知識目標:

(1)理解并掌握二項式定理,從項數、指數、系數、通項幾個特征熟記它的展開式。

(2)會運用展開式的通項公式求展開式的特定項。

2、能力目標:

(1)教給學生怎樣記憶數學公式,如何提高記憶的持久性和準確性,從而優化記憶品質。記憶力是一般數學能力,是其它能力的基礎。

(2)樹立由一般到特殊的解決問題的意識,了解解決問題時運用的數學思想方法。

3、情感目標:通過對二項式定理的復習,使學生感覺到能掌握數學的部分內容,樹立學好數學的信心。有意識地讓學生演練一些歷年高考試題,使學生體驗到成功,在明年的高考中,他們也能得分。

高三數學教案范本篇10

數學教案-角

教學建議

一、知識結構

二、重點、難點分析

角的定義既是本節教學的重點,也是難點.本節知識建立在射線、線段等相關知識的基礎上,同時也是進一步學習角的度量、比較、畫法,以及深入研究平面幾何圖形的基礎.

1.角的定義是由實際生活中具有角的形象的物體抽象出來的,理解角的定義一定要明確角的邊為射線,角為平面內的點集.角也可認為是一條射線繞它的端點從一個位置旋轉到另一個位置而形成的圖形,這里的線動成角體現了運動變化的思想.

2.角的表示法,小學沒有介紹,這里首先說明用三個字母記角.對此,要特別強調表示頂點的字母一定要寫在中間,唯有在頂點處只有一個角的情況,才可只用頂點一個字母來記這個角,否則分不清這個字母究竟表示哪一個角.在講往數字或希臘字母來記角時,可再讓學生作些練習,說出所記的角怎樣用三個字母來表示.

三、教法建議

1.本節教學可以在簡單復習直線、射線、線段的基礎上引入,將問題的研究方向轉向這些最基本的幾何圖形與點結合以及互相結合能夠組成什么圖形.可以嘗試讓同學們擺火柴,重點應在具有角的形象的圖形,然后可以在列舉、觀察、分析學習、生活、生產中同樣具有角的形象的物體的基礎上,讓同學們嘗試給出角的定義.

2.關于角的另一種定義,也可以通過實物演示的方式得出,冽如一手扯住線的一端,另一手拉住線的另一端旋轉.重點應是對運動變化的觀點的滲透.平角和周角也可以讓學生給出,真正理解“平”與“直”的含義.

3.教學過程 中可以給出一些判別給定圖形是不是角的練習,幫助學生理解角的相關概念.同時將角的知識與學生的生活實踐緊密的結合起來.可以充分發揮多媒體教學的優勢,結合圖片、動畫、課件輔助教學.

教學設計示例

一、素質教育目標

(一)知識教學點

1.理解角、周角、平角及角的頂點、角的邊等概念.

2.掌握角的表示方法.

(二)能力訓練點

1.通過由學生觀察實物圖形抽象出角的定義,培養學生的抽象概括能力.通過學生獨立閱讀總結角的幾種表示方法,培養學生的閱讀理解能力.

2.通過角的兩個定義的得出,培養學生多角度分析考慮問題的能力.

(三)德育滲透點

1.通過日常生活中具體的角的形象概括出角的定義,說明幾何來源于生活,又反過來為生產、生活服務.鼓勵學生努力學好文化知識,為社會做貢獻.

2.通過旋轉觀點定義角,說明事物是不斷變化和相互轉化的,我們不能用一成不變的觀點去看待某些事物.

(四)美育滲透點

通過學習角使學生體會幾何圖形的對稱美和動態美,培養學生的審美意識,提高學生對幾何的學習興趣.

二、學法引導

1.教師教法:引導發現,嘗試指導與閱讀理解相結合.

2.學生學法:主動發現,自我理解與閱讀法相結合.

三、重點·難點·疑點及解決辦法

(一)重點

角的`概念及角的表示方法.

(二)難點

周角、平角概念的理解.

(三)疑點

平角與直線、周角與射線的區別.

(四)解決辦法

通過演示法使學生正確理解平角、周角的概念,適當加以解釋,簡明扼要,條理清楚即可,不必做過多的解釋.

四、課時安排

1課時

五、教具學具準備

投影儀(電腦、實物投影)、三角板、圓規、自制膠片.

六、師生互動活動設計

1.教師創設情境,學生進入.

2.教師步步設問,提出問題,學生在回答問題、自己畫圖、觀察圖形的過程中掌握角的靜態定義.

3.教師指導,學生閱讀、歸納四種表示角的方法.

4.教師用電腦直觀演示展示角的旋轉定義.

5.反饋練習.

6.師生討論總結.

7.測試.

七、教學步驟

(一)明確目標

使學生能正確認識角的兩種定義及相關概念,掌握角的表示方法,正確理解平角、周角的概念,并能從圖形上進行識別.

(二)整體感知

以現代化教學為手段,調動學生主動參與的積極性,使學生在動手過程中自覺地掌握知識點.

(三)教學過程

創設情境,引出課題

師:前幾節我們具體研究了小學時初步認識的直線、射線、線段.另外,小學時我們還認識了另一種幾何圖形——角.你能說出幾個日常生活中給我們角的形象的物體嗎?(學生會很快說出周圍的課桌、門窗、墻壁的角;圓規張開兩腳;鐘表的時針與分針間形成的角等等.)

【教法說明】為了更形象、更直觀用實物投影顯示一些實物圖形.

讓學生說出口常生活中給我們角的形象的物體,充分發揮學生的想像力,培養其觀察事物的習慣,同時,活躍課堂氣氛,調動學生學習積極性.也培養了學生從具體實物圖形中抽象出幾何圖形的能力.

師:的確如此,在我們日常生活中,角的形象可以說無處不在.因此,一些圖案的設計;機械零件的制圖等等,常常用到角的畫法、角的度量、角的大小比較等知識.從這節課開始我們就具體地研究角.希望同學們認真學習,掌握真本領,將來為社會做貢獻.

探究新知

1.角的靜止觀點定義的得出

提出問題:通過以上舉例和小學時你對角的認識,你能畫出幾個不同形狀的角嗎?

學生活動:在練習本上,畫出幾個不同形狀的角,找一個學生到黑板上畫圖.可能出現下列情況:

師:根據小學所學你能指出所畫角的邊和頂點嗎?(學生結合自己理解和小學所學,會很快指出角的邊和頂點.)

師:同學們請觀察,角的兩邊是前面我們學過的什么圖形?它們的位置關系如何?你能否根據自己的理解和剛才老師的提問,描述一下怎樣的幾何圖形叫做角嗎?

學生活動:學生討論,然后找代表回答.

教師在學生回答的基礎上,給予糾正和補充,最后給出角的正確定義.

[板書]角:有公共端點的兩條射線組成的圖形叫做角,這個公共端點叫角的頂點,這兩條射線叫角的兩邊.

(出示投影1)

指出以上圖形,角的頂點和角的邊.

提出問題:角的大小與角兩邊的長短有關系嗎?

學生討論并演示:拿大小不同的兩副三角板或學生的三角板與教師的三角板對比演示.讓學生盡可能地發表自己的看法和觀點.不要拘泥于課堂上的形式,充分調動學生回答問題的積極性.

教師對學生的回答給予肯定或否定后小結:角的兩邊既然是射線,則可以向一方無限延長,所以角的大小與所畫角的兩邊長短無關,僅與角的兩邊張開的程度有關.

【教法說明】角的定義的得出,不是教師以枯燥的形式強加給學生,而是讓學生自己在畫圖、觀察圖形的過程中,由教師引導提出問題,步步追問,自覺地去認識.在問題解決的過程中,在復習舊知識中,不知不覺學到了新知識——角.這樣縮短了新舊知識間的距離,減輕了學生心理上的壓力,使他們感到新知識并不難,在輕松愉快中學到了知識.同時也會感受到新舊知識之間的聯系.對發展學生用普遍聯系的觀點看待事物有很好的作用.

2.角的表示方法

師:研究角,像直線、射線、線段一樣,可以用字母表示.下面我們閱讀課本第25負第三自然段,總結角的表示方法有幾種,你能否準確地表示一個角并讀出來.

學生活動:學生看書,可以相互討論,然后歸納出角的幾種表示方法.

【教法說明】角的四種表示方法,課本中用一自然段說明,語言通俗,很易理解,學生完全可以通過閱讀,分出四個層次,四種表示角的方法.因此教師要大膽放手,培養學生閱讀理解能力,歸納總結能力.

學生閱讀后,多找幾個學生回答.最后通過不斷補充、完善,歸納整理得出角的四種表示方法,教師整理板書.

[板書]

圖1 圖2 圖3

【教法說明】總結以上四種表示方法時,對前兩種表示方法,應注意的問題要加以強調.第一種表示方法必須注意:頂點字母在中間.第二種表示方法只限于頂點只有一個角.這是以后學生書寫過程中最易出錯的地方.另外,讓學生區分角的符號與小于號.這些應注意的問題最好由學生討論,學生發現后歸納總結.

反饋練習:投影打出以下題目

指出圖中有幾個角,并用適當的方法表示它們.

3.用旋轉的觀點定義角

師:同學們看老師從另一個角度提出新問題.前面我們給角下過定義,是在靜止的情況下,觀察角是由怎樣的兩條射線組成.下面,我們從運動的觀點觀察一下角的形成.

圖1

演示:教師由電腦顯示一條射線,然后射線繞其端點旋轉,到另一個位置停止則形成一個角,如圖1所示.舉例幫助學生理解:鐘擺看成一條射線,從一個位置擺到另一個位置則形成一個角.

學生討論并試述定義:學生敘述不會太嚴密,教師糾正、補充后板書.

【板書】角:角還可以看成是一條射線從一個位置旋轉到另一個位置所形成的圖形.

說明:射線旋轉時,經過的部分是角的內部.讓學生說明平面內除了角的內部外還有幾部分,分別是什么?(角的邊與角的外部)

【教法說明】角的旋轉觀點的定義是教學中的一個難點,學生不易理解.因此,結合電腦的顯示,舉出實例等手段加強教學的直觀性.

4.平角、周角的概念

師:角可以看成是一射線繞其端點旋轉所形成的圖形.那么,旋轉時有無特殊情況呢?

由電腦演示并說明:

射線 繞點 旋轉,終止位置 和起始位置 成一條直線時,所成的角叫平角,如圖2所示.同樣可表示為 ,頂點 ,兩邊為射線 和射線 .繼續旋轉,回到起始位置 時,所成的角叫做周角,如圖3所示.周角的頂點為 ,兩邊重合成一條射線.

圖2

師說明:(1)平角與直線、周角與射線是兩個不同的概念,它們的圖形表面上看一樣,但本質上不同.如:直線上取點表示點在直線上的位置,而平角是由頂點和邊組成的角這一幾何圖形.

(2)在這一書中,所說的角,除非特殊注明,都是指沒有旋轉到成為平角的角.

【教法說明】平角、周角概念學生不容易理解,所以要通過直觀演示后教師加以解釋,但也不要解釋得過多.否則,學生會更糊涂,簡明扼要,條理清楚即可.

反饋練習:投影顯示

1.指出圖中以 為頂點的平角的兩邊

2.指出圖中(包含平角在內)的角有幾個,并分別讀出它們

對以上練習發現問題及時糾正.

變式練習,培養能力

投影出示:

1.如圖1: 可以記作 嗎?為什么?

圖1

2.如圖2: 、 分別是 、 上的點

① 與 是同一個角嗎?

② 與 是同一個角嗎?

3.如圖3: 是什么角?頂點、邊分別是什么?

圖2 圖3

【教法說明】為活躍課堂氣氛,以上練習可以搶答.

(四)總結、擴展

學生看書,回答本節學了哪些主要內容,同桌可以相互討論.最后教師按學生的回答歸納出本節知識脈絡.投影顯示:

八、布置作業

預習下節內容.

九、板書設計

同七、(四)中的格式,在表示方法中加上圖形.

高三數學教案范本篇11

一、過程目標

1通過師生之間、學生與學生之間的互相交流,培養學生的數學交流能力和與人合作的精神。

2通過對對數函數的學習,樹立相互聯系、相互轉化的觀點,滲透數形結合的數學思想。

3通過對對數函數有關性質的研究,培養學生觀察、分析、歸納的思維能力。

二、識技能目標

1理解對數函數的概念,能正確描繪對數函數的圖象,感受研究對數函數的意義。

2掌握對數函數的性質,并能初步應用對數的性質解決簡單問題。

三、情感目標

1通過學習對數函數的概念、圖象和性質,使學生體會知識之間的有機聯系,激發學生的學習興趣。

2在教學過程中,通過對數函數有關性質的研究,培養觀察、分析、歸納的思維能力以及數學交流能力,增強學習的積極性,同時培養學生傾聽、接受別人意見的優良品質。

教學重點難點:

1對數函數的定義、圖象和性質。

2對數函數性質的初步應用。

教學工具:多媒體

高三數學教案范本篇12

一、關于教材分析

1.教材的地位和作用

“曲線和方程”是高中數學第二冊(上)第七章《直線和圓的方程》的重點內容之一,是在介紹了“直線的方程”之后,對一般曲線(也包括直線)與二元方程的關系作進一步的研究。這部分內容從理論上揭示了幾何中的“形”與代數中的“數”相統一的關系,為“形”與“數”的相互轉化開辟了途徑,同時也體現了解析幾何的基本思想,為解析幾何的教學奠定了一個理論基礎。

2.教學內容的選擇和處理

本節教材主要講解曲線的方程和方程的曲線、坐標法、解析幾何等概念,討論怎樣求曲線的方程以及曲線的交點等問題。共分四課時完成,這是第一課時。此課時的主要內容是建立“曲線的方程”和“方程的曲線”這兩個概念,并對概念進行初步運用。我在處理教材時,不拘泥于教材,敢于大膽進行調整。主要體現在對曲線的方程和方程的曲線的定義進行歸納上,通過構造反例,引導學生進行觀察、討論、分析、正反對比,逐步揭示其內涵,然后在此基礎上歸納定義;再一點就是在得出定義之后,引導學生用集合觀點來理解概念。

3.教學目標的確定

根據教學大綱的要求以及本節教材的地位和作用,結合高二學生的認知特點,我認為,通過本節課的教學,應使學生理解曲線和方程的概念;會用定義來判斷點是否在方程的曲線上、證明曲線的方程;培養學生分析、判斷、歸納的邏輯思維能力,滲透數形結合的數學思想;并借用曲線與方程的關系進行辯證唯物主義觀點的教育;通過對問題的不斷探討,培養學生勇于探索的精神。

4.關于教學重點、難點和關鍵

由于曲線和方程的概念體現了解析幾何的基本思想,學生只有透徹理解了這個概念,才能用解析法去研究幾何圖形,才算是踏上解析幾何的入門之徑。因此,我把曲線和方程的概念確定為本節課的教學重點。另外,由于曲線和方程的概念比較抽象,加之剛剛進入高二的學生抽象思維能力還不是很強,因此,他們對曲線和方程關系的“純粹性”與“完備性”不易理解,弄不清它們之間的區別與聯系,易產生“為什么要規定這樣兩個關系”的疑問。所以,對概念的理解,尤其是對“兩個關系”的認識是本節課的難點。

如何突破這一難點呢?由于學生在學習本節之前,已經有了用方程表示幾何圖形的感性認識(比如用方程表示直線、拋物線、雙曲線等)。因此,突破這一難點的關鍵在于利用學生積累的這些感性認識,通過分析反例,來揭示“兩個關系”中缺少任何一個都將破壞曲線與方程的統一性(即擴大概念的外延)。

二、關于教學方法與教學手段的選用

根據本節課的教學內容和學生的實際水平,我采用的是引導發現法和CAI輔助教學。

(1)引導發現法是通過教師的引導、啟發,調動學生參與教學活動的積極性,充分發揮教師的主導作用和學生的主體作用。在教學中通過設置疑問,創造出思維情境,然后引導學生動腦、動手、動口,使學生在開放、民主、和諧的教學氛圍中獲取知識,提高能力,促進思維的發展。

(2)借助CAI輔助教學,增大教學的容量和直觀性,增強學習興趣,從而達到提高教學效果和教學質量的目的。(這也符合教學論中的直觀性原則和可接受性原則。)

(3)教具:三角板、多媒體。

三、關于學法指導

古人說得好,“授人以魚,只供一飯;教人以漁,終身受用。”我們在向學生傳授知識的同時,必須教給他們好的學習方法,讓他們學會學習、享受學習。因此,在本節課的教學中,引導學生開展“仔細看、動腦想、多交流、細比較、勤練習”的研討式學習,加大學生的參與機會,增強參與意識,讓他們體驗獲取知識的歷程,掌握思考問題的方法,逐漸培養他們“會觀察”、“會類比”、“會分析”、“會歸納”的能力。

高三數學教案范本篇13

教學準備

教學目標

數列求和的綜合應用

教學重難點

數列求和的綜合應用

教學過程

典例分析

3.數列{an}的前n項和Sn=n2-7n-8,

(1)求{an}的通項公式

(2)求{an}的前n項和Tn

4.等差數列{an}的公差為,S100=145,則a1+a3+a5+…+a99=

5.已知方程(___2-2___+m)(___2-2___+n)=0的四個根組成一個首項為的等差數列,則m-n=

6.數列{an}是等差數列,且a1=2,a1+a2+a3=12

(1)求{an}的通項公式

(2)令bn=an___n,求數列{bn}前n項和公式

7.四數中前三個數成等比數列,后三個數成等差數列,首末兩項之和為21,中間兩項之和為18,求此四個數

8.在等差數列{an}中,a1=20,前n項和為Sn,且S10=S15,求當n為何值時,Sn有值,并求出它的值

.已知數列{an},an∈N______,Sn=(an+2)2

(1)求證{an}是等差數列

(2)若bn=an-30,求數列{bn}前n項的最小值

0.已知f(___)=___2-2(n+1)___+n2+5n-7(n∈N______)

(1)設f(___)的圖象的頂點的橫坐標構成數列{an},求證數列{an}是等差數列

(2設f(___)的圖象的頂點到___軸的距離構成數列{dn},求數列{dn}的前n項和sn.

11.購買一件售價為5000元的商品,采用分期付款的辦法,每期付款數相同,購買后1個月第1次付款,再過1個月第2次付款,如此下去,共付款5次后還清,如果按月利率0.8%,每月利息按復利計算(上月利息要計入下月本金),那么每期應付款多少?(精確到1元)

12.某商品在最近100天內的價格f(t)與時間t的

函數關系式是f(t)=

銷售量g(t)與時間t的函數關系是

g(t)=-t/3+109/3(0≤t≤100)

求這種商品的日銷售額的值

高三數學教案范本篇14

學習對數函數的教案設計

教學目標

1. 在指數函數及反函數概念的基礎上,使學生掌握對數函數的概念,能正確描繪對數函數的圖像,掌握對數函數的性質,并初步應用性質解決簡單問題.

2. 通過對數函數的學習,樹立相互聯系,相互轉化的觀點,滲透數形結合,分類討論的思想.

3. 通過對數函數有關性質的研究,培養學生觀察,分析,歸納的思維能力,調動學生學習的積極性.

教學重點,難點

重點是理解對數函數的定義,掌握圖像和性質.

難點是由對數函數與指數函數互為反函數的關系,利用指數函數圖像和性質得到對數函數的圖像和性質.

教學方法

啟發研討式

教學用具

投影儀

教學過程

一. 引入新課

今天我們一起再來研究一種常見函數.前面的幾種函數都是以形式定義的方式給出的,今天我們將從反函數的角度介紹新的函數.

反函數的實質是研究兩個函數的關系,所以自然我們應從大家熟悉的函數出發,再研究其反函數.這個熟悉的函數就是指數函數.

提問:什么是指數函數?指數函數存在反函數嗎?

由學生說出 是指數函數,它是存在反函數的.并由一個學生口答求反函數的過程:

由 得 .又 的值域為 ,

所求反函數為 .

那么我們今天就是研究指數函數的反函數-----對數函數.

二.對數函數的圖像與性質 (板書)

1. 作圖方法

提問學生打算用什么方法來畫函數圖像?學生應能想到利用互為反函數的兩個函數圖像之間的關系,利用圖像變換法畫圖.同時教師也應指出用列表描點法也是可以的,讓學生從中選出一種,最終確定用圖像變換法畫圖.

由于指數函數的圖像按 和 分成兩種不同的類型,故對數函數的圖像也應以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.

具體操作時,要求學生做到:

(1) 指數函數 和 的圖像要盡量準確(關鍵點的`位置,圖像的變化趨勢等).

(2) 畫出直線 .

(3) 的圖像在翻折時先將特殊點 對稱點 找到,變化趨勢由靠近 軸對稱為逐漸靠近 軸,而 的圖像在翻折時可提示學生分兩段翻折,在 左側的先翻,然后再翻在 右側的部分.

學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出和 的圖像.(此時同底的指數函數和對數函數畫在同一坐標系內)如圖:

2. 草圖.

教師畫完圖后再利用投影儀將 和 的圖像畫在同一坐標系內,如圖:

然后提出讓學生根據圖像說出對數函數的性質(要求從幾何與代數兩個角度說明)

3. 性質

(1) 定義域:

(2) 值域:

由以上兩條可說明圖像位于 軸的右側.

(3) 截距:令 得 ,即在 軸上的截距為1,與 軸無交點即以 軸為漸近線.

(4) 奇偶性:既不是奇函數也不是偶函數,即它不關于原點對稱,也不關于 軸對稱.

(5) 單調性:與 有關.當 時,在 上是增函數.即圖像是上升的

當 時,在 上是減函數,即圖像是下降的.

之后可以追問學生有沒有最大值和最小值,當得到否定答案時,可以再問能否看待何時函數值為正?學生看著圖可以答出應有兩種情況:

當 時,有 ;當 時,有 .

學生回答后教師可指導學生巧記這個結論的方法:當底數與真數在1的同側時函數值為正,當底數與真數在1的兩側時,函數值為負,并把它當作第(6)條性質板書記下來.

最后教師在總結時,強調記住性質的關鍵在于要腦中有圖.且應將其性質與指數函數的性質對比記憶.(特別強調它們單調性的一致性)

對圖像和性質有了一定的了解后,一起來看看它們的應用.

三.鞏固練習

練習:若 ,求 的取值范圍.

四.小結

五.作業 略

高三數學教案范本篇15

1、直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

2、直線的斜率

①定義:傾斜角不是90°的&39;直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點的直線的斜率公式:

注意下面四點:

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

高三數學教案范本篇16

高三數學二輪專題復習教案——數列

一、本章知識結構:

二、重點知識回顧

1.數列的概念及表示方法

(1)定義:按照一定順序排列著的一列數.

(2)表示方法:列表法、解析法(通項公式法和遞推公式法)、圖象法.

(3)分類:按項數有限還是無限分為有窮數列和無窮數列;按項與項之間的大小關系可分為單調數列、擺動數列和常數列.

(4)與的關系:.

2.等差數列和等比數列的比較

(1)定義:從第2項起每一項與它前一項的差等于同一常數的數列叫等差數列;從第2項起每一項與它前一項的比等于同一常數(不為0)的數列叫做等比數列.

(2)遞推公式:.

(3)通項公式:.

(4)性質等差數列的主要性質:①單調性:時為遞增數列,時為遞減數列,時為常數列.②若,則.特別地,當時,有.③.④成等差數列.等比數列的主要性質:①單調性:當或時,為遞增數列;當,或時,為遞減數列;當時,為擺動數列;當時,為常數列.②若,則.特別地,若,則.③.④,…,當時為等比數列;當時,若為偶數,不是等比數列.若為奇數,是公比為的等比數列.

三、考點剖析考點一:等差、等比數列的概念與性質

例1.(2008深圳模擬)已知數列(1)求數列的通項公式;(2)求數列解:(1)當;、當,、(2)令當;當綜上,點評:本題考查了數列的前n項與數列的通項公式之間的關系,特別要注意n=1時情況,在解題時經常會忘記。第二問要分情況討論,體現了分類討論的數學思想.

例2、(2008廣東雙合中學)已知等差數列的前n項和為,且,.數列是等比數列,(其中).(I)求數列和的通項公式;(II)記.解:(I)公差為d,則.設等比數列的公比為,.(II)作差:.點評:本題考查了等差數列與等比數列的基本知識,第二問,求前n項和的解法,要抓住它的結特征,一個等差數列與一個等比數列之積,乘以2后變成另外的一個式子,體現了數學的轉化思想。考點二:求數列的通項與求和

例3.(2008江蘇)將全體正整數排成一個三角形數陣:按照以上排列的規律,第行()從左向右的第3個數為解:前n-1行共有正整數1+2+…+(n-1)個,即個,因此第n行第3個數是全體正整數中第+3個,即為.點評:本小題考查歸納推理和等差數列求和公式,難點在于求出數列的通項,解決此題需要一定的觀察能力和邏輯推理能力。

例4.(2008深圳模擬)圖(1)、(2)、(3)、(4)分別包含1個、5個、13個、25個第二十九屆北京奧運會吉祥物“福娃迎迎”,按同樣的方式構造圖形,設第個圖形包含個“福娃迎迎”,則;____解:第1個圖個數:1第2個圖個數:1+3+1第3個圖個數:1+3+5+3+1第4個圖個數:1+3+5+7+5+3+1第5個圖個數:1+3+5+7+9+7+5+3+1=,所以,f(5)=41f(2)-f(1)=4,f(3)-f(2)=8,f(4)-f(3)=12,f(5)-f(4)=16點評:由特殊到一般,考查邏輯歸納能力,分析問題和解決問題的能力,本題的第二問是一個遞推關系式,有時候求數列的通項公式,可以轉化遞推公式來求解,體現了轉化與化歸的數學思想。

考點三:數列與不等式的聯系例5.(2009屆高三湖南益陽)已知等比數列的首項為,公比滿足。又已知,,成等差數列。(1)求數列的通項(2)令,求證:對于任意,都有(1)解:∵∴∴∵∴∴(2)證明:∵,∴點評:把復雜的問題轉化成清晰的問題是數學中的重要思想,本題中的第(2)問,采用裂項相消法法,求出數列之和,由n的范圍證出不等式。

例6、(2008遼寧理)在數列,中,a1=2,b1=4,且成等差數列,成等比數列()(Ⅰ)求a2,a3,a4及b2,b3,b4,由此猜測,的通項公式,并證明你的結論;(Ⅱ)證明:.解:(Ⅰ)由條件得由此可得.猜測.用數學歸納法證明:①當n=1時,由上可得結論成立.②假設當n=k時,結論成立,即,那么當n=k+1時,.所以當n=k+1時,結論也成立.由①②,可知對一切正整數都成立.(Ⅱ).n≥2時,由(Ⅰ)知.故綜上,原不等式成立.點評:本小題主要考查等差數列,等比數列,數學歸納法,不等式等基礎知識,考查綜合運用數學知識進行歸納、總結、推理、論證等能力.

例7.(2008安徽理)設數列滿足為實數(Ⅰ)證明:對任意成立的充分必要條件是;(Ⅱ)設,證明:;(Ⅲ)設,證明:解:(1)必要性:,又,即充分性:設,對用數學歸納法證明當時,.假設則,且,由數學歸納法知對所有成立(2)設,當時,,結論成立當時,,由(1)知,所以且(3)設,當時,,結論成立當時,由(2)知點評:本題是數列、充要條件、數學歸納法的知識交匯題,屬于難題,復習時應引起注意,加強訓練。考點四:數列與函數、概率等的聯系

例題8..(2008福建理)已知函數.(Ⅰ)設{an}是正數組成的數列,前n項和為Sn,其中a1=3.若點(n∈N-)在函數y=f′(x)的圖象上,求證:點(n,Sn)也在y=f′(x)的圖象上;(Ⅱ)求函數f(x)在區間(a-1,a)內的極值.(Ⅰ)證明:因為所以′(x)=x2+2x,由點在函數y=f′(x)的圖象上,又所以所以,又因為′(n)=n2+2n,所以,故點也在函數y=f′(x)的圖象上.(Ⅱ)解:,由得.當x變化時,、的變化情況如下表:x(-∞,-2)-2(-2,0)0(0,+∞)f′(x)+0-0+f(x)↗極大值↘極小值↗注意到,從而①當,此時無極小值;②當的極小值為,此時無極大值;③當既無極大值又無極小值.點評:本小題主要考查函數極值、等差數列等基本知識,考查分類與整合、轉化與化歸等數學思想方法,考查分析問題和解決問題的能力.

例9、(2007江西理)將一骰子連續拋擲三次,它落地時向上的點數依次成等差數列的概率為()A.B.C.D.解:一骰子連續拋擲三次得到的數列共有個,其中為等差數列有三類:(1)公差為0的有6個;(2)公差為1或-1的有8個;(3)公差為2或-2的有4個,共有18個,成等差數列的概率為,選B點評:本題是以數列和概率的背景出現,題型新穎而別開生面,有采取分類討論,分類時要做到不遺漏,不重復。

考點五:數列與程序框圖的聯系例10、(2009廣州天河區模擬)根據如圖所示的程序框圖,將輸出的x、y值依次分別記為;(Ⅰ)求數列的通項公式;(Ⅱ)寫出y1,y2,y3,y4,由此猜想出數列{yn};的一個通項公式yn,并證明你的結論;(Ⅲ)求.解:(Ⅰ)由框圖,知數列∴(Ⅱ)y1=2,y2=8,y3=26,y4=80.由此,猜想證明:由框圖,知數列{yn}中,yn+1=3yn+2∴∴∴數列{yn+1}是以3為首項,3為公比的等比數列。∴+1=3·3n-1=3n∴=3n-1()(Ⅲ)zn==1×(3-1)+3×(32-1)+…+(2n-1)(3n-1)=1×3+3×32+…+(2n-1)·3n-[1+3+…+(2n-1)]記Sn=1×3+3×32+…+(2n-1)·3n,①則3Sn=1×32+3×33+…+(2n-1)×3n+1②①-②,得-2Sn=3+2·32+2·33+…+2·3n-(2n-1)·3n+1=2(3+32+…+3n)-3-(2n-1)·3n+1=2×=∴又1+3+…+(2n-1)=n2∴.點評:程序框圖與數列的聯系是新課標背景下的新鮮事物,因為程序框圖中循環,與數列的各項一一對應,所以,這方面的內容是命題的`新方向,應引起重視。

四、方法總結與2009年高考預測

(一)方法總結1.求數列的通項通常有兩種題型:一是根據所給的一列數,通過觀察求通項;一是根據遞推關系式求通項。

2.數列中的不等式問題是高考的難點熱點問題,對不等式的證明有比較法、放縮,放縮通常有化歸等比數列和可裂項的形式。

3.數列是特殊的函數,而函數又是高中數學的一條主線,所以數列這一部分是容易命制多個知識點交融的題,這應是命題的一個方向。

(二)2009年高考預測

1.數列中與的關系一直是高考的熱點,求數列的通項公式是最為常見的題目,要切實注意與的關系.關于遞推公式,在《考試說明》中的考試要求是:“了解遞推公式是給出數列的一種方法,并能根據遞推公式寫出數列的前幾項”。但實際上,從近兩年各地高考試題來看,是加大了對“遞推公式”的考查。

2.探索性問題在數列中考查較多,試題沒有給出結論,需要考生猜出或自己找出結論,然后給以證明.探索性問題對分析問題解決問題的能力有較高的要求.

3.等差、等比數列的基本知識必考.這類考題既有選擇題,填空題,又有解答題;有容易題、中等題,也有難題。

4.求和問題也是常見的試題,等差數列、等比數列及可以轉化為等差、等比數列求和問題應掌握,還應該掌握一些特殊數列的求和.

5.將數列應用題轉化為等差、等比數列問題也是高考中的重點和熱點,從本章在高考中所在的分值來看,一年比一年多,而且多注重能力的考查.

6.有關數列與函數、數列與不等式、數列與概率等問題既是考查的重點,也是考查的難點。今后在這方面還會體現的

高三數學教案范本篇17

一、教材分析

1.教材所處的地位和作用

現代社會是一個信息技術發展很快的社會,算法進入高中數學正是反映了時代的需要,它是當今社會必備的基礎知識,算法的學習是使用計算機處理問題前的一個必要的步驟,它可以讓學生們知道如何利用現代技術解決問題。又由于算法的具體實現上可以和信息技術相結合。因此,算法的學習十分有利于提高學生的邏輯思維能力,培養學生的理性精神和實踐能力。

2.教學的重點和難點

重點:初步理解算法的定義,體會算法思想,能夠用自然語言描述算法難點:把自然語言轉化為算法語言。

二、教學目標分析

1.知識目標:了解算法的含義,體會算法的思想;能夠用自然語言描述解決具體問題的算法;理解正確的算法應滿足的要求。

2.能力目標:讓學生感悟人們認識事物的一般規律:由具體到抽象,再有抽象到具體,培養學生的觀察能力,表達能力和邏輯思維能力。

3.情感目標:對計算機的算法語言有一個基本的了解,明確算法的要求,認識到計算機是人類征服自然的一有力工具,進一步提高探索、認識世界的能力。

三、教學方法分析

采用"問題探究式"教學法,以多媒體為輔助手段,讓學生主動發現問題、分析問題、解決問題,培養學生的探究論證、邏輯思維能力。

四、學情分析

算法這部分的使用性很強,與日常生活聯系緊密,雖然是新引入的章節,但很容易激發學生的學習興趣。在教師的引導下,通過多媒體輔助教學,學生比較容易掌握本節課的內容。

五、教學過程分析

1.創設情景:我首先向學生們展示章頭圖,介紹圖中的后景是取自宋朝數學家朱世杰的數學作品《四元玉鑒》,告訴學生們章頭圖正是體現了中國古代數學與現代計算機科學的聯系,它們的基礎都是"算法".

「設計意圖」是為了充分挖掘章頭圖的教學價值,體現

1)算法概念的由來;

2)我們將要學習的算法與計算機有關;

3)展示中國古代數學的成就;

4)激發學生學習算法的興趣。從而順其自然的過渡到本節課要討論的話題。(約4分鐘)

2.引入新課:在這一環節我首先和學生們一起回顧如何解二元一次方程組,并引導他們歸納二元一次方程組的求解步驟,從而讓學生經歷算法分析的基本過程,培養思維的條理性,引導學生關注更具一般性解法,形成解法向算法過渡的準備,為建立算法概念打下基礎。緊接著在此基礎上進一步復習回顧解一般的二元一次方程組的步驟,引導學生分析解題過程的結構,寫出求一般的二元一次方程組的解的算法,并把它編成程序,讓學生輸入數據,體驗計算機直接給出方程組的解。目的是讓學生明白算法是用來解決某一類問題的,從而提高學生對算法的普遍適用性的認識,為建立算法的概念做好鋪墊。

之后,我就向學生們提出問題:到底什么是算法?如何用語言來表達算法的涵義?這里讓學生們根據剛剛的探索交流、思考并回答,然后老師進行歸納,得出算法的基本概念,并幫助學生認識算法的概念,指出有窮性,確定性,可行性。這樣可以讓學生們真正參與到算法概念的形成過程中來,體會算法思想。(約8分鐘)

3.例題講解:在這一環節我安排了兩道例題,以幫助學生們能更好地理解算法的基本概念,并應用到實際解決問題中去,而不只是單純的對數學思想的領悟。

這兩道例題均選自課本的例1和例2.

例1是讓我們設定一個程序以判斷一個數是否為質數。質數是我們之前已經學習的內容,為了能更順利地完成解題過程,這里有必要引導學生們回顧一下質數應滿足的條件,然后再根據這個來探索解題步驟。通過例1讓學生認識到求解結構中存在"重復".為導出一般問題的算法創造條件,也為學習算法的自然語言表示提供前提。告訴學生們本算法就是用自然語言的形式描述的。并且設計算法一定要做到以下要求:

(1)寫出的算法必須能解決一類問題,并且能夠重復使用。

(2)要使算法盡量簡單、步驟盡量少。

(3)要保證算法正確,且計算機能夠執行。

在例1的基礎上我們繼續研究例2,例2是要求我們設計一個利用二分法來求解方程的近似根的程序。我們首先要對算法作分析,回顧用二分法求解方程近似根的過程,然后設計出解題步驟。二分法是算法中的經典問題,具有明顯的順序和可操作的特點。因此通過例2可以讓學生進一步了解算法的邏輯結構,領會算法的思想,體會算法的的特征。同時也可以鞏固用自然語言描述算法,提高用自然語言描述算法的表達水平。另外,借助例題加強學生對算法概念的理解,體會算法具有程序性、有限性、構造性、精確性、指向性的特點,算法以問題為載體,泛泛而談沒有意義。(約20分鐘)

4.課堂小結:

(1)算法的概念和算法的基本特征

(2)算法的描述方法,算法可以用自然語言描述。

(3)能利用算法的思想和方法解決實際問題,并能寫出一此簡單問題的算法課堂小結是一堂課內容的概括和總結,有利于學生把握本節課的重點,對所學知識有一個系統整體的認識。(約6分鐘)

5.布置作業:課本練習1、2題

課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。對作業實施分層設置,分必做和選做,利于拓展學生的自主發展的空間。

高三數學教案范本篇18

教學目標

1.掌握等差數列前項和的公式,并能運用公式解決簡單的問題.

(1)了解等差數列前項和的定義,了解逆項相加的原理,理解等差數列前項和公式推導的過程,記憶公式的兩種形式;

(2)用方程思想認識等差數列前項和的公式,利用公式求;等差數列通項公式與前項和的公式兩套公式涉及五個字母,已知其中三個量求另兩個值;

(3)會利用等差數列通項公式與前項和的公式研究的最值.

2.通過公式的推導和公式的運用,使學生體會從特殊到一般,再從一般到特殊的思維規律,初步形成認識問題,解決問題的一般思路和方法.

3.通過公式推導的過程教學,對學生進行思維靈活性與廣闊性的訓練,發展學生的思維水平.

4.通過公式的推導過程,展現數學中的對稱美;通過有關內容在實際生活中的應用,使學生再一次感受數學源于生活,又服務于生活的實用性,引導學生要善于觀察生活,從生活中發現問題,并數學地解決問題.

教學建議

(1)知識結構

本節內容是等差數列前項和公式的推導和應用,首先通過具體的例子給出了求等差數列前項和的思路,而后導出了一般的公式,并加以應用;再與等差數列通項公式組成方程組,共同運用,解決有關問題.

(2)重點、難點分析

教學重點是等差數列前項和公式的推導和應用,難點是公式推導的思路.

推導過程的展示體現了人類解決問題的一般思路,即從特殊問題的解決中提煉一般方法,再試圖運用這一方法解決一般情況,所以推導公式的過程中所蘊含的思想方法比公式本身更為重要.等差數列前項和公式有兩種形式,應根據條件選擇適當的形式進行計算;另外反用公式、變用公式、前項和公式與通項公式的綜合運用體現了方程(組)思想.

高斯算法表現了大數學家的智慧和巧思,對一般學生來說有很大難度,但大多數學生都聽說過這個故事,所以難點在于一般等差數列求和的思路上.

(3)教法建議

①本節內容分為兩課時,一節為公式推導及簡單應用,一節側重于通項公式與前項和公式綜合運用.

②前項和公式的推導,建議由具體問題引入,使學生體會問題源于生活.

③強調從特殊到一般,再從一般到特殊的思考方法與研究方法.

④補充等差數列前項和的值、最小值問題.

⑤用梯形面積公式記憶等差數列前項和公式.

等差數列的前項和公式教學設計示例

教學目標

1.通過教學使學生理解等差數列的前項和公式的推導過程,并能用公式解決簡單的問題.

2.通過公式推導的教學使學生進一步體會從特殊到一般,再從一般到特殊的思想方法,通過公式的運用體會方程的思想.

教學重點,難點

教學重點是等差數列的前項和公式的推導和應用,難點是獲得推導公式的思路.

教學用具

實物投影儀,多媒體軟件,電腦.

教學方法

講授法.

教學過程

一.新課引入

提出問題(播放媒體資料):一個堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支.這個V形架上共放著多少支鉛筆?(課件設計見課件展示)

問題就是(板書)“”

這是小學時就知道的一個故事,高斯的算法非常高明,回憶他是怎樣算的.(由一名學生回答,再由學生討論其高明之處)高斯算法的高明之處在于他發現這100個數可以分為50組,第一個數與最后一個數一組,第二個數與倒數第二個數一組,第三個數與倒數第三個數一組,…,每組數的和均相等,都等于101,50個101就等于5050了.高斯算法將加法問題轉化為乘法運算,迅速準確得到了結果.

我們希望求一般的等差數列的和,高斯算法對我們有何啟發?

二.講解新課

(板書)等差數列前項和公式

1.公式推導(板書)

問題(幻燈片):設等差數列的首項為,公差為,由學生討論,研究高斯算法對一般等差數列求和的指導意義.

思路一:運用基本量思想,將各項用和表示,得

,有以下等式

,問題是一共有多少個,似乎與的奇偶有關.這個思路似乎進行不下去了.

思路二:

上面的等式其實就是,為回避個數問題,做一個改寫,,兩式左右分別相加,得

于是有:.這就是倒序相加法.

思路三:受思路二的啟發,重新調整思路一,可得,于是.

于是得到了兩個公式(投影片):和.

2.公式記憶

用梯形面積公式記憶等差數列前項和公式,這里對圖形進行了割、補兩種處理,對應著等差數列前項和的兩個公式.

3.公式的應用

公式中含有四個量,運用方程的思想,知三求一.

例1.求和:(1);

(2)(結果用表示)

解題的關鍵是數清項數,小結數項數的方法.

例2.等差數列中前多少項的和是9900?

本題實質是反用公式,解一個關于的一元二次函數,注意得到的項數必須是正整數.

三.小結

1.推導等差數列前項和公式的思路;

2.公式的應用中的數學思想.

四.板書設計

高三數學教案范本篇19

1.不等式的定義

在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數學符號連接兩個數或代數式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.

2.比較兩個實數的大小

兩個實數的大小是用實數的運算性質來定義的,

有a-b>0?;a-b=0?;a-b<0?.

另外,若b>0,則有>1?;=1?;<1?.

概括為:作差法,作商法,中間量法等.

3.不等式的性質

(1)對稱性:a>b?;

(2)傳遞性:a>b,b>c?;

(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

(5)可乘方:a>b>0?(n∈N,n≥2);

(6)可開方:a>b>0?(n∈N,n≥2).

104840 主站蜘蛛池模板: 烟气换热器_GGH烟气换热器_空气预热器_高温气气换热器-青岛康景辉 | 正压密封性测试仪-静态发色仪-导丝头柔软性测试仪-济南恒品机电技术有限公司 | 工作心得_读书心得_学习心得_找心得体会范文就上学道文库 | 【直乐】河北石家庄脊柱侧弯医院_治疗椎间盘突出哪家医院好_骨科脊柱外科专业医院_治疗抽动症/关节病骨伤权威医院|排行-直乐矫形中医医院 | 电销卡_稳定企业大语音卡-归属地可选-世纪通信 | 搅拌磨|搅拌球磨机|循环磨|循环球磨机-无锡市少宏粉体科技有限公司 | 警用|治安|保安|不锈钢岗亭-售货亭价格-垃圾分类亭-移动厕所厂家-苏州灿宇建材 | 苏州工作服定做-工作服定制-工作服厂家网站-尺品服饰科技(苏州)有限公司 | 深圳美安可自动化设备有限公司,喷码机,定制喷码机,二维码喷码机,深圳喷码机,纸箱喷码机,东莞喷码机 UV喷码机,日期喷码机,鸡蛋喷码机,管芯喷码机,管内壁喷码机,喷码机厂家 | 四川成人高考_四川成考报名网 | 仿真茅草_人造茅草瓦价格_仿真茅草厂家_仿真茅草供应-深圳市科佰工贸有限公司 | 法兰螺母 - 不锈钢螺母制造厂家 - 万千紧固件--螺母街 | 气力输送_输送机械_自动化配料系统_负压吸送_制造主力军江苏高达智能装备有限公司! | 河南中专学校|职高|技校招生-河南中职中专网 | 诸城网站建设-网络推广-网站优化-阿里巴巴托管-诸城恒泰互联 | 精密机械零件加工_CNC加工_精密加工_数控车床加工_精密机械加工_机械零部件加工厂 | 家德利门业,家居安全门,别墅大门 - 安徽家德利门业有限公司 | 铝箔-铝板-花纹铝板-铝型材-铝棒管-上海百亚金属材料有限公司 | 赛默飞Thermo veritiproPCR仪|ProFlex3 x 32PCR系统|Countess3细胞计数仪|371|3111二氧化碳培养箱|Mirco17R|Mirco21R离心机|仟诺生物 | 纸张环压仪-纸张平滑度仪-杭州纸邦自动化技术有限公司 | 智慧旅游_智慧景区_微景通-智慧旅游景区解决方案提供商 | 智能化的检漏仪_气密性测试仪_流量测试仪_流阻阻力测试仪_呼吸管快速检漏仪_连接器防水测试仪_车载镜头测试仪_奥图自动化科技 | 广东佛电电器有限公司|防雷开关|故障电弧断路器|智能量测断路器 广东西屋电气有限公司-广东西屋电气有限公司 | ASA膜,ASA共挤料,篷布色母料-青岛未来化学有限公司 | 双齿辊破碎机-大型狼牙破碎机视频-对辊破碎机价格/型号图片-金联机械设备生产厂家 | 东莞市天进机械有限公司-钉箱机-粘箱机-糊箱机-打钉机认准东莞天进机械-厂家直供更放心! | 北京租车公司_汽车/客车/班车/大巴车租赁_商务会议/展会用车/旅游大巴出租_北京桐顺创业租车公司 | 温州食堂承包 - 温州市尚膳餐饮管理有限公司 | 标准品网_标准品信息网_【中检计量】 | 冷水机-冰水机-冷冻机-冷风机-本森智能装备(深圳)有限公司 | 双工位钻铣攻牙机-转换工作台钻攻中心-钻铣攻牙机一体机-浙江利硕自动化设备有限公司 | 密集架|电动密集架|移动密集架|黑龙江档案密集架-大量现货厂家销售 | 温湿度记录纸_圆盘_横河记录纸|霍尼韦尔记录仪-广州汤米斯机电设备有限公司 | 铁盒_铁罐_马口铁盒_马口铁罐_铁盒生产厂家-广州博新制罐 | 步入式高低温测试箱|海向仪器 | 3dmax渲染-效果图渲染-影视动画渲染-北京快渲科技有限公司 | 公交驾校-北京公交驾校欢迎您! 工作心得_读书心得_学习心得_找心得体会范文就上学道文库 | 武汉不干胶印刷_标签设计印刷_不干胶标签印刷厂 - 武汉不干胶标签印刷厂家 | 神超官网_焊接圆锯片_高速钢锯片_硬质合金锯片_浙江神超锯业制造有限公司 | 润东方环保空调,冷风机,厂房车间降温设备-20年深圳环保空调生产厂家 | 美甲贴片-指甲贴片-穿戴美甲-假指甲厂家--薇丝黛拉 |