小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數(shù)學(xué)教案 >

高二數(shù)學(xué)教案下載

時間: 新華 數(shù)學(xué)教案

編寫教案的過程是教師不斷學(xué)習(xí)和成長的過程,它可以幫助教師提高專業(yè)素養(yǎng)和教學(xué)能力。寫好高二數(shù)學(xué)教案下載不是那么簡單,下面給大家分享高二數(shù)學(xué)教案下載,供大家參考。

高二數(shù)學(xué)教案下載篇1

學(xué)習(xí)目標(biāo):

1、了解本章的學(xué)習(xí)的內(nèi)容以及學(xué)習(xí)思想方法2、能敘述隨機變量的定義

3、能說出隨機變量與函數(shù)的關(guān)系,4、能夠把一個隨機試驗結(jié)果用隨機變量表示

重點:能夠把一個隨機試驗結(jié)果用隨機變量表示

難點:隨機事件概念的透徹理解及對隨機變量引入目的的認(rèn)識:

環(huán)節(jié)一:隨機變量的定義

1.通過生活中的一些隨機現(xiàn)象,能夠概括出隨機變量的定義

2能敘述隨機變量的定義

3能說出隨機變量與函數(shù)的區(qū)別與聯(lián)系

一、閱讀課本33頁問題提出和分析理解,回答下列問題?

1、了解一個隨機現(xiàn)象的規(guī)律具體指的是什么?

2、分析理解中的兩個隨機現(xiàn)象的隨機試驗結(jié)果有什么不同?建立了什么樣的對應(yīng)關(guān)系?

總結(jié):

3、隨機變量

(1)定義:

這種對應(yīng)稱為一個隨機變量。即隨機變量是從隨機試驗每一個可能的結(jié)果所組成的

到的映射。

(2)表示:隨機變量常用大寫字母.等表示.

(3)隨機變量與函數(shù)的區(qū)別與聯(lián)系

函數(shù)隨機變量

自變量

因變量

因變量的范圍

相同點都是映射都是映射

環(huán)節(jié)二隨機變量的應(yīng)用

1、能正確寫出隨機現(xiàn)象所有可能出現(xiàn)的結(jié)果2、能用隨機變量的描述隨機事件

例1:已知在10件產(chǎn)品中有2件不合格品。現(xiàn)從這10件產(chǎn)品中任取3件,其中含有的次品數(shù)為隨機變量的學(xué)案.這是一個隨機現(xiàn)象。(1)寫成該隨機現(xiàn)象所有可能出現(xiàn)的結(jié)果;(2)試用隨機變量來描述上述結(jié)果。

變式:已知在10件產(chǎn)品中有2件不合格品。從這10件產(chǎn)品中任取3件,這是一個隨機現(xiàn)象。若Y表示取出的3件產(chǎn)品中的合格品數(shù),試用隨機變量描述上述結(jié)果

例2連續(xù)投擲一枚均勻的硬幣兩次,用X表示這兩次正面朝上的次數(shù),則X是一個隨機變

量,分別說明下列集合所代表的隨機事件:

(1){X=0}(2){X=1}

(3){X<2}(4){X>0}

變式:連續(xù)投擲一枚均勻的硬幣三次,用X表示這三次正面朝上的次數(shù),則X是一個隨機變量,X的可能取值是?并說明這些值所表示的隨機試驗的結(jié)果.

練習(xí):寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機變量的結(jié)果。

(1)從學(xué)校回家要經(jīng)過5個紅綠燈路口,可能遇到紅燈的次數(shù);

(2)一個袋中裝有5只同樣大小的球,編號為1,2,3,4,5,現(xiàn)從中隨機取出3只球,被取出的球的號碼數(shù);

小結(jié)(對標(biāo))

高二數(shù)學(xué)教案下載篇2

一、教學(xué)目標(biāo)

(1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;

(2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;

(3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復(fù)合命題;

(4)能識別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;

(5)會用真值表判斷相應(yīng)的復(fù)合命題的真假;

(6)在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.

二、教學(xué)重點難點:

重點是判斷復(fù)合命題真假的方法;難點是對“或”的含義的理解.

三、教學(xué)過程

1.新課導(dǎo)入

在當(dāng)今社會中,人們從事任何工作、學(xué)習(xí),都離不開邏輯.具有一定邏輯知識是構(gòu)成一個公民的文化素質(zhì)的重要方面.數(shù)學(xué)的特點是邏輯性強,特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識,將會在我們學(xué)習(xí)的過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實,同學(xué)們在初中已經(jīng)開始接觸一些簡易邏輯的知識.

初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個命題的例子.(板書:命題.)

(從初中接觸過的“命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識.)

學(xué)生舉例:平行四邊形的對角線互相平.……(1)

兩直線平行,同位角相等.…………(2)

教師提問:“……相等的角是對頂角”是不是命題?……(3)

(同學(xué)議論結(jié)果,答案是肯定的.)

教師提問:什么是命題?

(學(xué)生進(jìn)行回憶、思考.)

概念總結(jié):對一件事情作出了判斷的語句叫做命題.

(教師肯定了同學(xué)的回答,并作板書.)

由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

(教師利用投影片,和學(xué)生討論以下問題.)

例1判斷以下各語句是不是命題,若是,判斷其真假:

命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.

初中所學(xué)的命題概念涉及邏輯知識,我們今天開始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡易邏輯的知識.

2.講授新課

大家看課本(人教版,試驗修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內(nèi)容主要講了哪些問題?

(片刻后請同學(xué)舉手回答,一共講了四個問題.師生一道歸納如下.)

(1)什么叫做命題?

可以判斷真假的語句叫做命題.

判斷一個語句是不是命題,關(guān)鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如x2-5x+6=0

中含有變量,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).

(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.

“或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.

命題可分為簡單命題和復(fù)合命題.

不含邏輯聯(lián)結(jié)詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.

由簡單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.

(4)命題的表示:用p,q,r,s,……來表示.

(教師根據(jù)學(xué)生回答的情況作補充和強調(diào),特別是對復(fù)合命題的概念作出分析和展開.)

我們接觸的復(fù)合命題一般有“p或q”“p且q”、“非p”、“若p則q”等形式.

給出一個含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說出構(gòu)成它的簡單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個簡單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.

對于給出“若p則q”形式的復(fù)合命題,應(yīng)能找到條件p和結(jié)論q.

在判斷一個命題是簡單命題還是復(fù)合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復(fù)合命題.

3.鞏固新課

例2判斷下列命題,哪些是簡單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡單命題.

(1)12>5;

(2)0.5非整數(shù);

(3)內(nèi)錯角相等,兩直線平行;

(4)菱形的對角線互相垂直且平分;

(5)平行線不相交;

(6)若ab=0,則a=0.

(讓學(xué)生有充分的時間進(jìn)行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補充.)

例3寫出下表中各給定語的否定語(用課件打出來).

分析:“等于”的否定語是“不等于”;

“大于”的否定語是“小于或者等于”;

“是”的否定語是“不是”;

“都是”的否定語是“不都是”;

“至多有一個”的否定語是“至少有兩個”;

“至少有一個”的否定語是“一個都沒有”;

“至多有n個”的否定語是“至少有n+1個”.

(如果時間寬裕,可讓學(xué)生討論后得出結(jié)論.)

置疑:“或”、“且”的否定是什么?(視學(xué)生的情況、課堂時間作適當(dāng)?shù)谋嫖雠c展開.)

4.課堂練習(xí):第26頁練習(xí)1,2.

5.課外作業(yè):第29頁習(xí)題1.61,2.

高二數(shù)學(xué)教案下載篇3

一、內(nèi)容和內(nèi)容解析

1.內(nèi)容

本節(jié)課主要內(nèi)容是讓學(xué)生了解在客觀世界中要認(rèn)識客觀現(xiàn)象的第一步就是通過觀察或試驗取得觀測資料,然后通過分析這些資料來認(rèn)識此現(xiàn)象.如何取得有代表性的觀測資料并能夠正確的加以分析,是正確的認(rèn)識未知現(xiàn)象的基礎(chǔ),也是統(tǒng)計所研究的基本問題.

2.內(nèi)容解析

本節(jié)課是高中階段學(xué)習(xí)統(tǒng)計學(xué)的第一節(jié)課,統(tǒng)計是研究如何合理收集、整理、分析數(shù)據(jù)的學(xué)科,它可以為人們制定決策提供依據(jù).學(xué)生在九年義務(wù)階段已經(jīng)學(xué)習(xí)了收集、整理、描述和分析數(shù)據(jù)等處理數(shù)據(jù)的基本方法.在高中學(xué)習(xí)統(tǒng)計的過程中還將逐步讓學(xué)生體會確定性思維與統(tǒng)計思維的差異,注意到統(tǒng)計結(jié)果的隨機性特征,統(tǒng)計推斷是有可能錯的,這是由統(tǒng)計本身的性質(zhì)所決定的.統(tǒng)計有兩種.一種是把所有個體的信息都收集起來,然后進(jìn)行描述,這種統(tǒng)計方法稱為描述性統(tǒng)計,例如我國進(jìn)行的人口普查.但是在很多情況下我們無法采用描述性統(tǒng)計對所有的個體進(jìn)行調(diào)查,通常是在總體中抽取一定的樣本為代表,從樣本的信息來推斷總體的特征,這稱為推斷性統(tǒng)計.例如有的產(chǎn)品數(shù)量非常的大或者有的產(chǎn)品的質(zhì)量檢查是破壞性的.統(tǒng)計和概率的基礎(chǔ)知識已經(jīng)成為一個未來公民的必備常識.

抽樣調(diào)查是我們收集數(shù)據(jù)的一種重要途徑,是一種重要的、科學(xué)的非全面調(diào)查方法.它根據(jù)調(diào)查的目的和任務(wù)要求,按照隨機原則,從若干單位組成的事物總體中,抽取部分樣本單位來進(jìn)行調(diào)查、觀察,用所得到的調(diào)查標(biāo)志的數(shù)據(jù)來推斷總體.其中蘊涵了重要的統(tǒng)計思想——樣本估計總體.而樣本代表性的好壞直接影響統(tǒng)計結(jié)論的準(zhǔn)確性,所以抽樣過程中,考慮的最主要原則為:保證樣本能夠很好地代表總體.而隨機抽樣的出發(fā)點是使每個個體都有相同的機會被抽中,這是基于對樣本數(shù)據(jù)代表性的考慮.

本節(jié)課重點:能從現(xiàn)實生活或其他學(xué)科中提出具有一定價值的統(tǒng)計問題,理解隨機抽樣的必要性與重要性.

二、目標(biāo)和目標(biāo)解析

1.目標(biāo)

(1)通過對具體的案例分析,逐步學(xué)會從現(xiàn)實生活中提出具有一定價值的統(tǒng)計問題,

(2)結(jié)合具體的實際問題情境,理解隨機抽樣的必要性和重要性;

(3)以問題鏈的形式深刻理解樣本的代表性.

2.目標(biāo)解析

本章章頭圖列舉了我國水資源缺乏問題、土地沙漠化問題等情境,提出了學(xué)習(xí)統(tǒng)計的意義.同時通過具體的實例,使學(xué)生能夠嘗試從實際問題中發(fā)現(xiàn)統(tǒng)計問題,提出統(tǒng)計問題.讓學(xué)生養(yǎng)成從現(xiàn)實生活或其他學(xué)科中發(fā)現(xiàn)問題、提出問題的習(xí)慣,培養(yǎng)學(xué)生發(fā)現(xiàn)問題與提出問題的能力與意識.

對某個問題的調(diào)查最簡單的方法就是普查,但是這種方法的局限性很大,出于費用和時間的考慮,有時一個精心設(shè)計的抽樣方案,其實施效果甚至可以勝過普查,在這個過程中讓學(xué)生逐步體會到隨機抽樣的必要性和重要性.抽樣調(diào)查,就是通過從總體中抽取一部分個體進(jìn)行調(diào)查,借以獲得對整體的了解.為了使由樣本到總體的推斷有效,樣本必須是總體的代表,否則就可能出現(xiàn)方便樣本.由此在對實例的分析過程中探討獲取能夠代表總體的樣本的方法,得到隨機樣本的概念,逐步理解樣本的代表性與統(tǒng)計推斷結(jié)論可靠性之間的關(guān)系.

三、教學(xué)問題診斷分析

學(xué)生在九年義務(wù)教育階段已有對統(tǒng)計活動的認(rèn)識,并學(xué)習(xí)了統(tǒng)計圖表、收集數(shù)據(jù)的方法,但對于如何抽樣更能使樣本代表總體的意識還不強;在以前的學(xué)習(xí)中,學(xué)生的學(xué)習(xí)內(nèi)容以確定性數(shù)學(xué)學(xué)習(xí)為主;學(xué)生對全面調(diào)查,即普查有所了解,它在經(jīng)驗上更接近確定性數(shù)學(xué),而隨機抽樣學(xué)習(xí)則要求學(xué)生通過對具體問題的解決,能體會到統(tǒng)計中的重要思想——樣本估計總體以及統(tǒng)計結(jié)果的不確定性.學(xué)生已有知識經(jīng)驗與本節(jié)要達(dá)成的教學(xué)目標(biāo)之間還有很大的差距.主要的困難有:對樣本估計總體的思想、對統(tǒng)計結(jié)果的“不確定性”產(chǎn)生懷疑,對統(tǒng)計的科學(xué)性有所質(zhì)疑;對抽樣應(yīng)該具有隨機性,每個樣本的抽取又都落實在某個人的具體操作上不理解,因此教學(xué)中要通過具體實例的研究給學(xué)生釋疑.

在教學(xué)過程中,可以鼓勵學(xué)生從自己的生活中提出與典型案例類似的統(tǒng)計問題,如每天完成家庭作業(yè)所需的時間,每天的體育鍛煉時間,學(xué)生的近視率,一批電燈泡的壽命是否符合要求等等.在學(xué)生提出這些問題后,要引導(dǎo)學(xué)生考慮問題中的總體是什么,要觀測的變量是什么,如何獲取樣本,通過這樣一個教學(xué)過程,更能激起學(xué)生的學(xué)習(xí)興趣,能學(xué)有所用,拉近知識與實踐的距離,培養(yǎng)學(xué)生從現(xiàn)實生活或其他學(xué)科中提出具有一定價值的統(tǒng)計問題的能力.在這個過程中提升學(xué)生對統(tǒng)計抽樣概念的理解,初步培養(yǎng)學(xué)生運用統(tǒng)計思想表述、思考和理解現(xiàn)實世界中的問題能力,這樣教學(xué)效果可能會更佳.

根據(jù)這一分析,確定本課時的教學(xué)難點是:如何使學(xué)生真正理解樣本的抽取是隨機的,隨機抽取的樣本將能夠代表總體.

四、教學(xué)支持條件分析

準(zhǔn)備一些隨機抽樣成功或失敗的事例,利用實物投影或放映的多媒體設(shè)備輔助教學(xué).

五、教學(xué)過程設(shè)計

(一)感悟數(shù)據(jù)、引入課題

問題1:請同學(xué)們看章頭圖中的有關(guān)沙漠化和缺水量的數(shù)據(jù),你有什么感受?

師生活動:讓學(xué)生充分思考和探討,并逐步引導(dǎo)學(xué)生產(chǎn)生質(zhì)疑:這些數(shù)據(jù)是怎么來的?

設(shè)計意圖:通過一些數(shù)據(jù)讓學(xué)生充分感受我們生活在一個數(shù)字化時代,要學(xué)會與數(shù)據(jù)打交道,養(yǎng)成對數(shù)據(jù)產(chǎn)生的背景進(jìn)行思考的習(xí)慣.

問題2:我發(fā)現(xiàn)我們班級有很多的同學(xué)都是戴眼鏡的,誰能告訴我我們班的近視率?

普查:為了一定的目的而對考察對象進(jìn)行的全面調(diào)查稱為普查.

總體:所要考察對象的全體稱為總體(population)

個體:組成總體的每一個考察對象稱為個體(individual)

普查是我們進(jìn)行調(diào)查得到全部信息的一種方式,比如我國10年一次的人口普查等.

設(shè)計意圖:通過與學(xué)生比較貼近的案例入手,讓學(xué)生體會到統(tǒng)計是從日常生活中產(chǎn)生的.

(二)操作實踐、展開課題

問題3:如果我想了解榆次二中所有高一學(xué)生的近視率,你打算怎么做呢?

抽樣調(diào)查:從總體中抽取部分個體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查(samplinginvestigation).

樣本:從總體中抽取的一部分個體叫做總體的一個樣本(sample).

師生活動:以四人小組為單位進(jìn)行討論,每個小組派一個代表匯報方案.

設(shè)計意圖:從這個問題中引出抽樣調(diào)查和樣本的概念,使學(xué)生對于如何產(chǎn)生樣本進(jìn)行一定的思考,同時也使學(xué)生認(rèn)識到樣本選擇的好壞對于用樣本估計總體的精確度是有所不同的.

列舉:一個的案例

高二數(shù)學(xué)教案下載篇4

【教學(xué)目標(biāo)】

掌握兩平面垂直的判定和性質(zhì),并用以解決有關(guān)問題.

【知識梳理】

1.定義

兩個平面相交,如果所成的二面角是直二面角,就說這兩個平面互相垂直.

2.兩個平面垂直的判定和性質(zhì)

語言表述圖示字母表示應(yīng)用

判定根據(jù)定義.證明兩平面所成的二面角是直二面角.

?AOB是二面角??a??的平面角,且?AOB=90?,則???證兩平面垂直如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直.???性質(zhì)如果兩個平面垂直,那么它們所成二面角的平面角是直角.

???,?AOB是二面角??a??的平面角,則?AOB=90?

證兩條直線垂直

如果兩個平面垂直,那么在一個平面內(nèi)垂直于它們交線的直線垂直于另一個平面.?a??

證直線和平面垂直

重要提示

1.兩個平面垂直的性質(zhì)定理,即:“如果兩個平面垂直,那么在一個平面內(nèi)垂直于它們交線的直線垂直于另一個平面”是作點到平面距離的依據(jù),要過平面外一點P作平面?的垂線,通常是先作(找)一個過點P并且和?垂直的平面?,設(shè)???=l,在?內(nèi)作直線a?l,則a??.

2.三種垂直關(guān)系的證明

(1)線線垂直的證明

①利用“兩條平行直線中的一條和第三條直線垂直,那么另一條也和第三條直線垂直”;

②利用“線面垂直的定義”,即由“線面垂直?線線垂直”;

③利用“三垂線定理或三垂線定理的逆定理”.

(2)線面垂直的證明

①利用“線面垂直的判定定理”,即由“線線垂直?線面垂直”;

②利用“如果兩條平行線中的一條垂直于一個平面,那么另一條也垂直于同一個平面”;

③利用“面面垂直的性質(zhì)定理”,即由“面面垂直?線面垂直”;

④利用“一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面”.

(3)面面垂直的證明

①利用“面面垂直的定義”,即證“兩平面所成的二面角是直二面角;

②利用“面面垂直的判定定理”,即由“線面垂直?面面垂直”.

1、在三棱錐A-BCD中,若AD⊥BC,BD⊥AD,⊿BCD是銳角三角形,那么必有……()

A、平面ABD⊥平面ADCB、平面ABD⊥平面ABC

C、平面ADC⊥平面BCDD、平面ABC⊥平面BCD

高二數(shù)學(xué)教案下載篇5

教學(xué)目標(biāo)

1.使學(xué)生了解反函數(shù)的概念;

2.使學(xué)生會求一些簡單函數(shù)的反函數(shù);

3.培養(yǎng)學(xué)生用辯證的觀點觀察、分析解決問題的能力。

教學(xué)重點

1.反函數(shù)的概念;

2.反函數(shù)的求法。

教學(xué)難點

反函數(shù)的概念。

教學(xué)方法

師生共同討論

教具裝備

幻燈片2張

第一張:反函數(shù)的定義、記法、習(xí)慣記法。(記作A);

第二張:本課時作業(yè)中的預(yù)習(xí)內(nèi)容及提綱。

教學(xué)過程

1.講授新課

(檢查預(yù)習(xí)情況)

師:這節(jié)課我們來學(xué)習(xí)反函數(shù)(板書課題)§2.4.1反函數(shù)的概念。

同學(xué)們已經(jīng)進(jìn)行了預(yù)習(xí),對反函數(shù)的概念有了初步的了解,誰來復(fù)述一下反函數(shù)的定義、記法、習(xí)慣記法?

生:(略)

(學(xué)生回答之后,打出幻燈片A)。

師:反函數(shù)的定義著重強調(diào)兩點:

(1)根據(jù)y=f(x)中x與y的關(guān)系,用y把x表示出來,得到x=φ(y);

(2)對于y在c中的任一個值,通過x=φ(y),x在A中都有惟一的值和它對應(yīng)。

師:應(yīng)該注意習(xí)慣記法是由記法改寫過來的。

師:由反函數(shù)的定義,同學(xué)們考慮一下,怎樣的映射確定的函數(shù)才有反函數(shù)呢?

生:一一映射確定的函數(shù)才有反函數(shù)。

(學(xué)生作答后,教師板書,若學(xué)生答不來,教師再予以必要的啟示)。

師:在y=f(x)中與y=f-1(y)中的x、y,所表示的量相同。(前者中的x與后者中的x都屬于同一個集合,y也是如此),但地位不同(前者x是自變量,y是函數(shù)值;后者y是自變量,x是函數(shù)值。)

在y=f(x)中與y=f–1(x)中的x都是自變量,y都是函數(shù)值,即x、y在兩式中所處的地位相同,但表示的`量不同(前者中的x是后者中的y,前者中的y是后者中的x。)

由此,請同學(xué)們談一下,函數(shù)y=f(x)與它的反函數(shù)y=f–1(x)兩者之間,定義域、值域存在什么關(guān)系呢?

生:(學(xué)生作答,教師板書)函數(shù)的定義域,值域分別是它的反函數(shù)的值域、定義域。

師:從反函數(shù)的概念可知:函數(shù)y=f(x)與y=f–1(x)互為反函數(shù)。

從反函數(shù)的概念我們還可以知道,求函數(shù)的反函數(shù)的方法步驟為:

(1)由y=f(x)解出x=f–1(y),即把x用y表示出;

(2)將x=f–1(y)改寫成y=f–1(x),即對調(diào)x=f–1(y)中的x、y。

(3)指出反函數(shù)的定義域。

下面請同學(xué)自看例1

2.課堂練習(xí)課本P68練習(xí)1、2、3、4。

3.課時小結(jié)

本節(jié)課我們學(xué)習(xí)了反函數(shù)的概念,從中知道了怎樣的映射確定的函數(shù)才有反函數(shù)并求函數(shù)的反函數(shù)的方法步驟,大家要熟練掌握。

高二數(shù)學(xué)教案下載篇6

Ⅰ.設(shè)置情境

(通過講評上一節(jié)課課后作業(yè)中出現(xiàn)的問題,復(fù)習(xí)利用“三個二次”間的關(guān)系求解一元二次不等式的主要操作過程。)

上節(jié)課我們只討論了二次項系數(shù)的一元二次不等式的求解問題。肯定有同學(xué)會問,那么二次項系數(shù)的一元二次不等式如何來求解?咱們班上有誰能解答這個疑問呢?

Ⅱ.探索研究

(學(xué)生議論紛紛.有的說仍然利用二次函數(shù)的圖像,有的說將二次項的系數(shù)變?yōu)檎龜?shù)后再求解,…….教師分別請持上述見解的學(xué)生代表進(jìn)一步說明各自的見解.)

生甲:只要將課本第39頁上表中的二次函數(shù)圖像次依關(guān)于x軸翻轉(zhuǎn)變成開口向下的拋物線,再根據(jù)可得的圖像便可求得二次項系數(shù)的一元二次不等式的解集.

生乙:我覺得先在不等式兩邊同乘以-1將二次項系數(shù)變?yōu)檎龜?shù)后直接運用上節(jié)課所學(xué)的方法求解就可以了.

師:首先,這兩種見解都是合乎邏輯和可行的.不過按前一見解來操作的話,同學(xué)們則需再記住一張類似于第39頁上的表格中的各結(jié)論.這不但加重了記憶負(fù)擔(dān),而且兩表中的結(jié)論容易搞混導(dǎo)致錯誤.而按后一種見解來操作時則不存在這個問題,請同學(xué)們閱讀第19頁例4.

(待學(xué)生閱讀完畢,教師再簡要講解一遍.)

[知識運用與解題研究]

由此例可知,對于二次項系數(shù)的一元二次不等式是將其通過同解變形化為的一元二次不等式來求解的,因此只要掌握了上一節(jié)課所學(xué)過的方法。我們就能求

解任意一個一元二次不等式了,請同學(xué)們求解以下兩不等式.(調(diào)兩位程度中等的學(xué)生演板)

(1)(2)

(分別為課本P21習(xí)題1.5中1大題(2)、(4)兩小題.教師講評兩位同學(xué)的解答,注意糾正表述方面存在的問題.)

訓(xùn)練二可化為一元一次不等式組來求解的不等式.

目前我們熟悉了利用“三個二次”間的關(guān)系求解一元二次不等式的方法雖然對任意一元二次不等式都適用,但具體操作起來還是讓我們感到有點麻煩.故在求解形如(或)的一元二次不等式時則根據(jù)(有理數(shù))乘(除)運算的“符號法則”化為同學(xué)們更加熟悉的一元一次不等式組來求解.現(xiàn)在清同學(xué)們閱讀課本P20上關(guān)于不等式求解的內(nèi)容并思考:原不等式的解集為什么是兩個一次不等式組解集的并集?(待學(xué)生閱讀完畢,請一程度較好,表達(dá)能力較強的學(xué)生回答該問題.)

【答】因為滿足不等式組或的x都能使原不等式成立,且反過來也是對的,故原不等式的解集是兩個一元二次不等式組解集的并集.

這個回答說明了原不等式的解集A與兩個一次不等式組解集的并集B是互為子集的關(guān)系,故它們必相等,現(xiàn)在請同學(xué)們求解以下各不等式.(調(diào)三位程度各異的學(xué)生演板.教師巡視,重點關(guān)注程度較差的學(xué)生).

(1)[P20練習(xí)中第1大題]

(2)[P20練習(xí)中第1大題]

(3)[P20練習(xí)中第2大題]

(老師扼要講評三位同學(xué)的解答.尤其要注意糾正表述方面存在的問題.然后講解P21例5).

例5解不等式

因為(有理數(shù))積與商運算的“符號法則”是一致的,故求解此類不等式時,也可像求解(或)之類的不等式一樣,將其化為一元一次不等式組來求解。具體解答過程如下。

解:(略)

現(xiàn)在請同學(xué)們完成課本P21練習(xí)中第3、4兩大題。

(等學(xué)生完成后教師給出答案,如有學(xué)生對不上答案,由其本人追查原因,自行糾正。)

[訓(xùn)練三]用“符號法則”解不等式的復(fù)式訓(xùn)練。

(通過多媒體或其他載體給出下列各題)

1.不等式與的解集相同此說法對嗎?為什么[補充]

2.解下列不等式:

(1)[課本P22第8大題(2)小題]

(2)[補充]

(3)[課本P43第4大題(1)小題]

(4)[課本P43第5大題(1)小題]

(5)[補充]

(每題均先由學(xué)生說出解題思路,教師扼要板書求解過程)

參考答案:

1.不對。同時前者無意義而后者卻能成立,所以它們的解集是不同的。

2.(1)

(2)原不等式可化為:,即

解集為。

(3)原不等式可化為

解集為

(4)原不等式可化為或

解集為

(5)原不等式可化為:或解集為

Ⅲ.總結(jié)提煉

這節(jié)課我們重點講解了利用(有理數(shù))乘除法的符號法則求解左式為若干一次因式的積或商而右式為0的不等式。值得注意的是,這一方法對符合上述形狀的高次不等式也是有效的,同學(xué)們應(yīng)掌握好這一方法。

(五)布置作業(yè)

(P22.2(2)、(4);4;5;6。)

(六)板書設(shè)計

高二數(shù)學(xué)教案下載篇7

一、指導(dǎo)思想:

全面貫徹教育方針,深入實施素質(zhì)教育,使學(xué)生在高一學(xué)習(xí)的基礎(chǔ)上,進(jìn)一步體會數(shù)學(xué)對發(fā)展自己思維能力的作用,體會數(shù)學(xué)對推動社會進(jìn)步和科學(xué)發(fā)展的意義以及數(shù)學(xué)的文化價值,提高數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會進(jìn)步的需要。

二、教學(xué)具體目標(biāo)

1、期中考前完成必修3、選修2—3第一章

2、提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。

3、提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。

三、教材特點:

我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書》,它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,強調(diào)了問題提出,抽象概括,分析理解,思考交流等研究性學(xué)習(xí)過程。具體特點如下:

1、“親和力”:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。

2、“問題性”:專門安排了“課題學(xué)習(xí)”和“探究活動”,培養(yǎng)問題意識,孕育創(chuàng)新精神。

3、“科學(xué)性”與“思想性”:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強調(diào)類比,推廣,特殊化,化歸等思想方法的運用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。

4、“時代性”與“應(yīng)用性”:教材中有“信息技術(shù)建議”和“信息技術(shù)應(yīng)用”,以具有時代性和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強數(shù)學(xué)活動,發(fā)展應(yīng)用意識。

5、“人文應(yīng)用價值性”:編寫了一些閱讀材料,開拓學(xué)生視野,從數(shù)學(xué)史的發(fā)展足跡中獲取營養(yǎng)和動力,全面感受數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值。

四、教法分析:

1、選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個究竟”的沖動,以達(dá)到培養(yǎng)其興趣的目的。

2、通過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進(jìn)學(xué)生的學(xué)習(xí)方式。

3、在教學(xué)中強調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。

五、教學(xué)措施:

1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。

2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。

3、加強培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。

5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法

6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。

六、教學(xué)進(jìn)度安排(略)

高二數(shù)學(xué)教案下載篇8

教學(xué)目標(biāo)

(1)掌握圓的標(biāo)準(zhǔn)方程,能根據(jù)圓心坐標(biāo)和半徑熟練地寫出圓的標(biāo)準(zhǔn)方程,也能根據(jù)圓的標(biāo)準(zhǔn)方程熟練地寫出圓的圓心坐標(biāo)和半徑.

(2)掌握圓的一般方程,了解圓的一般方程的結(jié)構(gòu)特征,熟練掌握圓的標(biāo)準(zhǔn)方程和一般方程之間的互化.

(3)了解參數(shù)方程的概念,理解圓的參數(shù)方程,能夠進(jìn)行圓的普通方程與參數(shù)方程之間的互化,能應(yīng)用圓的參數(shù)方程解決有關(guān)的簡單問題.

(4)掌握直線和圓的位置關(guān)系,會求圓的切線.

(5)進(jìn)一步理解曲線方程的概念、熟悉求曲線方程的方法.

教學(xué)建議

教材分析

(1)知識結(jié)構(gòu)

(2)重點、難點分析

①本節(jié)內(nèi)容教學(xué)的重點是圓的標(biāo)準(zhǔn)方程、一般方程、參數(shù)方程的推導(dǎo),根據(jù)條件求圓的方程,用圓的方程解決相關(guān)問題.

②本節(jié)的難點是圓的一般方程的結(jié)構(gòu)特征,以及圓方程的求解和應(yīng)用.

教法建議

(1)圓是最簡單的曲線.這節(jié)教材安排在學(xué)習(xí)了曲線方程概念和求曲線方程之后,學(xué)習(xí)三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼學(xué)習(xí)做好準(zhǔn)備.同時,有關(guān)圓的問題,特別是直線與圓的位置關(guān)系問題,也是解析幾何中的基本問題,這些問題的解決為圓錐曲線問題的解決提供了基本的思想方法.因此教學(xué)中應(yīng)加強練習(xí),使學(xué)生確實掌握這一單元的知識和方法.

(2)在解決有關(guān)圓的問題的過程中多次用到配方法、待定系數(shù)法等思想方法,教學(xué)中應(yīng)多總結(jié).

(3)解決有關(guān)圓的問題,要經(jīng)常用到一元二次方程的理論、平面幾何知識和前邊學(xué)過的解析幾何的基本知識,教師在教學(xué)中要注意多復(fù)習(xí)、多運用,培養(yǎng)學(xué)生運算能力和簡化運算過程的意識.

(4)有關(guān)圓的內(nèi)容非常豐富,有很多有價值的問題.建議適當(dāng)選擇一些內(nèi)容供學(xué)生研究.例如由過圓上一點的切線方程引申到切點弦方程就是一個很有價值的問題.類似的還有圓系方程等問題.

教學(xué)設(shè)計示例

圓的一般方程

教學(xué)目標(biāo):

(1)掌握圓的一般方程及其特點.

(2)能將圓的一般方程轉(zhuǎn)化為圓的標(biāo)準(zhǔn)方程,從而求出圓心和半徑.

(3)能用待定系數(shù)法,由已知條件求出圓的一般方程.

(4)通過本節(jié)課學(xué)習(xí),進(jìn)一步掌握配方法和待定系數(shù)法.

教學(xué)重點:(1)用配方法,把圓的一般方程轉(zhuǎn)化成標(biāo)準(zhǔn)方程,求出圓心和半徑.

(2)用待定系數(shù)法求圓的方程.

教學(xué)難點:圓的一般方程特點的研究.

教學(xué)用具:計算機.

教學(xué)方法:啟發(fā)引導(dǎo)法,討論法.

教學(xué)過程:

【引入】

前邊已經(jīng)學(xué)過了圓的標(biāo)準(zhǔn)方程

把它展開得

任何圓的方程都可以通過展開化成形如

的方程

【問題1】

形如①的方程的曲線是否都是圓?

師生共同討論分析:

如果①表示圓,那么它一定是某個圓的標(biāo)準(zhǔn)方程展開整理得到的我們把它再寫成原來的形式不就可以看出來了嗎?運用配方法,得

顯然②是不是圓方程與是什么樣的數(shù)密切相關(guān),具體如下:

(1)當(dāng)時,②表示以為圓心、以為半徑的圓;

(2)當(dāng)時,②表示一個點;

(3)當(dāng)時,②不表示任何曲線.

總結(jié):任意形如①的方程可能表示一個圓,也可能表示一個點,還有可能什么也不表示.

圓的一般方程的定義:

當(dāng)時,①表示以為圓心、以為半徑的圓,

此時①稱作圓的一般方程.

即稱形如的方程為圓的一般方程.

【問題2】圓的一般方程的特點,與圓的標(biāo)準(zhǔn)方程的異同.

(1)和的系數(shù)相同,都不為0.

(2)沒有形如的二次項.

圓的一般方程與一般的二元二次方程

相比較,上述(1)、(2)兩個條件僅是③表示圓的必要條件,而不是充分條件或充要條件.

圓的一般方程與圓的標(biāo)準(zhǔn)方程各有千秋:

(1)圓的標(biāo)準(zhǔn)方程帶有明顯的幾何的影子,圓心和半徑一目了然.

(2)圓的一般方程表現(xiàn)出明顯的代數(shù)的形式與結(jié)構(gòu),更適合方程理論的運用.

【實例分析】

例1:下列方程各表示什么圖形.

(1);

(2);

一、教學(xué)內(nèi)容分析

向量作為工具在數(shù)學(xué)、物理以及實際生活中都有著廣泛的應(yīng)用.

本小節(jié)的重點是結(jié)合向量知識證明數(shù)學(xué)中直線的平行、垂直問題,以及不等式、三角公式的證明、物理學(xué)中的應(yīng)用.

二、教學(xué)目標(biāo)設(shè)計

1、通過利用向量知識解決不等式、三角及物理問題,感悟向量作為一種工具有著廣泛的應(yīng)用,體會從不同角度去看待一些數(shù)學(xué)問題,使一些數(shù)學(xué)知識有機聯(lián)系,拓寬解決問題的思路.

2、了解構(gòu)造法在解題中的運用.

三、教學(xué)重點及難點

重點:平面向量知識在各個領(lǐng)域中應(yīng)用.

難點:向量的構(gòu)造.

四、教學(xué)流程設(shè)計

五、教學(xué)過程設(shè)計

一、復(fù)習(xí)與回顧

1、提問:下列哪些量是向量?

(1)力(2)功(3)位移(4)力矩

2、上述四個量中,(1)(3)(4)是向量,而(2)不是,那它是什么?

[說明]復(fù)習(xí)數(shù)量積的有關(guān)知識.

二、學(xué)習(xí)新課

例1(書中例5)

向量作為一種工具,不僅在物理學(xué)科中有廣泛的應(yīng)用,同時它在數(shù)學(xué)學(xué)科中也有許多妙用!請看

例2(書中例3)

證法(一)原不等式等價于,由基本不等式知(1)式成立,故原不等式成立.

證法(二)向量法

[說明]本例關(guān)鍵引導(dǎo)學(xué)生觀察不等式結(jié)構(gòu)特點,構(gòu)造向量,并發(fā)現(xiàn)(等號成立的充要條件是)

例3(書中例4)

[說明]本例的關(guān)鍵在于構(gòu)造單位圓,利用向量數(shù)量積的兩個公式得到證明.

二、鞏固練習(xí)

1、如圖,某人在靜水中游泳,速度為km/h.

(1)如果他徑直游向河對岸,水的流速為4km/h,他實際沿什么方向前進(jìn)?速度大小為多少?

答案:沿北偏東方向前進(jìn),實際速度大小是8km/h.

(2)他必須朝哪個方向游才能沿與水流垂直的方向前進(jìn)?實際前進(jìn)的速度大小為多少?

答案:朝北偏西方向前進(jìn),實際速度大小為km/h.

三、課堂小結(jié)

1、向量在物理、數(shù)學(xué)中有著廣泛的應(yīng)用.

2、要學(xué)會從不同的角度去看一個數(shù)學(xué)問題,是數(shù)學(xué)知識有機聯(lián)系.

四、作業(yè)布置

1、書面作業(yè):課本P73,練習(xí)8.44

高二數(shù)學(xué)教案下載篇9

1.教材結(jié)構(gòu)分析

《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié).圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用.圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用.

2.學(xué)情分析

圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的.但由于學(xué)生學(xué)習(xí)解析幾何的時間還不長、學(xué)習(xí)程度較淺,且對坐標(biāo)法的運用還不夠熟練,在學(xué)習(xí)過程中難免會出現(xiàn)困難.另外學(xué)生在探究問題的能力,合作交流的意識等方面有待加強.

根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

3.教學(xué)目標(biāo)

(1)知識目標(biāo):①掌握圓的標(biāo)準(zhǔn)方程;

②會由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;

③利用圓的標(biāo)準(zhǔn)方程解決簡單的實際問題.

(2)能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;

②加深對數(shù)形結(jié)合思想的理解和加強對待定系數(shù)法的運用;

③增強學(xué)生用數(shù)學(xué)的意識.

(3)情感目標(biāo):①培養(yǎng)學(xué)生主動探究知識、合作交流的意識;

②在體驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.

根據(jù)以上對教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點和難點:

4.教學(xué)重點與難點

(1)重點:圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.

(2)難點:①會根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;

②選擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實際問題.

為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進(jìn)行分析:

【二】教法學(xué)法分析

1.教法分析為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上.另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程.

2.學(xué)法分析通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對用坐標(biāo)法求軌跡方程的理解.通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個獨立的條件才可以確定一個圓.通過應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程.

下面我就對具體的教學(xué)過程和設(shè)計加以說明:

【三】教學(xué)過程與設(shè)計

整個教學(xué)過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):

創(chuàng)設(shè)情境啟迪思維深入探究獲得新知應(yīng)用舉例鞏固提高

反饋訓(xùn)練形成方法小結(jié)反思拓展引申

下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計意圖.

首先:縱向敘述教學(xué)過程

(一)創(chuàng)設(shè)情境——啟迪思維

問題一已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?

通過對這個實際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決.一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時學(xué)生自己推導(dǎo)出了圓心在原點,半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題.用實際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實際,應(yīng)用于實際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望.這樣獲取的知識,不但易于保持,而且易于遷移.

通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來,此時再把問題深入,進(jìn)入第二環(huán)節(jié).

(二)深入探究——獲得新知

問題二1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

2.如果圓心在,半徑為時又如何呢?

這一環(huán)節(jié)我首先讓學(xué)生對問題一進(jìn)行歸納,得到圓心在原點,半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點,半徑為r的圓的標(biāo)準(zhǔn)方程.然后再讓學(xué)生對圓心不在原點的情況進(jìn)行探究.我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法.

得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計了由淺入深的三個應(yīng)用平臺,進(jìn)入第三環(huán)節(jié).

(三)應(yīng)用舉例——鞏固提高

I.直接應(yīng)用內(nèi)化新知

問題三1.寫出下列各圓的標(biāo)準(zhǔn)方程:

(1)圓心在原點,半徑為3;

(2)經(jīng)過點,圓心在點.

2.寫出圓的圓心坐標(biāo)和半徑.

我設(shè)計了兩個小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備.

II.靈活應(yīng)用提升能力

問題四1.求以點為圓心,并且和直線相切的圓的方程.

2.求過點,圓心在直線上且與軸相切的圓的方程.

3.已知圓的方程為,求過圓上一點的切線方程.

你能歸納出具有一般性的結(jié)論嗎?

已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?

我設(shè)計了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程.第二個小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓.第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間.最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達(dá)到高潮.

III.實際應(yīng)用回歸自然

問題五如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m).

我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學(xué)生形成解決實際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識.

(四)反饋訓(xùn)練——形成方法

問題六1.求過原點和點,且圓心在直線上的圓的標(biāo)準(zhǔn)方程.

2.求圓過點的切線方程.

3.求圓過點的切線方程.

接下來是第四環(huán)節(jié)——反饋訓(xùn)練.這一環(huán)節(jié)中,我設(shè)計三個小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強學(xué)習(xí)數(shù)學(xué)的愿望與信心.另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進(jìn)行判斷,這樣的設(shè)計對培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果.

(五)小結(jié)反思——拓展引申

1.課堂小結(jié)

把圓的標(biāo)準(zhǔn)方程與過圓上一點圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法

①圓心為,半徑為r的圓的標(biāo)準(zhǔn)方程為:

圓心在原點時,半徑為r的圓的標(biāo)準(zhǔn)方程為:.

②已知圓的方程是,經(jīng)過圓上一點的切線的方程是:.

2.分層作業(yè)

(A)鞏固型作業(yè):教材P81-82:(習(xí)題7.6)1,2,4.(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點的切線方程.

3.激發(fā)新疑

問題七1.把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

2.方程表示什么圖形?

在本課的結(jié)尾設(shè)計這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產(chǎn)生了.在知識的拓展中再次掀起學(xué)生探究的熱情.另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備.

以上是我縱向的教學(xué)過程及簡單的設(shè)計意圖,接下來,我從三個方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計:

橫向闡述教學(xué)設(shè)計

(一)突出重點抓住關(guān)鍵突破難點

求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點也是難點,為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點.

第二個教學(xué)難點就是解決實際應(yīng)用問題,這是學(xué)生固有的難題,主要是因為應(yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強了信心.最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五.這樣的設(shè)計,使學(xué)生在解決問題的同時,形成了方法,難點自然突破.

(二)學(xué)生主體教師主導(dǎo)探究主線

本節(jié)課的設(shè)計用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終.從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的.另外,我重點設(shè)計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學(xué)習(xí)任務(wù).

(三)培養(yǎng)思維提升能力激勵創(chuàng)新

為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力.在問題的設(shè)計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行.

以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變.最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”.

高二數(shù)學(xué)教案下載篇10

一、教學(xué)內(nèi)容分析

圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象、恰當(dāng)?shù)乩枚x__題,許多時候能以簡馭繁、因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強調(diào)定義,學(xué)會利用圓錐曲線定義來熟練的解題”。

二、學(xué)生學(xué)習(xí)情況分析

我所任教班級的學(xué)生參與課堂教學(xué)活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。

三、設(shè)計思想

由于這部分知識較為抽象,如果離開感性認(rèn)識,容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情、在教學(xué)時,借助多媒體動畫,引導(dǎo)學(xué)生主動發(fā)現(xiàn)問題、解決問題,主動參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率、

四、教學(xué)目標(biāo)

1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用__解決問題;熟練掌握焦點坐標(biāo)、頂點坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。

2、通過對練習(xí),強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣、

五、教學(xué)重點與難點:

教學(xué)重點

1、對圓錐曲線定義的理解

2、利用圓錐曲線的定義求“最值”

3、“定義法”求軌跡方程

教學(xué)難點:

巧用圓錐曲線定義__

高二數(shù)學(xué)教案下載篇11

選修Ⅱ

1.概率與統(tǒng)計(14課時)

離散型隨機變量的分布列。離散型隨機變量的期望值和方差。

抽樣方法。總體分布的估計。正態(tài)分布。線性回歸。

實習(xí)作業(yè)。

教學(xué)目標(biāo):

(1)了解隨機變量、離散型隨機變量的意義,會求出某些簡單的離散型隨機變量的分布列。

(2)了解離散型隨機變量的期望值、方差的意義,會根據(jù)離散型隨機變量的分布列求出期望值、方差。

(3)會用隨機抽樣、系統(tǒng)抽樣、分層抽樣等常用的抽樣方法從總體中抽取樣本。

(4)會用樣本頻率分布估計總體分布。

(5)了解正態(tài)分布的意義及主要性質(zhì)。

(6)通過生產(chǎn)過程的質(zhì)量控制圖了解假設(shè)檢驗的基本思想。

(7)了解線性回歸的方法。

(8)實習(xí)作業(yè)以抽樣方法為內(nèi)容,培養(yǎng)學(xué)生用數(shù)學(xué)解決實際問題的能力。

2.極限(12課時)

數(shù)學(xué)歸納法。數(shù)學(xué)歸納法應(yīng)用舉例。

數(shù)列的極限。

函數(shù)的極限。極限的四則運算。函數(shù)的連續(xù)性。

教學(xué)目標(biāo):

(1)理解數(shù)學(xué)歸納法的原理,能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題。

(2)從數(shù)列和函數(shù)的變化趨勢理解數(shù)列極限和函數(shù)極限的概念。

(3)掌握極限的四則運算法則;會求某些數(shù)列與函數(shù)的極限。

(4)了解連續(xù)的意義,借助幾何直觀理解閉區(qū)間上連續(xù)函數(shù)有最大值和最小值的性質(zhì)。

3.導(dǎo)數(shù)與微分(16課時)

導(dǎo)數(shù)的概念。導(dǎo)數(shù)的幾何意義。幾種常見函數(shù)的導(dǎo)數(shù)。

兩個函數(shù)的和、差、積、商的導(dǎo)數(shù)。復(fù)合函數(shù)的導(dǎo)數(shù)。基本導(dǎo)數(shù)公式。

微分的概念與運算。

利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值。函數(shù)的最大值和最小值。

教學(xué)目標(biāo):

(1)了解導(dǎo)數(shù)概念的某些實際背景(如瞬時速度,加速度,光滑曲線切線的斜率等);掌握函數(shù)在一點處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義;理解導(dǎo)函數(shù)的概念。

(2)熟記基本導(dǎo)數(shù)公式(c,xm(m為有理數(shù)),sinx,cosx,ex,ax,lnx,logax的導(dǎo)數(shù));掌握兩個函數(shù)和、差、積、商的求導(dǎo)法則和復(fù)合函數(shù)的求導(dǎo)法則,會求某些簡單函數(shù)的導(dǎo)數(shù)。

(3)理解微分的概念(dy=y'dx),了解函數(shù)在一點處的微分是函數(shù)增量的線性近似值,會求某些簡單函數(shù)的微分。

(4)會從幾何直觀了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系;了解可導(dǎo)函數(shù)在某點取得極值的必要條件和充分條件(導(dǎo)數(shù)在極值點兩側(cè)異號);會求一些實際問題(一般指單峰函數(shù))的最大值和最小值。

4.積分(14課時)

定積分的概念。定積分的簡單性質(zhì)。微積分基本公式。

原函數(shù)與不定積分的概念。不定積分的線性性質(zhì)。基本積分公式。

平面圖形的面積。旋轉(zhuǎn)體的體積。路程問題。變力作功。

微積分學(xué)建立的時代背景和歷史意義。

教學(xué)目標(biāo):

(1)了解定積分概念的某些實際背景(如變速直線運動的路程,曲邊梯形的面積等);了解定積分的定義和定積分的幾何意義;知道函數(shù)連續(xù)是定積分存在的充分條件。

(2)理解定積分的簡單性質(zhì)(線性性質(zhì)和對區(qū)間的可加性);了解微積分基本公式(牛頓-萊布尼茲公式),會用它來求一些函數(shù)的定積分。

(3)掌握原函數(shù)與不定積分的概念,掌握不定積分的線性性質(zhì);熟記基本積分公式(c,xm(m為有理數(shù)),sinx,cosx,,ex,ax的積分);會利用線性性質(zhì)和基本積分公式求較簡單的函數(shù)的不定積分。

(4)會用定積分求一些平面圖形的面積、旋轉(zhuǎn)體的體積、變速直線運動的路程、變力所作的功。

(5)通過微積分初步的教學(xué),了解微積分學(xué)產(chǎn)生的時代背景和歷史意義,進(jìn)行客觀事物相互制約、相互轉(zhuǎn)化、對立統(tǒng)一的辯證關(guān)系等觀點的教育。

5.復(fù)數(shù)(16課時)

復(fù)數(shù)的概念。復(fù)數(shù)的向量表示法。

復(fù)數(shù)的加法與減法。復(fù)數(shù)的乘法與除法。

復(fù)數(shù)的三角形式。復(fù)數(shù)三角形式的乘法、除法、乘方、開方。

教學(xué)目標(biāo):

(1)了解引進(jìn)復(fù)數(shù)的必要性;理解復(fù)數(shù)的有關(guān)概念;掌握復(fù)數(shù)的代數(shù)表示及向量表示。

(2)掌握復(fù)數(shù)代數(shù)形式的運算法則,能進(jìn)行復(fù)數(shù)代數(shù)形式的加法、減法、乘法、除法運算。

(3)掌握復(fù)數(shù)三角形式,會進(jìn)行復(fù)數(shù)三角形式和代數(shù)形式的互化;掌握復(fù)數(shù)三角形式的乘法、除法、乘方、開方運算。

6.研究性課題(選修Ⅰ3課時,選修Ⅱ6課時)

有關(guān)研究性課題的要求和教學(xué)目標(biāo)見本大綱必修課中“研究性課題”的說明。

高二數(shù)學(xué)教案下載篇12

【教學(xué)目標(biāo)】

1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。

2.能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。

3.提高學(xué)生的觀察能力;培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

【教學(xué)重難點】

教學(xué)重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。

教學(xué)難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。

【教學(xué)過程】

1.情景導(dǎo)入

教師提出問題,引導(dǎo)學(xué)生觀察、舉例和相互交流,提出本節(jié)課所學(xué)內(nèi)容,出示課題。

2.展示目標(biāo)、檢查預(yù)習(xí)

3、合作探究、交流展示

(1)引導(dǎo)學(xué)生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?

(2)組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。

在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。

(1)有兩個面互相平行;

(2)其余各面都是平行四邊形;

(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

(3)提出問題:請列舉身邊的棱柱并對它們進(jìn)行分類

(4)以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

(5)讓學(xué)生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。

(6)引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。

(7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。

(1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)

(2)棱柱的任何兩個平面都可以作為棱柱的底面嗎?

(3)圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

(4)棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?

(5)繞直角三角形某一邊的幾何體一定是圓錐嗎?

高二數(shù)學(xué)教案下載篇13

一、教學(xué)目標(biāo):

1、知識與技能目標(biāo)

①理解循環(huán)結(jié)構(gòu),能識別和理解簡單的框圖的功能。

②能運用循環(huán)結(jié)構(gòu)設(shè)計程序框圖解決簡單的問題。

2、過程與方法目標(biāo)

通過模仿、操作、探索,學(xué)習(xí)設(shè)計程序框圖表達(dá),解決問題的過程,發(fā)展有條理的思考與表達(dá)的能力,提高邏輯思維能力。

3、情感、態(tài)度與價值觀目標(biāo)

通過本節(jié)的自主性學(xué)習(xí),讓學(xué)生感受和體會算法思想在解決具體問題中的意義,增強學(xué)生的創(chuàng)新能力和應(yīng)用數(shù)學(xué)的意識。

二、教學(xué)重點、難點

重點:理解循環(huán)結(jié)構(gòu),能識別和畫出簡單的循環(huán)結(jié)構(gòu)框圖,

難點:循環(huán)結(jié)構(gòu)中循環(huán)條件和循環(huán)體的確定。

三、教法、學(xué)法

本節(jié)課我遵循引導(dǎo)發(fā)現(xiàn),循序漸進(jìn)的思路,采用問題探究式教學(xué)。運用多媒體,投影儀輔助。倡導(dǎo)“自主、合作、探究”的學(xué)習(xí)方式。

高二數(shù)學(xué)教案下載篇14

【教學(xué)目標(biāo)】

1.使學(xué)生了解立體幾何研究的對象、內(nèi)容:

2.使學(xué)生初步理解立體幾何中的主要數(shù)學(xué)思想方法(類比思想、轉(zhuǎn)化思想、展開思想)

3.培養(yǎng)學(xué)生空間想象能力,初步建立空間概念

【教學(xué)重點】

空間概念的建立與立體幾何中的主要數(shù)學(xué)思想方法

【教學(xué)難點】

空間概念的建立

【教學(xué)過程】

一.引入新課

1.請同學(xué)們用六根長度相等的火柴搭正三角形,試試看,最多達(dá)成幾個正三角形?學(xué)生動手試驗后,教師總結(jié):在平面內(nèi)最多只能搭成兩個,而在空間能搭成四個。同時,向?qū)W生展示正四面體骨架模型,再讓學(xué)生看圖1.

2.請同學(xué)們想一想,是否存在三條直線兩兩互相垂直?若存在請舉出實際中的例子。

學(xué)生討論后,教師總結(jié):在同一平面內(nèi)不存在,因為a⊥c,b⊥c,得到a∥b;但在空間是存在的,如教室墻角處的三條直線AB,AC,AD兩兩互相垂直(如圖2)。請同學(xué)們觀察正方體(向?qū)W生展示正方體模型)中一個頂點處的三條棱之間的關(guān)系,也是兩兩互相垂直的(如圖3)

3.小結(jié):現(xiàn)實世界中許多問題,只在平面內(nèi)研究是很不夠的,還需要在空間這個更廣闊的領(lǐng)域內(nèi)來考慮,這就是我們將要學(xué)習(xí)的新課程--立體幾何(板書課題)二、講授新課

1.立體幾何的研究對象、內(nèi)容

提問1:平面幾何的研究對象、內(nèi)容是什么?答:對象是平面圖形,具體說是研究點、線、面;內(nèi)容是平面圖形的畫法、形狀、位置關(guān)系、大小計算及應(yīng)用。提問2:立體幾何的研究對象、內(nèi)容又是什么?讓學(xué)生觀察正方體、圓柱、正四面體骨架等,引導(dǎo)學(xué)生與平面幾何進(jìn)行類比。在學(xué)生回答的基礎(chǔ)上,教師小結(jié)為:立體幾何的研究對象--空間圖形(由空間的點、線、面組成)立體幾何的研究內(nèi)容--空間圖形的畫法、形狀、位置關(guān)系、大小計算及應(yīng)用,是平面幾何的推廣

2.空間圖形與平面圖形的畫法的不同點提問:同學(xué)們雖然還沒有掌握空間圖形的畫法,但已經(jīng)見到了老師畫的正方體、圓柱、正四面體的直觀圖,同學(xué)們想一想,空間圖形與平面圖形的畫法有什么不同?經(jīng)過分析,平面圖形的畫法是真實的,而空間圖形的直觀圖是不真實的,如正方體的底面本是正方形,但在直觀圖中都畫成平行四邊形。圓柱的底面本是圓,但在直觀圖中都畫成了橢圓。

例:1)說出下列各角的度數(shù):∠B1A1C1、∠B1C1A1、∠BCB1的度數(shù)

2)計算∠BC1A1的大小

3)設(shè)AB=a,試求正方體的表面積和體積

分析:通過解答上述問題,同學(xué)們已經(jīng)看到:在研究空間圖形時,不能依據(jù)對圖形的直覺作出判斷,而應(yīng)依據(jù)正確的推理、計算作出結(jié)論。

三.立體幾何中的主要思想方法

1.類比思想

例1.判斷下列命題是否正確(a、b、c表示直線)

高二數(shù)學(xué)教案下載篇15

教學(xué)目標(biāo)

1、知識與技能:

(1)推廣角的概念、引入大于角和負(fù)角;

(2)理解并掌握正角、負(fù)角、零角的定義;

(3)理解任意角以及象限角的概念;

(4)掌握所有與角終邊相同的角(包括角)的表示方法;

(5)樹立運動變化觀點,深刻理解推廣后的角的概念;

(6)揭示知識背景,引發(fā)學(xué)生學(xué)習(xí)興趣;

(7)創(chuàng)設(shè)問題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強化學(xué)生的參與意識。

2、過程與方法:

通過創(chuàng)設(shè)情境:“轉(zhuǎn)體,逆(順)時針旋轉(zhuǎn)”,角有大于角、零角和旋轉(zhuǎn)方向不同所形成的角等,引入正角、負(fù)角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標(biāo)系,引入象限角、非象限角的概念及象限角的&39;判定方法;列出幾個終邊相同的角,畫出終邊所在的位置,找出它們的關(guān)系,探索具有相同終邊的角的表示;講解例題,總結(jié)方法,鞏固練習(xí)。

3、情態(tài)與價值:

通過本節(jié)的學(xué)習(xí),使同學(xué)們對角的概念有了一個新的認(rèn)識,即有正角、負(fù)角和零角之分。角的概念推廣以后,知道角之間的關(guān)系。理解掌握終邊相同角的表示方法,學(xué)會運用運動變化的觀點認(rèn)識事物。

教學(xué)重難點

重點:理解正角、負(fù)角和零角的定義,掌握終邊相同角的表示法。

難點:終邊相同的角的表示。

高二數(shù)學(xué)教案下載篇16

教學(xué)目的:

掌握圓的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問題

教學(xué)重點:

圓的標(biāo)準(zhǔn)方程及有關(guān)運用

教學(xué)難點:

標(biāo)準(zhǔn)方程的靈活運用

教學(xué)過程:

一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程

二、掌握知識,鞏固練習(xí)

練習(xí):

說出下列圓的方程

⑴圓心(3,-2)半徑為5

⑵圓心(0,3)半徑為3

指出下列圓的圓心和半徑

⑴(x-2)2+(y+3)2=3

⑵x2+y2=2

⑶x2+y2-6x+4y+12=0

判斷3x-4y-10=0和x2+y2=4的位置關(guān)系

圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程

三、引伸提高,講解例題

例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)

練習(xí):

1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。

例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)

四、小結(jié)練習(xí)P771,2,3,4

五、作業(yè)P811,2,3,4

高二數(shù)學(xué)教案下載篇17

一教學(xué)內(nèi)容分析:

本節(jié)內(nèi)容在教材中有著重要的地位與作用,線性規(guī)劃是利用數(shù)學(xué)為工具來研究一定的人、財、物、時、空等資源在一定的條件下,如何精打細(xì)算巧安排,用最少的資源,取得的經(jīng)濟(jì)效益,這一部分內(nèi)容體現(xiàn)了數(shù)學(xué)的工具性、應(yīng)用性,同時滲透了化歸,數(shù)形結(jié)合的數(shù)學(xué)思維和解決實際問題的一種重要的解題方法——數(shù)學(xué)建模法。

二學(xué)生學(xué)習(xí)情況分析:

把實際問題轉(zhuǎn)化為線性規(guī)劃問題,并結(jié)合出解答是本節(jié)的重點和難點,對許多學(xué)生來說,解數(shù)學(xué)應(yīng)用題的最常見的困難是不會持實際問題轉(zhuǎn)化或數(shù)學(xué)問題,即不會建模,對學(xué)生而言,解決應(yīng)用問題的障礙主要有三類:①不能正確理解題意思,弄清各元素之間的關(guān)系;②不能弄清問題的主次關(guān)系,因而抓不住問題的本質(zhì),無法建立數(shù)學(xué)模型;③孤立考慮單個問題情境,不能多聯(lián)想。

三設(shè)計思想:

注意學(xué)生的探究過程,讓學(xué)生體驗探究問題的成就感,一切以學(xué)生的探究活動為主,以問題是驅(qū)動,激發(fā)學(xué)生學(xué)習(xí)樂趣。

四教學(xué)目標(biāo):

1、使學(xué)生了解線性規(guī)劃的意義以及約束條件、目標(biāo)函數(shù)、可行域、可行解、解等基本概念;了解線性規(guī)劃問題的圖解法,并能應(yīng)用它解決一些簡單的實際問題。

2、通過本節(jié)內(nèi)容的學(xué)習(xí),培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的能力等。滲透集合,化歸,數(shù)形結(jié)合的數(shù)學(xué)思想,提問“建模”和解決實際問題的能力。

五教學(xué)重點和難點:

教學(xué)重點:求線性目標(biāo)函數(shù)的最值問題,培養(yǎng)學(xué)生“用數(shù)學(xué)”的意識,即線性規(guī)劃在實際生活中的應(yīng)用。

教學(xué)難點:把實際問題轉(zhuǎn)化為線性規(guī)劃問題,并結(jié)合出解答。

六教學(xué)過程:

(一)問題引入

某工廠用A、B兩種配件生產(chǎn)甲、乙兩種產(chǎn)品,每生產(chǎn)一會一件甲產(chǎn)品使用4個A配件耗時1個小時,每生產(chǎn)一件乙產(chǎn)品使用4個B配件耗時2小時,該廠每天最多可以配件廠獲得16個A配件和12個B配件,按每天工作8小時計算,該廠所有可能的月生產(chǎn)安排是什么?由學(xué)生列出不等關(guān)系,并畫出平面區(qū)域,由此引入新課。

(二)問題深入,推進(jìn)新課

①引領(lǐng)學(xué)生自主探索引入問題中的實際問題,怎樣安排才有意義?

②若生產(chǎn)一件甲產(chǎn)品獲利2萬元,生產(chǎn)一件乙產(chǎn)品獲利3萬元,采用哪種生產(chǎn)安排利潤?

設(shè)計意圖:

由實際問題出發(fā)激發(fā)學(xué)生學(xué)習(xí)興趣,在探究過程中,看似簡單的問題,學(xué)生容易抓不住問題的主干,需要適時的引導(dǎo)。

(三)揭示本質(zhì)深化認(rèn)識

提出問題:

①上述探索的問題中,Z的幾何意義是什么?結(jié)合圖形說明

②結(jié)合以上探究,理解什么是目標(biāo)函數(shù)?線性目標(biāo)函數(shù)?什么是線性規(guī)劃?弄清什么是可行域解?可行域?解?

③你能根據(jù)以上探究總結(jié)出解決線性規(guī)劃問題的一般步驟嗎?

(四)應(yīng)用示例

高二數(shù)學(xué)教案下載篇18

教學(xué)目標(biāo)

1.掌握平面向量的數(shù)量積及其幾何意義;

2.掌握平面向量數(shù)量積的重要性質(zhì)及運算律;

3.了解用平面向量的數(shù)量積可以處理有關(guān)長度、角度和垂直的問題;

4.掌握向量垂直的條件。

教學(xué)重難點

教學(xué)重點:平面向量的數(shù)量積定義

教學(xué)難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應(yīng)用

教學(xué)工具

投影儀

教學(xué)過程

復(fù)習(xí)引入:

向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數(shù)λ,使=λ

課堂小結(jié)

(1)請學(xué)生回顧本節(jié)課所學(xué)過的知識內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?

(2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?

課后作業(yè)

P107習(xí)題2.4A組2、7題

課后小結(jié)

(1)請學(xué)生回顧本節(jié)課所學(xué)過的知識內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?

(2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?

高二數(shù)學(xué)教案下載篇19

【教材分析】

1.知識內(nèi)容與結(jié)構(gòu)分析

集合論是現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ)。在高中數(shù)學(xué)中,集合的初步知識與其他內(nèi)容有著密切的聯(lián)系,是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ),集合論以及它所反映的數(shù)學(xué)思想在越來越廣泛的領(lǐng)域中得到應(yīng)用。課本從學(xué)生熟悉的集合(自然數(shù)集合、有理數(shù)的集合等)出發(fā),結(jié)合實例給出了元素、集合的含義,學(xué)生通過對具體實例的抽象、概括發(fā)展了邏輯思維能力。

2.知識學(xué)習(xí)意義分析

通過自主探究的學(xué)習(xí)過程,了解集合的含義,體會元素與集合的“屬于”關(guān)系,能選擇合適的語言描述不同的具體問題,感受集合語言的意義和作用。

3.教學(xué)建議與學(xué)法指導(dǎo)

由于本節(jié)新概念、新符號較多,雖然內(nèi)容較為淺顯,但不應(yīng)講得過快,應(yīng)在講解概念的同時,讓學(xué)生多閱讀課本,互相交流,在此基礎(chǔ)上理解概念并熟悉新符號的使用。通過問題探究、自主探索、合作交流、自我總結(jié)等形式,調(diào)動學(xué)生的積極性。

【學(xué)情分析】

在初中,學(xué)生學(xué)習(xí)過一些點的集合或軌跡,如:平面內(nèi)到一個定點的距離等于定長的點的集合(圓);到一條線段的兩個端點的距離相等的點的集合(線段的垂直平分線)。這對學(xué)生學(xué)習(xí)本節(jié)課的知識有一定的幫助,只不過現(xiàn)在我們要把這個“集合”推廣,它不僅僅是點的集合或圖形的集合,而是“指定的某些對象的全體”。集合語言是現(xiàn)代數(shù)學(xué)的基本語言,使用這種語言,不僅有助于簡潔、準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容,還可以用來刻畫和解決生活中的許多問題。學(xué)習(xí)集合,可以發(fā)展同學(xué)們用數(shù)學(xué)語言進(jìn)行交流的能力。

【教學(xué)目標(biāo)】

1.知識與技能

(1)學(xué)生通過自主學(xué)習(xí),初步理解集合的概念,理解元素與集合間的關(guān)系,了解集合元素的確定性、互異性,無序性,知道常用數(shù)集及其記法;

(2)掌握集合的常用表示法——列舉法和描述法。

2.過程與方法

通過實例了解集合的含義,體會元素與集合的“屬于”關(guān)系,能選擇合適的語言(如自然語言、圖形語言、集合語言)描述不同的具體問題,提高語言轉(zhuǎn)換和抽象概括能力,樹立用集合語言表示數(shù)學(xué)內(nèi)容的意識。

3.情態(tài)與價值

在掌握基本概念的基礎(chǔ)上,能夠解決相關(guān)問題,獲得數(shù)學(xué)學(xué)習(xí)的成就感,提高學(xué)生分析問題和解決問題的能力,培養(yǎng)學(xué)生的應(yīng)用意識。

【重點難點】

1.教學(xué)重點:集合的基本概念與表示方法。

2.教學(xué)難點:選擇合適的方法正確表示集合。

【教學(xué)思路】

通過實例以及學(xué)生熟悉的數(shù)集,引入集合的概念,進(jìn)而給出集合的表示方法,學(xué)生通過自我體會、自主學(xué)習(xí)、自我總結(jié)達(dá)到掌握本節(jié)課內(nèi)容的目的。教學(xué)過程按照“提出問題——學(xué)生討論——歸納總結(jié)——獲得新知——自我檢測”環(huán)節(jié)安排。

【教學(xué)過程】

課前準(zhǔn)備:

提前留給學(xué)生預(yù)習(xí)方案:a.預(yù)習(xí)初中數(shù)學(xué)中有關(guān)集合的章節(jié);b.預(yù)習(xí)本節(jié)內(nèi)容,試著找出與以往的聯(lián)系;c.搜集生活中的集合的使用實例。

導(dǎo)入新課:同學(xué)們,我們今天要學(xué)習(xí)的是集合的知識,在小學(xué)和初中,我們已經(jīng)接觸過了一些集合,例如,自然數(shù)的集合,有理數(shù)的集合,不等式x-7<3的解得集合,到一個頂點的距離等于定長的點的集合(即圓),等等。現(xiàn)在呢,我要說的是:我們大家通過對初中知識的預(yù)習(xí)和對本節(jié)課的預(yù)習(xí)我相信你們能夠很大一部分已經(jīng)掌握了本節(jié)知識的主要問題,對不對?(同學(xué)們會高興地說:對!)

下面我們分三個小組,做個游戲,好不好?我們互相競賽答題,互相評論優(yōu)點與不足,好不好?(同學(xué)們在被調(diào)動起情緒的時候應(yīng)該說:好!)

教與學(xué)的過程:

預(yù)設(shè)問題設(shè)計意圖師生活動教師活動

一組二組三組活動同學(xué)們,通過看課本2頁的(1)至(8)個例子,同學(xué)們有什么啟發(fā)嗎?提出一個模糊一點的問題,留給三組學(xué)生更寬的思考空間。啟發(fā)思考,激發(fā)興趣。教師點撥,及時糾正偏差的回答方向。(理想答案:我們學(xué)過很多集合的知識了。我們會舉出一些集合的例子。)

學(xué)生三個組分組輪流回答。你能說出他們有什么共同的特征嗎?為集合的定義及含義的給出作出鋪墊,并培養(yǎng)學(xué)生的總結(jié)概括能力。引導(dǎo)學(xué)生共同得出正確的結(jié)論。最后給出準(zhǔn)確的定義:我們把研究的對象稱為元素(element);把一些元素組成的總體叫做集合(set)(簡稱集)。學(xué)生討論,分組輪流回答。你們能說出元素與集合是什么關(guān)系嗎?怎么表示呀?用什么額符號表示啊?通過學(xué)生自己總結(jié),對元素與集合的關(guān)系記憶更深刻。教師指導(dǎo)學(xué)生得出準(zhǔn)確答案。(理想答案:集合是整體,元素是個體,集合有元素組成。集合用大寫字母表示,例如A;元素用小寫字母表示,例如a.如果a是集合A的元素,就說a屬于A集合A,記做a∈A,如果a不是集合A中的元素,就說a不屬于集合A,記做A)學(xué)生討論,分組輪流回答。

可以互相挑出對方回答問題的錯誤來比賽。我們描述集合常用哪些方法呢?怎么表示?引導(dǎo)學(xué)生認(rèn)識集合的兩種常見表示方法。教師引導(dǎo)指正。(理想答案:列舉法:把集合的元素一一列舉出來,并用花括號“{}”括起來表示集合的方法叫做列舉法。描述法:用集合所含元素的共同特征表示集合的方法稱為描述法。具體方法是:在花括號內(nèi)線寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。同學(xué)們上黑板邊回答邊演練。誰能試著說說集合中的元素有什么特點啊?拓展知識,讓學(xué)生對元素的特征有極愛哦理性的認(rèn)識,并開發(fā)其探究思維。教師點撥。(理想答案:元素一旦給出是確定的,確定性,沒有相同的,互異性,是沒有順序的,無序性。

即(1)確定性:對于任意一個元素,要么它屬于某個指定集合,要么它不屬于該集合,二者必居其一。

(2)互異性:同一個集合中的元素是互不相同的。

(3)無序性:任意改變集合中元素的排列次序,它們?nèi)匀槐硎就粋€集合。)學(xué)生探究討論,回答。什么叫兩個集合相等呢?深刻理解集合。教師給出答案。(如果構(gòu)成兩個集合的元素是一樣的,我們稱這兩個集合是相等的。)學(xué)生探討回答。

高二數(shù)學(xué)教案下載篇20

教學(xué)目標(biāo)

熟練掌握三角函數(shù)式的求值

教學(xué)重難點

熟練掌握三角函數(shù)式的求值

教學(xué)過程

【知識點精講】

三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形

三角函數(shù)式的求值的類型一般可分為:

(1)“給角求值”:給出非特殊角求式子的值。仔細(xì)觀察非特殊角的特點,找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角

(2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解

(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。

(4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進(jìn)行化簡,再求之

三角函數(shù)式常用化簡方法:切割化弦、高次化低次

注意點:靈活角的變形和公式的變形

重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論

【課堂小結(jié)】

三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形

三角函數(shù)式的求值的類型一般可分為:

(1)“給角求值”:給出非特殊角求式子的值。仔細(xì)觀察非特殊角的特點,找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角

(2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解

(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。

(4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進(jìn)行化簡,再求之

三角函數(shù)式常用化簡方法:切割化弦、高次化低次

注意點:靈活角的變形和公式的變形

重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論

102573 主站蜘蛛池模板: 澳门精准正版免费大全,2025新澳门全年免费,新澳天天开奖免费资料大全最新,新澳2025今晚开奖资料,新澳马今天最快最新图库-首页-东莞市傲马网络科技有限公司 | 北京网站建设首页,做网站选【优站网】,专注北京网站建设,北京网站推广,天津网站建设,天津网站推广,小程序,手机APP的开发。 | ET3000双钳形接地电阻测试仪_ZSR10A直流_SXJS-IV智能_SX-9000全自动油介质损耗测试仪-上海康登 | 「银杏树」银杏树行情价格_银杏树种植_山东程锦园林 | 皮带机_移动皮带机_大倾角皮带机_皮带机厂家 - 新乡市国盛机械设备有限公司 | 纸布|钩编布|钩针布|纸草布-莱州佳源工艺纸布厂 | 东莞画册设计_logo/vi设计_品牌包装设计 - 华略品牌设计公司 | 进口消泡剂-道康宁消泡剂-陶氏消泡剂-大洋消泡剂 | 恒温恒湿试验箱_高低温试验箱_恒温恒湿箱-东莞市高天试验设备有限公司 | 火锅加盟_四川成都火锅店加盟_中国火锅连锁品牌十强_朝天门火锅【官网】 | 杭州中央空调维修_冷却塔/新风机柜/热水器/锅炉除垢清洗_除垢剂_风机盘管_冷凝器清洗-杭州亿诺能源有限公司 | GEDORE扭力螺丝刀-GORDON防静电刷-CHEMTRONICS吸锡线-上海卓君电子有限公司 | 不锈钢轴流风机,不锈钢电机-许昌光维防爆电机有限公司(原许昌光维特种电机技术有限公司) | 德州万泰装饰 - 万泰装饰装修设计软装家居馆 | 二维运动混料机,加热型混料机,干粉混料机-南京腾阳干燥设备厂 | 阿里巴巴诚信通温州、台州、宁波、嘉兴授权渠道商-浙江联欣科技提供阿里会员办理 | 海南在线 海南一家 | 钢格板_钢格栅_格栅板_钢格栅板 - 安平县鑫拓钢格栅板厂家 | 吹塑加工_大型吹塑加工_滚塑代加工-莱力奇吹塑加工有限公司 | 铝板冲孔网,不锈钢冲孔网,圆孔冲孔网板,鳄鱼嘴-鱼眼防滑板,盾构走道板-江拓数控冲孔网厂-河北江拓丝网有限公司 | 节流截止放空阀-不锈钢阀门-气动|电动截止阀-鸿华阀门有限公司 | 影视模板素材_原创专业影视实拍视频素材-8k像素素材网 | 螺旋丝杆升降机-SWL蜗轮-滚珠丝杆升降机厂家-山东明泰传动机械有限公司 | 行业分析:提及郑州火车站附近真有 特殊按摩 ?2025实地踩坑指南 新手如何避坑不踩雷 | 气力输送_输送机械_自动化配料系统_负压吸送_制造主力军江苏高达智能装备有限公司! | 海德莱电力(HYDELEY)-无功补偿元器件生产厂家-二十年专业从事电力电容器 | 北京公司注册_代理记账_代办商标注册工商执照-企力宝 | lcd条形屏-液晶长条屏-户外广告屏-条形智能显示屏-深圳市条形智能电子有限公司 | 电子巡更系统-巡检管理系统-智能巡检【金万码】 | 塑胶跑道施工-硅pu篮球场施工-塑胶网球场建造-丙烯酸球场材料厂家-奥茵 | 欧必特空气能-商用空气能热水工程,空气能热水器,超低温空气源热泵生产厂家-湖南欧必特空气能公司 | 密封圈_泛塞封_格莱圈-[东莞市国昊密封圈科技有限公司]专注密封圈定制生产厂家 | 非甲烷总烃分析仪|环控百科 | 潜水搅拌机-双曲面搅拌机-潜水推进器|奥伯尔环保 | 西门子气候补偿器,锅炉气候补偿器-陕西沃信机电工程有限公司 | 对辊破碎机_四辊破碎机_双齿辊破碎机_华盛铭重工 | 底部填充胶_电子封装胶_芯片封装胶_芯片底部填充胶厂家-东莞汉思新材料 | 细砂提取机,隔膜板框泥浆污泥压滤机,螺旋洗砂机设备,轮式洗砂机械,机制砂,圆锥颚式反击式破碎机,振动筛,滚筒筛,喂料机- 上海重睿环保设备有限公司 | 苏州西装定制-西服定制厂家-职业装定制厂家-尺品服饰西装定做公司 | 流水线电子称-钰恒-上下限报警电子秤-上海宿衡实业有限公司 | 冷轧机|两肋冷轧机|扁钢冷轧机|倒立式拉丝机|钢筋拔丝机|收线机-巩义市华瑞重工机械制造有限公司 |