小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數學教案 >

高中數學教案范文下載

時間: 新華 數學教案

優秀的教案可以幫助教師更好地完成教學任務,提高教學效果,提升學生的學習能力和興趣。這里給大家分享高中數學教案范文下載,方便大家寫高中數學教案范文下載時參考。

高中數學教案范文下載篇1

【摘要】鑒于大家對數學網十分關注,小編在此為大家整理了此文空間幾何體的三視圖和直觀圖高一數學教案,供大家參考!

本文題目:空間幾何體的三視圖和直觀圖高一數學教案

第一課時 1.2.1中心投影與平行投影1.2.2空間幾何體的三視圖

教學要求:能畫出簡單幾何體的三視圖;能識別三視圖所表示的空間幾何體.

教學重點:畫出三視圖、識別三視圖.

教學難點:識別三視圖所表示的空間幾何體.

教學過程:

一、新課導入:

1.討論:能否熟練畫出上節所學習的幾何體?工程師如何制作工程設計圖紙?

2.引入:從不同角度看廬山,有古詩:橫看成嶺側成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中。對于我們所學幾何體,常用三視圖和直觀圖來畫在紙上.

三視圖:觀察者從不同位置觀察同一個幾何體,畫出的空間幾何體的圖形;

直觀圖:觀察者站在某一點觀察幾何體,畫出的空間幾何體的圖形.

用途:工程建設、機械制造、日常生活.

二、講授新課:

1.教學中心投影與平行投影:

①投影法的提出:物體在光線的照射下,就會在地面或墻壁上產生影子。人們將這種自然現象加以科學的抽象,總結其中的規律,提出了投影的方法。

②中心投影:光由一點向外散射形成的投影。其投影的大小隨物體與投影中心間距離的變化而變化,所以其投影不能反映物體的實形.

③平行投影:在一束平行光線照射下形成的投影.分正投影、斜投影.

討論:點、線、三角形在平行投影后的結果.

2.教學柱、錐、臺、球的三視圖:

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖

討論:三視圖與平面圖形的關系?畫出長方體的三視圖,并討論所反應的長、寬、高

結合球、圓柱、圓錐的模型,從正面(自前而后)、側面(自左而右)、上面(自上而下)三個角度,分別觀察,畫出觀察得出的各種結果.正視圖、側視圖、俯視圖.

③試畫出:棱柱、棱錐、棱臺、圓臺的三視圖.(

④討論:三視圖,分別反應物體的哪些關系(上下、左右、前后)?哪些數量(長、寬、高)

正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

⑤討論:根據以上的三視圖,如何逆向得到幾何體的形狀.

(試變化以上的三視圖,說出相應幾何體的擺放)

3.教學簡單組合體的三視圖:

①畫出教材P16圖(2)、(3)、(4)的三視圖.

②從教材P16思考中三視圖,說出幾何體.

4.練習:

①畫出正四棱錐的三視圖.

畫出右圖所示幾何體的三視圖.

③右圖是一個物體的正視圖、左視圖和俯視圖,試描述該物體的形狀.

5.小結:投影法;三視圖;順與逆

三、鞏固練習: 練習:教材P171、2、3、4

第二課時1.2.3空間幾何體的直觀圖

教學要求:掌握斜二測畫法;能用斜二測畫法畫空間幾何體的直觀圖.

教學重點:畫出直觀圖.

高中數學教案范文下載篇2

教學準備

1.教學目標

1、知識與技能:

函數是描述客觀世界變化規律的重要數學模型.高中階段不僅把函數看成變量之間的依

賴關系,同時還用集合與對應的語言刻畫函數,高中階段更注重函數模型化的思想與意識.

2、過程與方法:

(1)通過實例,進一步體會函數是描述變量之間的依賴關系的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;

(2)了解構成函數的要素;

(3)會求一些簡單函數的定義域和值域;

(4)能夠正確使用“區間”的符號表示函數的定義域;

3、情感態度與價值觀,使學生感受到學習函數的必要性和重要性,激發學習的積極性.

教學重點/難點

重點:理解函數的模型化思想,用集合與對應的語言來刻畫函數;

難點:符號“y=f(x)”的含義,函數定義域和值域的區間表示;

教學用具

多媒體

4.標簽

函數及其表示

教學過程

(一)創設情景,揭示課題

1、復習初中所學函數的概念,強調函數的模型化思想;

2、閱讀課本引例,體會函數是描述客觀事物變化規律的數學模型的思想:

(1)炮彈的射高與時間的變化關系問題;

(2)南極臭氧空洞面積與時間的變化關系問題;

(3)“八五”計劃以來我國城鎮居民的恩格爾系數與時間的變化關系問題.

3、分析、歸納以上三個實例,它們有什么共同點;

4、引導學生應用集合與對應的語言描述各個實例中兩個變量間的依賴關系;

5、根據初中所學函數的概念,判斷各個實例中的兩個變量間的關系是否是函數關系.

(二)研探新知

1、函數的有關概念

(1)函數的概念:

設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(function).

記作:y=f(x),x∈A.

其中,x叫做自變量,x的取值范圍A叫做函數的定義域(domain);與x的值相對應的y值叫做函數值,函數值的.集合{f(x)x∈A}叫做函數的值域(range).

注意:

①“y=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;

②函數符號“y=f(x)”中的f(x)表示與x對應的函數值,一個數,而不是f乘x.

(2)構成函數的三要素是什么?

定義域、對應關系和值域

(3)區間的概念

①區間的分類:開區間、閉區間、半開半閉區間;

②無窮區間;

③區間的數軸表示.

(4)初中學過哪些函數?它們的定義域、值域、對應法則分別是什么?

通過三個已知的函數:y=ax+b(a≠0)

y=ax2+bx+c(a≠0)

y=(k≠0)比較描述性定義和集合,與對應語言刻畫的定義,談談體會.

師:歸納總結

(三)質疑答辯,排難解惑,發展思維。

1、如何求函數的定義域

例1:已知函數f(x)=+

(1)求函數的定義域;

(2)求f(-3),f()的值;

(3)當a>0時,求f(a),f(a-1)的值.

分析:函數的定義域通常由問題的實際背景確定,如前所述的三個實例.如果只給出解析式y=f(x),而沒有指明它的定義域,那么函數的定義域就是指能使這個式子有意義的實數的集合,函數的定義域、值域要寫成集合或區間的形式.

例2、設一個矩形周長為80,其中一邊長為x,求它的面積關于x的函數的解析式,并寫出定義域.

分析:由題意知,另一邊長為x,且邊長x為正數,所以0<x<40.

所以s==(40-x)x(0<x<40)

引導學生小結幾類函數的定義域:

(1)如果f(x)是整式,那么函數的定義域是實數集R.

(2)如果f(x)是分式,那么函數的定義域是使分母不等于零的實數的集合.

(3)如果f(x)是二次根式,那么函數的定義域是使根號內的式子大于或等于零的實數的集合.

(4)如果f(x)是由幾個部分的數學式子構成的,那么函數定義域是使各部分式子都有意義的實數集合.(即求各集合的交集)

(5)滿足實際問題有意義.

鞏固練習:課本P19第1

2、如何判斷兩個函數是否為同一函數

例3、下列函數中哪個與函數y=x相等?

分析:

1、構成函數三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)

2、兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數值的字母無關。

解:

課本P18例2

(四)歸納小結

①從具體實例引入了函數的概念,用集合與對應的語言描述了函數的定義及其相關概念;

②初步介紹了求函數定義域和判斷同一函數的基本方法,同時引出了區間的概念.

(五)設置問題,留下懸念

1、課本P24習題1.2(A組)第1—7題(B組)第1題

2、舉出生活中函數的例子(三個以上),并用集合與對應的語言來描述函數,同時說出函數的定義域、值域和對應關系.

課堂小結

高中數學教案范文下載篇3

教學目標

1.使學生掌握指數函數的概念,圖象和性質.

(1)能根據定義判斷形如什么樣的函數是指數函數,了解對底數的限制條件的合理性,明確指數函數的定義域.

(2)能在基本性質的指導下,用列表描點法畫出指數函數的圖象,能從數形兩方面認識指數函數的性質.

(3) 能利用指數函數的性質比較某些冪形數的大小,會利用指數函數的圖象畫出形如的圖象.

2. 通過對指數函數的概念圖象性質的學習,培養學生觀察,分析歸納的能力,進一步體會數形結合的思想方法.

3.通過對指數函數的研究,讓學生認識到數學的應用價值,激發學生學習數學的興趣.使學生善于從現實生活中數學的發現問題,解決問題.

教學建議

教材分析

(1) 指數函數是在學生系統學習了函數概念,基本掌握了函數的性質的基礎上進行研究的,它是重要的基本初等函數之一,作為常見函數,它既是函數概念及性質的第一次應用,也是今后學習對數函數的基礎,同時在生活及生產實際中有著廣泛的應用,所以指數函數應重點研究.

(2) 本節的教學重點是在理解指數函數定義的基礎上掌握指數函數的圖象和性質.難點是對底數函數值變化情況的區分.

(3)指數函數是學生完全陌生的一類函數,對于這樣的函數應怎樣進行較為系統的理論研究是學生面臨的重要問題,所以從指數函數的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統研究一類函數的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數的研究.

教法建議

(1)關于指數函數的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子不能有一點差異,諸如等都不是指數函數.

(2)對底數

的限制條件的理解與認識也是認識指數函數的重要內容.如果有可能盡量讓學生自己去研究對底數,指數都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關系到對指數函數的認識及性質的分類討論,還關系到后面學習對數函數中底數的認識,所以一定要真正了解它的由來.

關于指數函數圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數的性質作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象.

高中數學教案范文下載篇4

一、教材分析

1、從在教材中的地位與作用來看

《等比數列的前n項和》是數列這一章中的一個重要內容,它不僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數學素養。

2、從學生認知角度看

從學生的思維特點看,很容易把本節內容與等差數列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導。不利因素是:本節公式的推導與等差數列前n項和公式的推導有著本質的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。

3、學情分析

教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹。

4、重點、難點

教學重點:公式的推導、公式的特點和公式的運用。

教學難點:公式的推導方法和公式的靈活運用。

公式推導所使用的“錯位相減法”是高中數學數列求和方法中最常用的方法之一,它蘊含了重要的數學思想,所以既是重點也是難點。

二、目標分析

知識與技能目標:

理解并掌握等比數列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關的問題。

過程與方法目標:

通過對公式推導方法的探索與發現,向學生滲透特殊到一般、類比與轉

化、分類討論等數學思想,培養學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。

情感與態度價值觀:

通過對公式推導方法的探索與發現,優化學生的思維品質,滲透事物之間等價轉化和理論聯系實際的辯證唯物主義觀點。

三、過程分析

學生是認知的主體,設計教學過程必須遵循學生的認知規律,盡可能地讓學生去經歷知識的形成與發展過程,結合本節課的特點,我設計了如下的教學過程:

1、創設情境,提出問題

在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學家計算,結果出來后,國王大吃一驚。為什么呢?

設計意圖:設計這個情境目的是在引入課題的同時激發學生的興趣,調動學習的積極性。故事內容緊扣本節課的主題與重點。

此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥粒總數。帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。

設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學生的`認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關鍵處學生難以轉過彎來,因而在教學中應舍得花時間營造知識形成過程的氛圍,突破學生學習的障礙。同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆、

2、師生互動,探究問題

在肯定他們的思路后,我接著問:1,2,22,.....,263是什么數列?有何特征?應歸結為什么數學問題呢?

探討1:,記為(1)式,注意觀察每一項的特征,有何聯系?(學生會發現,后一項都是前一項的2倍)

探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發現?

設計意圖:留出時間讓學生充分地比較,等比數列前n項和的公式推導關鍵是變“加”為“減”,在教師看來這是“天經地義”的,但在學生看來卻是“不可思議”的,因此教學中應著力在這兒做文章,從而抓住培養學生的辯證思維能力的良好契機。

經過比較、研究,學生發現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。老師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

設計意圖:經過繁難的計算之苦后,突然發現上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數學的興趣和學好數學的信心。

3、類比聯想,解決問題

這時我再順勢引導學生將結論一般化,

這里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導。

設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感。

對不對?這里的q能不能等于1?等比數列中的公比能不能為1?q=1時是什么數列?此時sn=?(這里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎。)

再次追問:結合等比數列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來?(引導學生得出公式的另一形式)

設計意圖:通過反問精講,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和接受,變為對知識的主動認識,從而進一步提高分析、類比和綜合的能力。這一環節非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。

4、討論交流,延伸拓展

在此基礎上,我提出:探究等比數列前n項和公式,還有其它方法嗎?我們知道,

那么我們能否利用這個關系而求出sn呢?根據等比數列的定義又有,能否聯想到等比定理從而求出sn呢?

設計意圖:以疑導思,激發學生的探索欲望,營造一個讓學生主動觀察、思考、討論的氛圍、以上兩種方法都可以化歸到,這其實就是關于的一個遞推式,遞推數列有非常重要的研究價值,是研究性學習和課外拓展的極佳資源,它源于課本,又高于課本,對學生的思維發展有促進作用、

5、變式訓練,深化認識

首先,學生獨立思考,自主解題,再請學生上臺來幻燈演示他們的解答,其它同學進行評價,然后師生共同進行總結。

設計意圖:采用變式教學設計題組,深化學生對公式的認識和理解,通過直接套用公式、變式運用公式、研究公式特點這三個層次的問題解決,促進學生新的數學認知結構的形成。通過以上形式,讓全體學生都參與教學,以此培養學生的參與意識和競爭意識。

6、例題講解,形成技能

設計意圖:解題時,以學生分析為主,教師適時給予點撥,該題有意培養學生對含有參數的問題進行分類討論的數學思想。

7、總結歸納,加深理解

以問題的形式出現,引導學生回顧公式、推導方法,鼓勵學生積極回答,然后老師再從知識點及數學思想方法兩方面總結。

設計意圖:以此培養學生的口頭表達能力,歸納概括能力。

8、故事結束,首尾呼應

最后我們回到故事中的問題,我們可以計算出國王獎賞的小麥約為1、84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設一條寬10米、厚8米的大道,大約是全世界一年糧食產量的459倍,顯然國王兌現不了他的承諾。

設計意圖:把引入課題時的懸念給予釋疑,有助于學生克服疲倦、繼續積極思維。

9、課后作業,分層練習

必做:P129練習1、2、3、4

選作:

(2)“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”這首中國古詩的答案是多少?

設計意圖:出選作題的目的是注意分層教學和因材施教,讓學有余力的學生有思考的空間。

四、教法分析

對公式的教學,要使學生掌握與理解公式的來龍去脈,掌握公式的推導方法,理解公式的成立條件,充分體現公式之間的聯系。在教學中,我采用“問題――探究”的教學模式,把整個課堂分為呈現問題、探索規律、總結規律、應用規律四個階段。

利用多媒體輔助教學,直觀地反映了教學內容,使學生思維活動得以充分展開,從而優化了教學過程,大大提高了課堂教學效率。

五、評價分析

本節課通過三種推導方法的研究,使學生從不同的思維角度掌握了等比數列前n項和公式。錯位相減:變加為減,等價轉化;遞推思想:縱橫聯系,揭示本質;等比定理:回歸定義,自然樸實。學生從中深刻地領會到推導過程中所蘊含的數學思想,培養了學生思維的深刻性、敏銳性、廣闊性、批判性。同時通過精講一題,發散一串的變式教學,使學生既鞏固了知識,又形成了技能。在此基礎上,通過民主和諧的課堂氛圍,培養了學生自主學習、合作交流的學習習慣,也培養了學生勇于探索、不斷創新的思維品質。

高中數學教案范文下載篇5

教學目標:

掌握二倍角的正弦、余弦、正切公式,能用上述公式進行簡單的求值、化簡、恒等證明;引導學生發現數學規律,讓學生體會化歸這一基本數學思想在發現中所起的作用,培養學生的創新意識.

教學重點:

二倍角公式的推導及簡單應用.

教學難點:

理解倍角公式,用單角的三角函數表示二倍角的三角函數.

教學過程:

Ⅰ.課題導入

前一段時間,我們共同探討了和角公式、差角公式,今天,我們繼續探討一下二倍角公式.我們知道,和角公式與差角公式是可以互相化歸的.當兩角相等時,兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?請同學們試推.

先回憶和角公式

sin(α+β)=sinαcosβ+cosαsinβ

當α=β時,sin(α+β)=sin2α=2sinαcosα

即:sin2α=2sinαcosα(S2α)

cos(α+β)=cosαcosβ-sinαsinβ

當α=β時cos(α+β)=cos2α=cos2α-sin2α

即:cos2α=cos2α-sin2α(C2α)

tan(α+β)=tanα+tanβ1-tanαtanβ

當α=β時,tan2α=2tanα1-tan2α

Ⅱ.講授新課

同學們推證所得結果是否與此結果相同呢?其中由于sin2α+cos2α=1,公式C2α還可以變形為:cos2α=2cos2α-1或:cos2α=1-2sin2α

同學們是否也考慮到了呢?

另外運用這些公式要注意如下幾點:

(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有當α≠π2 +kπ及α≠π4 +kπ2 (k∈Z)時才成立,否則不成立(因為當α=π2 +kπ,k∈Z時,tanα的值不存在;當α=π4 +kπ2 ,k∈Z時tan2α的值不存在).

當α=π2 +kπ(k∈Z)時,雖然tanα的值不存在,但tan2α的值是存在的,這時求tan2α的值可利用誘導公式:

即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0

(2)在一般情況下,sin2α≠2sinα

例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情況下,才有可能成立[當且僅當α=kπ(k∈Z)時,sin2α=2sinα=0成立].

同樣在一般情況下cos2α≠2cosαtan2α≠2tanα

(3)倍角公式不僅可運用于將2α作為α的2倍的情況,還可以運用于諸如將4α作為2α的2倍,將α作為 α2 的2倍,將 α2 作為 α4 的2倍,將3α作為 3α2 的2倍等等.

高中數學教案范文下載篇6

教學內容:簡單的排列和組合

教學目標:

1.知識能力目標:

①通過觀察、猜測、比較、實驗等活動,找出最簡單的事物的排列數和組合數。

②初步培養有序地全面地思考問題的能力。

③培養初步的觀察、分析、及推理能力。

2.情感態度目標:

①感受數學與生活的密切聯系,激發學習數學、探索數學的濃厚興趣。

②初步培養有順序地、全面地思考問題的意識。

③使學生在數學活動中養成與人合作的良好習慣。

教學重點:

經歷探索簡單事物排列與組合規律的過程。

教學難點:

初步理解簡單事物排列與組合的不同。

教學準備:

多媒體課件、數字卡片、1角、2角、5角的人民幣。

教學過程:

一、創設情境,引發探究

師:今天老師帶你們去一個很有趣的地方,哪呢?我們今天要到“數學廣角”里去走一走、看一看。

二、操作探究,學習新知。

(一)組合問題

l、看一看,說一說

師:今天老師給大家帶來了幾件漂亮的衣服,你們來挑選吧。(課件出示主題圖)

師引導思考:這么多漂亮的衣服,你們用一件上裝在搭配一件下裝可以怎么穿呢?(指名學生說一說)

2、想一想,擺一擺

(l)引導討論:有這么多種不同的穿法,那怎樣才能做到不遺漏、不重復呢?

①學生小組討論交流,老師參與小組討論。

②學生匯報

(2)引導操作:小組同學互相合作,把你們設計的穿法有序的貼在紙板上。(要求:小組長拿出學具衣服圖片、紙板。)

①學生小組合作操作擺,教師巡視參與小組活動。

②學生展示作品,介紹搭配方案。

③生生互相評價。

(3)師引導觀察:

第一種方案(按上裝搭配下裝)有幾種穿法?(4種)

第二種方案(按下裝搭配上裝)有幾種穿法?(4種)

師小結:不管是用上裝搭配下裝,還是用下裝搭配上裝,只要做到有序搭配就能夠不重復、不遺漏的把所有的方法找出來。在今后的學習和生活中,我們還會遇到許多這樣的問題,我們都可以運用有序的思考方法來解決它們。、操作探究,學習新知。

(二)排列問題

1、初步感知排列

(1)師:我們穿上漂亮的衣服,來到了數學廣角,可是這有一扇密碼門,(出示課件:密碼門)我們只要說對密碼,就可以到數學廣角游玩了。看小精靈給了我們提示(點小精靈)你們猜密碼是什么?

(2)學生猜密碼(情景預設:有的學生說是12,有的學生說是21。)

(3)試密碼,打開密碼門,進入數學廣角樂園。

2、合作探究排列

(1)師問:數學廣角樂園美不美呀?(學生回答)它雖然很美,可處處充滿著挑戰,你們愿意接受嗎?(學生回答)那么我們先到數學樂園里去看一看吧!(點數學樂園)

(2)師:同學們,我們到了數學樂園里看到了什么呀?(回答)現在我們每個人都當一個小魔術師看誰的本領大?誰能把1、2、3這三個數字變成兩位數,看誰變得最多?

(3)學生活動,師巡視指導

(4)學生匯報擺法,師板書。。

方法一:每次拿出兩張數字卡片能擺出不同的兩位數;

方法二:固定十位上的數字,交換個位數字得到不同的.兩位數;

方法三:固定個位上的數字,交換十位數字得到不同的兩位

(5)小結。

三、課堂實踐,鞏固新知

1、握手游戲:

師:同學們真棒!都能把數字1、2、3組成不同的兩位數,而且不重復、不遺漏。下面老師帶大家到運動樂園去看一看。(出示課件)看小朋友們在干什么?(生回答)

師:看到他們握手,老師有一個問題需要大家幫助解決一下。

(1)出示問題

(2)小組活動:握手

(3)抽生上臺表演

(4)小結。

2、乒乓球比賽

三個人進行乒乓球比賽要舉行幾場?

(1)小組討論

(2)學生匯報

(3)小結

3、生活樂園

看來數學廣角處處充滿挑戰一點不假,你們愿不愿意接受新的挑戰?(生)那我們一起到生活樂園去看一看吧!出示《生活樂園》課件。

(1)看課件

(2)學生活動

(3)學生匯報,師相機演示課件。

四、全課總結

今天我們到數學樂園玩的開不開心?看到了什么?你有什么收獲?

高中數學教案范文下載篇7

各位評委,老師們:大家好!

很高興參加這次說課活動。這對我來說也是一次難得的學習和鍛煉的機會,感謝各位老師在百忙之中來此予以指導。希望各位評委和老師們對我的說課內容提出寶貴意見。

我說課的內容是平面向量的教學,所用的教材是人民教育出版社出版的全日制普通高級中學教科書(試驗修訂本-必修)數學第一冊下,教學內容為第96頁至98頁第五章第一節。本校是浙江省一級重點中學,學生基礎相對較好。我在進行教學設計時,也充分考慮到了這一點。

下面我從教材分析,教學目標的確定,教學方法的選擇和教學過程的設計四個方面來匯報我對這節課的教學設想。

一、教材分析

(1)地位和作用

向量是近代數學中重要和基本的概念之一,有著深刻的幾何背景,是解決幾何問題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉化為向量的加(減)法,數乘向量,數量積運算(運算率),從而把圖形的基本性質轉化為向量的運算體系。向量是溝通代數,幾何與三角函數的一種工具,有著極其豐富的實際背景,在數學和物理學科中具有廣泛的應用。

平面向量的基本概念是在學生了解了物理學中的有關力,位移等矢量的概念的基礎上進一步對向量的深入學習。為學習向量的知識體系奠定了知識和方法基礎。

(2)教學結構的調整

課本在這一部分內容的教學為一課時,首先從小船航行的距離和方向兩個要素出發,抽象出向量的概念,并重點說明了向量與數量的區別。然后介紹了向量的幾何表示,向量的長度,零向量,單位向量,平行向量,共線向量,相等向量等基本概念。為使學生更好地掌握這些基本概念,同時深化其認知過程和探究過程。在教學中我將教學的順序做如下的調整:將本節教學中認知過程的教學內容適當集中,以突出這節課的主題;例題,習題部分主要由學生依照概念自行分析,獨立完成。

(3)重點,難點,關鍵

由于本節課是本章內容的第一節課,是學生學習本章的基礎。為了本章后面知識的學習,首先必須掌握向量的概念,要抓住向量的本質:大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節課的重點。本節課是為高一后半學期學生設計的,盡管此時的學生已經有了一定的學習方法和習慣,但根據以往的教學經驗,多數學生對向量的認識還比較單一,僅僅考慮其大小,忽略其方向,這對學生的理解能力要求比較高,所以我認為向量概念也是這節課的難點。而解決這一難點的關鍵是多用復雜的幾何圖形中相等的有向線段讓學生進行辨認,加深對向量的理解。

二、教學目標的確定

根據本課教材的特點,新大綱對本節課的教學要求,學生身心發展的合理需要,我從三個方面確定了以下教學目標:

(1)基礎知識目標:理解向量,零向量,單位向量,共線向量,平行向量,相等向量的概念,會用字母表示向量,能讀寫已知圖中的向量。會根據圖形判定向量是否平行,共線,相等。

(2)能力訓練目標:培養學生觀察、歸納、類比、聯想等發現規律的一般方法,培養學生觀察問題,分析問題,解決問題的能力。

(3)情感目標:讓學生在民主、和諧的共同活動中感受學習的樂趣。

三、教學方法的選擇

Ⅰ教學方法

本節課我采用了”啟發探究式的教學方法,根據本課教材的特點和學生的實際情況在教學中突出以下兩點:

(1)由教材的特點確立類比思維為教學的主線。

從教材內容看平面向量無論從形式還是內容都與物理學中的有向線段,矢量的概念類似。因此在教學中運用類比作為思維的主線進行教學。讓學生充分體會數學知識與其他學科之間的聯系以及發生與發展的過程。

(2)由學生的特點確立自主探索式的學習方法

通常學生對于概念課學起來很枯燥,不感興趣,因此要考慮學生的情感需要,找一些學生感興趣的題材來激發學生的學習興趣,另外,學生都有表現自己的欲望,希望得到老師和其他同學的認可,要多表揚,多肯定來激勵他們的學習熱情。考慮到我校學生的基礎較好,思維較為活躍,對自主探索式的學習方法也有一定的認識,所以在教學中我通過創設問題情境,啟發引導學生運用科學的思維方法進行自主探究。將學生的獨立思考,自主探究,交流討論等探索活動貫穿于課堂教學的全過程,突出學生的主體作用。

Ⅱ教學手段

本節課中,除使用常規的教學手段外,我還使用了多媒體投影儀和計算機來輔助教學。多媒體投影為師生的交流和討論提供了平臺;計算機演示的作圖過程則有助于滲透數形結合思想,更易于對概念的理解和難點的突破。

四、教學過程的設計

Ⅰ知識引入階段---提出學習課題,明確學習目標

(1)創設情境——引入概念

數學學習應該與學生的生活融合起來,從學生的生活經驗和已有的知識背景出發,讓他們在生活中去發現數學、探究數學、認識并掌握數學。

由生活中具體的向量的實例引入:大海中船只的航線,中國象棋中”馬”,”象”的走法等。這些符合高中學生思維活躍,想象力豐富的特點,有利于激發學生的學習興趣。

(2)觀察歸納——形成概念

由實例得出有向線段的概念,有向線段的三個要素:起點,方向,長度。明確知道了有向線段的.起點,方向和長度,它的終點就唯一確定。再有目的的進行設計,引導學生概括總結出本課新的知識點:向量的概念及其幾何表示。

(3)討論研究——深化概念

在得到概念后進行歸納,深化,之后向學生提出以下三個問題:

①向量的要素是什么?

②向量之間能否比較大小?

③向量與數量的區別是什么?

同時指出這就是本節課我們要研究和學習的主題。

Ⅱ知識探索階段---探索平面向量的平行向量。相等向量等概念

(1)總結反思——提高認識

方向相同或相反的非零向量叫平行向量,也即共線向量,并且規定0與任一向量平行。長度相等且方向相同的向量叫相等向量,規定零向量與零向量相等。平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。

(2)即時訓練—鞏固新知

為了使學生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時訓練題,通過學生的觀察嘗試,討論研究,教師引導來鞏固新知識。

高中數學教案范文下載篇8

一、教學內容分析

向量作為工具在數學、物理以及實際生活中都有著廣泛的應用.

本小節的重點是結合向量知識證明數學中直線的平行、垂直問題,以及不等式、三角公式的證明、物理學中的應用.

二、教學目標設計

1、通過利用向量知識解決不等式、三角及物理問題,感悟向量作為一種工具有著廣泛的應用,體會從不同角度去看待一些數學問題,使一些數學知識有機聯系,拓寬解決問題的思路.

2、了解構造法在解題中的運用.

三、教學重點及難點

重點:平面向量知識在各個領域中應用.

難點:向量的構造.

四、教學流程設計

五、教學過程設計

一、復習與回顧

1、提問:下列哪些量是向量?

(1)力 (2)功 (3)位移 (4)力矩

2、上述四個量中,(1)(3)(4)是向量,而(2)不是,那它是什么?

[說明]復習數量積的有關知識.

二、學習新課

例1(書中例5)

向量作為一種工具,不僅在物理學科中有廣泛的應用,同時它在數學學科中也有許多妙用!請看

例2(書中例3)

證法(一)原不等式等價于,由基本不等式知(1)式成立,故原不等式成立.

證法(二)向量法

[說明]本例關鍵引導學生觀察不等式結構特點,構造向量,并發現(等號成立的充要條件是)

例3(書中例4)

[說明]本例的關鍵在于構造單位圓,利用向量數量積的兩個公式得到證明.

二、鞏固練習

1、如圖,某人在靜水中游泳,速度為 km/h.

(1)如果他徑直游向河對岸,水的流速為4 km/h,他實際沿什么方向前進?速度大小為多少?

答案:沿北偏東方向前進,實際速度大小是8 km/h.

(2) 他必須朝哪個方向游才能沿與水流垂直的方向前進?實際前進的速度大小為多少?

答案:朝北偏西方向前進,實際速度大小為km/h.

三、課堂小結

1、向量在物理、數學中有著廣泛的應用.

2、要學會從不同的角度去看一個數學問題,是數學知識有機聯系.

四、作業布置

1、書面作業:課本P73, 練習8.4 4

高中數學教案范文下載篇9

教學目標

1、明確等差數列的定義。

2、掌握等差數列的通項公式,會解決知道中的三個,求另外一個的問題

3、培養學生觀察、歸納能力。

教學重點

1、等差數列的概念;

2、等差數列的通項公式

教學難點

等差數列“等差”特點的理解、把握和應用

教具準備

投影片1張

教學過程

(I)復習回顧

師:上兩節課我們共同學習了數列的定義及給出數列的兩種方法通項公式和遞推公式。這兩個公式從不同的角度反映數列的特點,下面看一些例子。(放投影片)

(Ⅱ)講授新課

師:看這些數列有什么共同的特點?

1,2,3,4,5,6;①

10,8,6,4,2,…;②

生:積極思考,找上述數列共同特點。

對于數列①(1≤n≤6);(2≤n≤6)

對于數列②-2n(n≥1)(n≥2)

對于數列③(n≥1)(n≥2)

共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數。

師:也就是說,這些數列均具有相鄰兩項之差“相等”的特點。具有這種特點的數列,我們把它叫做等差數。

一、定義:

等差數列:一般地,如果一個數列從第2項起,每一項與空的前一項的差等于同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示。

如:上述3個數列都是等差數列,它們的公差依次是1,-2。

二、等差數列的通項公式

師:等差數列定義是由一數列相鄰兩項之間關系而得。若一等差數列的首項是,公差是d,則據其定義可得:

若將這n-1個等式相加,則可得:

即:即:即:……

由此可得:師:看來,若已知一數列為等差數列,則只要知其首項和公差d,便可求得其通項。

如數列①(1≤n≤6)

數列②:(n≥1)

數列③:(n≥1)

由上述關系還可得:即:則:=如:

三、例題講解

例1:(1)求等差數列8,5,2…的第20項

(2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?

解:(1)由n=20,得(2)由得數列通項公式為:由題意可知,本題是要回答是否存在正整數n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數列的第100項。

(Ⅲ)課堂練習

生:(口答)課本P118練習3

(書面練習)課本P117練習1

師:組織學生自評練習(同桌討論)

(Ⅳ)課時小結

師:本節主要內容為:

①等差數列定義。

即(n≥2)

②等差數列通項公式(n≥1)

推導出公式:

(V)課后作業

一、課本P118習題3.21,2

二、1、預習內容:課本P116例2P117例4

2、預習提綱:

①如何應用等差數列的定義及通項公式解決一些相關問題?

②等差數列有哪些性質?

高中數學教案范文下載篇10

如果一個數列從第2項起,每一項與它的前一項的比等于同一個常數,這個數列就叫做等比數列。這個常數叫做等比數列的`公比,公比通常用字母q表示。

(1)等比數列的通項公式是:An=A1×q^(n-1)

若通項公式變形為an=a1/q-q^n(n∈N-),當q>0時,則可把an看作自變量n的函數,點(n,an)是曲線y=a1/q-q^x上的一群孤立的點。

(2)任意兩項am,an的關系為an=am·q^(n-m)

(3)從等比數列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。

(5)等比求和:Sn=a1+a2+a3+.......+an

①當q≠1時,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

②當q=1時,Sn=n×a1(q=1)

記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一個各項均為正數的等比數列各項取同底數數后構成一個等差數列;反之,以任一個正數C為底,用一個等差數列的各項做指數構造冪Can,則是等比數列。在這個意義下,我們說:一個正項等比數列與等差數列是“同構”的。

105121 主站蜘蛛池模板: 板式换热器_板式换热器价格_管式换热器厂家-青岛康景辉 | Copeland/谷轮压缩机,谷轮半封闭压缩机,谷轮涡旋压缩机,型号规格,技术参数,尺寸图片,价格经销商 CTP磁天平|小电容测量仪|阴阳极极化_双液系沸点测定仪|dsj电渗实验装置-南京桑力电子设备厂 | 吊篮式|移动式冷热冲击试验箱-二槽冷热冲击试验箱-广东科宝 | 福建省教师资格证-福建教师资格证考试网 | pbootcms网站模板|织梦模板|网站源码|jquery建站特效-html5模板网 | 济南品牌设计-济南品牌策划-即合品牌策划设计-山东即合官网 | 电子元器件呆滞料_元器件临期库存清仓尾料_尾料优选现货采购处理交易商城 | 杭州标识标牌|文化墙|展厅|导视|户内外广告|发光字|灯箱|铭阳制作公司 - 杭州标识标牌|文化墙|展厅|导视|户内外广告|发光字|灯箱|铭阳制作公司 | 阳光模拟试验箱_高低温试验箱_高低温冲击试验箱_快速温变试验箱|东莞市赛思检测设备有限公司 | 拉力测试机|材料拉伸试验机|电子拉力机价格|万能试验机厂家|苏州皖仪实验仪器有限公司 | 天津蒸汽/热水锅炉-电锅炉安装维修直销厂家-天津鑫淼暖通设备有限公司 | 庭院灯_太阳能景观灯_草坪灯厂家_仿古壁灯-重庆恒投科技 | 常州律师事务所_常州律所_常州律师-江苏乐天律师事务所 | 手机存放柜,超市储物柜,电子储物柜,自动寄存柜,行李寄存柜,自动存包柜,条码存包柜-上海天琪实业有限公司 | 赛尔特智能移动阳光房-阳光房厂家-赛尔特建筑科技(广东)有限公司 | 智成电子深圳tdk一级代理-提供TDK电容电感贴片蜂鸣器磁芯lambda电源代理经销,TDK代理商有哪些TDK一级代理商排名查询。-深圳tdk一级代理 | 中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折! | 脱硝喷枪-氨水喷枪-尿素喷枪-河北思凯淋环保科技有限公司 | 无缝钢管-聊城无缝钢管-小口径无缝钢管-大口径无缝钢管 - 聊城宽达钢管有限公司 | 深圳APP开发公司_软件APP定制开发/外包制作-红匣子科技 | 双段式高压鼓风机-雕刻机用真空泵-绍兴天晨机械有限公司 | 流量检测仪-气密性检测装置-密封性试验仪-东莞市奥图自动化科技有限公司 | 炒货机-炒菜机-炒酱机-炒米机@霍氏机械 | 石家庄救护车出租_重症转院_跨省跨境医疗转送_活动赛事医疗保障_康复出院_放弃治疗_腾康26年医疗护送转诊团队 | 膜结构停车棚-自行车棚-膜结构汽车棚加工安装厂家幸福膜结构 | 水平垂直燃烧试验仪-灼热丝试验仪-漏电起痕试验仪-针焰试验仪-塑料材料燃烧检测设备-IP防水试验机 | 沧州友城管业有限公司-内外涂塑钢管-大口径螺旋钢管-涂塑螺旋管-保温钢管生产厂家 | 有机肥设备生产制造厂家,BB掺混肥搅拌机、复合肥设备生产线,有机肥料全部加工设备多少钱,对辊挤压造粒机,有机肥造粒设备 -- 郑州程翔重工机械有限公司 | 科普仪器菏泽市教育教学仪器总厂 | TTCMS自助建站_网站建设_自助建站_免费网站_免费建站_天天向上旗下品牌 | 无线联网门锁|校园联网门锁|学校智能门锁|公租房智能门锁|保障房管理系统-KEENZY中科易安 | 创富网-B2B网站|供求信息网|b2b平台|专业电子商务网站 | 集装袋吨袋生产厂家-噸袋廠傢-塑料编织袋-纸塑复合袋-二手吨袋-太空袋-曹县建烨包装 | OLChemim试剂-ABsciex耗材-广州市自力色谱科仪有限公司 | 祝融环境-地源热泵多恒系统高新技术企业,舒适生活环境缔造者! | 金联宇电缆总代理-金联宇集团-广东金联宇电缆实业有限公司 | 【直乐】河北石家庄脊柱侧弯医院_治疗椎间盘突出哪家医院好_骨科脊柱外科专业医院_治疗抽动症/关节病骨伤权威医院|排行-直乐矫形中医医院 | 河南空气能热水器-洛阳空气能采暖-洛阳太阳能热水工程-洛阳润达高科空气能商行 | ET3000双钳形接地电阻测试仪_ZSR10A直流_SXJS-IV智能_SX-9000全自动油介质损耗测试仪-上海康登 | 魔方网-培训咨询服务平台 | 座椅式升降机_无障碍升降平台_残疾人升降平台-南京明顺机械设备有限公司 |