小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數(shù)學(xué)教案 >

高中數(shù)學(xué)教案設(shè)計(jì)反思

時(shí)間: 新華 數(shù)學(xué)教案

教案可以幫助教師明確教學(xué)目標(biāo)和內(nèi)容,從而更好地組織教學(xué)。怎么寫出優(yōu)秀的高中數(shù)學(xué)教案設(shè)計(jì)反思?這里給大家分享高中數(shù)學(xué)教案設(shè)計(jì)反思,方便大家學(xué)習(xí)。

高中數(shù)學(xué)教案設(shè)計(jì)反思篇1

一、教學(xué)目標(biāo):

1、知識(shí)與技能:

了解平面向量基本定理及其意義,理解平面里的任何一個(gè)向量都可以用兩個(gè)不共線的向量來表示;能夠在具體問題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來表示。

2、過程與方法:

讓學(xué)生經(jīng)歷平面向量基本定理的探索與發(fā)現(xiàn)的形成過程,體會(huì)由特殊到一般和數(shù)形結(jié)合的數(shù)學(xué)思想,初步掌握應(yīng)用平面向量基本定理分解向量的方法,培養(yǎng)學(xué)生分析問題與解決問題的能力。

3、情感、態(tài)度和價(jià)值觀

通過對(duì)平面向量基本定理的學(xué)習(xí),激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)習(xí)積極性,增強(qiáng)學(xué)生向量的應(yīng)用意識(shí),并培養(yǎng)學(xué)生合作交流的意識(shí)及積極探索勇于發(fā)現(xiàn)的學(xué)習(xí)品質(zhì)、

二、教學(xué)重點(diǎn):

平面向量基本定理、

三、教學(xué)難點(diǎn):

平面向量基本定理的理解與應(yīng)用、

四、教學(xué)方法:

探究發(fā)現(xiàn)、講練結(jié)合

五、授課類型:

新授課

六、教具:

電子白板、黑板和課件

七、教學(xué)過程:

(一)情境引課,板書課題

由導(dǎo)彈的發(fā)射情境,引出物理中矢量的分解,進(jìn)而探究我們數(shù)學(xué)中的向量是不是也可以沿兩個(gè)不同方向的向量進(jìn)行分解呢?

(二)復(fù)習(xí)鋪路,漸進(jìn)新課

在共線向量定理的復(fù)習(xí)中,自然地、漸進(jìn)地融入到平面向量基本定理的師生互動(dòng)合作的探究與發(fā)現(xiàn)中去,感受著從特殊到一般、分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想碰撞的火花,體驗(yàn)著學(xué)習(xí)的快樂。

(三)歸納總結(jié),形成定理

讓學(xué)生在發(fā)現(xiàn)學(xué)習(xí)的過程中歸納總結(jié)出平面向量基本定理,并給出基底的定義。

(四)反思定理,解讀要點(diǎn)

反思平面向量基本定理的實(shí)質(zhì)即向量分解,思考基底的不共線、不惟一和非零性及實(shí)數(shù)對(duì)

的存在性和唯一性。

(五)跟蹤練習(xí),反饋測(cè)試

及時(shí)跟蹤練習(xí),反饋測(cè)試定理的理解程度。

(六)講練結(jié)合,鞏固理解

即講即練定理的應(yīng)用,講練結(jié)合,進(jìn)一步鞏固理解平面向量基本定理。

(七)夾角概念,順勢(shì)得出

不共線向量的不同方向的位置關(guān)系怎么表示,夾角概念順勢(shì)得出。然后數(shù)形結(jié)合,講清本質(zhì):夾角共起點(diǎn)。再結(jié)合例題鞏固加深。

(八)課堂小結(jié),畫龍點(diǎn)睛

回顧本節(jié)的學(xué)習(xí)過程,小結(jié)學(xué)習(xí)要點(diǎn)及數(shù)學(xué)思想方法,老師的“教”與學(xué)生的“學(xué)”渾然一體,一氣呵成。

(九)作業(yè)布置,回味思考。

布置課后作業(yè),檢驗(yàn)教學(xué)效果?;匚端伎?,更加理解定理的實(shí)質(zhì)。

八、板書設(shè)計(jì):

1、平面向量基本定理:如果是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量,有且只有一對(duì)實(shí)數(shù)

2、基底:

(1)不共線向量

叫做表示這一平面內(nèi)所有向量的一組基底;

(2)基底:不共線,不唯一,非零

(3)基底給定,分解形式唯一,實(shí)數(shù)對(duì)

存在且唯一;

(4)基底不同,分解形式不唯一,實(shí)數(shù)對(duì)

可同可異。

例1例2

3、夾角:

(1)兩向量共起點(diǎn);

(2)夾角范圍:

例3

4、小結(jié)

5、作業(yè)

高中數(shù)學(xué)教案設(shè)計(jì)反思篇2

近期,我開設(shè)了一節(jié)公開課《橢圓的幾何性質(zhì)1》。在新課程背景下,如何有效利用課堂教學(xué)時(shí)間,如何盡可能地提高學(xué)生的學(xué)習(xí)興趣,提高學(xué)生在課堂上45分鐘的學(xué)習(xí)效率,是一個(gè)很重要的課題。要教好高中數(shù)學(xué),首先要對(duì)新課標(biāo)和新教材有整體的把握和認(rèn)識(shí),這樣才能將知識(shí)系統(tǒng)化,注意知識(shí)前后的聯(lián)系,形成知識(shí)框架;其次要了解學(xué)生的現(xiàn)狀和認(rèn)知結(jié)構(gòu),了解學(xué)生此階段的知識(shí)水平,以便因材施教;再次要處理好課堂教學(xué)中教師的教和學(xué)生的學(xué)的關(guān)系。課堂教學(xué)是實(shí)施高中新課程教學(xué)的主陣地,也是對(duì)學(xué)生進(jìn)行思想品德教育和素質(zhì)教育的主渠道。課堂教學(xué)不但要加強(qiáng)雙基而且要提高智力,發(fā)展學(xué)生的智力,而且要發(fā)展學(xué)生的創(chuàng)造力;不但要讓學(xué)生學(xué)會(huì),而且要讓學(xué)生會(huì)學(xué),特別是自學(xué)。尤其是在課堂上,不但要發(fā)展學(xué)生的智力因素,而且要提高學(xué)生在課堂45分鐘的學(xué)習(xí)效率,在有限的時(shí)間里,出色地完成教學(xué)任務(wù)。

一、要有明確的教學(xué)目標(biāo)

教學(xué)目標(biāo)分為三大領(lǐng)域,即認(rèn)知領(lǐng)域、情感領(lǐng)域和動(dòng)作技能領(lǐng)域。因此,在備課時(shí)要圍繞這些目標(biāo)選擇教學(xué)的策略、方法和媒體,把內(nèi)容進(jìn)行必要的重組。備課時(shí)要依據(jù)教材,但又不拘泥于教材,靈活運(yùn)用教材。在數(shù)學(xué)教學(xué)中,要通過師生的共同努力,使學(xué)生在知識(shí)、能力、技能、心理、思想品德等方面達(dá)到預(yù)定的目標(biāo),以提高學(xué)生的綜合素質(zhì)。

二、要能突出重點(diǎn)、化解難點(diǎn)

每一堂課都要有教學(xué)重點(diǎn),而整堂的教學(xué)都是圍繞著教學(xué)重點(diǎn)來逐步展開的。為了讓學(xué)生明確本堂課的重點(diǎn)、難點(diǎn),教師在上課開始時(shí),可以在黑板的一角將這些內(nèi)容簡短地寫出來,以便引起學(xué)生的重視。講授重點(diǎn)內(nèi)容,是整堂課的教學(xué)高潮。教師要通過聲音、手勢(shì)、板書等的變化或應(yīng)用模型、投影儀等直觀教具,刺激學(xué)生的大腦,使學(xué)生能夠興奮起來,對(duì)所學(xué)內(nèi)容在大腦中刻下強(qiáng)烈的印象,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生對(duì)新知識(shí)的接受能力。尤其是在選擇例題時(shí),例題最好是呈階梯式展現(xiàn),我在準(zhǔn)備例2時(shí),就設(shè)置了三個(gè)小題,從易到難,便于學(xué)生理解接受。

三、要善于應(yīng)用現(xiàn)代化教學(xué)手段

在新課標(biāo)和新教材的背景下,教師掌握現(xiàn)代化的多媒體教學(xué)手段顯得尤為重要和迫切。現(xiàn)代化教學(xué)手段的顯著特點(diǎn):一是能有效地增大每一堂課的課容量;二是減輕教師板書的工作量,使教師能有精力講深講透所舉例子,提高講解效率;三是直觀性強(qiáng),容易激發(fā)起學(xué)生的學(xué)習(xí)興趣,有利于提高學(xué)生的學(xué)習(xí)主動(dòng)性;四是有利于對(duì)整堂課所學(xué)內(nèi)容進(jìn)行回顧和小結(jié)。在課堂教學(xué)結(jié)束時(shí),教師引導(dǎo)學(xué)生總結(jié)本堂課的內(nèi)容,學(xué)習(xí)的重點(diǎn)和難點(diǎn)。同時(shí)通過投影儀,同步地將內(nèi)容在瞬間躍然“幕”上,使學(xué)生進(jìn)一步理解和掌握本堂課的內(nèi)容。在課堂教學(xué)中,對(duì)于板演量大的內(nèi)容,如解析幾何中的一些幾何圖形、一些簡單但數(shù)量較多的小問答題、文字量較多應(yīng)用題,復(fù)習(xí)課中章節(jié)內(nèi)容的總結(jié)、選擇題的訓(xùn)練等等都可以借助于投影儀來完成。

四、根據(jù)具體內(nèi)容,選擇恰當(dāng)?shù)慕虒W(xué)方法

每一堂課都有規(guī)定的教學(xué)任務(wù)和目標(biāo)要求。所謂“教學(xué)有法,但無定法”,教師要能隨著教學(xué)內(nèi)容的變化,教學(xué)對(duì)象的變化,教學(xué)設(shè)備的變化,靈活應(yīng)用教學(xué)方法。這節(jié)課是高三的復(fù)習(xí)課,我采取了讓學(xué)生自己回憶講述橢圓的幾何性質(zhì),教師補(bǔ)充的方法,改變了傳統(tǒng)的教師講,學(xué)生聽的模式,調(diào)動(dòng)了學(xué)生的積極性。在例題的解決過程中,我也盡量讓學(xué)生多動(dòng)手,多動(dòng)腦,激發(fā)學(xué)生的思維。此外,我們還可以結(jié)合課堂內(nèi)容,靈活采用談話、讀書指導(dǎo)、作業(yè)、練習(xí)等多種教學(xué)方法。在一堂課上,有時(shí)要同時(shí)使用多種教學(xué)方法。“教無定法,貴要得法”。只要能激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的學(xué)習(xí)積極性,有助于學(xué)生思維能力的培養(yǎng),有利于所學(xué)知識(shí)的掌握和運(yùn)用,都是好的教學(xué)方法。

五、關(guān)愛學(xué)生,及時(shí)鼓勵(lì)

高中新課程的&39;宗旨是著眼于學(xué)生的發(fā)展。對(duì)學(xué)生在課堂上的表現(xiàn),要及時(shí)加以總結(jié),適當(dāng)給予鼓勵(lì),并處理好課堂的偶發(fā)事件,及時(shí)調(diào)整課堂教學(xué)。在教學(xué)過程中,教師要隨時(shí)了解學(xué)的對(duì)所講內(nèi)容的掌握情況。如在講完一個(gè)概念后,讓學(xué)生復(fù)述;講完一個(gè)例題后,將解答擦掉,請(qǐng)中等水平學(xué)生上臺(tái)板演。有時(shí),對(duì)于基礎(chǔ)差的學(xué)生,可以對(duì)他們多提問,讓他們有較多的鍛煉機(jī)會(huì),同時(shí)教師根據(jù)學(xué)生的表現(xiàn),及時(shí)進(jìn)行鼓勵(lì),培養(yǎng)他們的自信心,讓他們能熱愛數(shù)學(xué),學(xué)習(xí)數(shù)學(xué)。

六、切實(shí)重視基礎(chǔ)知識(shí)、基本技能和基本方法

眾所周知,近年來數(shù)學(xué)試題的新穎性、靈活性越來越強(qiáng),不少師生把主要精力放在難度較大的綜合題上,認(rèn)為只有通過解

決難題才能培養(yǎng)能力,因而相對(duì)地忽視了基礎(chǔ)知識(shí)、基本技能、基本方法的教學(xué)。教學(xué)中急急忙忙把公式、定理推證拿出來,或草草講一道例題就通過大量的題目來訓(xùn)練學(xué)生。其實(shí)定理、公式推證的過程就蘊(yùn)含著重要的解題方法和規(guī)律,教師沒有充分暴露思維過程,沒有發(fā)掘其內(nèi)在的規(guī)律,就讓學(xué)生去做題,試圖通過讓學(xué)生大量地做題去“悟”出某些道理。結(jié)果是多數(shù)學(xué)生“悟”不出方法、規(guī)律,理解浮淺,記憶不牢,只會(huì)機(jī)械地模仿,思維水平較低,有時(shí)甚至生搬硬套;照葫蘆畫瓢,將簡單問題復(fù)雜化。如果教師在教學(xué)中過于粗疏或?qū)W生在學(xué)習(xí)中對(duì)基本知識(shí)不求甚解,都會(huì)導(dǎo)致在考試中判斷錯(cuò)誤。不少學(xué)生說:現(xiàn)在的試題量過大,他們往往無法完成全部試卷的解答,而解題速度的快慢主要取決于基本技能、基本方法的熟練程度及能力的高低??梢?,在切實(shí)重視基礎(chǔ)知識(shí)的落實(shí)中同時(shí)應(yīng)重視基本技能和基本方法的培養(yǎng)。

七、滲透教學(xué)思想方法,培養(yǎng)綜合運(yùn)用能力

常用的數(shù)學(xué)思想方法有:轉(zhuǎn)化的思想,類比歸納與類比聯(lián)想的思想,分類討論的思想,數(shù)形結(jié)合的思想以及配方法、換元法、待定系數(shù)法、反證法等。這些基本思想和方法分散地滲透在中學(xué)數(shù)學(xué)教材的條章節(jié)之中。在平時(shí)的教學(xué)中,教師要在傳授基礎(chǔ)知識(shí)的同時(shí),有意識(shí)地、恰當(dāng)在講解與滲透基本數(shù)學(xué)思想和方法,幫助學(xué)生掌握科學(xué)的方法,從而達(dá)到傳授知識(shí),培養(yǎng)能力的目的,只有這樣。學(xué)生才能靈活運(yùn)用和綜合運(yùn)用所學(xué)的知識(shí)。

高中數(shù)學(xué)教案設(shè)計(jì)反思篇3

教學(xué)目標(biāo)

1、明確等差數(shù)列的定義。

2、掌握等差數(shù)列的通項(xiàng)公式,會(huì)解決知道中的三個(gè),求另外一個(gè)的問題

3、培養(yǎng)學(xué)生觀察、歸納能力。

教學(xué)重點(diǎn)

1、等差數(shù)列的概念;

2、等差數(shù)列的通項(xiàng)公式

教學(xué)難點(diǎn)

等差數(shù)列“等差”特點(diǎn)的理解、把握和應(yīng)用

教具準(zhǔn)備

投影片1張

教學(xué)過程

(I)復(fù)習(xí)回顧

師:上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法通項(xiàng)公式和遞推公式。這兩個(gè)公式從不同的角度反映數(shù)列的特點(diǎn),下面看一些例子。(放投影片)

(Ⅱ)講授新課

師:看這些數(shù)列有什么共同的特點(diǎn)?

1,2,3,4,5,6;①

10,8,6,4,2,…;②

生:積極思考,找上述數(shù)列共同特點(diǎn)。

對(duì)于數(shù)列①(1≤n≤6);(2≤n≤6)

對(duì)于數(shù)列②-2n(n≥1)(n≥2)

對(duì)于數(shù)列③(n≥1)(n≥2)

共同特點(diǎn):從第2項(xiàng)起,第一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)。

師:也就是說,這些數(shù)列均具有相鄰兩項(xiàng)之差“相等”的特點(diǎn)。具有這種特點(diǎn)的數(shù)列,我們把它叫做等差數(shù)。

一、定義:

等差數(shù)列:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與空的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

如:上述3個(gè)數(shù)列都是等差數(shù)列,它們的公差依次是1,-2。

二、等差數(shù)列的通項(xiàng)公式

師:等差數(shù)列定義是由一數(shù)列相鄰兩項(xiàng)之間關(guān)系而得。若一等差數(shù)列的首項(xiàng)是,公差是d,則據(jù)其定義可得:

若將這n-1個(gè)等式相加,則可得:

即:即:即:……

由此可得:師:看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項(xiàng)和公差d,便可求得其通項(xiàng)。

如數(shù)列①(1≤n≤6)

數(shù)列②:(n≥1)

數(shù)列③:(n≥1)

由上述關(guān)系還可得:即:則:=如:

三、例題講解

例1:(1)求等差數(shù)列8,5,2…的第20項(xiàng)

(2)-401是不是等差數(shù)列-5,-9,-13…的項(xiàng)?如果是,是第幾項(xiàng)?

解:(1)由n=20,得(2)由得數(shù)列通項(xiàng)公式為:由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個(gè)數(shù)列的第100項(xiàng)。

(Ⅲ)課堂練習(xí)

生:(口答)課本P118練習(xí)3

(書面練習(xí))課本P117練習(xí)1

師:組織學(xué)生自評(píng)練習(xí)(同桌討論)

(Ⅳ)課時(shí)小結(jié)

師:本節(jié)主要內(nèi)容為:

①等差數(shù)列定義。

即(n≥2)

②等差數(shù)列通項(xiàng)公式(n≥1)

推導(dǎo)出公式:

(V)課后作業(yè)

一、課本P118習(xí)題3.21,2

二、1、預(yù)習(xí)內(nèi)容:課本P116例2P117例4

2、預(yù)習(xí)提綱:

①如何應(yīng)用等差數(shù)列的定義及通項(xiàng)公式解決一些相關(guān)問題?

②等差數(shù)列有哪些性質(zhì)?

高中數(shù)學(xué)教案設(shè)計(jì)反思篇4

一、教學(xué)目標(biāo)

1.知識(shí)與能力目標(biāo)

①使學(xué)生理解數(shù)列極限的概念和描述性定義。

②使學(xué)生會(huì)判斷一些簡單數(shù)列的極限,了解數(shù)列極限的“e-N"定義,能利用逐步分析的方法證明一些數(shù)列的極限。

③通過觀察運(yùn)動(dòng)和變化的過程,歸納總結(jié)數(shù)列與其極限的特定關(guān)系,提高學(xué)生的數(shù)學(xué)概括能力和抽象思維能力。

2.過程與方法目標(biāo)

培養(yǎng)學(xué)生的極限的思想方法和獨(dú)立學(xué)習(xí)的能力。

3.情感、態(tài)度、價(jià)值觀目標(biāo)

使學(xué)生初步認(rèn)識(shí)有限與無限、近似與精確、量變與質(zhì)變的辯證關(guān)系,培養(yǎng)學(xué)生的辯證唯物主義觀點(diǎn)。

二、教學(xué)重點(diǎn)和難點(diǎn)

教學(xué)重點(diǎn):數(shù)列極限的概念和定義。

教學(xué)難點(diǎn):數(shù)列極限的“ε―N”定義的理解。

三、教學(xué)對(duì)象分析

這節(jié)課是數(shù)列極限的第一節(jié)課,足學(xué)生學(xué)習(xí)極限的入門課,對(duì)于學(xué)生來說是一個(gè)全新的內(nèi)容,學(xué)生的思維正處于由經(jīng)驗(yàn)型抽象思維向理論型抽象思維過渡階段,在《立體幾何》內(nèi)容求球的表面積和體積時(shí)對(duì)極限思想已有接觸,而學(xué)生在以往的數(shù)學(xué)學(xué)習(xí)中主要接觸的是關(guān)于“有限”的問題,很少涉及“無限”的問題。極限這一抽象概念能夠使他們做基于直觀的理解,并引導(dǎo)他們作出描述性定義“當(dāng)n無限增大時(shí),數(shù)列{an}中的項(xiàng)an無限趨近于常數(shù)A,也就是an與A的差的絕對(duì)值無限趨近于0”,并能用這個(gè)定義判斷一些簡單數(shù)列的極限。但要使他們?cè)谝还?jié)課內(nèi)掌握“ε-N”語言求極限要求過高。因此不宜講得太難,能夠通過具體的幾個(gè)例子,歸納研究一些簡單的數(shù)列的極限。使學(xué)生理解極限的基本概念,認(rèn)識(shí)什么叫做數(shù)列的極限以及數(shù)列極限的定義即可。

四、教學(xué)策略及教法設(shè)計(jì)

本課是采用啟發(fā)式講授教學(xué)法,通過多媒體課件演示及學(xué)生討論的方法進(jìn)行教學(xué)。通過學(xué)生比較熟悉的一個(gè)實(shí)際問題入手,引起學(xué)生的注意,激發(fā)學(xué)生的學(xué)習(xí)興趣。然后通過具體的兩個(gè)比較簡單的數(shù)列,運(yùn)用多媒體課件演示向?qū)W生展示了數(shù)列中的各項(xiàng)隨著項(xiàng)數(shù)的增大,無限地趨向于某個(gè)常數(shù)的過程,讓學(xué)生在觀察的基礎(chǔ)上討論總結(jié)出這兩個(gè)數(shù)列的特征,從而得出數(shù)列極限的一個(gè)描述性定義。再在教師的引導(dǎo)下分析數(shù)列極限的各種不同情況。從而對(duì)數(shù)列極限有了直觀上的認(rèn)識(shí),接著讓學(xué)生根據(jù)數(shù)列中各項(xiàng)的情況判斷一些簡單的數(shù)列的極限。從而達(dá)到深化定義的效果。最后進(jìn)行練習(xí)鞏固,通過這樣的一個(gè)完整的教學(xué)過程,由觀察到分析、由定量到定性,由直觀到抽象,并借助于多媒體課件的演示,使得學(xué)生逐步地了解極限這個(gè)新的概念,為下節(jié)課的極限的運(yùn)算及應(yīng)用做準(zhǔn)備,為以后學(xué)習(xí)高等數(shù)學(xué)知識(shí)打下基礎(chǔ)。在整個(gè)教學(xué)過程中注意突出重點(diǎn),突破難點(diǎn),達(dá)到教學(xué)目標(biāo)的要求。

五、教學(xué)過程

1.創(chuàng)設(shè)情境

課件展示創(chuàng)設(shè)情境動(dòng)畫。

今天我們將要學(xué)習(xí)一個(gè)很重要的新的知識(shí)。

情境

1、我國古代數(shù)學(xué)家劉徽于公元263年創(chuàng)立“割圓術(shù)”,“割之彌細(xì),所失彌少。割之又割,以至不可割,則與圓周合體而無所失矣”。

情境

2、我國古代哲學(xué)家莊周所著的《莊子?天下篇》引用過一句話:一尺之棰,日取其半,萬世不竭。也就是說拿一根木棒,將它切成一半,拿其中一半來再切成一半,得到四分之一,再切成一半,就得到了八分之???如此下去,無限次地切,每次都切一半,問是否會(huì)切完?

大家都知道,這是不可能切完的,但是每次切了以后,木棒都比原來的少了一半,也就是說木棒的長度越來越短,但永遠(yuǎn)不會(huì)變成零。從而引出極限的概念。

2.定義探究

展示定義探索(一)動(dòng)畫演示。

問題1:請(qǐng)觀察以下無窮數(shù)列,當(dāng)n無限增大時(shí),a,I的變化趨勢(shì)有什么特點(diǎn)?

(1)1/2,2/3,3/4,?n/n-1(2)0.9,0.99,0.999,0.9999,1-1/10n??

問題2:觀察課件演示,請(qǐng)分析以上兩個(gè)數(shù)列隨項(xiàng)數(shù)n的增大項(xiàng)有那些特點(diǎn)?

師生一起歸納總結(jié)出以下結(jié)論:數(shù)列(1)項(xiàng)數(shù)n無限增大時(shí),項(xiàng)無限趨近于1;數(shù)列(2)項(xiàng)數(shù)n無限增大時(shí),項(xiàng)無限趨近于1。

那么就把1叫數(shù)列(1)的極限,1叫數(shù)列(2)的極限。這兩個(gè)數(shù)列只是形式不同,它們都是隨項(xiàng)數(shù)n的無限增大,項(xiàng)無限趨近于某一確定常數(shù),這個(gè)常數(shù)叫做這個(gè)數(shù)列的極限。

那么,什么叫數(shù)列的極限呢?對(duì)于無窮數(shù)列an,如果當(dāng)n無限增大時(shí),an無限趨向于某一個(gè)常數(shù)A,則稱A是數(shù)列an的極限。

提出問題3:怎樣用數(shù)學(xué)語言來定量描述呢?怎樣用數(shù)學(xué)語言來描述上述數(shù)列的變化趨勢(shì)?

展示定義探索(二)動(dòng)畫演示,師生共同總結(jié)發(fā)現(xiàn)在數(shù)軸上兩點(diǎn)間距離越小,項(xiàng)與1越趨近,因此可以借助兩點(diǎn)間距離無限小的方式來描述項(xiàng)無限趨近常數(shù)。無論預(yù)先指定多么小的正數(shù)e,如取e=O-1,總能在數(shù)列中找到一項(xiàng)am,使得an項(xiàng)后面的所有項(xiàng)與1的差的絕對(duì)值都小于ε,若取£=0。0001,則第6項(xiàng)后面的所有項(xiàng)與1的差的絕對(duì)值都小于ε,即1是數(shù)列(1)的極限。最后,師生共同總結(jié)出數(shù)列的極限定義中應(yīng)包含哪量(用這些量來描述數(shù)列1的極限)。

數(shù)列的極限為:對(duì)于任意的ε>0,如果總存在自然數(shù)N,當(dāng)n>N時(shí),不等式|an-A|n的極限。

定義探索動(dòng)畫(一):

課件可以實(shí)現(xiàn)任意輸入一個(gè)n值,可以計(jì)算出相應(yīng)的數(shù)列第n項(xiàng)的值,并且動(dòng)畫演示數(shù)列的變化過程。如圖1所示是課件運(yùn)行時(shí)的一個(gè)畫面。

定義探索動(dòng)畫(二)課件可以實(shí)現(xiàn)任意輸入一個(gè)n值,可以計(jì)算出相應(yīng)的數(shù)列第n項(xiàng)的值和Ian一1I的值,并且動(dòng)畫演示出第an項(xiàng)和1之間的距離。如圖2所示是課件運(yùn)行時(shí)的一個(gè)畫面。

3.知識(shí)應(yīng)用

這里舉了3道例題,與學(xué)生一塊思考,一起分析作答。

例1.已知數(shù)列:

1,-1/2,1/3,-1/4,1/5??,(-1)n+11/n,??

(1)計(jì)算an-0(2)第幾項(xiàng)后面的所有項(xiàng)與0的差的絕對(duì)值都小于0.017都小于任意指定的正數(shù)。

(3)確定這個(gè)數(shù)列的極限。

例2.已知數(shù)列:

已知數(shù)列:3/2,9/4,15/8??,2+(-1/2)n,??。

猜測(cè)這個(gè)數(shù)列有無極限,如果有,應(yīng)該是什么數(shù)?并求出從第幾項(xiàng)開始,各項(xiàng)與這個(gè)極限的差都小于0.1,從第幾項(xiàng)開始,各項(xiàng)與這個(gè)極限的差都小于0.017

例3.求常數(shù)數(shù)列一7,一7,一7,一7,??的極限。

5.知識(shí)小結(jié)

這節(jié)課我們研究了數(shù)列極限的概念,對(duì)數(shù)列極限有了初步的認(rèn)識(shí)。數(shù)列極限研究的是無限變化的趨勢(shì),而通過對(duì)數(shù)列極限定義的探討,我們看到這一過程又是通過有限來把握的,有限與無限、近似與精確、量變與質(zhì)變之間的辯證關(guān)系在這里得到了充分的體現(xiàn)。

課后練習(xí):

(1)判斷下列數(shù)列是否有極限,如果有的話請(qǐng)求出它的極限值。①an=4n+l/n;②an=4-(1/3)m;③an=(-1)n/3n;④aan=-2;⑤an=n;⑥an=(-1)n。

(2)課本練習(xí)1,2。

6.探究性問題

設(shè)計(jì)研究性學(xué)習(xí)的思考題。

提出問題:

芝諾悖論:阿基里斯是《荷馬史詩》中的善跑英雄。奔跑中的阿基里斯永遠(yuǎn)也無法超過在他前面慢慢爬行的烏龜,因?yàn)楫?dāng)阿基里斯到達(dá)烏龜?shù)钠鹋茳c(diǎn)時(shí),烏龜已經(jīng)走在前面一小段路了,阿基里斯又必須趕過這一小段路,而烏龜又向前走了。這樣,阿基里斯可無限接近它,但不能追到它。假定阿基里斯跑步的速度是烏龜速度的10倍,阿基里斯與烏龜賽跑的路程是1公里。如果讓烏龜先跑0.1公里,當(dāng)阿基里斯追到O.1公里的地方,烏龜又向前跑了0.01公里。當(dāng)阿基里斯追到0.01公里的地方,烏龜又向前跑了0.001公里??這樣一直追下去,阿基里斯能追上烏龜嗎?

這里是研究性學(xué)習(xí)內(nèi)容,以學(xué)生感興趣的悖論作為課后作業(yè),鞏固本節(jié)所學(xué)內(nèi)容,進(jìn)一步提高了學(xué)生學(xué)習(xí)數(shù)列的極限的興趣。同時(shí)也為學(xué)生創(chuàng)設(shè)了課下交流與討論的情境,逐步培養(yǎng)學(xué)生相互合作、交流和討論的習(xí)慣,使學(xué)生感受到了數(shù)學(xué)來源于生活,又服務(wù)于生活的實(shí)質(zhì),逐步養(yǎng)成用數(shù)學(xué)的知識(shí)去解決生活中遇到的實(shí)際問題的習(xí)慣。

高中數(shù)學(xué)教案設(shè)計(jì)反思篇5

課題:

等比數(shù)列的概念

教學(xué)目標(biāo)

1、通過教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項(xiàng)公式、

2、使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力、

3、培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度、

教學(xué)重點(diǎn),難點(diǎn)

重點(diǎn)、難點(diǎn)是等比數(shù)列的定義的歸納及通項(xiàng)公式的推導(dǎo)、

教學(xué)用具

投影儀,多媒體軟件,電腦、

教學(xué)方法

討論、談話法、

教學(xué)過程

一、提出問題

給出以下幾組數(shù)列,將它們分類,說出分類標(biāo)準(zhǔn)、(幻燈片)

①—2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,,…

⑤31,29,27,25,23,21,19,…

⑥1,—1,1,—1,1,—1,1,—1,…

⑦1,—10,100,—1000,10000,—100000,…

⑧0,0,0,0,0,0,0,…

由學(xué)生發(fā)表意見(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為等比數(shù)列)、

二、講解新課

請(qǐng)學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲分裂問題、假設(shè)每經(jīng)過一個(gè)單位時(shí)間每個(gè)變形蟲都分裂為兩個(gè)變形蟲,再假設(shè)開始有一個(gè)變形蟲,經(jīng)過一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲,經(jīng)過兩個(gè)單位時(shí)間就有了四個(gè)變形蟲,…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲個(gè)數(shù)得到了一列數(shù)

這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列、(這里播放變形蟲分裂的多媒體軟件的第一步)

等比數(shù)列(板書)

1、等比數(shù)列的定義(板書)

根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義、學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的教師寫出等比數(shù)列的定義,標(biāo)注出重點(diǎn)詞語、

請(qǐng)學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是等比數(shù)列、學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例、而后請(qǐng)學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是等比數(shù)列,當(dāng)時(shí),它只是等差數(shù)列,而不是等比數(shù)列、教師追問理由,引出對(duì)等比數(shù)列的認(rèn)識(shí):

2、對(duì)定義的認(rèn)識(shí)(板書)

(1)等比數(shù)列的首項(xiàng)不為0;

(2)等比數(shù)列的每一項(xiàng)都不為0,即

問題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為等比數(shù)列的什么條件?

(3)公比不為0、

用數(shù)學(xué)式子表示等比數(shù)列的定義、

是等比數(shù)列

①、在這個(gè)式子的寫法上可能會(huì)有一些爭議,如寫成

,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為

是等比數(shù)列?為什么不能?式子給出了數(shù)列第項(xiàng)與第

項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)等比數(shù)列?(不能)確定一個(gè)等比數(shù)列需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式、

3、等比數(shù)列的通項(xiàng)公式(板書)

問題:用和表示第項(xiàng)

①不完全歸納法

②疊乘法,…,,這個(gè)式子相乘得,所以(板書)

(1)等比數(shù)列的通項(xiàng)公式得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式、(板書)

(2)對(duì)公式的認(rèn)識(shí)

由學(xué)生來說,最后歸結(jié):

①函數(shù)觀點(diǎn);

②方程思想(因在等差數(shù)列中已有認(rèn)識(shí),此處再復(fù)習(xí)鞏固而已)、

這里強(qiáng)調(diào)方程思想解決問題、方程中有四個(gè)量,知三求一,這是公式最簡單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類問題)、解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)

如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究、同學(xué)可以試著編幾道題。

三、小結(jié)

1、本節(jié)課研究了等比數(shù)列的概念,得到了通項(xiàng)公式;

2、注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;

3、用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用。

探究活動(dòng)

將一張很大的薄紙對(duì)折,對(duì)折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0、01毫米。

參考答案:

30次后,厚度為,這個(gè)厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙?jiān)俦∫恍热缂埡?、001毫米,對(duì)折34次就超過珠穆朗瑪峰的高度了、還記得國王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(對(duì)數(shù)算也行)。

高中數(shù)學(xué)教案設(shè)計(jì)反思篇6

一、教學(xué)目標(biāo)

1.掌握任意角的正弦、余弦、正切函數(shù)的定義(包括定義域、正負(fù)符號(hào)判斷);了解任意角的余切、正割、余割函數(shù)的定義.

2.經(jīng)歷從銳角三角函數(shù)定義過度到任意角三角函數(shù)定義的推廣過程,體驗(yàn)三角函數(shù)概念的產(chǎn)生、發(fā)展過程.領(lǐng)悟直角坐標(biāo)系的工具功能,豐富數(shù)形結(jié)合的經(jīng)驗(yàn).

3.培養(yǎng)學(xué)生通過現(xiàn)象看本質(zhì)的唯物主義認(rèn)識(shí)論觀點(diǎn),滲透事物相互聯(lián)系、相互轉(zhuǎn)化的辯證唯物主義世界觀.

4.培養(yǎng)學(xué)生求真務(wù)實(shí)、實(shí)事求是的科學(xué)態(tài)度.

二、重點(diǎn)、難點(diǎn)、關(guān)鍵

重點(diǎn):任意角的正弦、余弦、正切函數(shù)的定義、定義域、(正負(fù))符號(hào)判斷法.

難點(diǎn):把三角函數(shù)理解為以實(shí)數(shù)為自變量的函數(shù).

關(guān)鍵:如何想到建立直角坐標(biāo)系;六個(gè)比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化).

三、教學(xué)理念和方法

教學(xué)中注意用新課程理念處理傳統(tǒng)教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不僅要接受、記憶、模仿和練習(xí),而且要自主探索、動(dòng)手實(shí)踐、合作交流、閱讀自學(xué),師生互動(dòng),教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程.

根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認(rèn)知特點(diǎn)和我自己的教學(xué)風(fēng)格,本節(jié)課采用"啟發(fā)探索、講練結(jié)合"的方法組織教學(xué).

四、教學(xué)過程

[執(zhí)教線索:

回想再認(rèn):函數(shù)的概念、銳角三角函數(shù)定義(銳角三角形邊角關(guān)系)--問題情境:能推廣到任意角嗎?--它山之石:建立直角坐標(biāo)系(為何?)--優(yōu)化認(rèn)知:用直角坐標(biāo)系研究銳角三角函數(shù)--探索發(fā)展:對(duì)任意角研究六個(gè)比值(與角之間的關(guān)系:確定性、依賴性,滿足函數(shù)定義嗎?)--自主定義:任意角三角函數(shù)定義--登高望遠(yuǎn):三角函數(shù)的要素分析(對(duì)應(yīng)法則、定義域、值域與正負(fù)符號(hào)判定)--例題與練習(xí)小明回顧小結(jié)--布置作業(yè)]

(一)復(fù)習(xí)引入、回想再認(rèn)

開門見山,面對(duì)全體學(xué)生提問:

在初中我們初步學(xué)習(xí)了銳角三角函數(shù),前幾節(jié)課,我們把銳角推廣到了任意角,學(xué)習(xí)了角度制和弧度制,這節(jié)課該研究什么呢?

探索任意角的三角函數(shù)(板書課題),請(qǐng)同學(xué)們回想,再明確一下:

(情景1)什么叫函數(shù)?或者說函數(shù)是怎樣定義的?

讓學(xué)生回想后再點(diǎn)名回答,投影顯示規(guī)范的定義,教師根據(jù)回答情況進(jìn)行修正、強(qiáng)調(diào):

傳統(tǒng)定義:設(shè)在一個(gè)變化過程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一確定的值和它對(duì)應(yīng),那么就說y是x的函數(shù),x叫做自變量,自變量x的取值范圍叫做函數(shù)的定義域.

現(xiàn)代定義:設(shè)A、B是非空的數(shù)集,如果按某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù),在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱映射?:A→B為從集合A到集合B的一個(gè)函數(shù),記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數(shù)的定義域.

設(shè)計(jì)意圖:

函數(shù)和三角函數(shù)是一般和特殊的關(guān)系,是共性和個(gè)性的關(guān)系,學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念,因此對(duì)三角函數(shù)的學(xué)習(xí)就是一個(gè)從一般到特殊的演繹的過程,也是以具體函數(shù)豐富函數(shù)概念的過程.教學(xué)經(jīng)驗(yàn)表明:學(xué)生對(duì)函數(shù)兩種定義的記憶是有一定困難的,容易遺忘,此處讓學(xué)生對(duì)函數(shù)概念進(jìn)行回想再認(rèn),目的在于明確函數(shù)概念的本質(zhì),為演繹學(xué)習(xí)任意角三角函數(shù)概念作好知識(shí)和認(rèn)知準(zhǔn)備.

(情景2)我們?cè)诔踔型ㄟ^銳角三角形的邊角關(guān)系,學(xué)習(xí)了銳角的正弦、余弦、正切等三個(gè)三角函數(shù).請(qǐng)回想:這三個(gè)三角函數(shù)分別是怎樣規(guī)定的?

學(xué)生口述后再投影展示,教師再根據(jù)投影進(jìn)行強(qiáng)調(diào):

設(shè)計(jì)意圖:

學(xué)生在初中學(xué)習(xí)了銳角的三角函數(shù)概念,現(xiàn)在學(xué)習(xí)任意角的三角函數(shù),又是一種推廣和拓展的過程(類似于從有理數(shù)到實(shí)數(shù)的擴(kuò)展).溫故知新,要讓學(xué)生體會(huì)知識(shí)的產(chǎn)生、發(fā)展過程,就要從源頭上開始,從學(xué)生現(xiàn)有認(rèn)知狀況開始,對(duì)銳角三角函數(shù)的復(fù)習(xí)就必不可少.

(二)引伸鋪墊、創(chuàng)設(shè)情景

(情景3)我們已經(jīng)把銳角推廣到了任意角,銳角的三角函數(shù)概念也能推廣到任意角嗎?試試看,可以獨(dú)立思考和探索,也可以互相討論!

留時(shí)間讓學(xué)生獨(dú)立思考或自由討論,教師參與討論或巡回對(duì)學(xué)困生作啟發(fā)引導(dǎo).

能推廣嗎?怎樣推廣?針對(duì)剛才的問題點(diǎn)名讓學(xué)生回答.用角的對(duì)邊、臨邊、斜邊比值的說法顯然是受到阻礙了,由于4.1節(jié)已經(jīng)以直角坐標(biāo)系為工具來研究任意角了,學(xué)生一般會(huì)想到(否則教師進(jìn)行提示)繼續(xù)用直角坐標(biāo)系來研究任意角的三角函數(shù).

設(shè)計(jì)意圖:

從學(xué)生現(xiàn)有知識(shí)水平和認(rèn)知能力出發(fā),創(chuàng)設(shè)問題情景,讓學(xué)生產(chǎn)生認(rèn)知沖突,進(jìn)行必要的啟發(fā),將學(xué)生思維引上自主探索、合作交流的"再創(chuàng)造"征程.

教師對(duì)學(xué)生回答情況進(jìn)行點(diǎn)評(píng)后布置任務(wù)情景:請(qǐng)同學(xué)們用直角坐標(biāo)系重新研究銳角三角函數(shù)定義!

師生共做(學(xué)生口述,教師板書圖形和比值):

把銳角α安裝(如何安裝?角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸非負(fù)半軸重合)在直角坐標(biāo)系中,在角α終邊上任取一點(diǎn)P,作Pm⊥x軸于m,構(gòu)造一個(gè)RtΔomP,則∠moP=α(銳角),設(shè)P(x,y)(x>0、y>0),α的臨邊om=x、對(duì)邊mP=y,斜邊長oP∣=r.

根據(jù)銳角三角函數(shù)定義用x、y、r列出銳角α的正弦、余弦、正切三個(gè)比值,并補(bǔ)充對(duì)應(yīng)列出三個(gè)倒數(shù)比值:

設(shè)計(jì)意圖:

此處做法簡單,思想重要.為了順利實(shí)現(xiàn)推廣,可以構(gòu)建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形.由于前一節(jié)已經(jīng)以直角坐標(biāo)系為工具來研究任意角了,學(xué)生自然能想到仍然以直角坐標(biāo)系為工具來研究任意角的三角函數(shù).初中以直角三角形邊角關(guān)系來定義銳角三角函數(shù),現(xiàn)在要用坐標(biāo)系來研究,探索的結(jié)論既要滿足任意角的情形,又要包容初中銳角三角函數(shù)定義.這是一個(gè)認(rèn)識(shí)的飛躍,是理解任意角三角函數(shù)概念的關(guān)鍵之一,也是數(shù)學(xué)發(fā)現(xiàn)的重要思想和方法,屬于策略性知識(shí),能夠形成遷移能力,為學(xué)生在以后學(xué)習(xí)中對(duì)某些知識(shí)進(jìn)行推廣拓展奠定了基礎(chǔ)(譬如從平面向量到空間向量的擴(kuò)展,從實(shí)數(shù)到復(fù)數(shù)的擴(kuò)展等).

(情景4)各個(gè)比值與角之間有怎樣的關(guān)系?比值是角的函數(shù)嗎?

追問:銳角α大小發(fā)生變化時(shí),比值會(huì)改變嗎?

先讓學(xué)生想象思考,作出主觀判斷,再用幾何畫板動(dòng)畫演示,同時(shí)作好解釋說明:保持r不變,讓P繞原點(diǎn)o旋轉(zhuǎn)即α在銳角范圍內(nèi)變化,六個(gè)比值隨之變化的直觀形象。結(jié)論是:比值隨α的變化而變化.

引導(dǎo)學(xué)生觀察圖3,聯(lián)系相似三角形知識(shí),

探索發(fā)現(xiàn):

對(duì)于銳角α的每一個(gè)確定值,六個(gè)比值都是

確定的,不會(huì)隨P在終邊上的移動(dòng)而變化.

得出結(jié)論(強(qiáng)調(diào)):當(dāng)α為銳角時(shí),六個(gè)比值隨α的變化而變化;但對(duì)于銳角α的每一個(gè)確定值,六個(gè)比值都是確定的,不會(huì)隨P在終邊上的移動(dòng)而變化.所以,六個(gè)比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù).

設(shè)計(jì)意圖:

初中學(xué)生對(duì)函數(shù)理解較膚淺,這里在學(xué)生思維的最近發(fā)展區(qū)進(jìn)一步研究初中學(xué)過的銳角三角函數(shù),在思維上更上了一個(gè)層次,扣準(zhǔn)函數(shù)概念的內(nèi)涵,突出變量之間的依賴關(guān)系或?qū)?yīng)關(guān)系,是從函數(shù)知識(shí)演繹到三角函數(shù)知識(shí)的主要依據(jù),是準(zhǔn)確理解三角函數(shù)概念的關(guān)鍵,也是在認(rèn)知上把三角函數(shù)知識(shí)納入函數(shù)知識(shí)結(jié)構(gòu)的關(guān)鍵.這樣做能夠使學(xué)生有效地增強(qiáng)函數(shù)觀念.

(三)分析歸納、自主定義

(情境5)能將銳角的比值情形推廣到任意角α嗎?

水到渠成,師生共同進(jìn)行探索和推廣:

對(duì)于一個(gè)任意角α,它的終邊所在位置包括下列兩類共八種情形(投影展示并作分析):

終邊分別在四個(gè)象限的情形:終邊分別在四個(gè)半軸上的情形:

(指出:不畫出角的方向,表明角具有任意性)

怎樣刻畫任意角的三角函數(shù)呢?研究它的六個(gè)比值:

(板書)設(shè)α是一個(gè)任意角,在α終邊上除原點(diǎn)外任意取一點(diǎn)P(x,y),P與原點(diǎn)o之間的距離記作r(r=>0),列出六個(gè)比值:

α=kππ/2時(shí),x=0,比值y/x、r/x無意義;

α=kπ時(shí),y=0,比值x/y、r/y無意義.

追問:α大小發(fā)生變化時(shí),比值會(huì)改變嗎?

先讓學(xué)生想象思考,作出主觀判斷,再用幾何畫板動(dòng)畫演示,同時(shí)作好解釋說明:使r保持不變,P繞原點(diǎn)o逆時(shí)針、順時(shí)針旋轉(zhuǎn)即角α變化,六個(gè)比值隨之改變的直觀形象。結(jié)論是:各比值隨α的變化而變化.

再引導(dǎo)學(xué)生利用相似三角形知識(shí),探索發(fā)現(xiàn):對(duì)于任意角α的每一個(gè)確定值,六個(gè)比值都是確定的,不會(huì)隨P在終邊上的移動(dòng)而變化.

綜上得到(強(qiáng)調(diào)):當(dāng)角α變化時(shí),六個(gè)比值隨之變化;對(duì)于確定的角α,六個(gè)比值(如果存在的話)都不會(huì)隨P在角α終邊上的改變而改變,六個(gè)比值是確定的(對(duì)應(yīng)的多值性即誘導(dǎo)公式一留到下節(jié)課分析).

因此,六個(gè)比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù).

根據(jù)歷史上的規(guī)定,對(duì)比值進(jìn)行命名,指出英文記法和讀法,記作(承前作復(fù)合板書):

=sinα(正弦)=cosα(余弦)=tanα(正切)

=cscα(余割)=sec(正弦)=cotα(余切)

教師強(qiáng)調(diào):sinα表示sin與α的乘積嗎?不是,sinα是函數(shù)記號(hào),是一個(gè)整體,相當(dāng)于函數(shù)記號(hào)f(x).其它幾個(gè)三角函數(shù)也如此

投影顯示圖六,指導(dǎo)學(xué)生分析其對(duì)應(yīng)關(guān)系,進(jìn)一步體會(huì)其函數(shù)內(nèi)涵:

(圖六)

指導(dǎo)學(xué)生識(shí)記六個(gè)比值及函數(shù)名稱.

教師指出:正弦、余弦、正切、余切、正割、余割六個(gè)函數(shù)統(tǒng)稱為三角函數(shù),三角函數(shù)有非常豐富的知識(shí)和思想方法,我們以后主要學(xué)習(xí)正弦、余弦、正切三個(gè)函數(shù)的相關(guān)知識(shí)和方法,對(duì)于余切、正割、余割,只要同學(xué)們了解它們的定義就夠了(遵循大綱要求).

引導(dǎo)學(xué)生進(jìn)一步分析理解:

已知角的集合與實(shí)數(shù)集之間可以建立一一對(duì)應(yīng)關(guān)系,對(duì)于每一個(gè)確定的實(shí)數(shù),把它看成一個(gè)弧度數(shù),就對(duì)應(yīng)著唯一的一個(gè)角,從而分別對(duì)應(yīng)著六個(gè)唯一的三角函數(shù)值.因此,(板書)三角函數(shù)可以看成是以實(shí)數(shù)為自變量的函數(shù),這將為以后的應(yīng)用帶來很多方便.

設(shè)計(jì)意圖:

把角的終邊分別在四個(gè)象限、四條半軸上的情形全作出來,有利于對(duì)任意性的全面把握.明確比值存在與否的條件,為確定函數(shù)定義域作準(zhǔn)備.動(dòng)畫演示比值與角之間的依賴性與確定性關(guān)系,深化理解三角函數(shù)內(nèi)涵.引導(dǎo)學(xué)生在理解的基礎(chǔ)上自主地對(duì)三角函數(shù)作出明確定義,是本節(jié)課的中心任務(wù).由于學(xué)生剛學(xué)弧度制,對(duì)弧度制的理解有待于在以后的學(xué)習(xí)應(yīng)用中逐步感悟,因此部分學(xué)生對(duì)"三角函數(shù)可以看成是以實(shí)數(shù)為自變量的函數(shù)"的理解有半信半疑之感,有待通過后續(xù)的應(yīng)用加深理解.

(四)探索定義域

(情景6)(1)函數(shù)概念的三要素是什么?

函數(shù)三要素:對(duì)應(yīng)法則、定義域、值域.

正弦函數(shù)sinα的對(duì)應(yīng)法則是什么?

正弦函數(shù)sinα的對(duì)應(yīng)法則,實(shí)質(zhì)上就是sinα的定義:對(duì)α的每一個(gè)確定的值,有唯一確定的比值y/r與之對(duì)應(yīng),即α→y/r=sinα.

(2)布置任務(wù)情景:什么是三角函數(shù)的定義域?請(qǐng)求出六個(gè)三角函數(shù)的定義域,填寫下表:

三角函數(shù)

sinα

cosα

tanα

cotα

cscα

secα

定義域

引導(dǎo)學(xué)生自主探索:

如果沒有特別說明,那么使解析式有意義的自變量的取值范圍叫做函數(shù)的定義域,三角函數(shù)的定義域自然是指:使比值有意義的角α的取值范圍.

關(guān)于sinα=y/r、cosα=x/r,對(duì)于任意角α(弧度數(shù)),r>0,y/r、x/r恒有意義,定義域都是實(shí)數(shù)集R.

對(duì)于tanα=y/x,α=kππ/2時(shí)x=0,y/x無意義,tanα的定義域是:{αα∈R,且α≠kππ/2}..........

教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數(shù)定義在理解的基礎(chǔ)上記熟,cotα、cscα、secα的定義域不要求記憶.

(關(guān)于值域,到后面再學(xué)習(xí)).

設(shè)計(jì)意圖:

定義域是函數(shù)三要素之一,研究函數(shù)必須明確定義域.指導(dǎo)學(xué)生根據(jù)定義自主探索確定三角函數(shù)定義域,有利于在理解的基礎(chǔ)上記住它、應(yīng)用它,也增進(jìn)對(duì)三角函數(shù)概念的掌握.

(五)符號(hào)判斷、形象識(shí)記

(情景7)能判斷三角函數(shù)值的正、負(fù)嗎?試試看!

引導(dǎo)學(xué)生緊緊抓住三角函數(shù)定義來分析,r>0,三角函數(shù)值的符號(hào)決定于x、y值的正負(fù),根據(jù)終邊所在位置總結(jié)出形象的識(shí)記口訣:

(同好得正、異號(hào)得負(fù))

sinα=y/r:上正下負(fù)橫為0cosα=x/r:左負(fù)右正縱為0tanα=y/x:交叉正負(fù)

設(shè)計(jì)意圖:

判斷三角函數(shù)值的正負(fù)符號(hào),是本章教材的一項(xiàng)重要的知識(shí)、技能要求.要引導(dǎo)學(xué)生抓住定義、數(shù)形結(jié)合判斷和記憶三角函數(shù)值的正負(fù)符號(hào),并總結(jié)出形象的識(shí)記口訣,這也是理解和記憶的關(guān)鍵.

(六)練習(xí)鞏固、理解記憶

1、自學(xué)例1:已知角α的終邊經(jīng)過點(diǎn)P(2,-3),求α的六個(gè)三角函數(shù)值.

要求:讀完題目,思考:計(jì)算什么?需要準(zhǔn)備什么?閉目心算,對(duì)照解答,模仿書面表達(dá)格式,鞏固定義.

課堂練習(xí):

p19題1:已知角α的終邊經(jīng)過點(diǎn)P(-3,-1),求α的六個(gè)三角函數(shù)值.

要求心算,并提問中下學(xué)生檢驗(yàn),--------

點(diǎn)評(píng):角α終邊上有無窮多個(gè)點(diǎn),根據(jù)三角函數(shù)的定義,只要知道α終邊上任意一個(gè)點(diǎn)的坐標(biāo),就可以計(jì)算這個(gè)角的三角函數(shù)值(或判斷其無意義).

補(bǔ)充例題:已知角α的終邊經(jīng)過點(diǎn)P(x,-3),cosα=4/5,求α的其它五個(gè)三角函數(shù)值.

師生探索:已知y=-3,要求其它五個(gè)三角函數(shù)值,須知r=?,x=?.根據(jù)定義得=(方程思想),x>0,解得x=4,從而--------.解答略.

2、自學(xué)例2:求下列各角的六個(gè)三角函數(shù)值:(1)0;(2)π/2;(3)3π/2.

提問,據(jù)反饋信息作點(diǎn)評(píng)、修正.

師生探索:緊扣三角函數(shù)定義求解,首先要在終邊上取定一點(diǎn)。終邊在哪兒呢?取定哪一點(diǎn)呢?任意點(diǎn)、還是特殊點(diǎn)?要靈活,只要能夠算出三角函數(shù)值,都可以。

取特殊點(diǎn)能使計(jì)算更簡明。課堂練習(xí):p19題2.(改編)填表:

角α(角度)

90°

180°

270°

360°

角α(弧度)

sinα

cosα

tanα

處理:要求取點(diǎn)用定義求解,針對(duì)計(jì)算過程提問、點(diǎn)評(píng),理解鞏固定義.

強(qiáng)調(diào):終邊在坐標(biāo)軸上的角叫軸線角,如0、π/2、π、3π/2等,今后經(jīng)常用到軸線角的三角函數(shù)值,要結(jié)合三角函數(shù)定義記熟這些值.

設(shè)計(jì)意圖:

及時(shí)安排自學(xué)例題、自做教材練習(xí)題,一般性與特殊性相結(jié)合,進(jìn)行適量的變式練習(xí),以鞏固和加深對(duì)三角函數(shù)概念的理解,通過課堂積極主動(dòng)的練習(xí)活動(dòng)進(jìn)行思維訓(xùn)練,把"培養(yǎng)學(xué)生分析解決問題的能力"貫穿在每一節(jié)課的課堂教學(xué)始終.

(七)回顧小結(jié)、建構(gòu)網(wǎng)絡(luò)

要求全體學(xué)生根據(jù)教師所提問題進(jìn)行總結(jié)識(shí)記,提問檢查并強(qiáng)調(diào):

1.你是怎樣把銳角三角函數(shù)定義推廣到任意角的?或者說任意角三角函數(shù)具體是怎樣定義的?(建立直角坐標(biāo)系,使角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,---,在終邊上任意取定一點(diǎn)P,---)

2.你如何判斷和記憶正弦、余弦、正切函數(shù)的定義域?(根據(jù)定義,------)

3.你如何記憶正弦、余弦、正切函數(shù)值的符號(hào)?(根據(jù)定義,想象坐標(biāo)位置,-----)

設(shè)計(jì)意圖:

遺忘的規(guī)律是先快后慢,回顧再現(xiàn)是記憶的重要途徑,在課堂內(nèi)及時(shí)總結(jié)識(shí)記主要內(nèi)容是上策.此處以問題形式讓學(xué)生自己歸納識(shí)記本節(jié)課的主體內(nèi)容,抓住要害,人人參與,及時(shí)建構(gòu)知識(shí)網(wǎng)絡(luò),優(yōu)化知識(shí)結(jié)構(gòu),培養(yǎng)認(rèn)知能力.

(八)布置課外作業(yè)

1.書面作業(yè):習(xí)題4.3第3、4、5題.

2.認(rèn)真閱讀p22"閱讀材料:三角函數(shù)與歐拉",了解歐拉的生平和貢獻(xiàn),特別學(xué)習(xí)他對(duì)科學(xué)的摯著精神和堅(jiān)忍不拔的頑強(qiáng)毅力!有興趣的同學(xué)可以上網(wǎng)查閱歐拉的相關(guān)情況.

教學(xué)設(shè)計(jì)說明

一、對(duì)本節(jié)教材的理解

三角函數(shù)是描述周期運(yùn)動(dòng)現(xiàn)象的重要的數(shù)學(xué)模型,有非常廣泛的應(yīng)用.

星星之火,可以燎原.

直角三角形簡單樸素的邊角關(guān)系,以直角坐標(biāo)系為工具進(jìn)行自然地推廣而得到簡明的任意角的三角函數(shù)定義,緊緊扣住三角函數(shù)定義這個(gè)寶貴的源泉,自然地導(dǎo)出三角函數(shù)線、定義域、符號(hào)判斷、值域、同角三角函數(shù)關(guān)系、多組誘導(dǎo)公式、多組變換公式、輔助角公式、圖象和性質(zhì),本章教材就是這些內(nèi)容的具體安排.定義直接用于解析幾何(如直線斜率公式、極坐標(biāo)、部分曲線的參數(shù)方程等),定義還是直接解決某些問題的工具,三角函數(shù)知識(shí)是物理學(xué)、高等數(shù)學(xué)、測(cè)量學(xué)、天文學(xué)的重要基礎(chǔ).

三角函數(shù)定義必然是學(xué)好全章內(nèi)容的關(guān)鍵,如果學(xué)生掌握不好,將直接影響到后續(xù)內(nèi)容的學(xué)習(xí),由三角函數(shù)定義的基礎(chǔ)性和應(yīng)用的廣泛性決定了本節(jié)教材的重點(diǎn)就是定義本身.

二、教學(xué)法加工

數(shù)學(xué)教材通常用抽象概括的形式化的數(shù)學(xué)書面語言闡述其知識(shí)和方法,教師只有通過教學(xué)法加工,始終貫徹"以學(xué)生的發(fā)展為本"的科學(xué)教育觀,"將數(shù)學(xué)的學(xué)術(shù)形態(tài)轉(zhuǎn)化為教育形態(tài)"(張奠宙語),引導(dǎo)學(xué)生積極主動(dòng)地進(jìn)行思考活動(dòng),直接參與體驗(yàn)數(shù)學(xué)知識(shí)產(chǎn)生發(fā)展的背景、過程,返璞歸真,揭示本質(zhì),體會(huì)其中的思想和方法,學(xué)生只有這樣才能真正理解掌握數(shù)學(xué)知識(shí)和方法,有效地發(fā)展智力、培養(yǎng)能力.

在本節(jié)教材中,三角函數(shù)定義是重點(diǎn),三角函數(shù)線是難點(diǎn),為了較好地突出重點(diǎn)和突破難點(diǎn),分散重點(diǎn)和難點(diǎn),同時(shí)兼顧例題、課堂練習(xí)的協(xié)調(diào)匹配,將不按教材順序來進(jìn)行教學(xué),第一課時(shí)安排三角函數(shù)的定義(突出重點(diǎn))、定義域、符號(hào)判斷、例題1、2及p19課堂練習(xí)1、2、3,第二課時(shí)安排三角函數(shù)線、p15練習(xí)(突破難點(diǎn))、誘導(dǎo)公式一及課本例題3、4和其它練習(xí).本課例屬第一課時(shí).

教學(xué)經(jīng)驗(yàn)表明,三角函數(shù)定義"簡單易記",學(xué)生很容易輕視它,不少學(xué)生機(jī)械記憶、一知半解.本課例堅(jiān)持"教師主導(dǎo)、學(xué)生主體"的原則,采用"啟發(fā)探索、講練結(jié)合"的常規(guī)教學(xué)方法,在學(xué)生的最近發(fā)展區(qū)圍繞學(xué)生的學(xué)習(xí)目標(biāo)設(shè)計(jì)了一系列符合學(xué)生認(rèn)知規(guī)律的程序,通過多媒體輔助教學(xué)動(dòng)畫演示比值與角之間的依賴關(guān)系,拓展思維活動(dòng)時(shí)空,力求使學(xué)生全員主動(dòng)參與,積極思考,體會(huì)定義產(chǎn)生、發(fā)展的過程,通過思維過程來理解知識(shí)、培養(yǎng)能力.

將六個(gè)比值放在一起來研究,同時(shí)給出六個(gè)三角函數(shù)的定義,能夠增強(qiáng)對(duì)比感和整體感,至于大綱對(duì)兩組函數(shù)掌握與了解的不同要求,在下一步的教學(xué)中注意區(qū)分就行了.

教學(xué)中關(guān)于符號(hào)sinα、cosα、tanα的出場安排,教材首先對(duì)比值取名并給出英文記法,再研究它們與α的函數(shù)關(guān)系;另外可以先研究六個(gè)比值與α之間的函數(shù)關(guān)系,然后再對(duì)六個(gè)比值取名給出記法.后者更能突出函數(shù)內(nèi)涵,揭示三角函數(shù)本質(zhì).本課例采用后者組織教學(xué).

三、教學(xué)過程分析(見穿插在教案中的設(shè)計(jì)意圖).

高中數(shù)學(xué)教案設(shè)計(jì)反思篇7

教學(xué)目標(biāo):

1、通過觀察、猜測(cè)、操作等活動(dòng),找出最簡單的事物的排列數(shù)和組合數(shù)。

2、經(jīng)歷探索簡單事物排列與組合規(guī)律的過程。

3、培養(yǎng)學(xué)生有序地全面地思考問題的意識(shí)。

4、感受數(shù)學(xué)與生活的緊密聯(lián)系,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和用數(shù)學(xué)方法解決問題的意識(shí)。

教學(xué)重點(diǎn):經(jīng)歷探索簡單事物排列與組合規(guī)律的過程。

教學(xué)難點(diǎn):初步理解簡單事物排列與組合的不同。

教具準(zhǔn)備:乒乓球、衣服圖片、紙箱、每組三張數(shù)字卡片、吹塑紙數(shù)字卡片。

一、情境導(dǎo)入,展開教學(xué)

今天,王老師要帶大家去“數(shù)學(xué)廣角”里做游戲,可是,我把游戲要用的材料都放在這個(gè)密碼包里。你們想解開密碼取出游戲材料嗎?(想)我給大家提供解碼的3個(gè)信息。

1、好,接下來老師提供解碼的第一個(gè)信息:密碼是一個(gè)兩位數(shù)。(學(xué)生在兩位數(shù)里猜)(你們猜的對(duì)不對(duì)呢?請(qǐng)聽第二個(gè)解碼信息)

2、下面,提供解碼的第二個(gè)信息:密碼是由2和7組成的(學(xué)生說出27和72)。能說說看你是怎么想的嗎?

3、下面,提供解碼的第三個(gè)信息:剛才說了密碼可能是27也可能是72。其實(shí)這個(gè)密碼和老師的年齡有關(guān)。哪個(gè)才是真正的密碼是?(學(xué)生說出是27)到底是不是27呢?請(qǐng)看(教師出示密碼)。真的是27,恭喜大家解碼成功!

二、多種活動(dòng),體驗(yàn)新知

1、感知排列

師:請(qǐng)小朋友先到“數(shù)字宮”做個(gè)排數(shù)字游戲,好嗎?這有兩張數(shù)字卡片(1、2)(老師從密碼包里拿出),你能擺出幾個(gè)兩位數(shù)?(用數(shù)字卡擺一擺)

生:我擺了兩個(gè)不同的數(shù)字12和21。(教師板書)

師:同學(xué)們想得真好。我又請(qǐng)來了一位好朋友數(shù)字3,現(xiàn)在有三個(gè)數(shù)字1、2、3,讓大家寫兩位數(shù),你們不會(huì)了吧?(會(huì))別吹牛?。ㄕ娴臅?huì))好,下面大家分組合作,組長記錄。看看你們能夠?qū)懗鰩讉€(gè)不同的兩位數(shù),注意不要重復(fù),如果你覺得直接寫有困難的話可以借助手中的數(shù)字卡片擺一擺。好,開始。

學(xué)生活動(dòng)教師巡視并參與學(xué)生活動(dòng)。(學(xué)生所寫的個(gè)數(shù)可能不一樣,有多有少,找?guī)追葜貜?fù)的或個(gè)數(shù)少的展示。)哪組同學(xué)來給大家匯報(bào)一下。(教師板書結(jié)果。)有沒有需要補(bǔ)充的呀?

2、探討排列方法。

有的小組擺出4個(gè)不同的兩位數(shù),有的小組擺出6個(gè)不同的兩位數(shù),有什么好的方法能保證既不重復(fù),也不漏掉數(shù)呢?還請(qǐng)大家分組討論。看一看哪組同學(xué)的方法最好?。ㄐ〗M討論,分組交流,學(xué)生總結(jié)方法。)哪組同學(xué)來給大家匯報(bào)一下你們的想法?

方法1:我擺出12,然后再顛倒就是21,再擺23,顛倒后就是32,再擺13,顛倒后就是31,一共可以擺出6個(gè)兩位數(shù)。

方法2:我先把數(shù)字1放在十位上,然后把數(shù)字2和3分別放在個(gè)位組成12和13;我再把數(shù)字2放在十位上,然后把數(shù)字1和3分別放在個(gè)位組成21和23;我再把數(shù)字3放在十位上,然后把數(shù)字1和2分別放在個(gè)位上組成31和32,一共擺出了6個(gè)兩位數(shù)。3、老師和學(xué)生共同評(píng)議方法:讓學(xué)生選擇自己喜歡的方法再擺一擺,學(xué)生試著總結(jié)。(如果學(xué)生說不出方法2,老師就直接告訴學(xué)生)

3、感知組合。

①師:你們真是一群善于動(dòng)腦的好孩子。來,咱們握握手,祝賀祝賀!加油!123

②提出問題:從大家剛才握手,老師想出了一個(gè)數(shù)學(xué)問題:三個(gè)小朋友,每兩個(gè)人只能握一次手,一共要握幾次手呢?想一想!

生1:6次!

生2:4次!

師:到底是幾次呢?請(qǐng)小組長作裁判,小組內(nèi)的三個(gè)同學(xué),試一試,到底是幾次?

③學(xué)生匯報(bào)表演。小組長指揮說明。哪組同學(xué)愿意給大家表演一下?他們握手,咱們一起來數(shù)吧!教師引導(dǎo)學(xué)生一起數(shù)握手的次數(shù)。(注意握過小朋友一邊休息)

④師問:A和B握手了嗎?B和A握手了嗎?這算一次還是兩次呀?

⑤小結(jié):看來,兩個(gè)人相互握手,只能算一次,和順序無關(guān)。剛才排數(shù),交換數(shù)的位置,就變成另一個(gè)數(shù)了,這和順序有關(guān)。

三、反饋練習(xí),加深理解

下面大家看這是什么呀?(老師從密碼包里拿出一個(gè)乒乓球)(乒乓球)這個(gè)是我昨天專門買來的。定價(jià)5角。當(dāng)時(shí)我的口袋里有1張5角的、2張2角,還有5個(gè)1角的硬幣。(師出示所述人民幣)大家想一想我有多少種方法付給老板錢呢?(老師引導(dǎo)學(xué)生有序的說出付錢的四種方法)

有了乒乓球,老師就可以教大家打乒乓球了。不過我要先考考大家。每兩個(gè)人進(jìn)行一場比賽,三個(gè)人要比幾場?(指名答。)好的,大家真能干。下課老師就教你們的乒乓球好嗎?(好)。

今天是幾月幾日?(12月1日)哦!快到元旦了。小明準(zhǔn)備在數(shù)學(xué)廣角舉辦的元旦晚會(huì)上露一手。來一個(gè)時(shí)裝表演。他準(zhǔn)備了4件衣服(教師貼出2件上衣和2件褲子),請(qǐng)你幫他設(shè)計(jì)一下,有幾種穿法?誰來說一說?(指名答出四種穿法并演示)

大家感覺一下只有4種穿法,是不是有點(diǎn)少了呀?(是)小明也和大家想到一塊去了。于是他又用自己的零花錢買了一條黑褲子(貼出)。大家再想一想現(xiàn)在一共有多少種穿法了呀?(6種)除了剛才的4種,還有哪2種,誰來說一說?(生答完后,老師再引導(dǎo)學(xué)生有序地回憶6種穿法)同學(xué)們真聰明。我在這里代表小明向大家說一聲:謝謝了!(沒關(guān)系)。對(duì)了。到時(shí)候我們一定要去看小明的精彩表演!好不好?(好)

四、游戲活動(dòng),拓展應(yīng)用

1、老師看大家學(xué)得這么開心,我們來做個(gè)抽獎(jiǎng)游戲,想?yún)⒓訂??每個(gè)小朋友都有中獎(jiǎng)的機(jī)會(huì)哦。

①教師出示4個(gè)號(hào)球:老師這這里有四個(gè)號(hào)球:2、5、7、8。

②什么樣的號(hào)碼能中獎(jiǎng)呢?我給你們透露點(diǎn)信息:中獎(jiǎng)號(hào)碼就是從這4個(gè)數(shù)中選出的兩個(gè)數(shù)組成的兩位數(shù)。猜猜,什么號(hào)碼可能中獎(jiǎng)?這個(gè)號(hào)碼可能中獎(jiǎng)。再猜?你這個(gè)號(hào)碼也可能中獎(jiǎng)??磥?,可能中獎(jiǎng)的號(hào)碼有很多個(gè)。有什么好辦法肯定能中獎(jiǎng)?(把你認(rèn)為能中獎(jiǎng)的號(hào)碼都寫出來吧)(把用這四個(gè)數(shù)能組成的所有兩位數(shù)都寫出來,教師巡視,有的孩子寫出來8個(gè)兩位數(shù),她還在繼續(xù)寫,看來不止8個(gè)。你寫得越多你中獎(jiǎng)的可能就越大)

③寫好了嗎?大家推舉一個(gè)人來摸獎(jiǎng)吧。老師來當(dāng)公證員行不行?學(xué)生先摸出一個(gè)球。中獎(jiǎng)號(hào)碼的最前面一個(gè)數(shù)出來了,是2,那中獎(jiǎng)號(hào)碼可能是?25、27、28。再摸一個(gè)球。中獎(jiǎng)號(hào)碼是?

④你中獎(jiǎng)了嗎?把你寫出的這個(gè)數(shù)圈出來。同桌互相看看,如果你同位中獎(jiǎng)了,請(qǐng)你給他畫一面小紅旗。

⑤出示所有結(jié)果:孩子們,你剛才一共寫出了多少個(gè)兩位數(shù)?用2、5、7、8能組成的兩位數(shù)究竟有多少個(gè)呢?咱們用剛才先固定最前面一位數(shù)的辦法把這些數(shù)都排出來吧!老師寫,你們說,好嗎?

2、老師給今天這節(jié)課表現(xiàn)最好的三位同學(xué)一張合影,請(qǐng)同學(xué)們想一想,三個(gè)人站成一行,一共有多少種不同的排法?(指名答,教師總結(jié))

這種排法剛才有沒有呀?我也糊涂了。怎樣才能搞清楚呢?對(duì)了,我們也可以用剛才先固定最前面一位數(shù)的方法來排一排。(教師引導(dǎo)學(xué)生有順序的排一排)這樣有順序的排一下,我們都清楚了??磥砦覀円院?,不管在生活和學(xué)習(xí)中,做什么事情,想什么問題都要有順序的思考,這樣才能考慮全面。其實(shí)生活中有許多有趣的數(shù)學(xué)問題,不管有多難,只要大家肯動(dòng)腦筋,就一定能解決。對(duì)不對(duì)?(對(duì))

五、全課總結(jié),升華情感

在數(shù)學(xué)廣角中還有許多地方等著大家去游玩,由于時(shí)間關(guān)系,今天我們大家就玩到這里。今天你這節(jié)課最高興的是什么事?

高中數(shù)學(xué)教案設(shè)計(jì)反思篇8

一、說教材

(1)說教材的內(nèi)容和地位

本次說課的內(nèi)容是人教版高一數(shù)學(xué)必修一第一單元第一節(jié)《集合》(第一課時(shí))。集合這一課里,首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識(shí)安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握以及使用數(shù)學(xué)語言的基礎(chǔ)。從知識(shí)結(jié)構(gòu)上來說是為了引入函數(shù)的定義。因此在高中數(shù)學(xué)的模塊中,集合就顯得格外的舉足輕重了。

(2)說教學(xué)目標(biāo)

根據(jù)教材結(jié)構(gòu)和內(nèi)容以及教材地位和作用,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)與心理特征,依據(jù)新課標(biāo)制定如下教學(xué)目標(biāo):

1.知識(shí)與技能:掌握集合的基本概念及表示方法。了解"屬于"關(guān)系的意義,掌握集合元素的特征。

2.過程與方法:通過情景設(shè)置提出問題,揭示課題,培養(yǎng)學(xué)生主動(dòng)探究新知的習(xí)慣。并通過"自主、合作與探究"實(shí)現(xiàn)"一切以學(xué)生為中心"的理念。

3.情感態(tài)度與價(jià)值觀:感受數(shù)學(xué)的人文價(jià)值,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣,由集合的學(xué)習(xí)感受數(shù)學(xué)的簡潔美與和諧統(tǒng)一美。同時(shí)通過自主探究領(lǐng)略獲取新知識(shí)的喜悅。

(3)說教學(xué)重點(diǎn)和難點(diǎn)

依據(jù)課程標(biāo)準(zhǔn)和學(xué)生實(shí)際,我確定本課的教學(xué)重點(diǎn)為

教學(xué)重點(diǎn):集合的基本概念及元素特征。

教學(xué)難點(diǎn):掌握集合元素的三個(gè)特征,體會(huì)元素與集合的屬于關(guān)系。

二、說教法和學(xué)法

接下來則是說教法、學(xué)法

教法與學(xué)法是互相聯(lián)系和統(tǒng)一的,不能孤立去研究。什么樣的教法必帶來相應(yīng)的學(xué)法,以遵循啟發(fā)性原則為出發(fā)點(diǎn),就本節(jié)課而言,我采用"生活實(shí)例與數(shù)學(xué)實(shí)例"相結(jié)合,"師生互動(dòng)與課堂布白"相輔助的方法。通過不同層次的練習(xí)體驗(yàn),憑借有趣、實(shí)用的教學(xué)手段,突出重點(diǎn),突破難點(diǎn)。然而,學(xué)生是學(xué)習(xí)的主人,以學(xué)生為主體,創(chuàng)造條件讓學(xué)生參與探究活動(dòng),()不僅提高了學(xué)生探究能力,更讓學(xué)生獲得學(xué)習(xí)的技能和激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,本次活動(dòng)采用的學(xué)法有自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結(jié)等。

總之,不管采取什么教法和學(xué)法,每節(jié)課都應(yīng)不斷研究學(xué)生的學(xué)習(xí)心理機(jī)制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終以學(xué)生為主體,為學(xué)生創(chuàng)造和諧的課堂氛圍。

三、說教學(xué)過程

接著我來說一下最重要的部分,本節(jié)課的教學(xué)過程:

這節(jié)課的流程主要分為六個(gè)環(huán)節(jié):創(chuàng)設(shè)情境(引入目標(biāo))、自主探究(感知目標(biāo))、討論辨析(理解目標(biāo))、變式訓(xùn)練(鞏固目標(biāo))、課堂小結(jié)(自我評(píng)價(jià))、作業(yè)布置(反饋矯正)。上述六個(gè)環(huán)節(jié)由淺入深,層層遞進(jìn)。多層次、多角度地加深對(duì)概念的理解。提高學(xué)生學(xué)習(xí)的興趣,以達(dá)到良好的教學(xué)效果。

第一環(huán)節(jié):創(chuàng)設(shè)問題情境,引入目標(biāo)

課堂開始我將提出兩個(gè)問題:

問題1:班級(jí)有20名男生,16名女生,問班級(jí)一共多少人?

問題2:某次運(yùn)動(dòng)會(huì)上,班級(jí)有20人參加田賽,16人參加徑賽,問一共多少人參加比賽?

這里我會(huì)讓學(xué)生以小組討論的.形式進(jìn)行討論問題,事實(shí)上小組合作的形式是本節(jié)課主要形式。

待學(xué)生討論完畢以后我將作歸納總結(jié):問題2已無法用學(xué)過的知識(shí)加以解釋,這是與集合有關(guān)的問題,因此需用集合的語言加以描述(同時(shí)我將板書標(biāo)題:集合)。

安排這一過程的意圖是為了從實(shí)際問題引入,讓學(xué)生了解數(shù)學(xué)來源于實(shí)際。從而激發(fā)學(xué)生參與課堂學(xué)習(xí)的欲望。

很自然地進(jìn)入到第二環(huán)節(jié):自主探究

讓學(xué)生閱讀教材,并思考下列問題:

(1)有那些概念?

(2)有那些符號(hào)?

(3)集合中元素的特性是什么?

安排這一過程的意圖是給學(xué)生提供活動(dòng)空間,讓主體主動(dòng)建構(gòu)自己的知識(shí)結(jié)構(gòu)。培養(yǎng)學(xué)生的探究能力。

讓學(xué)生自主探究之后將進(jìn)入第三環(huán)節(jié):討論辨析

小組合作探究(1)

讓學(xué)生觀察下列實(shí)例

(1)1~20以內(nèi)的所有質(zhì)數(shù);

(2)所有的正方形;

(3)到直線的距離等于定長的所有的點(diǎn);

(4)方程的所有實(shí)數(shù)根;

通過以上實(shí)例,辨析概念:

(1)集合含義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡稱集。而集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素。

(2)表示方法:集合通常用大括號(hào){}或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。

小組合作探究(2)——集合元素的特征

問題3:任意一組對(duì)象是否都能組成一個(gè)集合?集合中的元素有什么特征?

問題4:某單位所有的"帥哥"能否構(gòu)成一個(gè)集合?由此說明什么?

集合中的元素必須是確定的

問題5:在一個(gè)給定的集合中能否有相同的元素?由此說明什么?

集合中的元素是不重復(fù)出現(xiàn)的

問題6:咱班的全體同學(xué)組成一個(gè)集合,調(diào)整座位后這個(gè)集合有沒有變化?由此說明什么?集合中的元素是沒有順序的

我如此設(shè)計(jì)的意圖是因?yàn)椋簡栴}是數(shù)學(xué)的心臟,感受問題是學(xué)習(xí)數(shù)學(xué)的根本動(dòng)力。

小組合作探究(3)——元素與集合的關(guān)系

問題7:設(shè)集合A表示"1~20以內(nèi)的所有質(zhì)數(shù)",那么3,4,5,6這四個(gè)元素哪些在集合A中?哪些不在集合A中?

問題8:如果元素a是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達(dá)?

a屬于集合A,記作a∈A

問題9:如果元素a不是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達(dá)?

a不屬于集合A,記作aA

小組合作探究(4)——常用數(shù)集及其表示方法

問題10:自然數(shù)集,正整數(shù)集,整數(shù)集,有理數(shù)集,實(shí)數(shù)集等一些常用數(shù)集,分別用什么符號(hào)表示?

自然數(shù)集(非負(fù)整數(shù)集):記作N

正整數(shù)集:

整數(shù)集:記作Z

有理數(shù)集:記作Q實(shí)數(shù)集:記作R

設(shè)計(jì)意圖:由于不同的人對(duì)同一問題有不同的體驗(yàn)和理解。讓學(xué)生通過合作交流相互得到啟發(fā),從而不斷完善自己的知識(shí)結(jié)構(gòu)。

第四環(huán)節(jié):理論遷移變式訓(xùn)練

1.下列指定的對(duì)象,能構(gòu)成一個(gè)集合的是

①很小的數(shù)

②不超過30的非負(fù)實(shí)數(shù)

③直角坐標(biāo)平面內(nèi)橫坐標(biāo)與縱坐標(biāo)相等的點(diǎn)

④π的近似值

⑤所有無理數(shù)

A、②③④⑤B、①②③⑤C、②③⑤D、②③④

第五環(huán)節(jié):課堂小結(jié),自我評(píng)價(jià)

1.這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?

2.這節(jié)課主要解釋了什么數(shù)學(xué)思想?

設(shè)計(jì)意圖:引導(dǎo)學(xué)生對(duì)所學(xué)知識(shí)、思想方法進(jìn)行小結(jié),形成知識(shí)系統(tǒng)。教師用激勵(lì)性的語言加一點(diǎn)評(píng),讓學(xué)生的思想敞亮的發(fā)揮出來。

第六環(huán)節(jié):作業(yè)布置,反饋矯正

1.必做題課本習(xí)題1.1—1、2、3.

2.選做題已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實(shí)數(shù)a的值。

設(shè)計(jì)意圖:充分考慮到學(xué)生的差異性,讓所有學(xué)生都有成功的情感體驗(yàn)。

四、板書設(shè)計(jì)

好的板書就像一份微型教案,為了讓學(xué)生直觀易懂的看筆記,板書應(yīng)設(shè)計(jì)得有條理性、概括性、指導(dǎo)性,所以我設(shè)計(jì)的板書如下:

集合

1.集合的概念

2.集合元素的特征

(學(xué)生板演)

3.常見集合的表示

4.范例研究

高中數(shù)學(xué)教案設(shè)計(jì)反思篇9

人教版高中數(shù)學(xué)必修5教案

(一)課標(biāo)要求

本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實(shí)在解三角形的應(yīng)用上。通過本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):

(1)通過對(duì)任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。

(2)能夠熟練運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的生活實(shí)際問題。

(二)編寫意圖與特色

1.?dāng)?shù)學(xué)思想方法的重要性

數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識(shí)的理解和掌握。

本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問題、思考解決問題的策略等方面對(duì)學(xué)生進(jìn)行具體示范、引導(dǎo)。本章的兩個(gè)主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識(shí),就是“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角”,“如果已知兩個(gè)三角形的兩條對(duì)應(yīng)邊及其所夾的角相等,那么這兩個(gè)三角形全”等。

教科書在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問題:“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個(gè)問題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問題?!痹O(shè)置這些問題,都是為了加強(qiáng)數(shù)學(xué)思想方法的教學(xué)。

2.注意加強(qiáng)前后知識(shí)的聯(lián)系

加強(qiáng)與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準(zhǔn)備,能使整套教科書成為一個(gè)有機(jī)整體,提高教學(xué)效益,并有利于學(xué)生對(duì)于數(shù)學(xué)知識(shí)的學(xué)習(xí)和鞏固。

本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識(shí)有著密切聯(lián)系。教科書在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問題“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個(gè)問題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的`問題?!边@樣,從聯(lián)系的觀點(diǎn),從新的角度看過去的問題,使學(xué)生對(duì)于過去的知識(shí)有了新的認(rèn)識(shí),同時(shí)使新知識(shí)建立在已有知識(shí)的堅(jiān)實(shí)基礎(chǔ)上,形成良好的知識(shí)結(jié)構(gòu)。

《課程標(biāo)準(zhǔn)》和教科書把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,

位置相對(duì)靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識(shí)聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡潔。比如對(duì)于余弦定理的證明,常用的方法是借助于三角的方法,需要對(duì)于三角形進(jìn)行討論,方法不夠簡潔,教科書則用了向量的方法,發(fā)揮了向量方法在解決問題中的威力。

在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個(gè)思考問題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個(gè)定理之間的關(guān)系?”,并進(jìn)而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個(gè)三角形兩邊的平方和等于第三邊的平方,那么第三邊所對(duì)的角是直角;如果小于第三邊的平方,那么第三邊所對(duì)的角是鈍角;如果大于第三邊的平方,那么第三邊所對(duì)的角是銳角.從上可知,余弦定理是勾股定理的推廣.”

3.重視加強(qiáng)意識(shí)和數(shù)學(xué)實(shí)踐能力

學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個(gè)問題是,學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)不強(qiáng),創(chuàng)造能力較弱。學(xué)生往往不能把實(shí)際問題抽象成數(shù)學(xué)問題,不能把所學(xué)的數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際問題中去,對(duì)所學(xué)數(shù)學(xué)知識(shí)的實(shí)際背景了解不多,雖然學(xué)生機(jī)械地模仿一些常見數(shù)學(xué)問題解法的能力較強(qiáng),但當(dāng)面臨一種新的問題時(shí)卻辦法不多,對(duì)于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問題、解決問題的科學(xué)思維方法了解不夠。針對(duì)這些實(shí)際情況,本章重視從實(shí)際問題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識(shí)應(yīng)用于實(shí)際問題。

高中數(shù)學(xué)教案設(shè)計(jì)反思篇10

教學(xué)目標(biāo)

1、了解基底的含義,理解并掌握平面向量基本定理。會(huì)用基底表示平面內(nèi)任一向量。

2、掌握向量夾角的定義以及兩向量垂直的定義。

學(xué)情分析

前幾節(jié)課已經(jīng)學(xué)習(xí)了向量的基本概念和基本運(yùn)算,如共線向量、向量的加法、減法和數(shù)乘運(yùn)算及向量共線的充要條件等;另外學(xué)生對(duì)向量的物理背景有了初步的了解。如:力的合成與分解、位移、速度的合成與分解等,都為學(xué)習(xí)這節(jié)課作了充分準(zhǔn)備

重點(diǎn)難點(diǎn)

重點(diǎn):對(duì)平面向量基本定理的探究

難點(diǎn):對(duì)平面向量基本定理的理解及其應(yīng)用

教學(xué)過程

4.1第一學(xué)時(shí)教學(xué)活動(dòng)

活動(dòng)1【導(dǎo)入】情景設(shè)置

火箭在升空的某一時(shí)刻,速度可以分解成豎直向上和水平向前的兩個(gè)分速度v=vx+vy=6i+4j。

活動(dòng)2【活動(dòng)】探究

已知平面中兩個(gè)不共線向量e1,e2,c是平面內(nèi)任意向量,求向量

c=___e1+___e2(課堂上準(zhǔn)備好幾張帶格子的紙張,上面有三個(gè)向量,e1,e2,c)

做法:

作OA=e1,OB=e2,OC=c,過點(diǎn)C作平行于OB的直線,交直線OA于M;過點(diǎn)C作平行于OA的直線,交OB于N,則有且只有一對(duì)實(shí)數(shù)l1,l2,使得OM=l1e1,ON=l2e2。

因?yàn)镺C=OM+ON,所以c=6e1+6e2。

向量c=__6__e1+___6__e2

活動(dòng)3【練習(xí)】動(dòng)手做一做

請(qǐng)同學(xué)們自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____

(做完后,思考一下,這樣的一組實(shí)數(shù)是否是唯一的呢?)(是唯一的)

由剛才的幾個(gè)實(shí)例,可以得出結(jié)論:如果給定向量e1,e2,平面內(nèi)的任一向量a,都可以表示成a=入1e1+入2e2。

活動(dòng)4【活動(dòng)】思考

問題2:如果e1,e2是平面內(nèi)任意兩向量,那么平面內(nèi)的任一向量a還可以表示成a=入1e1+入2e2的形式嗎?

生:不行,e1,e2必須是平面內(nèi)兩不共線向量

活動(dòng)5【講授】平面向量基本定理

平面向量基本定理:如果e1,e2是平面內(nèi)兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)l1,l2,使a=l1e1+l2e2。我們把不共線向量e1,e2叫做這一平面內(nèi)所有向量的一組基底。一個(gè)平面向量用一組基底e1,e2表示成a=l1e1+l2e2的形式,我們稱它為向量的分解。當(dāng)e1,e2互相垂直時(shí),就稱為向量的正交分解。

說明:

(1)基底不惟一,關(guān)鍵是作為基底的兩個(gè)向量不共線。

(2)由定理可將任一向量a在給出基底e1,e2的條件下進(jìn)行分解,基底給定時(shí),分解形式惟一,即l1,l2是被a,e1,e2惟一確定的數(shù)量。

活動(dòng)6【講授】平面向量基底運(yùn)用

例1.如圖所示,平行四邊形ABCD的對(duì)角線AC和BD交于點(diǎn)M,AB=a,AD=b,試用基底a,b表示MC,MA,MB和MD

活動(dòng)7【講授】向量夾角的定義

閱讀教材P94,回答如下問題:

1、兩個(gè)向量夾角是如何形成的?,必須要滿足什么條件才是它們的夾角。

2、有向量夾角范圍是多少?有夾角大小來描述一下向量同向,反向,垂直?

活動(dòng)8【練習(xí)】完成《聚焦課堂》活動(dòng)9【講授】課后小結(jié)

1、平面向量基本定理

2、平面向量基本定理的運(yùn)用

3、向量夾角的定義。

活動(dòng)10【作業(yè)】課后作業(yè)

1、已知向量e1,e2,求做:-3e1+2e2

2、做育才報(bào)第八期專項(xiàng)訓(xùn)練1

高中數(shù)學(xué)教案設(shè)計(jì)反思篇11

【摘要】鑒于大家對(duì)數(shù)學(xué)網(wǎng)十分關(guān)注,小編在此為大家整理了此文空間幾何體的三視圖和直觀圖高一數(shù)學(xué)教案,供大家參考!

本文題目:空間幾何體的三視圖和直觀圖高一數(shù)學(xué)教案

第一課時(shí) 1.2.1中心投影與平行投影1.2.2空間幾何體的三視圖

教學(xué)要求:能畫出簡單幾何體的三視圖;能識(shí)別三視圖所表示的空間幾何體.

教學(xué)重點(diǎn):畫出三視圖、識(shí)別三視圖.

教學(xué)難點(diǎn):識(shí)別三視圖所表示的空間幾何體.

教學(xué)過程:

一、新課導(dǎo)入:

1.討論:能否熟練畫出上節(jié)所學(xué)習(xí)的幾何體?工程師如何制作工程設(shè)計(jì)圖紙?

2.引入:從不同角度看廬山,有古詩:橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同。不識(shí)廬山真面目,只緣身在此山中。對(duì)于我們所學(xué)幾何體,常用三視圖和直觀圖來畫在紙上.

三視圖:觀察者從不同位置觀察同一個(gè)幾何體,畫出的空間幾何體的圖形;

直觀圖:觀察者站在某一點(diǎn)觀察幾何體,畫出的空間幾何體的圖形.

用途:工程建設(shè)、機(jī)械制造、日常生活.

二、講授新課:

1.教學(xué)中心投影與平行投影:

①投影法的提出:物體在光線的照射下,就會(huì)在地面或墻壁上產(chǎn)生影子。人們將這種自然現(xiàn)象加以科學(xué)的抽象,總結(jié)其中的規(guī)律,提出了投影的方法。

②中心投影:光由一點(diǎn)向外散射形成的投影。其投影的大小隨物體與投影中心間距離的變化而變化,所以其投影不能反映物體的實(shí)形.

③平行投影:在一束平行光線照射下形成的投影.分正投影、斜投影.

討論:點(diǎn)、線、三角形在平行投影后的結(jié)果.

2.教學(xué)柱、錐、臺(tái)、球的三視圖:

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖

討論:三視圖與平面圖形的關(guān)系?畫出長方體的三視圖,并討論所反應(yīng)的長、寬、高

結(jié)合球、圓柱、圓錐的模型,從正面(自前而后)、側(cè)面(自左而右)、上面(自上而下)三個(gè)角度,分別觀察,畫出觀察得出的各種結(jié)果.正視圖、側(cè)視圖、俯視圖.

③試畫出:棱柱、棱錐、棱臺(tái)、圓臺(tái)的三視圖.(

④討論:三視圖,分別反應(yīng)物體的哪些關(guān)系(上下、左右、前后)?哪些數(shù)量(長、寬、高)

正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

⑤討論:根據(jù)以上的三視圖,如何逆向得到幾何體的形狀.

(試變化以上的三視圖,說出相應(yīng)幾何體的擺放)

3.教學(xué)簡單組合體的三視圖:

①畫出教材P16圖(2)、(3)、(4)的三視圖.

②從教材P16思考中三視圖,說出幾何體.

4.練習(xí):

①畫出正四棱錐的三視圖.

畫出右圖所示幾何體的三視圖.

③右圖是一個(gè)物體的正視圖、左視圖和俯視圖,試描述該物體的形狀.

5.小結(jié):投影法;三視圖;順與逆

三、鞏固練習(xí): 練習(xí):教材P171、2、3、4

第二課時(shí)1.2.3空間幾何體的直觀圖

教學(xué)要求:掌握斜二測(cè)畫法;能用斜二測(cè)畫法畫空間幾何體的直觀圖.

教學(xué)重點(diǎn):畫出直觀圖.

高中數(shù)學(xué)教案設(shè)計(jì)反思篇12

高中數(shù)學(xué)備課教案模板(通用2篇)

高中數(shù)學(xué)備課模板篇1

一、教學(xué)目標(biāo):

知識(shí)與技能:了解直線參數(shù)方程的條件及參數(shù)的意義

過程與方法:能根據(jù)直線的幾何條件,寫出直線的參數(shù)方程及參數(shù)的意義

情感、態(tài)度與價(jià)值觀:通過觀察、探索、發(fā)現(xiàn)的創(chuàng)造性過程,培養(yǎng)創(chuàng)新意識(shí)。

二、重難點(diǎn):教學(xué)重點(diǎn):曲線參數(shù)方程的定義及方法

教學(xué)難點(diǎn):選擇適當(dāng)?shù)膮?shù)寫出曲線的參數(shù)方程.

三、教學(xué)方法:啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).

四、教學(xué)過程

(一)、復(fù)習(xí)引入:

1.寫出圓方程的標(biāo)準(zhǔn)式和對(duì)應(yīng)的參數(shù)方程。

圓參數(shù)方程(為參數(shù))

(2)圓參數(shù)方程為:(為參數(shù))

2.寫出橢圓參數(shù)方程.

3.復(fù)習(xí)方向向量的概念.提出問題:已知直線的一個(gè)點(diǎn)和傾斜角,如何表示直線的參數(shù)方程?

(二)、講解新課:

1、問題的提出:一條直線L的傾斜角是,并且經(jīng)過點(diǎn)P(2,3),如何描述直線L上任意點(diǎn)的位置呢?

如果已知直線L經(jīng)過兩個(gè)

定點(diǎn)Q(1,1),P(4,3),

那么又如何描述直線L上任意點(diǎn)的

位置呢?

2、教師引導(dǎo)學(xué)生推導(dǎo)直線的參數(shù)方程:

(1)過定點(diǎn)傾斜角為的直線的

參數(shù)方程

(為參數(shù))

【辨析直線的參數(shù)方程】:設(shè)M(x,y)為直線上的任意一點(diǎn),參數(shù)t的幾何意義是指從點(diǎn)P到點(diǎn)M的位移,可以用有向線段數(shù)量來表示。帶符號(hào).

(2)、經(jīng)過兩個(gè)定點(diǎn)Q,P(其中)的直線的參數(shù)方程為。其中點(diǎn)M(X,Y)為直線上的任意一點(diǎn)。這里參數(shù)的幾何意義與參數(shù)方程(1)中的t顯然不同,它所反映的是動(dòng)點(diǎn)M分有向線段的數(shù)量比。當(dāng)時(shí),M為內(nèi)分點(diǎn);當(dāng)且時(shí),M為外分點(diǎn);當(dāng)時(shí),點(diǎn)M與Q重合。

(三)、直線的參數(shù)方程應(yīng)用,強(qiáng)化理解。

1、例題:

學(xué)生練習(xí),教師準(zhǔn)對(duì)問題講評(píng)。反思?xì)w納:

1)求直線參數(shù)方程的方法;

2)利用直線參數(shù)方程求交點(diǎn)。

2、鞏固導(dǎo)練:

補(bǔ)充:

1)直線與圓相切,那么直線的傾斜角為(A)

A.或B.或C.或D.或

2)(坐標(biāo)系與參數(shù)方程選做題)若直線與直線(為參數(shù))垂直,則.

解:直線化為普通方程是,

該直線的斜率為,

直線(為參數(shù))化為普通方程是,

該直線的斜率為,

則由兩直線垂直的充要條件,得,。

(四)、小結(jié):

(1)直線參數(shù)方程求法;

(2)直線參數(shù)方程的特點(diǎn);

(3)根據(jù)已知條件和圖形的幾何性質(zhì),注意參數(shù)的意義。

(五)、作業(yè):

補(bǔ)充:設(shè)直線的參數(shù)方程為(t為參數(shù)),直線的方程為y=3x+4則與的距離為_______

【考點(diǎn)定位】本小題考查參數(shù)方程化為普通方程、兩條平行線間的距離,基礎(chǔ)題。

解析:由題直線的普通方程為,故它與與的距離為。

五、:

高中數(shù)學(xué)備課教案模板篇2

一、教學(xué)目標(biāo)

1.知識(shí)與技能

(1)掌握畫三視圖的基本技能

(2)豐富學(xué)生的空間想象力

2.過程與方法

主要通過學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。

3.情感態(tài)度與價(jià)值觀

(1)提高學(xué)生空間想象力

(2)體會(huì)三視圖的作用

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):畫出簡單組合體的三視圖

難點(diǎn):識(shí)別三視圖所表示的空間幾何體

三、學(xué)法與教學(xué)用具

1.學(xué)法:觀察、動(dòng)手實(shí)踐、討論、類比

2.教學(xué)用具:實(shí)物模型、三角板

四、教學(xué)思路

(一)創(chuàng)設(shè)情景,揭開課題

“橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。

在初中,我們已經(jīng)學(xué)習(xí)了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?

(二)實(shí)踐動(dòng)手作圖

1.講臺(tái)上放球、長方體實(shí)物,要求學(xué)生畫出它們的三視圖,教師巡視,學(xué)生畫完后可交流結(jié)果并討論;

2.教師引導(dǎo)學(xué)生用類比方法畫出簡單組合體的三視圖

(1)畫出球放在長方體上的三視圖

(2)畫出礦泉水瓶(實(shí)物放在桌面上)的三視圖

學(xué)生畫完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。

作三視圖之前應(yīng)當(dāng)細(xì)心觀察,認(rèn)識(shí)了它的基本結(jié)構(gòu)特征后,再動(dòng)手作圖。

3.三視圖與幾何體之間的相互轉(zhuǎn)化。

(1)投影出示圖片(課本P10,圖1.2-3)

請(qǐng)同學(xué)們思考圖中的三視圖表示的幾何體是什么?

(2)你能畫出圓臺(tái)的三視圖嗎?

(3)三視圖對(duì)于認(rèn)識(shí)空間幾何體有何作用?你有何體會(huì)?

教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對(duì)上述問題的看法。

4.請(qǐng)同學(xué)們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。

(三)鞏固練習(xí)

課本P12練習(xí)1、2P18習(xí)題1.2A組1

(四)歸納整理

請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖

(五)課外練習(xí)

1.自己動(dòng)手制作一個(gè)底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。

2.自己制作一個(gè)上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺(tái)模型,并畫出它的三視圖。

高中數(shù)學(xué)教案設(shè)計(jì)反思篇13

一、教學(xué)內(nèi)容

本節(jié)主要內(nèi)容為:經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進(jìn)行含有30°、45°、60°角的三角函數(shù)值的計(jì)算。

二、教學(xué)目標(biāo)

1、經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進(jìn)行有關(guān)推理,進(jìn)一步體會(huì)三角函數(shù)的意義。

2、能夠進(jìn)行含有30°、45°、60°角的三角函數(shù)值的計(jì)算。

3、能夠根據(jù)30°、45°、60°角的三角函數(shù)值,說出相應(yīng)的銳角的大小。

三、過程與方法

通過進(jìn)行有關(guān)推理,探索30°、45°、60°角的三角函數(shù)值。在具體教學(xué)過程中,教師可在教材的基礎(chǔ)上適當(dāng)拓展,使得內(nèi)容更為豐富.教師可以運(yùn)用和學(xué)生共同探究式的教學(xué)方法,學(xué)生可以采取自主探討式的學(xué)習(xí)方法.

四、教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):進(jìn)行含有30°、45°、60°角的三角函數(shù)值的計(jì)算

難點(diǎn):記住30°、45°、60°角的三角函數(shù)值

五、教學(xué)準(zhǔn)備

教師準(zhǔn)備

預(yù)先準(zhǔn)備教材、教參以及多媒體課件

學(xué)生準(zhǔn)備

教材、同步練習(xí)冊(cè)、作業(yè)本、草稿紙、作圖工具等

六、教學(xué)步驟

教學(xué)流程設(shè)計(jì)

教師指導(dǎo)學(xué)生活動(dòng)

1.新章節(jié)開場白.1.進(jìn)入學(xué)習(xí)狀態(tài).

2.進(jìn)行教學(xué).2.配合學(xué)習(xí).

3.總結(jié)和指導(dǎo)學(xué)生練習(xí).3記錄相關(guān)內(nèi)容,完成練習(xí).

教學(xué)過程設(shè)計(jì)

1、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

2、師生共同研究形成概念

3、隨堂練習(xí)

4、小結(jié)

5、作業(yè)

板書設(shè)計(jì)

1、敘述三角函數(shù)的意義

2、30°、45°、60°角的三角函數(shù)值

3、例題

七、課后反思

本節(jié)課基本上能夠突出重點(diǎn)、弱化難點(diǎn),在時(shí)間上也能掌控得比較合理,學(xué)生也比較積極投入學(xué)習(xí)中,但是學(xué)生好像并不是掌握得很好,在今后的教學(xué)中應(yīng)該再加強(qiáng)關(guān)于這方面的學(xué)習(xí)。

高中數(shù)學(xué)教案設(shè)計(jì)反思篇14

1.教學(xué)目標(biāo)

(1)知識(shí)目標(biāo):1.在平面直角坐標(biāo)系中,探索并掌握?qǐng)A的標(biāo)準(zhǔn)方程;

2.會(huì)由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程.

(2)能力目標(biāo):1.進(jìn)一步培養(yǎng)學(xué)生用解析法研究幾何問題的能力;

2.使學(xué)生加深對(duì)數(shù)形結(jié)合思想和待定系數(shù)法的理解;

3.增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí).

(3)情感目標(biāo):培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí),在體驗(yàn)數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.

2.教學(xué)重點(diǎn).難點(diǎn)

(1)教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.

(2)教學(xué)難點(diǎn):會(huì)根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程以及選擇恰

當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問題.

3.教學(xué)過程

(一)創(chuàng)設(shè)情境(啟迪思維)

問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?

[引導(dǎo)]畫圖建系

[學(xué)生活動(dòng)]:嘗試寫出曲線的方程(對(duì)求曲線的方程的步驟及圓的定義進(jìn)行提示性復(fù)習(xí))

解:以某一截面半圓的圓心為坐標(biāo)原點(diǎn),半圓的直徑ab所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2y2=16(y≥0)

將x=2.7代入,得.

即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個(gè)隧道。

(二)深入探究(獲得新知)

問題二:1.根據(jù)問題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

答:x2y2=r2

2.如果圓心在,半徑為時(shí)又如何呢?

[學(xué)生活動(dòng)]探究圓的方程。

[教師預(yù)設(shè)]方法一:坐標(biāo)法

如圖,設(shè)m(x,y)是圓上任意一點(diǎn),根據(jù)定義點(diǎn)m到圓心c的距離等于r,所以圓c就是集合p={mmc=r}

由兩點(diǎn)間的距離公式,點(diǎn)m適合的條件可表示為①

把①式兩邊平方,得(x―a)2(y―b)2=r2

方法二:圖形變換法

方法三:向量平移法

(三)應(yīng)用舉例(鞏固提高)

i.直接應(yīng)用(內(nèi)化新知)

問題三:1.寫出下列各圓的方程(課本p77練習(xí)1)

(1)圓心在原點(diǎn),半徑為3;

(2)圓心在,半徑為;

(3)經(jīng)過點(diǎn),圓心在點(diǎn).

2.根據(jù)圓的方程寫出圓心和半徑

(1);(2).

ii.靈活應(yīng)用(提升能力)

問題四:1.求以為圓心,并且和直線相切的圓的方程.

[教師引導(dǎo)]由問題三知:圓心與半徑可以確定圓.

2.已知圓的方程為,求過圓上一點(diǎn)的切線方程.

[學(xué)生活動(dòng)]探究方法

[教師預(yù)設(shè)]

方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)

方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)

方法三:軌跡法(利用勾股定理列關(guān)系式)[多媒體課件演示]

方法四:軌跡法(利用向量垂直列關(guān)系式)

3.你能歸納出具有一般性的結(jié)論嗎?

已知圓的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是:.

iii.實(shí)際應(yīng)用(回歸自然)

問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長度(精確到0.01m).

[多媒體課件演示創(chuàng)設(shè)實(shí)際問題情境]

(四)反饋訓(xùn)練(形成方法)

問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

2.已知點(diǎn)a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

3.求圓x2y2=13過點(diǎn)(-2,3)的切線方程.

4.已知圓的方程為,求過點(diǎn)的切線方程.

高中數(shù)學(xué)教案設(shè)計(jì)反思篇15

分享目標(biāo):

1、通過與學(xué)生交流《課程綱要》,使學(xué)生了解本學(xué)期的課程內(nèi)容、課程目標(biāo)及課程評(píng)價(jià)。

2、通過了解教師對(duì)學(xué)生的評(píng)價(jià)方法,激發(fā)學(xué)生自主學(xué)習(xí)的主動(dòng)性。

分享重點(diǎn):

了解本學(xué)期的學(xué)習(xí)內(nèi)容和評(píng)價(jià)方法。

分享難點(diǎn):

通過分享《課程綱要》明確學(xué)習(xí)目標(biāo)。

分享時(shí)間:一課時(shí)

分享準(zhǔn)備:《三年級(jí)綜實(shí)課程綱要》PPT

分享過程:

一、談話導(dǎo)入

1、師:同學(xué)們,新年新氣象,新的學(xué)期又是新的開始。本學(xué)期的第二節(jié)綜實(shí)課,老師要帶領(lǐng)大家認(rèn)識(shí)一個(gè)新朋友,它就像向?qū)б粯樱軌蛑敢蠹以诒緦W(xué)期的學(xué)習(xí)中找準(zhǔn)學(xué)習(xí)目標(biāo),理清學(xué)習(xí)內(nèi)容、了解學(xué)習(xí)安排,真正成為學(xué)習(xí)的小主人,它就是課程綱要。(板書課題)

二、內(nèi)容新授

1、師:怎樣才能做學(xué)習(xí)的小主人呢?首先我們要了解本學(xué)期的學(xué)習(xí)內(nèi)容。我們本學(xué)期將會(huì)學(xué)習(xí)那些內(nèi)容呢?《課程綱要》來一一為我們介紹。

2、師:本學(xué)期我們只進(jìn)行一個(gè)綜合實(shí)踐活動(dòng)課的主題,它就是有趣的姓氏。

3、師:主題確定了,那么課下就需要你們想想,圍繞這些主題可以引出什么呢?(生說)

4、師:對(duì),是子課題。說明大家上學(xué)期上課大家認(rèn)真聽講了。除了想一想可以確定哪些子課題,還要想想你準(zhǔn)備怎樣做,使用哪些方法等等。

5、師:接下來我來說說我們這學(xué)期綜實(shí)課分組的問題。這學(xué)期分組,以主題確定后,你們自己找搭檔,找助手,一起同心協(xié)力更好的完成各個(gè)主題活動(dòng)。

6、師:本學(xué)期的課程內(nèi)容大家都了解了,那本學(xué)期的評(píng)獎(jiǎng)方式是什么呢?

①每節(jié)課課余1-3分鐘,根據(jù)本節(jié)舉手回答問題的次數(shù),以及課堂表現(xiàn),來老師這里為個(gè)人加分,各組組長也負(fù)責(zé)記錄并統(tǒng)計(jì)出每星期、每個(gè)月加分最多的組員上報(bào)老師,老師會(huì)授予這些同學(xué)優(yōu)秀之星的稱號(hào),獲得優(yōu)秀之星稱號(hào)的同學(xué)會(huì)得到學(xué)習(xí)星以及才藝星的獎(jiǎng)勵(lì)。

②課前準(zhǔn)備綜實(shí)成長記錄袋以及A4白紙15張,作為平時(shí)作業(yè)及記錄板書內(nèi)容的筆記本。老師批閱,每月月末總檢,作為評(píng)分獎(jiǎng)勵(lì)的內(nèi)容之一。

③平時(shí)按照老師要求,準(zhǔn)備工具、材料,期末獎(jiǎng)勵(lì)進(jìn)步獎(jiǎng)。

三、課堂小結(jié)

師:同學(xué)們,通過對(duì)本學(xué)期《課程綱要》的學(xué)習(xí),你是否對(duì)本學(xué)期的學(xué)習(xí)充滿信心呢?老師相信,每個(gè)孩子都能成為學(xué)習(xí)的小主人。

104890 主站蜘蛛池模板: 压接机|高精度压接机|手动压接机|昆明可耐特科技有限公司[官网] 胶泥瓷砖胶,轻质粉刷石膏,嵌缝石膏厂家,腻子粉批发,永康家德兴,永康市家德兴建材厂 | 冷水机,风冷冷水机,水冷冷水机,螺杆冷水机专业制造商-上海祝松机械有限公司 | 留学生辅导网-在线课程论文辅导-留学生挂科申诉机构 | 路面机械厂家 | 丽陂特官网_手机信号屏蔽器_Wifi信号干扰器厂家_学校考场工厂会议室屏蔽仪 | 首页-恒温恒湿试验箱_恒温恒湿箱_高低温试验箱_高低温交变湿热试验箱_苏州正合 | 山东包装,山东印刷厂,济南印刷厂-济南富丽彩印刷有限公司 | VOC检测仪-甲醛检测仪-气体报警器-气体检测仪厂家-深恒安科技有限公司 | 飞行者联盟-飞机模拟机_无人机_低空经济_航空技术交流平台 | 免联考国际MBA_在职MBA报考条件/科目/排名-MBA信息网 | 东亚液氮罐-液氮生物容器-乐山市东亚机电工贸有限公司 | LZ-373测厚仪-华瑞VOC气体检测仪-个人有毒气体检测仪-厂家-深圳市深博瑞仪器仪表有限公司 | 超声波_清洗机_超声波清洗机专业生产厂家-深圳市好顺超声设备有限公司 | 校园文化空间设计-数字化|中医文化空间设计-党建|法治廉政主题文化空间施工-山东锐尚文化传播公司 | 控显科技 - 工控一体机、工业显示器、工业平板电脑源头厂家 | 济宁工业提升门|济宁电动防火门|济宁快速堆积门-济宁市统一电动门有限公司 | 散热器厂家_暖气片_米德尔顿散热器| 南方珠江-南方一线电缆-南方珠江科技电缆-南方珠江科技有限公司 南汇8424西瓜_南汇玉菇甜瓜-南汇水蜜桃价格 | 螺旋丝杆升降机-SWL蜗轮-滚珠丝杆升降机厂家-山东明泰传动机械有限公司 | 大巴租车平台承接包车,通勤班车,巴士租赁业务 - 鸿鸣巴士 | 执业药师报名时间,报考条件,考试时间-首页入口 | 5nd音乐网|最新流行歌曲|MP3歌曲免费下载|好听的歌|音乐下载 免费听mp3音乐 | 沈阳缠绕包装机厂家直销-沈阳海鹞托盘缠绕包装机价格 | 广东西屋电气有限公司-广东西屋电气有限公司| 美国HASKEL增压泵-伊莱科elettrotec流量开关-上海方未机械设备有限公司 | 带式压滤机_污泥压滤机_污泥脱水机_带式过滤机_带式压滤机厂家-河南恒磊环保设备有限公司 | 天长市晶耀仪表有限公司| 安徽净化工程设计_无尘净化车间工程_合肥净化实验室_安徽创世环境科技有限公司 | 胶辊硫化罐_胶鞋硫化罐_硫化罐厂家-山东鑫泰鑫智能装备有限公司 意大利Frascold/富士豪压缩机_富士豪半封闭压缩机_富士豪活塞压缩机_富士豪螺杆压缩机 | 液氮罐(生物液氮罐)百科-无锡爱思科 | 石膏基自流平砂浆厂家-高强石膏基保温隔声自流平-轻质抹灰石膏粉砂浆批发-永康市汇利建设有限公司 | 全自动翻转振荡器-浸出式水平振荡器厂家-土壤干燥箱价格-常州普天仪器 | 二手色谱仪器,十万分之一分析天平,蒸发光检测器,电位滴定仪-湖北捷岛科学仪器有限公司 | 氮化镓芯片-碳化硅二极管 - 华燊泰半导体 | 点胶机_点胶阀_自动点胶机_智能点胶机_喷胶机_点胶机厂家【欧力克斯】 | Dataforth隔离信号调理模块-信号放大模块-加速度振动传感器-北京康泰电子有限公司 | 蓝牙音频分析仪-多功能-四通道-八通道音频分析仪-东莞市奥普新音频技术有限公司 | cnc精密加工_数控机械加工_非标平键定制生产厂家_扬州沃佳机械有限公司 | 广东之窗网| 纳米二氧化硅,白炭黑,阴离子乳化剂-臻丽拾科技 | 光伏支架成型设备-光伏钢边框设备-光伏设备厂家 |