小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數學教案 >

怎么寫高二的數學教案

時間: 新華 數學教案

教案的編寫應注重簡潔明了、重點突出、條理清晰、可操作性強等特點,以便更好地指導教學工作。下面給大家整理一些怎么寫高二的數學教案,方便大家學習怎么寫怎么寫高二的數學教案。

怎么寫高二的數學教案篇1

重點難點教學:

1.正確理解映射的概念;

2.函數相等的兩個條件;

3.求函數的定義域和值域。

一.教學過程:

1.使學生熟練掌握函數的概念和映射的定義;

2.使學生能夠根據已知條件求出函數的定義域和值域;3.使學生掌握函數的三種表示方法。

二.教學內容:1.函數的定義

設A、B是兩個非空的數集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有確定的數()fx和它對應,那么稱:fAB?為從集合A到集合B的一個函數(function),記作:

(),yf_A

其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數值,函數值的集合{()}f_A?叫值域(range)。顯然,值域是集合B的子集。

注意:

①“y=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;

②函數符號“y=f(x)”中的f(x)表示與x對應的函數值,一個數,而不是f乘x.2.構成函數的三要素定義域、對應關系和值域。3、映射的定義

設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意

一個元素x,在集合B中都有確定的元素y與之對應,那么就稱對應f:A→B為從集合A到集合B的一個映射。

4.區間及寫法:

設a、b是兩個實數,且a

(1)滿足不等式axb??的實數x的集合叫做閉區間,表示為[a,b];

(2)滿足不等式axb??的實數x的集合叫做開區間,表示為(a,b);

5.函數的三種表示方法①解析法②列表法③圖像法

怎么寫高二的數學教案篇2

學習目標:

1、了解本章的學習的內容以及學習思想方法2、能敘述隨機變量的定義

3、能說出隨機變量與函數的關系,4、能夠把一個隨機試驗結果用隨機變量表示

重點:能夠把一個隨機試驗結果用隨機變量表示

難點:隨機事件概念的透徹理解及對隨機變量引入目的的認識:

環節一:隨機變量的定義

1.通過生活中的一些隨機現象,能夠概括出隨機變量的定義

2能敘述隨機變量的定義

3能說出隨機變量與函數的區別與聯系

一、閱讀課本33頁問題提出和分析理解,回答下列問題?

1、了解一個隨機現象的規律具體指的是什么?

2、分析理解中的兩個隨機現象的隨機試驗結果有什么不同?建立了什么樣的對應關系?

總結:

3、隨機變量

(1)定義:

這種對應稱為一個隨機變量。即隨機變量是從隨機試驗每一個可能的結果所組成的

到的映射。

(2)表示:隨機變量常用大寫字母.等表示.

(3)隨機變量與函數的區別與聯系

函數隨機變量

自變量

因變量

因變量的范圍

相同點都是映射都是映射

環節二隨機變量的應用

1、能正確寫出隨機現象所有可能出現的結果2、能用隨機變量的描述隨機事件

例1:已知在10件產品中有2件不合格品。現從這10件產品中任取3件,其中含有的次品數為隨機變量的學案.這是一個隨機現象。(1)寫成該隨機現象所有可能出現的結果;(2)試用隨機變量來描述上述結果。

變式:已知在10件產品中有2件不合格品。從這10件產品中任取3件,這是一個隨機現象。若Y表示取出的3件產品中的合格品數,試用隨機變量描述上述結果

例2連續投擲一枚均勻的硬幣兩次,用X表示這兩次正面朝上的次數,則X是一個隨機變

量,分別說明下列集合所代表的隨機事件:

(1){X=0}(2){X=1}

(3){X<2}(4){X>0}

變式:連續投擲一枚均勻的硬幣三次,用X表示這三次正面朝上的次數,則X是一個隨機變量,X的可能取值是?并說明這些值所表示的隨機試驗的結果.

練習:寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機變量的結果。

(1)從學校回家要經過5個紅綠燈路口,可能遇到紅燈的次數;

(2)一個袋中裝有5只同樣大小的球,編號為1,2,3,4,5,現從中隨機取出3只球,被取出的球的號碼數;

小結(對標)

怎么寫高二的數學教案篇3

教學目標

1.了解函數的單調性和奇偶性的概念,把握有關證實和判定的基本方法.

(1)了解并區分增函數,減函數,單調性,單調區間,奇函數,偶函數等概念.

(2)能從數和形兩個角度熟悉單調性和奇偶性.

(3)能借助圖象判定一些函數的單調性,能利用定義證實某些函數的單調性;能用定義判定某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程.

2.通過函數單調性的證實,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養學生的觀察,歸納,抽象的能力,同時滲透數形結合,從非凡到一般的數學思想.

3.通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養樂于求索的精神,形成科學,嚴謹的研究態度.

教學建議

一、知識結構

(1)函數單調性的概念。包括增函數、減函數的定義,單調區間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系.

(2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像.

二、重點難點分析

(1)本節教學的重點是函數的單調性,奇偶性概念的形成與熟悉.教學的難點是領悟函數單調性,奇偶性的本質,把握單調性的證實.

(2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它.這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調性的證實是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證實,也沒有意識到它的重要性,所以單調性的證實自然就是教學中的難點.

三、教法建議

(1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數.反比例函數圖象出發,回憶圖象的增減性,從這點感性熟悉出發,通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發現自變量與函數值的的變化規律,再把這種規律用數學語言表示出來.在這個過程中對一些關鍵的詞語(某個區間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結合起來.

(2)函數單調性證實的步驟是嚴格規定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規律.

函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來.經歷了這樣的過程,再得到等式時,就比較輕易體會它代表的是無數多個等式,是個恒等式.關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發現定義域的對稱性,同時還可以借助圖象(如)說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件.

函數的奇偶性教學設計方案

教學目標

1.使學生了解奇偶性的概念,回會利用定義判定簡單函數的奇偶性.

2.在奇偶性概念形成過程中,培養學生的觀察,歸納能力,同時滲透數形結合和非凡到一般的思想方法.

3.在學生感受數學美的同時,激發學習的愛好,培養學生樂于求索的精神.

教學重點,難點

重點是奇偶性概念的形成與函數奇偶性的判定

難點是對概念的熟悉

教學用具

投影儀,計算機

教學方法

引導發現法

教學過程

一.引入新課

前面我們已經研究了函數的單調性

,它是反映函數在某一個區間上函數值隨自變量變化而變化的性質,今天我們繼續研究函數的另一個性質.從什么角度呢?將從對稱的角度來研究函數的性質.

對稱我們大家都很熟悉,在生活中有很多對稱,在數學中也能發現很多對稱的問題,大家回憶一下在我們所學的內容中,非凡是函數中有沒有對稱問題呢?

(學生可能會舉出一些數值上的對稱問題,等,也可能會舉出一些圖象的對稱問題,此時教師可以引導學生把函數具體化,如和等.)

結合圖象提出這些對稱是我們在初中研究的關于軸對稱和關于原點對稱問題,而我們還曾研究過關于軸對稱的問題,你們舉的例子中還沒有這樣的,能舉出一個函數圖象關于軸對稱的嗎?

學生經過思考,能找出原因,由于函數是映射,一個只能對一個,而不能有兩個不同的,故函數的圖象不可能關于軸對稱.最終提出我們今天將重點研究圖象關于軸對稱和關于原點對稱的問題,從形的特征中找出它們在數值上的規律.

二.講解新課

2.函數的奇偶性(板書)

教師從剛才的圖象中選出,用計算機打出,指出這是關于軸對稱的圖象,然后問學生初中是怎樣判定圖象關于軸對稱呢?(由學生回答,是利用圖象的翻折后重合來判定)此時教師明確提出研究方向:今天我們將從數值角度研究圖象的這種特征體現在自變量與函數值之間有何規律?

學生開始可能只會用語言去描述:自變量互為相反數,函數值相等.教師可引導學生先把它們具體化,再用數學符號表示.(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進而再提出會不會在定義域內存在,使與不等呢?(可用課件幫助演示讓動起來觀察,發現結論,這樣的是不存在的)

從這個結論中就可以發現對定義域內任意一個,都有成立.最后讓學生用完整的語言給出定義,不準確的地方教師予以提示或調整.

(1)偶函數的定義:假如對于函數的定義域內任意一個,都有,那么就叫做偶函數.(板書)

(給出定義后可讓學生舉幾個例子,如等以檢驗一下對概念的初步熟悉)

提出新問題:函數圖象關于原點對稱,它的自變量與函數值之間的數值規律是什么呢?(同時打出或的圖象讓學生觀察研究)

學生可類比剛才的方法,很快得出結論,再讓學生給出奇函數的定義.

(2)奇函數的定義:假如對于函數的定義域內任意一個,都有,那么就叫做奇函數.(板書)

(由于在定義形成時已經有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)

例1.判定下列函數的奇偶性(板書)

(1);(2);

(3);;

(5);(6).

(要求學生口答,選出12個題說過程)

解:(1)是奇函數.(2)是偶函數.

(3),是偶函數.

前三個題做完,教師做一次小結,判定奇偶性,只需驗證與之間的關系,但對你們的回答我不滿足,因為題目要求是判定奇偶性而你們只回答了一半,另一半沒有作答,以第(1)為例,說明怎樣解決它不是偶函數的問題呢?

學生經過思考可以解決問題,指出只要舉出一個反例說明與不等.如即可說明它不是偶函數.(從這個問題的解決中讓學生再次熟悉到定義中任意性的重要)

從(4)題開始,學生的答案會有不同,可以讓學生先討論,教師再做評述.即第(4)題中表面成立的=不能經受任意性的考驗,當時,由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性.

教師由此引導學生,通過剛才這個題目,你發現在判定中需要注重些什么?(若學生發現不了定義域的特征,教師可再從定義啟發,在定義域中有1,就必有1,有2,就必有2,有,就必有,有就必有,從而發現定義域應關于原點對稱,再提出定義域關于原點對稱是函數具有奇偶性的什么條件?

可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結論.

(3)定義域關于原點對稱是函數具有奇偶性的必要但不充分條件.(板書)

由學生小結判定奇偶性的步驟之后,教師再提出新的問題:在剛才的幾個函數中有是奇函數不是偶函數,有是偶函數不是奇函數,也有既不是奇函數也不是偶函數,那么有沒有這樣的函數,它既是奇函數也是偶函數呢?若有,舉例說明.

經學生思考,可找到函數.然后繼續提問:是不是具備這樣性質的函數的解析式都只能寫成這樣呢?能證實嗎?

例2.已知函數既是奇函數也是偶函數,求證:.(板書)(試由學生來完成)

證實:既是奇函數也是偶函數,

=,且,

=.

,即.

證后,教師請學生記住結論的同時,追問這樣的函數應有多少個呢?學生開始可能認為只有一個,經教師提示可發現,只是解析式的特征,若改變函數的定義域,如,,,,它們顯然是不同的函數,但它們都是既是奇函數也是偶函數.由上可知函數按其是否具有奇偶性可分為四類

(4)函數按其是否具有奇偶性可分為四類:(板書)

例3.判定下列函數的奇偶性(板書)

(1);(2);(3).

由學生回答,不完整之處教師補充.

解:(1)當時,為奇函數,當時,既不是奇函數也不是偶函數.

(2)當時,既是奇函數也是偶函數,當時,是偶函數.

(3)當時,于是,

當時,,于是=,

綜上是奇函數.

教師小結(1)(2)注重分類討論的使用,(3)是分段函數,當檢驗,并不能說明具備奇偶性,因為奇偶性是對函數整個定義域內性質的刻畫,因此必須均有成立,二者缺一不可.

三.小結

1.奇偶性的概念

2.判定中注重的問題

四.作業略

五.板書設計

2.函數的奇偶性例1.例3.

(1)偶函數定義

(2)奇函數定義

(3)定義域關于原點對稱是函數例2.小結

具備奇偶性的必要條件

(4)函數按奇偶性分類分四類

探究活動

(1)定義域為的任意函數都可以表示成一個奇函數和一個偶函數的和,你能試證實之嗎?

(2)判定函數在上的單調性,并加以證實.

在此基礎上試利用這個函數的單調性解決下面的問題:

怎么寫高二的數學教案篇4

【教材分析】

1.知識內容與結構分析

集合論是現代數學的一個重要的基礎。在高中數學中,集合的初步知識與其他內容有著密切的聯系,是學習、掌握和使用數學語言的基礎,集合論以及它所反映的數學思想在越來越廣泛的領域中得到應用。課本從學生熟悉的集合(自然數集合、有理數的集合等)出發,結合實例給出了元素、集合的含義,學生通過對具體實例的抽象、概括發展了邏輯思維能力。

2.知識學習意義分析

通過自主探究的學習過程,了解集合的含義,體會元素與集合的“屬于”關系,能選擇合適的語言描述不同的具體問題,感受集合語言的意義和作用。

3.教學建議與學法指導

由于本節新概念、新符號較多,雖然內容較為淺顯,但不應講得過快,應在講解概念的同時,讓學生多閱讀課本,互相交流,在此基礎上理解概念并熟悉新符號的使用。通過問題探究、自主探索、合作交流、自我總結等形式,調動學生的積極性。

【學情分析】

在初中,學生學習過一些點的集合或軌跡,如:平面內到一個定點的距離等于定長的點的集合(圓);到一條線段的兩個端點的距離相等的點的集合(線段的垂直平分線)。這對學生學習本節課的知識有一定的幫助,只不過現在我們要把這個“集合”推廣,它不僅僅是點的集合或圖形的集合,而是“指定的某些對象的全體”。集合語言是現代數學的基本語言,使用這種語言,不僅有助于簡潔、準確地表達數學內容,還可以用來刻畫和解決生活中的許多問題。學習集合,可以發展同學們用數學語言進行交流的能力。

【教學目標】

1.知識與技能

(1)學生通過自主學習,初步理解集合的概念,理解元素與集合間的關系,了解集合元素的確定性、互異性,無序性,知道常用數集及其記法;

(2)掌握集合的常用表示法——列舉法和描述法。

2.過程與方法

通過實例了解集合的含義,體會元素與集合的“屬于”關系,能選擇合適的語言(如自然語言、圖形語言、集合語言)描述不同的具體問題,提高語言轉換和抽象概括能力,樹立用集合語言表示數學內容的意識。

3.情態與價值

在掌握基本概念的基礎上,能夠解決相關問題,獲得數學學習的成就感,提高學生分析問題和解決問題的能力,培養學生的應用意識。

【重點難點】

1.教學重點:集合的基本概念與表示方法。

2.教學難點:選擇合適的方法正確表示集合。

【教學思路】

通過實例以及學生熟悉的數集,引入集合的概念,進而給出集合的表示方法,學生通過自我體會、自主學習、自我總結達到掌握本節課內容的目的。教學過程按照“提出問題——學生討論——歸納總結——獲得新知——自我檢測”環節安排。

【教學過程】

課前準備:

提前留給學生預習方案:a.預習初中數學中有關集合的章節;b.預習本節內容,試著找出與以往的聯系;c.搜集生活中的集合的使用實例。

導入新課:同學們,我們今天要學習的是集合的知識,在小學和初中,我們已經接觸過了一些集合,例如,自然數的集合,有理數的集合,不等式x-7<3的解得集合,到一個頂點的距離等于定長的點的集合(即圓),等等?,F在呢,我要說的是:我們大家通過對初中知識的預習和對本節課的預習我相信你們能夠很大一部分已經掌握了本節知識的主要問題,對不對?(同學們會高興地說:對!)

下面我們分三個小組,做個游戲,好不好?我們互相競賽答題,互相評論優點與不足,好不好?(同學們在被調動起情緒的時候應該說:好!)

教與學的過程:

預設問題設計意圖師生活動教師活動

一組二組三組活動同學們,通過看課本2頁的(1)至(8)個例子,同學們有什么啟發嗎?提出一個模糊一點的問題,留給三組學生更寬的思考空間。啟發思考,激發興趣。教師點撥,及時糾正偏差的回答方向。(理想答案:我們學過很多集合的知識了。我們會舉出一些集合的例子。)

學生三個組分組輪流回答。你能說出他們有什么共同的特征嗎?為集合的定義及含義的給出作出鋪墊,并培養學生的總結概括能力。引導學生共同得出正確的結論。最后給出準確的定義:我們把研究的對象稱為元素(element);把一些元素組成的總體叫做集合(set)(簡稱集)。學生討論,分組輪流回答。你們能說出元素與集合是什么關系嗎?怎么表示呀?用什么額符號表示啊?通過學生自己總結,對元素與集合的關系記憶更深刻。教師指導學生得出準確答案。(理想答案:集合是整體,元素是個體,集合有元素組成。集合用大寫字母表示,例如A;元素用小寫字母表示,例如a.如果a是集合A的元素,就說a屬于A集合A,記做a∈A,如果a不是集合A中的元素,就說a不屬于集合A,記做A)學生討論,分組輪流回答。

可以互相挑出對方回答問題的錯誤來比賽。我們描述集合常用哪些方法呢?怎么表示?引導學生認識集合的兩種常見表示方法。教師引導指正。(理想答案:列舉法:把集合的元素一一列舉出來,并用花括號“{}”括起來表示集合的方法叫做列舉法。描述法:用集合所含元素的共同特征表示集合的方法稱為描述法。具體方法是:在花括號內線寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。同學們上黑板邊回答邊演練。誰能試著說說集合中的元素有什么特點啊?拓展知識,讓學生對元素的特征有極愛哦理性的認識,并開發其探究思維。教師點撥。(理想答案:元素一旦給出是確定的,確定性,沒有相同的,互異性,是沒有順序的,無序性。

即(1)確定性:對于任意一個元素,要么它屬于某個指定集合,要么它不屬于該集合,二者必居其一。

(2)互異性:同一個集合中的元素是互不相同的。

(3)無序性:任意改變集合中元素的排列次序,它們仍然表示同一個集合。)學生探究討論,回答。什么叫兩個集合相等呢?深刻理解集合。教師給出答案。(如果構成兩個集合的元素是一樣的,我們稱這兩個集合是相等的。)學生探討回答。

怎么寫高二的數學教案篇5

教材分析

因式分解是代數式的一種重要恒等變形?!稊祵W課程標準》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價值及其在代數運算中的重要作用。本章教材是在學生學習了整式運算的基礎上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯系。分解因式的變形不僅體現了一種“化歸”的思想,而且也是解決后續—分式的化簡、解方程等—恒等變形的基礎,為數學交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價值還體現在使學生接受對立統一的觀點,培養學生善于觀察、善于分析、正確預見、解決問題的能力。

學情分析

通過探究平方差公式和運用平方差公式分解因式的活動中,讓學生發表自己的觀點,從交流中獲益,讓學生獲得成功的體驗,鍛煉克服困難的意志建立自信心。

教學目標

1、在分解因式的過程中體會整式乘法與因式分解之間的聯系。

2、通過公式a-b=(a+b)(a-b)的逆向變形,進一步發展觀察、歸納、類比、等能力,發展有條理地思考及語言表達能力。

3、能運用提公因式法、公式法進行綜合運用。

4、通過活動4,能將高偶指數冪轉化為2次指數冪,培養學生的化歸思想。

教學重點和難點

重點:靈活運用平方差公式進行分解因式。

難點:平方差公式的推導及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。

怎么寫高二的數學教案篇6

教材分析教材的地位和作用

期望是概率論和數理統計的重要概念之一,是反映隨機變量取值分布的特征數,學習期望將為今后學習概率統計知識做鋪墊。同時,它在市場預測,經濟統計,風險與決策等領域有著廣泛的應用,為今后學習數學及相關學科產生深遠的影響。

教學重點與難點

重點:離散型隨機變量期望的概念及其實際含義。

難點:離散型隨機變量期望的實際應用。

[理論依據]本課是一節概念新授課,而概念本身具有一定的抽象性,學生難以理解,因此把對離散性隨機變量期望的概念的教學作為本節課的教學重點。此外,學生初次應用概念解決實際問題也較為困難,故把其作為本節課的教學難點。

二、教學目標

[知識與技能目標]

通過實例,讓學生理解離散型隨機變量期望的概念,了解其實際含義。

會計算簡單的離散型隨機變量的期望,并解決一些實際問題。

[過程與方法目標]

經歷概念的建構這一過程,讓學生進一步體會從特殊到一般的.思想,培養學生歸納、概括等合情推理能力。

通過實際應用,培養學生把實際問題抽象成數學問題的能力和學以致用的數學應用意識。

[情感與態度目標]

通過創設情境激發學生學習數學的情感,培養其嚴謹治學的態度。在學生分析問題、解決問題的過程中培養其積極探索的精神,從而實現自我的價值。

三、教法選擇

引導發現法

四、學法指導

“授之以魚,不如授之以漁”,注重發揮學生的主體性,讓學生在學習中學會怎樣發現問題、分析問題、解決問題。

怎么寫高二的數學教案篇7

一、教材分析

【教材地位及作用】

基本不等式又稱為均值不等式,選自北京師范大學出版社普通高中課程標準實驗教科書數學必修5第3章第3節內容。教學對象為高二學生,本節課為第一課時,重在研究基本不等式的證明及幾何意義。本節課是在系統的學習了不等關系和掌握了不等式性質的基礎上展開的,作為重要的基本不等式之一,為后續進一步了解不等式的性質及運用,研究最值問題奠定基礎。因此基本不等式在知識體系中起了承上啟下的作用,同時在生活及生產實際中有著廣泛的應用,它也是對學生進行情感價值觀教育的好素材,所以基本不等式應重點研究。

【教學目標】

依據《新課程標準》對《不等式》學段的目標要求和學生的實際情況,特確定如下目標:

知識與技能目標:理解掌握基本不等式,理解算數平均數與幾何平均數的概念,學會構造條件使用基本不等式;

過程與方法目標:通過探究基本不等式,使學生體會知識的形成過程,培養分析、解決問題的能力;

情感與態度目標:通過問題情境的設置,使學生認識到數學是從實際中來,培養學生用數學的眼光看世界,通過數學思維認知世界,從而培養學生善于思考、勤于動手的良好品質。

【教學重難點】

重點:理解掌握基本不等式,能借助幾何圖形說明基本不等式的意義。

難點:利用基本不等式推導不等式.

關鍵是對基本不等式的理解掌握.

二、教法分析

本節課采用觀察——感知——抽象——歸納——探究;啟發誘導、講練結合的教學方法,以學生為主體,以基本不等式為主線,從實際問題出發,放手讓學生探究思索。利用多媒體輔助教學,直觀地反映了教學內容,使學生思維活動得以充分展開,從而優化了教學過程,大大提高了課堂教學效率.

三、學法指導

新課改的精神在于以學生的發展為本,把學習的主動權還給學生,倡導積極主動,勇于探索的學習方法,因此,本課主要采取以自主探索與合作交流的學習方式,通過讓學生想一想,做一做,用一用,建構起自己的知識,使學生成為學習的主人。

四、教學過程

教學過程設計以問題為中心,以探究解決問題的方法為主線展開。這種安排強調過程,符合學生的認知規律,使數學教學過程成為學生對知識的再創造、再發現的過程,從而培養學生的創新意識。

具體過程安排如下:

(一)基本不等式的教學設計創設情景,提出問題

設計意圖:數學教育必須基于學生的“數學現實”,現實情境問題是數學教學的平臺,數學教師的任務之一就是幫助學生構造數學現實,并在此基礎上發展他們的數學現實.基于此,設置如下情境:

上圖是在北京召開的第24屆國際數學家大會的會標,會標是根據中國古代數學家趙爽的弦圖設計的,顏色的明暗使它看上去像一個風車,代表中國人民熱情好客。

[問題1]請觀察會標圖形,圖中有哪些特殊的幾何圖形?它們在面積上有哪些相等關系和不等關系?(讓學生分組討論)

(二)探究問題,抽象歸納

基本不等式的教學設計1.探究圖形中的不等關系

形的角度----(利用多媒體展示會標圖形的變化,引導學生發現四個直角三角形的面積之和小于或等于正方形的面積.)

數的角度

[問題2]若設直角三角形的兩直角邊分別為a、b,應怎樣表示這種不等關系?

學生討論結果:。

[問題3]大家看,這個圖形里還真有點奧妙。我們從圖中找到了一個不等式。這里a、b的取值有沒有什么限制條件?不等式中的等號什么時候成立呢?(師生共同探索)

咱們再看一看圖形的變化,(教師演示)

(學生發現)當a=b四個直角三角形都變成了等腰直角三角形,他們的面積和恰好等于正方形的面積,即.探索結論:我們得到不等式,當且僅當時等號成立。

設計意圖:本背景意圖在于利用圖中相關面積間存在的數量關系,抽象出不等式基本不等式的教學設計。在此基礎上,引導學生認識基本不等式。

2.抽象歸納:

一般地,對于任意實數a,b,有,當且僅當a=b時,等號成立。

[問題4]你能給出它的證明嗎?

學生在黑板上板書。

[問題5]特別地,當時,在不等式中,以、分別代替a、b,得到什么?

學生歸納得出。

設計意圖:類比是學習數學的一種重要方法,此環節不僅讓學生理解了基本不等式的來源,突破了重點和難點,而且感受了其中的函數思想,為今后學習奠定基礎.

【歸納總結】

如果a,b都是非負數,那么,當且僅當a=b時,等號成立。

我們稱此不等式為基本不等式。其中稱為a,b的算術平均數,稱為a,b的幾何平均數。

3.探究基本不等式證明方法:

[問題6]如何證明基本不等式?

設計意圖:在于引領學生從感性認識基本不等式到理性證明,實現從感性認識到理性認識的升華,前面是從幾何圖形中的面積關系獲得不等式的,下面用代數的思想,利用不等式的性質直接推導這個不等式。

方法一:作差比較或由基本不等式的教學設計展開證明。

方法二:分析法

要證

只要證2

要證,只要證2

要證,只要證

顯然,是成立的。當且僅當a=b時,中的等號成立。

4.理解升華

1)文字語言敘述:

兩個正數的算術平均數不小于它們的幾何平均數。

2)符號語言敘述:

若,則有,當且僅當a=b時,。

[問題7]怎樣理解“當且僅當”?(學生小組討論,交流看法,師生總結)

“當且僅當a=b時,等號成立”的含義是:

當a=b時,取等號,即;

僅當a=b時,取等號,即。

3)探究基本不等式的幾何意義:

基本不等式的教學設計借助初中階段學生熟知的幾何圖形,引導學生探究不等式的幾何解釋,通過數形結合,賦予不等式幾何直觀。進一步領悟不等式中等號成立的條件。

如圖:AB是圓的直徑,點C是AB上一點,

CD⊥AB,AC=a,CB=b,

[問題8]你能利用這個圖形得出基本不等式的幾何解釋嗎?

(教師演示,學生直觀感覺)

易證RtACDRtDCB,那么CD2=CA·CB

即CD=.

這個圓的半徑為,顯然,它大于或等于CD,即,其中當且僅當點C與圓心重合,即a=b時,等號成立.

因此:基本不等式幾何意義可認為是:在同一半圓中,半徑不小于半弦(直徑是最長的弦);或者認為是,直角三角形斜邊的一半不小于斜邊上的高.

4)聯想數列的知識理解基本不等式

從形的角度來看,基本不等式具有特定的幾何意義;從數的角度來看,基本不等式揭示了“和”與“積”這兩種結構間的不等關系.

[問題9]回憶一下你所學的知識中,有哪些地方出現過“和”與“積”的結構?

歸納得出:

均值不等式的代數解釋為:兩個正數的等差中項不小它們的等比中項.

基本不等式的教學設計(四)體會新知,遷移應用

例1:(1)設均為正數,證明不等式:基本不等式的教學設計

(2)如圖:AB是圓的直徑,點C是AB上一點,設AC=a,CB=b,

,過作交于,你能利用這個圖形得出這個不等式的一種幾何解釋嗎?

設計意圖:以上例題是根據基本不等式的使用條件中的難點和關鍵處設置的,目的是利用學生原有的平面幾何知識,進一步領悟到不等式成立的條件,及當且僅當時,等號成立。這里完全放手讓學生自主探究,老師指導,師生歸納總結。

(五)演練反饋,鞏固深化

公式應用之一:

1.試判斷與與2的大小關系?

問題:如果將條件“x>0”去掉,上述結論是否仍然成立?

2.試判斷與7的大小關系?

公式應用之二:

設計意圖:新穎有趣、簡單易懂、貼近生活的問題,不僅極大地增強學生的興趣,拓寬學生的視野,更重要的是調動學生探究鉆研的興趣,引導學生加強對生活的關注,讓學生體會:數學就在我們身邊的生活中

(1)用一個兩臂長短有差異的天平稱一樣物品,有人說只要左右各秤一次,將兩次所稱重量相加后除以2就可以了.你覺得這種做法比實際重量輕了還是重了?

(2)甲、乙兩商場對單價相同的同類產品進行促銷.甲商場采取的促銷方式是在原價p折的基礎上再打q折;乙商場的促銷方式則是兩次都打折.對顧客而言,哪種打折方式更合算?(0≠q)

(五)反思總結,整合新知:

通過本節課的學習你有什么收獲?取得了哪些經驗教訓?還有哪些問題需要請教?

設計意圖:通過反思、歸納,培養概括能力;幫助學生總結經驗教訓,鞏固知識技能,提高認知水平.從各種角度對均值不等式進行總結,目的是為了讓學生掌握本節課的重點,突破難點

老師根據情況完善如下:

知識要點:

(1)重要不等式和基本不等式的條件及結構特征

(2)基本不等式在幾何、代數及實際應用三方面的意義

思想方法技巧:

(1)數形結合思想、“整體與局部”

(2)歸納與類比思想

(3)換元法、比較法、分析法

(七)布置作業,更上一層

1.閱讀作業:預習基本不等式的教學設計

2.書面作業:已知a,b為正數,證明不等式基本不等式的教學設計

3.思考題:類比基本不等式,當a,b,c均為正數,猜想會有怎樣的不等式?

設計意圖:作業分為三種形式,體現作業的鞏固性和發展性原則,同時考慮學生的差異性。閱讀作業是后續課堂的鋪墊,而思考題不做統一要求,供學有余力的學生課后研究。

五、評價分析

1.在建立新知的過程中,教師力求引導、啟發,讓學生逐步應用所學的知識來分析問題、解決問題,以形成比較系統和完整的知識結構。每個問題在設計時,充分考慮了學生的具體情況,力爭提問準確到位,便于學生思考和回答。使思考和提問持續在學生的最近發展區內,學生的思考有價值,對知識的理解和掌握在不斷的思考和討論中完善和加深。

2.本節的教學中要求學生對基本不等式在數與形兩個方面都有比較充分的認識,特別強調數與形的統一,教學過程從形得到數,又從數回到形,意圖使學生在比較中對基本不等式得以深刻理解。“數形結合”作為一種重要的數學思想方法,不是教師提一提學生就能夠掌握并且會用的,只有學生通過實踐,意識到它的好處之后,學生才會在解決問題時去嘗試使用,只有通過不斷的使用才能促進學生對這種思想方法的再理解,從而達到掌握它的目的。

怎么寫高二的數學教案篇8

函數思想在解題中的應用主要表現在兩個方面:一是借助有關初等函數的性質,解有關求值、解(證)不等式、解方程以及討論參數的取值范圍等問題:二是在問題的研究中,通過建立函數關系式或構造中間函數,把所研究的問題轉化為討論函數的有關性質,達到化難為易,化繁為簡的目的。函數與方程的思想是中學數學的基本思想,也是歷年高考的重點。

1.函數的思想,是用運動和變化的觀點,分析和研究數學中的數量關系,建立函數關系或構造函數,運用函數的圖像和性質去分析問題、轉化問題,從而使問題獲得解決。

2.方程的思想,就是分析數學問題中變量間的等量關系,建立方程或方程組,或者構造方程,通過解方程或方程組,或者運用方程的性質去分析、轉化問題,使問題獲得解決。方程思想是動中求靜,研究運動中的等量關系;

3.函數方程思想的幾種重要形式

(1)函數和方程是密切相關的,對于函數y=f(x),當y=0時,就轉化為方程f(x)=0,也可以把函數式y=f(x)看做二元方程y-f(x)=0。

(2)函數與不等式也可以相互轉化,對于函數y=f(x),當y>0時,就轉化為不等式f(x)>0,借助于函數圖像與性質解決有關問題,而研究函數的性質,也離不開解不等式;

(3)數列的通項或前n項和是自變量為正整數的函數,用函數的觀點處理數列問題十分重要;

(4)函數f(x)=(1+x)^n(n∈N_)與二項式定理是密切相關的,利用這個函數用賦值法和比較系數法可以解決很多二項式定理的問題;

(5)解析幾何中的許多問題,例如直線和二次曲線的位置關系問題,需要通過解二元方程組才能解決,涉及到二次方程與二次函數的有關理論;

(6)立體幾何中有關線段、角、面積、體積的計算,經常需要運用布列方程或建立函數表達式的方法加以解決。

怎么寫高二的數學教案篇9

1.教材結構分析

《圓的方程》安排在高中數學第二冊(上)第七章第六節.圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用.圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用.

2.學情分析

圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的.但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難.另外學生在探究問題的能力,合作交流的意識等方面有待加強.

根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:

3.教學目標

(1)知識目標:①掌握圓的標準方程;

②會由圓的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程;

③利用圓的標準方程解決簡單的實際問題.

(2)能力目標:①進一步培養學生用代數方法研究幾何問題的能力;

②加深對數形結合思想的理解和加強對待定系數法的運用;

③增強學生用數學的意識.

(3)情感目標:①培養學生主動探究知識、合作交流的意識;

②在體驗數學美的過程中激發學生的學習興趣.

根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:

4.教學重點與難點

(1)重點:圓的標準方程的求法及其應用.

(2)難點:①會根據不同的已知條件求圓的標準方程;

②選擇恰當的坐標系解決與圓有關的實際問題.

為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析:

【二】教法學法分析

1.教法分析為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上.另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程.

2.學法分析通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解.通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓.通過應用圓的標準方程,熟悉用待定系數法求的過程.

下面我就對具體的教學過程和設計加以說明:

【三】教學過程與設計

整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節:

創設情境啟迪思維深入探究獲得新知應用舉例鞏固提高

反饋訓練形成方法小結反思拓展引申

下面我從縱橫兩方面敘述我的教學程序與設計意圖.

首先:縱向敘述教學過程

(一)創設情境——啟迪思維

問題一已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?

通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決.一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題.用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望.這樣獲取的知識,不但易于保持,而且易于遷移.

通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節.

(二)深入探究——獲得新知

問題二1.根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

2.如果圓心在,半徑為時又如何呢?

這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程.然后再讓學生對圓心不在原點的情況進行探究.我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法.

得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節.

(三)應用舉例——鞏固提高

I.直接應用內化新知

問題三1.寫出下列各圓的標準方程:

(1)圓心在原點,半徑為3;

(2)經過點,圓心在點.

2.寫出圓的圓心坐標和半徑.

我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備.

II.靈活應用提升能力

問題四1.求以點為圓心,并且和直線相切的圓的方程.

2.求過點,圓心在直線上且與軸相切的圓的方程.

3.已知圓的方程為,求過圓上一點的切線方程.

你能歸納出具有一般性的結論嗎?

已知圓的方程是,經過圓上一點的切線的方程是什么?

我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程.第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓.第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間.最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮.

III.實際應用回歸自然

問題五如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m).

我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識.

(四)反饋訓練——形成方法

問題六1.求過原點和點,且圓心在直線上的圓的標準方程.

2.求圓過點的切線方程.

3.求圓過點的切線方程.

接下來是第四環節——反饋訓練.這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心.另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果.

(五)小結反思——拓展引申

1.課堂小結

把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法

①圓心為,半徑為r的圓的標準方程為:

圓心在原點時,半徑為r的圓的標準方程為:.

②已知圓的方程是,經過圓上一點的切線的方程是:.

2.分層作業

(A)鞏固型作業:教材P81-82:(習題7.6)1,2,4.(B)思維拓展型作業:試推導過圓上一點的切線方程.

3.激發新疑

問題七1.把圓的標準方程展開后是什么形式?

2.方程表示什么圖形?

在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了.在知識的拓展中再次掀起學生探究的熱情.另外它為下節課研究圓的一般方程作了重要的準備.

以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計:

橫向闡述教學設計

(一)突出重點抓住關鍵突破難點

求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的同時突破了難點.

第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心.最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五.這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破.

(二)學生主體教師主導探究主線

本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終.從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的.另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務.

(三)培養思維提升能力激勵創新

為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力.在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行.

以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變.最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”.

怎么寫高二的數學教案篇10

【學習目標】

1、進一步體會數形結合的思想,提高分析問題解決問題的能力;

2、能借助正余弦函數的誘導公式推導出正切函數的誘導公式;

3、掌握誘導公式在求值和化簡中的應用.

【學習重點】正切函數的誘導公式及應用

【學習難點】正切函數誘導公式的推導

【學習過程】

一、預習自學

1.觀察課本38頁圖1-46,當-414【導學案】正切函數的誘導公式<414【導學案】正切函數的誘導公式<414【導學案】正切函數的誘導公式時,角414【導學案】正切函數的誘導公式與角2414【導學案】正切函數的誘導公式的正切函數值有什么關系?

我們可以歸納出以下公式:

tan(2414【導學案】正切函數的誘導公式)=tan(-414【導學案】正切函數的誘導公式)=tan(2414【導學案】正切函數的誘導公式)=

tan(414【導學案】正切函數的誘導公式=tan(414【導學案】正切函數的誘導公式=

2.我們可以利用誘導公式,將任意角的三角函數問題轉化為銳角三角函數的問題,參考下面的框圖,想想每次變換應該運用哪些公式。

414【導學案】正切函數的誘導公式

給上述箭頭上填上相應的文字

二、合作探究

探究1試運用414【導學案】正切函數的誘導公式,414【導學案】正切函數的誘導公式的正、余弦函數的誘導公式推證公式tan(414【導學案】正切函數的誘導公式和tan414【導學案】正切函數的誘導公式.

探究2若tan414【導學案】正切函數的誘導公式,借助三角函數定義求角414【導學案】正切函數的誘導公式的正弦函數值和余弦函數值.

探究3求414【導學案】正切函數的誘導公式的值.

三、達標檢測

1下列各式成立的是()

Atan(414【導學案】正切函數的誘導公式=-tan414【導學案】正切函數的誘導公式Btan(414【導學案】正切函數的誘導公式=tan414【導學案】正切函數的誘導公式

Ctan(-414【導學案】正切函數的誘導公式)=-tan414【導學案】正切函數的誘導公式Dtan(2414【導學案】正切函數的誘導公式)=tan414【導學案】正切函數的誘導公式

2求下列三角函數數值

(1)tan(-414【導學案】正切函數的誘導公式(2)tan240414【導學案】正切函數的誘導公式414【導學案】正切函數的誘導公式(3)tan(-1574414【導學案】正切函數的誘導公式)

3化簡求值

tan675414【導學案】正切函數的誘導公式+tan765414【導學案】正切函數的誘導公式+tan(-300414【導學案】正切函數的誘導公式)+tan(-690414【導學案】正切函數的誘導公式)+tan1080414【導學案】正切函數的誘導公式

四、課后延伸

求值:414【導學案】正切函數的誘導公式

怎么寫高二的數學教案篇11

教學目標

1、知識與技能:

(1)推廣角的概念、引入大于角和負角;

(2)理解并掌握正角、負角、零角的定義;

(3)理解任意角以及象限角的概念;

(4)掌握所有與角終邊相同的角(包括角)的表示方法;

(5)樹立運動變化觀點,深刻理解推廣后的角的概念;

(6)揭示知識背景,引發學生學習興趣;

(7)創設問題情景,激發學生分析、探求的學習態度,強化學生的參與意識。

2、過程與方法:

通過創設情境:“轉體,逆(順)時針旋轉”,角有大于角、零角和旋轉方向不同所形成的角等,引入正角、負角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標系,引入象限角、非象限角的概念及象限角的&39;判定方法;列出幾個終邊相同的角,畫出終邊所在的位置,找出它們的關系,探索具有相同終邊的角的表示;講解例題,總結方法,鞏固練習。

3、情態與價值:

通過本節的學習,使同學們對角的概念有了一個新的認識,即有正角、負角和零角之分。角的概念推廣以后,知道角之間的關系。理解掌握終邊相同角的表示方法,學會運用運動變化的觀點認識事物。

教學重難點

重點:理解正角、負角和零角的定義,掌握終邊相同角的表示法。

難點:終邊相同的角的表示。

怎么寫高二的數學教案篇12

一、教學目標:

1、知識與技能目標

①理解循環結構,能識別和理解簡單的框圖的功能。

②能運用循環結構設計程序框圖解決簡單的問題。

2、過程與方法目標

通過模仿、操作、探索,學習設計程序框圖表達,解決問題的過程,發展有條理的思考與表達的能力,提高邏輯思維能力。

3、情感、態度與價值觀目標

通過本節的自主性學習,讓學生感受和體會算法思想在解決具體問題中的意義,增強學生的創新能力和應用數學的意識。

二、教學重點、難點

重點:理解循環結構,能識別和畫出簡單的循環結構框圖,

難點:循環結構中循環條件和循環體的確定。

三、教法、學法

本節課我遵循引導發現,循序漸進的思路,采用問題探究式教學。運用多媒體,投影儀輔助。倡導“自主、合作、探究”的學習方式。

怎么寫高二的數學教案篇13

一、教學目標

1.把握菱形的判定.

2.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.

3.通過教具的演示培養學生的學習愛好.

4.根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想.

二、教法設計

觀察分析討論相結合的方法

三、重點·難點·疑點及解決辦法

1.教學重點:菱形的判定方法.

2.教學難點:菱形判定方法的綜合應用.

四、課時安排

1課時

五、教具學具預備

教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具

六、師生互動活動設計

教師演示教具、創設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥

七、教學步驟

復習提問

1.敘述菱形的定義與性質.

2.菱形兩鄰角的比為1:2,較長對角線為,則對角線交點到一邊距離為________.

引入新課

師問:要判定一個四邊形是不是菱形最基本的判定方法是什么方法?

生答:定義法.

此外還有別的兩種判定方法,下面就來學習這兩種方法.

講解新課

菱形判定定理1:四邊都相等的四邊形是菱形.

菱形判定定理2:對角錢互相垂直的&39;平行四邊形是菱形.圖1

分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.

分析判定2:

師問:本定理有幾個條件?

生答:兩個.

師問:哪兩個?

生答:(1)是平行四邊形(2)兩條對角線互相垂直.

師問:再需要什么條件可證該平行四邊形是菱形?

生答:再證兩鄰邊相等.

(由學生口述證實)

證實時讓學生注重線段垂直平分線在這里的應用,

師問:對角線互相垂直的四邊形是菱形嗎?為什么?

可畫出圖,顯然對角線,但都不是菱形.

菱形常用的判定方法歸納為(學生討論歸納后,由教師板書):

注重:(2)與(4)的題設也是從四邊形出發,和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件.

例4已知:的對角錢的垂直平分線與邊、分別交于、,如圖.

求證:四邊形是菱形(按教材講解).

總結、擴展

1.小結:

(1)歸納判定菱形的四種常用方法.

(2)說明矩形、菱形之間的區別與聯系.

2.思考題:已知:如圖4△中,,平分,,,交于.

求證:四邊形為菱形.

八、布置作業

教材P159中9、10、11、13

怎么寫高二的數學教案篇14

[核心必知]

1.預習教材,問題導入

根據以下提綱,預習教材P6~P9,回答下列問題.

(1)常見的程序框有哪些?

提示:終端框(起止框),輸入、輸出框,處理框,判斷框.

(2)算法的基本邏輯結構有哪些?

提示:順序結構、條件結構和循環結構.

2.歸納總結,核心必記

(1)程序框圖

程序框圖又稱流程圖,是一種用程序框、流程線及文字說明來表示算法的圖形.

在程序框圖中,一個或幾個程序框的組合表示算法中的一個步驟;帶有方向箭頭的流程線將程序框連接起來,表示算法步驟的執行順序.

(2)常見的程序框、流程線及各自表示的功能

圖形符號名稱功能

終端框(起止框)表示一個算法的起始和結束

輸入、輸出框表示一個算法輸入和輸出的信息

處理框(執行框)賦值、計算

判斷框判斷某一條件是否成立,成立時在出口處標明“是”或“Y”;不成立時標明“否”或“N”

流程線連接程序框

○連接點連接程序框圖的兩部分

(3)算法的基本邏輯結構

①算法的三種基本邏輯結構

算法的三種基本邏輯結構為順序結構、條件結構和循環結構,盡管算法千差萬別,但都是由這三種基本邏輯結構構成的.

②順序結構

順序結構是由若干個依次執行的步驟組成的.這是任何一個算法都離不開的基本結構,用程序框圖表示為:

[問題思考]

(1)一個完整的程序框圖一定是以起止框開始,同時又以起止框表示結束嗎?

提示:由程序框圖的概念可知一個完整的程序框圖一定是以起止框開始,同時又以起止框表示結束.

(2)順序結構是任何算法都離不開的基本結構嗎?

提示:根據算法基本邏輯結構可知順序結構是任何算法都離不開的基本結構.

[課前反思]

通過以上預習,必須掌握的幾個知識點:

(1)程序框圖的概念:;

(2)常見的程序框、流程線及各自表示的功能:;

(3)算法的三種基本邏輯結構:;

(4)順序結構的概念及其程序框圖的表示:.

問題背景:計算1×2+3×4+5×6+…+99×100.

[思考1]能否設計一個算法,計算這個式子的值.

提示:能.

[思考2]能否采用更簡潔的方式表述上述算法過程.

提示:能,利用程序框圖.

[思考3]畫程序框圖時應遵循怎樣的規則?

名師指津:(1)使用標準的框圖符號.

(2)框圖一般按從上到下、從左到右的方向畫.

(3)除判斷框外,其他程序框圖的符號只有一個進入點和一個退出點,判斷框是一個具有超過一個退出點的程序框.

(4)在圖形符號內描述的語言要非常簡練清楚.

(5)流程線不要忘記畫箭頭,因為它是反映流程執行先后次序的,如果不畫出箭頭就難以判斷各框的執行順序.

講一講

1.下列關于程序框圖中圖形符號的理解正確的有()

①任何一個流程圖必須有起止框;②輸入框只能放在開始框后,輸出框只能放在結束框前;③判斷框是的具有超過一個退出點的圖形符號;④對于一個程序框圖來說,判斷框內的條件是的.

A.1個B.2個C.3個D.4個

[嘗試解答]任何一個程序必須有開始和結束,從而流程圖必須有起止框,①正確.輸入、輸出框可以用在算法中任何需要輸入、輸出的位置,②錯誤.③正確.判斷框內的條件不是的,④錯誤.故選B.

答案:B

畫程序框圖時應注意的問題

(1)畫流程線不要忘記畫箭頭;

(2)由于判斷框的退出點在任何情況下都是根據條件去執行其中的一種結果,而另一個則不會被執行,故判斷框后的流程線應根據情況注明“是”或“否”.

練一練

1.下列關于程序框圖的說法中正確的個數是()

①用程序框圖表示算法直觀、形象、容易理解;②程序框圖能夠清楚地展現算法的邏輯結構,也就是通常所說的“一圖勝萬言”;③在程序框圖中,起止框是任何程序框圖中不可少的;④輸入和輸出框可以在算法中任何需要輸入、輸出的位置.

A.1B.2C.3D.4

解析:選D由程序框圖的定義知,①②③④均正確,故選D.

觀察如圖所示的內容:

[思考1]順序結構有哪些結構特征?

名師指津:順序結構的結構特征:

(1)順序結構的語句與語句之間、框與框之間按從上到下的順序執行,不會引起程序步驟的跳轉.

(2)順序結構是最簡單的算法結構.

(3)順序結構只能解決一些簡單的問題.

[思考2]順序結構程序框圖的基本特征是什么?

名師指津:順序結構程序框圖的基本特征:

(1)必須有兩個起止框,穿插輸入、輸出框和處理框,沒有判斷框.

(2)各程序框用流程線依次連接.

(3)處理框按計算機執行順序沿流程線依次排列.

講一講

2.已知P0(x0,y0)和直線l:Ax+By+C=0,寫出求點P0到直線l的距離d的算法,并用程序框圖來描述.

[嘗試解答]第一步,輸入x0,y0,A,B,C;

第二步,計算m=Ax0+By0+C;

第三步,計算n=A2+B2;

第四步,計算d=mn;

第五步,輸出d.

程序框圖如圖所示.

應用順序結構表示算法的步驟:

(1)仔細審題,理清題意,找到解決問題的方法.

(2)梳理解題步驟.

(3)用數學語言描述算法,明確輸入量,計算過程,輸出量.

(4)用程序框圖表示算法過程.

練一練

2.寫出解不等式2x+1>0的一個算法,并畫出程序框圖.

解:第一步,將1移到不等式的右邊;

第二步,不等式的兩端同乘12;

第三步,得到x>-12并輸出.

程序框圖如圖所示:

怎么寫高二的數學教案篇15

教學目標

熟練掌握三角函數式的求值

教學重難點

熟練掌握三角函數式的求值

教學過程

【知識點精講】

三角函數式的求值的關鍵是熟練掌握公式及應用,掌握公式的逆用和變形

三角函數式的求值的類型一般可分為:

(1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關系,利用公式轉化或消除非特殊角

(2)“給值求值”:給出一些角得三角函數式的值,求另外一些角得三角函數式的值。找出已知角與所求角之間的某種關系求解

(3)“給值求角”:轉化為給值求值,由所得函數值結合角的范圍求出角。

(4)“給式求值”:給出一些較復雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之

三角函數式常用化簡方法:切割化弦、高次化低次

注意點:靈活角的變形和公式的變形

重視角的范圍對三角函數值的影響,對角的范圍要討論

【課堂小結】

三角函數式的求值的關鍵是熟練掌握公式及應用,掌握公式的逆用和變形

三角函數式的求值的類型一般可分為:

(1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關系,利用公式轉化或消除非特殊角

(2)“給值求值”:給出一些角得三角函數式的值,求另外一些角得三角函數式的值。找出已知角與所求角之間的某種關系求解

(3)“給值求角”:轉化為給值求值,由所得函數值結合角的范圍求出角。

(4)“給式求值”:給出一些較復雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之

三角函數式常用化簡方法:切割化弦、高次化低次

注意點:靈活角的變形和公式的變形

重視角的范圍對三角函數值的影響,對角的范圍要討論

怎么寫高二的數學教案篇16

教學目標

1、知識與技能

(1)理解并掌握正弦函數的定義域、值域、周期性、(小)值、單調性、奇偶性;

(2)能熟練運用正弦函數的性質解題。

2、過程與方法

通過正弦函數在R上的圖像,讓學生探索出正弦函數的性質;講解例題,總結方法,鞏固練習。

3、情感態度與價值觀

通過本節的學習,培養學生創新能力、探索歸納能力;讓學生體驗自身探索成功的喜悅感,培養學生的自信心;使學生認識到轉化“矛盾”是解決問題的有效途經;培養學生形成實事求是的科學態度和鍥而不舍的鉆研精神。

教學重難點

重點:正弦函數的性質。

難點:正弦函數的性質應用。

教學工具

投影儀

教學過程

【創設情境,揭示課題】

同學們,我們在數學一中已經學過函數,并掌握了討論一個函數性質的幾個角度,你還記得有哪些嗎?在上一次課中,我們已經學習了正弦函數的y=sinx在R上圖像,下面請同學們根據圖像一起討論一下它具有哪些性質?

【探究新知】

讓學生一邊看投影,一邊仔細觀察正弦曲線的圖像,并思考以下幾個問題:

(1)正弦函數的定義域是什么?

(2)正弦函數的值域是什么?

(3)它的最值情況如何?

(4)它的正負值區間如何分?

(5)?(x)=0的解集是多少?

師生一起歸納得出:

1.定義域:y=sinx的定義域為R

2.值域:引導回憶單位圓中的正弦函數線,結論:|sinx|≤1(有界性)

再看正弦函數線(圖象)驗證上述結論,所以y=sinx的值域為[-1,1]

課后小結

歸納整理,整體認識

(1)請學生回顧本節課所學過的知識內容有哪些?所涉及的主要數學思想方法有哪些?

(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節課中的表現怎樣?你的體會是什么?

課后習題

作業:習題1—4第3、4、5、6、7題.

101370 主站蜘蛛池模板: 网架支座@球铰支座@钢结构支座@成品支座厂家@万向滑动支座_桥兴工程橡胶有限公司 | 恒温恒湿箱(药品/保健品/食品/半导体/细菌)-兰贝石(北京)科技有限公司 | 上海防爆真空干燥箱-上海防爆冷库-上海防爆冷柜?-上海浦下防爆设备厂家? | 定制液氮罐_小型气相液氮罐_自增压液氮罐_班德液氮罐厂家 | 布袋除尘器|除尘器设备|除尘布袋|除尘设备_诺和环保设备 | 好看的韩国漫画_韩漫在线免费阅读-汗汗漫画 | 宿松新闻网 宿松网|宿松在线|宿松门户|安徽宿松(直管县)|宿松新闻综合网站|宿松官方新闻发布 | 线材成型机,线材折弯机,线材成型机厂家,贝朗自动化设备有限公司1 | 磨煤机配件-高铬辊套-高铬衬板-立磨辊套-盐山县宏润电力设备有限公司 | 天津试验仪器-电液伺服万能材料试验机,恒温恒湿标准养护箱,水泥恒应力压力试验机-天津鑫高伟业科技有限公司 | 智能风向风速仪,风速告警仪,数字温湿仪,综合气象仪(气象五要素)-上海风云气象仪器有限公司 | 防火板_饰面耐火板价格、厂家_品牌认准格林雅 | 橡胶弹簧|复合弹簧|橡胶球|振动筛配件-新乡市永鑫橡胶厂 | 上海物流公司,上海货运公司,上海物流专线-优骐物流公司 | 智能电表|预付费ic卡水电表|nb智能无线远传载波电表-福建百悦信息科技有限公司 | 乐泰胶水_loctite_乐泰胶_汉高乐泰授权(中国)总代理-鑫华良供应链 | 罗茨真空机组,立式无油往复真空泵,2BV水环真空泵-力侨真空科技 | 申江储气罐厂家,储气罐批发价格,储气罐规格-上海申江压力容器有限公司(厂) | 机械立体车库租赁_立体停车设备出租_智能停车场厂家_春华起重 | 水篦子|雨篦子|镀锌格栅雨水篦子|不锈钢排水篦子|地下车库水箅子—安平县云航丝网制品厂 | 青岛侦探_青岛侦探事务所_青岛劝退小三_青岛婚外情取证-青岛王军侦探事务所 | 喷码机,激光喷码打码机,鸡蛋打码机,手持打码机,自动喷码机,一物一码防伪溯源-恒欣瑞达有限公司 | 大巴租车平台承接包车,通勤班车,巴士租赁业务 - 鸿鸣巴士 | 单机除尘器 骨架-脉冲除尘器设备生产厂家-润天环保设备 | 液压升降平台_剪叉式液压/导轨式升降机_传菜机定做「宁波日腾升降机厂家」 | 冰晶石|碱性嫩黄闪蒸干燥机-有机垃圾烘干设备-草酸钙盘式干燥机-常州市宝康干燥 | 绿萝净除甲醛|深圳除甲醛公司|测甲醛怎么收费|培训机构|电影院|办公室|车内|室内除甲醛案例|原理|方法|价格立马咨询 | PSI渗透压仪,TPS酸度计,美国CHAI PCR仪,渗透压仪厂家_价格,微生物快速检测仪-华泰和合(北京)商贸有限公司 | 北京包装设计_标志设计公司_包装设计公司-北京思逸品牌设计 | 作文导航网_作文之家_满分作文_优秀作文_作文大全_作文素材_最新作文分享发布平台 | 嘉兴泰东园林景观工程有限公司_花箱护栏| 塑胶跑道_学校塑胶跑道_塑胶球场_运动场材料厂家_中国塑胶跑道十大生产厂家_混合型塑胶跑道_透气型塑胶跑道-广东绿晨体育设施有限公司 | SOUNDWELL 编码器|电位器|旋转编码器|可调电位器|编码开关厂家-广东升威电子制品有限公司 | UV固化机_UVLED光固化机_UV干燥机生产厂家-上海冠顶公司专业生产UV固化机设备 | 卫生人才网-中国专业的医疗卫生医学人才网招聘网站! | 工业用品一站式采购平台|南创工品汇-官网|广州南创 | 东莞喷砂机-喷砂机-喷砂机配件-喷砂器材-喷砂加工-东莞市协帆喷砂机械设备有限公司 | 致胜管家软件服务【在线免费体验】 | 山东led显示屏,山东led全彩显示屏,山东LED小间距屏,临沂全彩电子屏-山东亚泰视讯传媒有限公司 | 插针变压器-家用电器变压器-工业空调变压器-CD型电抗器-余姚市中驰电器有限公司 | 安徽合肥格力空调专卖店_格力中央空调_格力空调总经销公司代理-皖格制冷设备 |