小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教案模板 > 優秀教案 >

初三數學教案范文

時間: 新華 優秀教案

教案中的教學目標應該清晰明確,具體可行,并與學生的實際情況相結合。初三數學教案范文怎么才能寫好?這里分享一些初三數學教案范文,方便大家學習。

初三數學教案范文篇1

回顧與反思當自變量x取同一數值時,這兩個函數的函數值之間有什么關系?反映在圖象上,相應的兩個點之間的位置又有什么關系?

探索觀察這兩個函數,它們的開口方向、對稱軸和頂點坐標有那些是相同的?又有哪些不同?你能由此說出函數與的圖象之間的關系嗎?

例2.在同一直角坐標系中,畫出函數與的圖象,并說明,通過怎樣的平移,可以由拋物線得到拋物線.

解列表.

x…-3-2-10123…

…-8-3010-3-8…

…-10-5-2-1-2-5-10…

描點、連線,畫出這兩個函數的圖象,如圖26.2.4所示.

可以看出,拋物線是由拋物線向下平移兩個單位得到的.

回顧與反思拋物線和拋物線分別是由拋物線向上、向下平移一個單位得到的.

探索如果要得到拋物線,應將拋物線作怎樣的平移?

例3.一條拋物線的開口方向、對稱軸與相同,頂點縱坐標是-2,且拋物線經過點(1,1),求這條拋物線的函數關系式.

解由題意可得,所求函數開口向上,對稱軸是y軸,頂點坐標為(0,-2),

因此所求函數關系式可看作,又拋物線經過點(1,1),

所以,,

解得.

故所求函數關系式為.

回顧與反思(a、k是常數,a≠0)的圖象的開口方向、對稱軸、頂點坐標歸納如下:

開口方向對稱軸頂點坐標

[當堂課內練習]

1.在同一直角坐標系中,畫出下列二次函數的圖象:

,,.

觀察三條拋物線的相互關系,并分別指出它們的開口方向及對稱軸、頂點的位置.你能說出拋物線的開口方向及對稱軸、頂點的位置嗎?

2.拋物線的開口,對稱軸是,頂點坐標是,它可以看作是由拋物線向平移個單位得到的.

3.函數,當x時,函數值y隨x的增大而減小.當x時,函數取得最值,最值y=.

[本課課外作業]

A組

1.已知函數,,.

(1)分別畫出它們的圖象;

(2)說出各個圖象的開口方向、對稱軸、頂點坐標;

(3)試說出函數的圖象的開口方向、對稱軸、頂點坐標.

2.不畫圖象,說出函數的開口方向、對稱軸和頂點坐標,并說明它是由函數通過怎樣的平移得到的.

3.若二次函數的圖象經過點(-2,10),求a的值.這個函數有還是最小值?是多少?

B組

4.在同一直角坐標系中與的圖象的大致位置是()

5.已知二次函數,當k為何值時,此二次函數以y軸為對稱軸?寫出其函數關系式.

初三數學教案范文篇2

教學內容

一元二次方程概念及一元二次方程一般式及有關概念.

教學目標

了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;應用一元二次方程概念解決一些簡單題目.

1.通過設置問題,建立數學模型,模仿一元一次方程概念給一元二次方程下定義.

2.一元二次方程的一般形式及其有關概念.

3.解決一些概念性的題目.

4.態度、情感、價值觀

4.通過生活學習數學,并用數學解決生活中的問題來激發學生的學習熱情.

重難點關鍵

1.重點:一元二次方程的概念及其一般形式和一元二次方程的有關概念并用這些概念解決問題.

2.難點關鍵:通過提出問題,建立一元二次方程的數學模型,再由一元一次方程的概念遷移到一元二次方程的概念.

教學過程

一、復習引入

學生活動:列方程.

問題(1)《九章算術》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”

大意是說:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少?

如果假設門的高為x尺,那么,這個門的寬為_______尺,根據題意,得________.

整理、化簡,得:__________.

問題(2)如圖,如果,那么點C叫做線段AB的黃金分割點.

如果假設剪后的正方形邊長為x,那么原來長方形長是________,寬是_____,根據題意,得:_______.

整理,得:________.

老師點評并分析如何建立一元二次方程的數學模型,并整理.

二、探索新知

學生活動:請口答下面問題.

(1)上面三個方程整理后含有幾個未知數?

(2)按照整式中的多項式的規定,它們最高次數是幾次?

(3)有等號嗎?或與以前多項式一樣只有式子?

老師點評:(1)都只含一個未知數x;(2)它們的最高次數都是2次的;(3)都有等號,是方程.

因此,像這樣的方程兩邊都是整式,只含有一個未知數(一元),并且未知數的最高次數是2(二次)的方程,叫做一元二次方程.

一般地,任何一個關于x的一元二次方程,經過整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.

一個一元二次方程經過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項,a是二次項系數;bx是一次項,b是一次項系數;c是常數項.

例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項系數、一次項系數及常數項.

分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必須運用整式運算進行整理,包括去括號、移項等.

解:去括號,得:

40-16x-10x+4x2=18

移項,得:4x2-26x+22=0

其中二次項系數為4,一次項系數為-26,常數項為22.

例2.(學生活動:請二至三位同學上臺演練)將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項、二次項系數;一次項、一次項系數;常數項.

分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.

解:去括號,得:

x2+2x+1+x2-4=1

移項,合并得:2x2+2x-4=0

其中:二次項2x2,二次項系數2;一次項2x,一次項系數2;常數項-4.

三、鞏固練習

教材P32練習1、2

四、應用拓展

例3.求證:關于x的方程(2-8+17)x2+2x+1=0,不論取何值,該方程都是一元二次方程.

分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可.

證明:2-8+17=(-4)2+1

∵(-4)2≥0

∴(-4)2+1>0,即(-4)2+1≠0

∴不論取何值,該方程都是一元二次方程.

五、歸納小結(學生總結,老師點評)

本節課要掌握:

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次項、二次項系數,一次項、一次項系數,常數項的概念及其它們的運用.

六、布置作業

初三數學教案范文篇3

學習目標

1.了解圓周角的概念.

2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.

3.理解圓周角定理的推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.

4.熟練掌握圓周角的定理及其推理的靈活運用.

設置情景,給出圓周角概念,探究這些圓周角與圓心角的關系,運用數學分類思想給予邏輯證明定理,得出推導,讓學生活動證明定理推論的正確性,最后運用定理及其推導解決一些實際問題

學習過程

一、溫故知新:

(學生活動)同學們口答下面兩個問題.二、自主學習:

1.什么叫圓心角?

2.圓心角、弦、弧之間有什么內在聯系呢?

自學教材P90---P93,思考下列問題:

1、什么叫圓周角?圓周角的兩個特征:。

2、在下面空里作一個圓,在同一弧上作一些圓心角及圓周角。通過圓周角的概念和度量的方法回答下面的問題.

(1)一個弧上所對的圓周角的個數有多少個?

(2).同弧所對的圓周角的度數是否發生變化?

(3).同弧上的圓周角與圓心角有什么關系?

3、默寫圓周角定理及推論并證明。

4、能去掉"同圓或等圓"嗎?若把"同弧或等弧"改成"同弦或等弦"性質成立嗎?

5、教材92頁思考?在同圓或等圓中,如果兩個圓周角相等,它們所對的弧一定相等嗎?為什么?

三、典型例題:

例1、(教材93頁例2)如圖,⊙O的直徑AB為10cm,弦AC為6cm,,∠ACB的平分線交⊙O于D,求BC、AD、BD的長。

例2、如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到C,使AC=AB,BD與CD的大小有什么關系?為什么?

四、鞏固練習:

1、(教材P93練習1)

解:

2、(教材P93練習2)

3、(教材P93練習3)

證明:

4、(教材P95習題24.1第9題)

五、總結反思:

達標檢測

1.如圖1,A、B、C三點在⊙O上,∠AOC=100°,則∠ABC等于().

A.140°B.110°C.120°D.130°

(1)(2)(3)

2.如圖2,∠1、∠2、∠3、∠4的大小關系是()

A.∠4<∠1<∠2<∠3B.∠4<∠1=∠3<∠2

C.∠4<∠1<∠3∠2D.∠4<∠1<∠3=∠2

3.如圖3,(中考題)AB是⊙O的直徑,BC,CD,DA是⊙O的弦,且BC=CD=DA,則∠BCD等于()

A.100°B.110°C.120°D.130°

4.半徑為2a的⊙O中,弦AB的長為2a,則弦AB所對的圓周角的度數是________.

5.如圖4,A、B是⊙O的直徑,C、D、E都是圓上的點,則∠1+∠2=_______.

(4)(5)

6.(中考題)如圖5,于,若,則

7.如圖,弦AB把圓周分成1:2的兩部分,已知⊙O半徑為1,求弦長AB.

拓展創新

1.如圖,已知AB=AC,∠APC=60°

(1)求證:△ABC是等邊三角形.

(2)若BC=4cm,求⊙O的面積.

3、教材P95習題24.1第12、13題。

布置作業教材P95習題24.1第10、11題。

初三數學教案范文篇4

教材分析

本節課是以成本下降為問題探究,討論平均變化率的問題,這類問題在現實世界中有很多的原型,例如經濟增長率、人口增長率等等,聯系生活實際很密切,這類問題也是一元二次方程在生活中最典型的應用。本節課主要是討論兩輪(即兩個時間段)的平均變化率,它可以用一元二次方程作為數學模型。

學情分析

1、由于我們的學生對列方程解應用題有畏懼的心理,感覺很困難,根據探究1學生的掌握情況來看,決定把探究2作為一課時,來專門學習。

2、學生對列方程解應用題的步驟已經很熟悉,而且有了第一課時連續傳播問題的做鋪墊,適合用自主探究,合作交流的學習方法。

3、連續增長問題的中的數量關系、規律的發現是本節課的難點,所以我把問題分解了讓學生逐個突破,由于九年級學生具有一定的解題歸納能力,所以采用從一般到特殊的探究方式。

教學目標

知識與技能:

1、能根據具體問題中的數量關系,列出一元二次方程,體會方程是刻畫現實世界某些問題的一個有效的數學模型。

2、能根據具體問題的實際意義,檢驗結果是否合理。

過程與方法:

1、經歷將實際問題抽象為數學問題的過程,探索問題中的數量關系,并能運用一元二次方程對之進行描述。

2、通過成本降低、能源增長等實際問題,學會將實際應用問題轉化為數學問題,發展實踐應用意識。

情感與態度:通過用一元一次方程解決身邊的問題,體會數學知識的應用價值,提高學生學習數學的興趣。

教學重點和難點

重點:利用增長率問題中的數量關系,列出方程解決問題。

難點:理清增長率問題中的數量關系。

初三數學教案范文篇5

一、復習引入

學生活動:請同學們完成下列各題.

問題1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根據完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.

問題2:目前我們都學過哪些方程?二元怎樣轉化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉化成一次?怎樣降次?以前學過哪些降次的方法?

二、探索新知

上面我們已經講了x2=9,根據平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?

(學生分組討論)

老師點評:回答是肯定的,把2t+1變為上面的x,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2

分析:(1)x2+4x+4是一個完全平方公式,那么原方程就轉化為(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接開平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的兩根x1=-3+2,x2=-3-2

解:略.

例2市政府計劃2年內將人均住房面積由現在的10m2提高到14.4m2,求每年人均住房面積增長率.

分析:設每年人均住房面積增長率為x,一年后人均住房面積就應該是10+10x=10(1+x);二年后人均住房面積就應該是10(1+x)+10(1+x)x=10(1+x)2

解:設每年人均住房面積增長率為x,

則:10(1+x)2=14.4

(1+x)2=1.44

直接開平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因為每年人均住房面積的增長率應為正的,因此,x2=-2.2應舍去.

所以,每年人均住房面積增長率應為20%.

(學生小結)老師引導提問:解一元二次方程,它們的共同特點是什么?

共同特點:把一個一元二次方程“降次”,轉化為兩個一元一次方程.我們把這種思想稱為“降次轉化思想”.

三、鞏固練習

教材第6頁練習.

四、課堂小結

本節課應掌握:由應用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉化為應用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達到降次轉化之目的.若p<0則方程無解.

五、作業布置

初三數學教案范文篇6

教學目標

知識與技能目標

1、構建本章的部分知識框圖。

2、復習一元二次方程的概念、解法。

過程與方法

1、通過對本章方程解法的復習,進一步提高學生的運算能力。

2、在解一元二次方程的過程中體會轉化等數學思想。

情感、態度與價值觀

通過師生共同的活動,使學生在交流和反思的過程中建立本章的知識體系,從而體驗學習數學的成就感.

教學重點

1、一元二次方程的概念

2、一元二次方程的四種解法:直接開平方法、配方法、公式法、因式分解法;

教學難點

解法的靈活選擇;例4和例5的解法。

教學過程

一、創設情境

導入新課

問題:本章中,我們有哪些收獲?(教師點撥引導學生構建本章部分知識框圖)

二、師生互動

共同探究

1、復習概念

例1

例2

2、四種解法

(1)

解法及其關系

(2)

根的形式

x1=3

x2=4

(3)熟悉解法

例3用四種解法分別解此方程

(4)方法優選

3、方法補充

例4

4、解法糾錯

例5

解關于x的方程

錯誤解法

正確解法

三、小結反思

提煉思想

我們有哪些收獲?解方程的思想方法是什么?

四、布置作業

鞏固提高

初三數學教案范文篇7

二次根式

教材內容

1.本單元教學的主要內容:

二次根式的概念;二次根式的加減;二次根式的乘除;最簡二次根式.

2.本單元在教材中的地位和作用:

二次根式是在學完了八年級下冊第十七章《反比例正函數》、第十八章《勾股定理及其應用》等內容的基礎之上繼續學習的,它也是今后學習其他數學知識的基礎.

教學目標

1.知識與技能

(1)理解二次根式的概念.

(2)理解(a≥0)是一個非負數,()2=a(a≥0),=a(a≥0).

(3)掌握?=(a≥0,b≥0),=?;

=(a≥0,b>0),=(a≥0,b>0).

(4)了解最簡二次根式的概念并靈活運用它們對二次根式進行加減.

2.過程與方法

(1)先提出問題,讓學生探討、分析問題,師生共同歸納,得出概念.再對概念的內涵進行分析,得出幾個重要結論,并運用這些重要結論進行二次根式的計算和化簡.

(2)用具體數據探究規律,用不完全歸納法得出二次根式的乘(除)法規定,并運用規定進行計算.

(3)利用逆向思維,得出二次根式的乘(除)法規定的逆向等式并運用它進行化簡.

(4)通過分析前面的計算和化簡結果,抓住它們的共同特點,給出最簡二次根式的概念.利用最簡二次根式的概念,來對相同的二次根式進行合并,達到對二次根式進行計算和化簡的目的.

3.情感、態度與價值觀

通過本單元的學習培養學生:利用規定準確計算和化簡的嚴謹的科學精神,經過探索二次根式的重要結論,二次根式的乘除規定,發展學生觀察、分析、發現問題的能力.

教學重點

1.二次根式(a≥0)的內涵.(a≥0)是一個非負數;()2=a(a≥0);=a(a≥0)及其運用.

2.二次根式乘除法的規定及其運用.

3.最簡二次根式的概念.

4.二次根式的加減運算.

教學難點

1.對(a≥0)是一個非負數的理解;對等式()2=a(a≥0)及=a(a≥0)的理解及應用.

2.二次根式的乘法、除法的條件限制.

3.利用最簡二次根式的概念把一個二次根式化成最簡二次根式.

教學關鍵

1.潛移默化地培養學生從具體到一般的推理能力,突出重點,突破難點.

2.培養學生利用二次根式的規定和重要結論進行準確計算的能力,培養學生一絲不茍的科學精神.

單元課時劃分

本單元教學時間約需11課時,具體分配如下:

21.1二次根式3課時

21.2二次根式的乘法3課時

21.3二次根式的加減3課時

教學活動、習題課、小結2課時

21.1二次根式

第一課時

教學內容

二次根式的概念及其運用

教學目標

理解二次根式的概念,并利用(a≥0)的意義解答具體題目.

提出問題,根據問題給出概念,應用概念解決實際問題.

教學重難點關鍵

1.重點:形如(a≥0)的式子叫做二次根式的概念;

2.難點與關鍵:利用“(a≥0)”解決具體問題.

教學過程

一、復習引入

(學生活動)請同學們獨立完成下列三個問題:

問題1:已知反比例函數y=,那么它的圖象在第一象限橫、縱坐標相等的點的坐標是___________.

問題2:如圖,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB邊的長是__________.

問題3:甲射擊6次,各次擊中的環數如下:8、7、9、9、7、8,那么甲這次射擊的方差是S2,那么S=_________.

老師點評:

問題1:橫、縱坐標相等,即x=y,所以x2=3.因為點在第一象限,所以x=,所以所求點的坐標(,).

問題2:由勾股定理得AB=

問題3:由方差的概念得S=.

二、探索新知

很明顯、、,都是一些正數的算術平方根.像這樣一些正數的算術平方根的式子,我們就把它稱二次根式.因此,一般地,我們把形如(a≥0)的式子叫做二次根式,“”稱為二次根號.

(學生活動)議一議:

1.-1有算術平方根嗎?

2.0的算術平方根是多少?

3.當a<0,有意義嗎?

老師點評:(略)

例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).

分析:二次根式應滿足兩個條件:第一,有二次根號“”;第二,被開方數是正數或0.

解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.

例2.當x是多少時,在實數范圍內有意義?

分析:由二次根式的定義可知,被開方數一定要大于或等于0,所以3x-1≥0,才能有意義.

解:由3x-1≥0,得:x≥

當x≥時,在實數范圍內有意義.

三、鞏固練習

教材P練習1、2、3.

四、應用拓展

例3.當x是多少時,+在實數范圍內有意義?

分析:要使+在實數范圍內有意義,必須同時滿足中的≥0和中的x+1≠0.

解:依題意,得

由①得:x≥-

由②得:x≠-1

當x≥-且x≠-1時,+在實數范圍內有意義.

例4(1)已知y=++5,求的值.(答案:2)

(2)若+=0,求a2004+b2004的值.(答案:)

五、歸納小結(學生活動,老師點評)

本節課要掌握:

1.形如(a≥0)的式子叫做二次根式,“”稱為二次根號.

2.要使二次根式在實數范圍內有意義,必須滿足被開方數是非負數.

六、布置作業

1.教材P8復習鞏固1、綜合應用5.

2.選用課時作業設計.

3.課后作業:《同步訓練》

第一課時作業設計

一、選擇題1.下列式子中,是二次根式的是()

A.-B.C.D.x

2.下列式子中,不是二次根式的是()

A.B.C.D.

3.已知一個正方形的面積是5,那么它的邊長是()

A.5B.C.D.以上皆不對

二、填空題

1.形如________的式子叫做二次根式.

2.面積為a的正方形的邊長為________.

3.負數________平方根.

三、綜合提高題

1.某工廠要制作一批體積為1m3的產品包裝盒,其高為0.2m,按設計需要,底面應做成正方形,試問底面邊長應是多少?

2.當x是多少時,+x2在實數范圍內有意義?

3.若+有意義,則=_______.

4.使式子有意義的未知數x有()個.

A.0B.1C.2D.無數

5.已知a、b為實數,且+2=b+4,求a、b的值.

第一課時作業設計答案:

一、1.A2.D3.B

二、1.(a≥0)2.3.沒有

三、1.設底面邊長為x,則0.2x2=1,解答:x=.

2.依題意得:,

∴當x>-且x≠0時,+x2在實數范圍內沒有意義.

3.

4.B

5.a=5,b=-4

初三數學教案范文篇8

一、概念:三、例1----------四、特殊角的正余弦值

-------------------------------------------------------

二、范圍:------------------五、例2------------

正弦和余弦(三)

一、素質教育目標

(一)知識教學點

使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系.

(二)能力訓練點

逐步培養學生觀察、比較、分析、綜合、抽象、概括的邏輯思維能力.

(三)德育滲透點

培養學生獨立思考、勇于創新的精神.

二、教學重點、難點

1.重點:使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系并會應用.

2.難點:一個銳角的正弦(余弦)與它的余角的余弦(正弦)之間的關系的應用.

三、教學步驟

(一)明確目標

1.復習提問

(1)、什么是∠A的正弦、什么是∠A的余弦,結合圖形請學生回答.因為正弦、余弦的概念是研究本課內容的知識基礎,請中下學生回答,從中可以了解教學班還有多少人不清楚的,可以采取適當的補救措施.

(2)請同學們回憶30°、45°、60°角的正、余弦值(教師板書).

(3)請同學們觀察,從中發現什么特征?學生一定會回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,這三個角的正弦值等于它們余角的余弦值”.

2.導入新課

根據這一特征,學生們可能會猜想“一個銳角的正弦(余弦)值等于它的余角的余弦(正弦)值.”這是否是真命題呢?引出課題.

(二)、整體感知

關于銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系,是通過30°、45°、60°角的正弦、余弦值之間的關系引入的,然后加以證明.引入這兩個關系式是為了便于查“正弦和余弦表”,關系式雖然用黑體字并加以文字語言的證明,但不標明是定理,其證明也不要求學生理解,更不應要求學生利用這兩個關系式去推證其他三角恒等式.在本章,這兩個關系式的用處僅僅限于查表和計算,而不是證明.

(三)重點、難點的學習和目標完成過程

1.通過復習特殊角的三角函數值,引導學生觀察,并猜想“任一銳角的正弦(余弦)值等于它的余角的余弦(正弦)值嗎?”提出問題,激發學生的學習熱情,使學生的思維積極活躍.

2.這時少數反應快的學生可能頭腦中已經“畫”出了圖形,并有了思路,但對部分學生來說仍思路凌亂.因此教師應進一步引導:sinA=cos(90°-A),cosA=sin(90°-A)(A是銳角)成立嗎?這時,學生結合正、余弦的概念,完全可以自己解決,教師要給學生足夠的研究解決問題的時間,以培養學生邏輯思維能力及獨立思考、勇于創新的精神.

3.教師板書:

任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值.

sinA=cos(90°-A),cosA=sin(90°-A).

4.在學習了正、余弦概念的基礎上,學生了解以上內容并不困難,但是,由于學生初次接觸三角函數,還不熟練,而定理又涉及余角、余函數,使學生極易混淆.因此,定理的應用對學生來說是難點、在給出定理后,需加以鞏固.

已知∠A和∠B都是銳角,

(1)把cos(90°-A)寫成∠A的正弦.

(2)把sin(90°-A)寫成∠A的余弦.

這一練習只能起到鞏固定理的作用.為了運用定理,教材安排了例3.

(2)已知sin35°=0.5736,求cos55°;

(3)已知cos47°6′=0.6807,求sin42°54′.

(1)問比較簡單,對照定理,學生立即可以回答.(2)、(3)比(1)則更深一步,因為(1)明確指出∠B與∠A互余,(2)、(3)讓學生自己發現35°與55°的角,47°6′分42°54′的角互余,從而根據定理得出答案,因此(2)、(3)問在課堂上應該請基礎好一些的同學講清思維過程,便于全體學生掌握,在三個問題處理完之后,最好將題目變形:

(2)已知sin35°=0.5736,則cos______=0.5736.

(3)cos47°6′=0.6807,則sin______=0.6807,以培養學生思維能力.

為了配合例3的教學,教材中配備了練習題2.

(2)已知sin67°18′=0.9225,求cos22°42′;

(3)已知cos4°24′=0.9971,求sin85°36′.

學生獨立完成練習2,就說明定理的教學較成功,學生基本會運用.

教材中3的設置,實際上是對前二節課內容的綜合運用,既考察學生正、余弦概念的掌握程度,同時又對本課知識加以鞏固練習,因此例3的安排恰到好處.同時,做例3也為下一節查正余弦表做了準備.

(四)小結與擴展

1.請學生做知識小結,使學生對所學內容進行歸納總結,將所學內容變成自己知識的組成部分.

2.本節課我們由特殊角的正弦(余弦)和它的余角的余弦(正弦)值間關系,以及正弦、余弦的概念得出的結論:任意一個銳角的正弦值等于它的余角的余弦值,任意一個銳角的余弦值等于它的余角的正弦值.

四、布置作業

教材習題14.1A組4、5.

五、板書設計

初三數學教案范文篇9

學習目標

1、一元二次方程的求根公式的推導

2、會用求根公式解一元二次方程.

3、通過運用公式法解一元二次方程的訓練,提高學生的運算能力,養成良好的運算習慣

學習重、難點

重點:一元二次方程的求根公式.

難點:求根公式的條件:b2-4ac≥0

學習過程:

一、自學質疑:

1、用配方法解方程:2x2-7x+3=0.

2、用配方解一元二次方程的步驟是什么?

3、用配方法解一元二次方程,計算比較麻煩,能否研究出一種更好的方法,迅速求得一元二次方程的實數根呢?

二、交流展示:

剛才我們已經利用配方法求解了一元二次方程,那你能否利用配方法的基本步驟解方程ax2+bx+c=0(a≠0)呢?

三、互動探究:

一般地,對于一元二次方程ax2+bx+c=0

(a≠0),當b2-4ac≥0時,它的根是

用求根公式解一元二次方程的方法稱為公式法

由此我們可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系數a、b、c確定的.因此,在解一元二次方程時,先將方程化為一般形式,然后在b2-4ac≥0的前提條件下,把各項系數a、b、c的值代入,就可以求得方程的根.

注:(1)把方程化為一般形式后,在確定a、b、c時,需注意符號.

(2)在運用求根公式求解時,應先計算b2-4ac的值;當b2-4ac≥0時,可以用公式求出兩個不相等的實數解;當b2-4ac<0時,方程沒有實數解.就不必再代入公式計算了.

四、精講點撥:

例1、課本例題

總結:其一般步驟是:

(1)把方程化為一般形式,進而確定a、b,c的值.(注意符號)

(2)求出b2-4ac的值.(先判別方程是否有根)

(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出的值,最后寫出方程的根.

例2、解方程:

(1)2x2-7x+3=0(2)x2-7x-1=0

(3)2x2-9x+8=0(4)9x2+6x+1=0

五、糾正反饋:

做書上第P90練習。

六、遷移應用:

例3、一個直角三角形三邊的長為三個連續偶數,求這個三角形的三條邊長.

例4、求方程的兩根之和以及兩根之積

拓展應用:關于的一元二次方程的一個根是,則;

方程的另一根是

初三數學教案范文篇10

教學目標

1、使學生理解弦、弧、弓形、同心圓、等圓、等孤的概念;初步會運用這些概念判斷真假命題。

2、逐步培養學生閱讀教材、親自動手實踐,總結出新概念的能力;進一步指導學

生觀察、比較、分析、概括知識的能力。

3、通過動手、動腦的全過程,調動學生主動學習的積極性,使學生從積極主動獲得知識。

教學重點、難點和疑點

1、重點:理解圓的有關概念.

2、難點:對“等圓”、“等弧”的定義中的“互相重合”這一特征的理解.

3、疑點:學生容易把長度相等的兩條弧看成是等弧。讓學生閱讀教材、理解、交流和與教師對話交流中排除疑難。

教學過程設計:

(一)閱讀、理解

重點概念:

1、弦:連結圓上任意兩點的線段叫做弦.

2、直徑:經過圓心的弦是直徑.

3、圓弧:圓上任意兩點間的部分叫做圓弧.簡稱弧.

半圓弧:圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧叫做半圓;

優弧:大于半圓的弧叫優弧;

劣弧:小于半圓的弧叫做劣弧.

4、弓形:由弦及其所對的弧組成的圖形叫做弓形.

5、同心圓:即圓心相同,半徑不相等的兩個圓叫做同心圓.

6、等圓:能夠重合的兩個圓叫做等圓.

7、等弧:在同圓或等圓中,能夠互相重合的弧叫做等弧.

(二)小組交流、師生對話

問題:

1、一個圓有多少條弦?最長的弦是什么?

2、弧分為哪幾種?怎樣表示?

3、弓形與弦有什么區別?在一個圓中一條弦能得到幾個弓形?

4、在等圓、等弧中,“互相重合”是什么含義?

(通過問題,使學生與學生,學生與老師進行交流、學習,加深對概念的理解,排除疑難)

(三)概念辨析:

判斷題目:

(1)直徑是弦()(2)弦是直徑()

(3)半圓是弧()(4)弧是半圓()

(5)長度相等的兩段弧是等弧()(6)等弧的長度相等()

(7)兩個劣弧之和等于半圓()(8)半徑相等的兩個半圓是等弧()

(主要理解以下概念:(1)弦與直徑;(2)弧與半圓;(3)同心圓、等圓指兩個圖形;(4)等圓、等弧是互相重合得到,等弧的條件作用.)

(四)應用、練習

例1、已知:如圖,AB、CB為⊙O的兩條弦,試寫出圖中的所有弧.

解:一共有6條弧.、、、、、.

(目的:讓學生會表示弧,并加深理解優弧和劣弧的概念)

例2、已知:如圖,在⊙O中,AB、CD為直徑.求證:AD∥BC.

(由學生分析,學生寫出證明過程,學生糾正存在問題.鍛煉學生動口、動腦、動手實踐能力,調動學生主動學習的積極性,使學生從積極主動獲得知識.)

鞏固練習:

教材P66練習中2題(學生自己完成).

(五)小結

教師引導學生自己做出總結:

1、本節所學似的知識點;

2、概念理解:①弦與直徑;②弧與半圓;③同心圓、等圓指兩個圖形;④等圓和等弧.

3、弧的表示方法.

(六)作業

教材P66練習中3題,P82習題l(3)、(4).

初三數學教案范文篇11

教學目標

1、在了解用集合的觀點定義圓的基礎上,進一步使學生了解軌跡的有關概念以及熟悉五種常用的點的軌跡;

2、培養學生從形象思維向抽象思維的過渡;

3、提高學生數學來源于實踐,反過來又作用于實踐的辯證唯物主義觀點的認識。

重點、難點

1、重點:對圓點的.軌跡的認識。

2、難點:對點的軌跡概念的認識,因為這個概念比較抽象。

教學活動設計(在老師與學生的交流對話中完成教學目標)

(一)創設學習情境

1、對“圓”的形成觀察——理解——引出軌跡的概念

(使學生在老師的引導下從感性知識到理性知識)

觀察:圓是到定點的距離等于定長的的點的集合;(電腦動畫)

理解:圓上的點具有兩個性質:

(1)圓上各點到定點(圓心O)的距離都等于定長(半徑的長r);

(2)到定點距離等于定長的的點都在圓上;(結合下圖)

引出軌跡的概念:我們把符合某一條件的所有的點所組成的圖形,叫做符合這個條件的點的軌跡.這里含有兩層意思:(1)圖形是由符合條件的那些點組成的,就是說,圖形上的任何一點都符合條件;(2)圖形包含了符合條件的所有的點,就是說,符合條件的任何一點都在圖形上.(軌跡的概念非常抽象,是教學的難點,這里教師要精講,細講)

上面左圖符合(1)但不符合(2);中圖不符合(1)但符合(2);只有右圖(1)(2)都符合.因此“到定點距離等于定長的點的軌跡”是圓.

軌跡1:“到定點距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓”。(研究圓是軌跡概念的切入口、基礎和關鍵)

(二)類比、研究1

(在老師指導下,通過電腦動畫,學生歸納、整理、概括、遷移,獲得新知識)

軌跡2:和已知線段兩個端點距離相等的點的軌跡,是這條線段的垂直平分線;

軌跡3:到已知角兩邊的距離相等的點的軌跡,是這個角的平分線;

(三)鞏固概念

練習:畫圖說明滿足下列條件的點的軌跡:

(1)到定點A的距離等于3cm的點的軌跡;

(2)到∠AOC的兩邊距離相等的點的軌跡;

(3)經過已知點A、B的圓O,圓心O的軌跡.

(A層學生獨立畫圖,回答滿足這個條件的軌跡是什么?歸納出每一個題的點的軌跡屬于哪一個基本軌跡;B、C層學生在老師的指導或帶領下完成)

(四)類比、研究2

(這是第二次“類比”,目的:使學生的知識和能力螺旋上升.這次通過電腦動畫,使A層學生自己做,進一步提高學生歸納、整理、概括、遷移等能力)

軌跡4:到直線l的距離等于定長d的點的軌跡,是平行于這條直線,并且到這條直線的距離等于定長的兩條直線;

軌跡5:到兩條平行線的距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線.

(五)鞏固訓練

練習題1:畫圖說明滿足下面條件的點的軌跡:

1.到直線l的距離等于2cm的點的軌跡;

2.已知直線AB∥CD,到AB、CD距離相等的點的軌跡.

(A層學生獨立畫圖探索;然后回答出點的軌跡是什么,對B、C層學生回答有一定的困難,這時教師要從規律上和方法上指導學生)

練習題2:判斷題

1、到一條直線的距離等于定長的點的軌跡,是平行于這條直線到這條直線的距離等于定長的直線.()

2、和點B的距離等于5cm的點的軌跡,是到點B的距離等于5cm的圓.()

3、到兩條平行線的距離等于8cm的點的軌跡,是和這兩條平行線的平行且距離等于8cm的一條直線.()

4、底邊為a的等腰三角形的頂點軌跡,是底邊a的垂直平分線.()

(這組練習題的目的,訓練學生思維的準確性和語言表達的正確性.題目由學生自主完成、交流、反思)

(教材的練習題、習題即可,因為這部分知識屬于選學內容,而軌跡概念又比較抽象,不要對學生要求太高,了解就行、理解就高要求)

(六)理解、小結

(1)軌跡的定義兩層意思;

(2)常見的五種軌跡。

(七)作業

教材P82習題2、6

初三數學教案范文篇12

教材分析

本節內容是上一節課在學習余角補角基礎上學習的,學生有了一定的基礎,為以后學面直角坐標系的學習做好準備。

學情分析

本節課對于學生來說學習起來并不太難,在小學階段學生已經接觸過方位角的內容,而且本節課內容和生活中的方向聯系緊密,故學生比較有興趣。

教學目標

理解方位角的意義,掌握方位角的判別和應用,通過現實情境,充分利用學生的生活經驗去體會方位角的意義。

教學重點和難點

重點:方位角的判別與應用

難點:方位角的畫法及變式題

教學過程(本文來自優秀教育資源網斐.斐.課.件.園)

教學環節教師活動預設學生行為設計意圖

一、創設情境,導入新課

二、講授新課

三、鞏固練習

四、課時小結五、布置作業由四面八方這個成語引出學生對八個方位的理解

1.先以一個具體圖形告訴學生基本知識點,方位角一般是以正南正北為基準,然后向東或西旋轉所成的角的始邊方向。

2.師示范方位角的畫法

3.出示補充例題,引對學生通過小組合作完成。思考并回答老師提出的問題

生觀察圖并理解老師的講解。

生觀察并獨立完成書中的例題

生先獨立思考然后與同學合作完成。激發學生的學習興趣

通遼具體圖形使學生初步認識方位角的表示方法。

使學生通遼具體操作掌握畫方位角的方法

進一步掌握方位角的有關知識,達到知識提升。

板書設計

4.3.3余角和補角(二)——方位角

學生學習活動評價設計

我先將學生按人數分成若干小組,在課前先給學生發放導學單,課上先給學生充分的討論時間后學生由小組推薦代表發言,累積分數,每個小組輪流回答一次,學生代表回答完畢后,其它同學補充糾錯,然后從知識點是否準確,語言是否流利,思維是否創新,邏輯是否合理嚴密等方面來做出評價,然后給出相應分數。累積到小組積分中課上知識回答后在練習部分,設計搶答題,小組搶答完成。最后計算出總分評出本節課小組及個人獎,給予口頭表揚。

教學反思

本節課是在上節課余角和補角的基礎上學習的,而且在小學階段也已經接觸過這部分知識了,基于這個特點,在課堂上我主要采取了自主學習的方式,學生接受的不錯,本節課的知識雖然簡單但很重要是為以后學面直角坐標系做準備的。出現的問題是有個別同學對于A看B是北偏東30度,則B看A是什么方向不太清楚,我采取的措施是讓明白的同學講給不明白的同學聽,指導其主要從哪方面入手解決此類問題,還有一點,學生在畫圖后容易忽略寫結論,應強調。以前在上本節課時,我是采取的講授法,感覺學生不是很愛聽,后來一想,知道了是因為小學時他們已經接觸了這部分知識,所以不愛聽,針對于這種情況,這次我采用了自主學習的方式感覺學生的積極性上來了,一節課氣氛很好,相信效果也不錯。以后再講這節課我將繼續采用這種方式,在此基礎上使其更加完善。

初三數學教案范文篇13

課題 二次函數y=ax2的圖象(一)

一、教學目的

1.使學生初步理解二次函數的概念。

2.使學生會用描點法畫二次函數y=ax2的圖象。

3.使學生結合y=ax2的圖象初步理解拋物線及其有關的概念。

二、教學重點、難點

重點:對二次函數概念的初步理解。

難點:會用描點法畫二次函數y=ax2的圖象。

三、教學過程

復習提問

1.在下列函數中,哪些是一次函數?哪些是正比例函數?

(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2-2。

2.什么是一無二次方程?

3.怎樣用找點法畫函數的圖象?

新課

1.由具體問題引出二次函數的定義。

(1)已知圓的面積是Scm2,圓的半徑是Rcm,寫出空上圓的面積S與半徑R之間的函數關系式。

(2)已知一個矩形的周長是60m,一邊長是Lm,寫出這個矩形的面積S(m2)與這個矩形的一邊長L之間的函數關系式。

(3)農機廠第一個月水泵的產量為50臺,第三個月的產量y(臺)與月平均增長率x之間的函數關系如何表示?

解:(1)函數解析式是S=πR2;

(2)函數析式是S=30L—L2;

(3)函數解析式是y=50(1+x)2,即

y=50x2+100x+50。

由以上三例啟發學生歸納出:

(1)函數解析式均為整式;

(2)處變量的最高次數是2。

我們說三個式子都表示的是二次函數。

一般地,如果y=ax2+bx+c(a,b,c沒有限制而a≠0),那么y叫做x的二次函數,請注意這里b,c沒有限制,而a≠0。

2.畫二次函數y=x2的圖象。

按照描點法分三步畫圖:

(1)列表∵x可取任意實數,∴以0為中心選取x值,以1為間距取值,且取整數值,便于計算,又x取相反數時,相應的y值相同;

(2)描點按照表中所列出的函數對應值,在平面直角坐標系中描出相應的7個點;

(3)邊線用平滑曲線順次連接各點,即得所求y=x2的圖象。

注意兩點:

(1)由于我們只描出了7個點,但自礦業量取值范圍是實數,故我們只畫出了實際圖象的一部分,即畫出了在原點附近、自變量在-3到3這個區間的一部分。而圖象在x>3或x<-3的區間是無限延伸的。

(2)所畫的圖象是近似的。

3.在原點附近較精確地研究二次函數y=x2的圖象形狀到底如何?——我們–1與1之間每隔0。2的間距取x值表和圖13-14。按課本P118內容講解。

4.引入拋物線的概念。

關于拋物線的頂點應從兩方面分析:一是從圖象上看,y=x2的圖象的頂點是最低點;一是從解析式y=x2看,當x=0時,y=x2取得最小值0,故拋物線y=x2的頂點是(0,0)。

小結

1.二次函數的定義。

(1)函數解析式關于自變量是整式;(2)函數自變量的最高次數是2。

2.二次函數y=x2的圖象。

(1)其圖象叫拋物線;(2)拋物線y=x2的對稱軸是y軸,開口向上,頂點是原點。

補充例題

下列函數中,哪些是二次函數?哪些不是二次函數?若是二次函數,指出a,b,c?

(1)y=2-3x2;(2)y=x(x-4);

(3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;

(5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。

作業:P122中A組1,2,3。

四、教學注意問題

1.注意滲透局部和全體、有限和無限、近似和精確等矛盾對立統一的觀點。

2.注意培養學生觀察分析問題的能力。比如,結合所畫二次函數y=x2的圖象,要求學生思考:

(1)y=x2的圖象的圖象有什么特點。(答:具有對稱性。)

(2)如何判斷y=x2的.圖象有上面所說的特點?(答:由觀察圖象看出來;或由列表求值得出來;或由解析式y=x2看出來。)

課題 二次函數y=ax2的圖象(一)

一、教學目的

1.使學生初步理解二次函數的概念。

2.使學生會用描點法畫二次函數y=ax2的圖象。

3.使學生結合y=ax2的圖象初步理解拋物線及其有關的概念。

二、教學重點、難點

重點:對二次函數概念的初步理解。

難點:會用描點法畫二次函數y=ax2的圖象。

三、教學過程

復習提問

1.在下列函數中,哪些是一次函數?哪些是正比例函數?

(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2-2。

2.什么是一無二次方程?

3.怎樣用找點法畫函數的圖象?

新課

1.由具體問題引出二次函數的定義。

(1)已知圓的面積是Scm2,圓的半徑是Rcm,寫出空上圓的面積S與半徑R之間的函數關系式。

(2)已知一個矩形的周長是60m,一邊長是Lm,寫出這個矩形的面積S(m2)與這個矩形的一邊長L之間的函數關系式。

(3)農機廠第一個月水泵的產量為50臺,第三個月的產量y(臺)與月平均增長率x之間的函數關系如何表示?

解:(1)函數解析式是S=πR2;

(2)函數析式是S=30L—L2;

(3)函數解析式是y=50(1+x)2,即

y=50x2+100x+50。

由以上三例啟發學生歸納出:

(1)函數解析式均為整式;

(2)處變量的最高次數是2。

我們說三個式子都表示的是二次函數。

一般地,如果y=ax2+bx+c(a,b,c沒有限制而a≠0),那么y叫做x的二次函數,請注意這里b,c沒有限制,而a≠0。

2.畫二次函數y=x2的圖象。

按照描點法分三步畫圖:

(1)列表∵x可取任意實數,∴以0為中心選取x值,以1為間距取值,且取整數值,便于計算,又x取相反數時,相應的y值相同;

(2)描點按照表中所列出的函數對應值,在平面直角坐標系中描出相應的7個點;

(3)邊線用平滑曲線順次連接各點,即得所求y=x2的圖象。

注意兩點:

(1)由于我們只描出了7個點,但自礦業量取值范圍是實數,故我們只畫出了實際圖象的一部分,即畫出了在原點附近、自變量在-3到3這個區間的一部分。而圖象在x>3或x<-3的區間是無限延伸的。

(2)所畫的圖象是近似的。

3.在原點附近較精確地研究二次函數y=x2的圖象形狀到底如何?——我們–1與1之間每隔0。2的間距取x值表和圖13-14。按課本P118內容講解。

4.引入拋物線的概念。

關于拋物線的頂點應從兩方面分析:一是從圖象上看,y=x2的圖象的頂點是最低點;一是從解析式y=x2看,當x=0時,y=x2取得最小值0,故拋物線y=x2的頂點是(0,0)。

小結

1.二次函數的定義。

(1)函數解析式關于自變量是整式;(2)函數自變量的最高次數是2。

2.二次函數y=x2的圖象。

(1)其圖象叫拋物線;(2)拋物線y=x2的對稱軸是y軸,開口向上,頂點是原點。

補充例題

下列函數中,哪些是二次函數?哪些不是二次函數?若是二次函數,指出a,b,c?

(1)y=2-3x2;(2)y=x(x-4);

(3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;

(5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。

作業:P122中A組1,2,3。

四、教學注意問題

1.注意滲透局部和全體、有限和無限、近似和精確等矛盾對立統一的觀點。

2.注意培養學生觀察分析問題的能力。比如,結合所畫二次函數y=x2的圖象,要求學生思考:

(1)y=x2的圖象的圖象有什么特點。(答:具有對稱性。)

(2)如何判斷y=x2的圖象有上面所說的特點?(答:由觀察圖象看出來;或由列表求值得出來;或由解析式y=x2看出來。)

初三數學教案范文篇14

【學習目標】

1.了解圓周角的概念.

2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.

3.理解圓周角定理的推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.

4.熟練掌握圓周角的定理及其推理的靈活運用.

設置情景,給出圓周角概念,探究這些圓周角與圓心角的關系,運用數學分類思想給予邏輯證明定理,得出推導,讓學生活動證明定理推論的正確性,最后運用定理及其推導解決一些實際問題

【學習過程】

一、溫故知新:

(學生活動)同學們口答下面兩個問題.

1.什么叫圓心角?

2.圓心角、弦、弧之間有什么內在聯系呢?

二、自主學習:

自學教材P90---P93,思考下列問題:

1、什么叫圓周角?圓周角的兩個特征:。

2、在下面空里作一個圓,在同一弧上作一些圓心角及圓周角。通過圓周角的概念和度量的方法回答下面的問題.

(1)一個弧上所對的圓周角的個數有多少個?

(2).同弧所對的圓周角的度數是否發生變化?

(3).同弧上的圓周角與圓心角有什么關系?

3、默寫圓周角定理及推論并證明。

4、能去掉"同圓或等圓"嗎?若把"同弧或等弧"改成"同弦或等弦"性質成立嗎?

5、教材92頁思考?在同圓或等圓中,如果兩個圓周角相等,它們所對的弧一定相等嗎?為什么?

三、典型例題:

例1、(教材93頁例2)如圖,⊙O的直徑AB為10cm,弦AC為6cm,,∠ACB的平分線交⊙O于D,求BC、AD、BD的長。

例2、如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到C,使AC=AB,BD與CD的大小有什么關系?為什么?

四、鞏固練習:

1、(教材P93練習1)

解:

2、(教材P93練習2)

3、(教材P93練習3)

證明:

4、(教材P95習題24.1第9題)

五、總結反思:

【達標檢測】

1.如圖1,A、B、C三點在⊙O上,∠AOC=100°,則∠ABC等于().

A.140°B.110°C.120°D.130°

(1)(2)(3)

2.如圖2,∠1、∠2、∠3、∠4的大小關系是()

A.∠4<∠1<∠2<∠3B.∠4<∠1=∠3<∠2

C.∠4<∠1<∠3∠2D.∠4<∠1<∠3=∠2

3.如圖3,(中考題)AB是⊙O的直徑,BC,CD,DA是⊙O的弦,且BC=CD=DA,則∠BCD等于()

A.100°B.110°C.120°D.130°

4.半徑為2a的⊙O中,弦AB的長為2a,則弦AB所對的圓周角的度數是________.

5.如圖4,A、B是⊙O的直徑,C、D、E都是圓上的點,則∠1+∠2=_______.

(4)(5)

6.(中考題)如圖5,于,若,則

7.如圖,弦AB把圓周分成1:2的兩部分,已知⊙O半徑為1,求弦長AB.

【拓展創新】

1.如圖,已知AB=AC,∠APC=60°

(1)求證:△ABC是等邊三角形.

(2)若BC=4cm,求⊙O的面積.

3、教材P95習題24.1第12、13題。

【布置作業】

教材P95習題24.1第10、11題。

初三數學教案范文篇15

1、教材分析

(1)知識結構

(2)重點、難點分析

重點:①點和圓的三種位置關系,圓的有關概念,因為它們是研究圓的基礎;②五種常見的點的軌跡,一是對幾何圖形的深刻理解,二為今后立體幾何、解析幾何的學習作重要的準備.

難點:①圓的集合定義,學生不容易理解為什么必須滿足兩個條件,內容本身屬于難點;②點的軌跡,由于學生形象思維較強,抽象思維弱,而這部分知識比較抽象和難懂.

2、教法建議

本節內容需要4課時

第一課時:圓的定義和點和圓的位置關系

(1)讓學生自己畫圓,自己給圓下定義,進行交流,歸納、概括,調動學生積極主動的參與教學活動;對于高層次的學生可以直接通過點的集合來研究,給圓下定義(參看教案圓(一));

(2)點和圓的位置關系,讓學生自己觀察、分類、探究,在“數形”的過程中,學習新知識.

第二課時:圓的有關概念

(1)對(A)層學生放開自學,對(B)層學生在老師引導下自學,要提高學生的學習能力,特別是概念較多而沒有很多發揮的內容,老師沒必要去講;

(2)課堂活動要抓住:由“數”想“形”,由“形”思“數”,的主線.

第三、四課時:點的軌跡

條件較好的學校可以利用電腦動畫來加深和幫助學生對點的軌跡的理解,一般學校可讓學生動手畫圖,使學生在動手、動腦、觀察、思考、理解的過程中,逐步從形象思維較強向抽象思維過度.但我的觀點是不管怎樣組織教學,都要遵循學生是學習的主體這一原則.

第一課時:圓(一)

教學目標:

1、理解圓的描述性定義,了解用集合的觀點對圓的定義;

2、理解點和圓的位置關系和確定圓的條件;

3、培養學生通過動手實踐發現問題的能力;

4、滲透“觀察→分析→歸納→概括”的數學思想方法.

教學重點:點和圓的關系

教學難點:以點的集合定義圓所具備的兩個條件

教學方法:自主探討式

教學過程設計(總框架):

一、創設情境,開展學習活動

1、讓學生畫圓、描述、交流,得出圓的第一定義:

定義1:在一個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點A隨之旋轉所形成的圖形叫做圓.固定的端點O叫做圓心,線段OA叫做半徑.記作⊙O,讀作“圓O”.

2、讓學生觀察、思考、交流,并在老師的指導下,得出圓的第二定義.

從舊知識中發現新問題

觀察:

共性:這些點到O點的距離相等

想一想:在平面內還有到O點的距離相等的點嗎?它們構成什么圖形?

(1)圓上各點到定點(圓心O)的距離都等于定長(半徑的長r);

(2)到定點距離等于定長的點都在圓上.

定義2:圓是到定點距離等于定長的點的集合.

3、點和圓的位置關系

問題三:點和圓的位置關系怎樣?(學生自主完成得出結論)

如果圓的半徑為r,點到圓心的距離為d,則:

點在圓上d=r;

點在圓內d

點在圓外d>r.

“數”“形”

二、例題分析,變式練習

練習:已知⊙O的半徑為5cm,A為線段OP的中點,當OP=6cm時,點A在⊙O________;當OP=10cm時,點A在⊙O________;當OP=18cm時,點A在⊙O___________.

例1求證:矩形的四個頂點在以對角線的交點為圓心的同一個圓上.

已知(略)

求證(略)

分析:四邊形ABCD是矩形

A=OC,OB=OD;AC=BD

OA=OC=OB=OD

要證A、B、C、D4個點在以O為圓心的圓上

證明:∵四邊形ABCD是矩形

∴OA=OC,OB=OD;AC=BD

∴OA=OC=OB=OD

∴A、B、C、D4個點在以O為圓心,OA為半徑的圓上.

符號“”的應用(要求學生了解)

證明:四邊形ABCD是矩形

OA=OC=OB=OD

A、B、C、D4個點在以O為圓心,OA為半徑的圓上.

小結:要證幾個點在同一個圓上,可以證明這幾個點與一個定點的距離相等.

問題拓展研究:我們所研究過的基本圖形中(平行四邊形,菱形,,正方形,等腰梯形)哪些圖形的頂點在同一個圓上.(讓學生探討)

練習1求證:菱形各邊的中點在同一個圓上.

(目的:培養學生的分析問題的能力和邏輯思維能力.A層自主完成)

練習2設AB=3cm,畫圖說明具有下列性質的點的集合是怎樣的圖形.

(1)和點A的距離等于2cm的點的集合;

(2)和點B的距離等于2cm的點的集合;

(3)和點A,B的距離都等于2cm的點的集合;

(4)和點A,B的距離都小于2cm的點的集合;(A層自主完成)

三、課堂小結

問:這節課學習的主要內容是什么?在學習時應注意哪些問題?在學生回答的基礎上,強調:

(1)主要學習了圓的兩種不同的定義方法與圓的三種位置關系;

(2)在用點的集合定義圓時,必須注意應具備兩個條件,二者缺一不可;

(3)注重對數學能力的培養

四、作業82頁2、3、4.

初三數學教案范文篇16

圖案設計

利用平移、軸對稱和旋轉的這些圖形變換中的一種或組合進行圖案設計,設計出稱心如意的圖案.

通過復習軸對稱、平移、旋轉的知識,然后利用這些知識讓學生開動腦筋,敝開胸懷大膽聯想,設計出一幅幅美麗的圖案.

1、設計圖案.

2、如何利用平移、軸對稱、旋轉等圖形變換中的一種或它們的組合得出圖案.

一、復習引入

1.如圖,已知線段CD是線段AB平移后的圖形,D是B點的對稱點,作出線段AB,并回答AB與CD有什么位置關系.

2.如圖,已知線段CD,作出線段CD關于對稱軸l的對稱線段C′D′,并說明CD與對稱線段C′D′之間有什么關系?

3.如圖,已知線段CD,作出線段CD關于D點旋轉90°的旋轉后的圖形,并說明這兩條線段之間有什么關系?

1.AB與CD平行且相等;

2.過D點作DE⊥l,垂足為E并延長,使ED′=ED,同理作出C′點,連接C′D′,則C′D′即為所求.

CD的延長線與C′D′的延長線相交于一點,這一點在l上并且CD=C′D′.

3.以D點為旋轉中心,旋轉后CD⊥C′D,垂足為D,并且CD=C′D.

二、探索新知

請用以上所講的平移、軸對稱、旋轉等圖形變換中的一種或幾種組合完成下面的圖案設計.

例1 (學生活動)學生親自動手操作題.

按下面的步驟,請每一位同學完成一個別致的圖案.

(1)準備一張正三角形紙片(課前準備)(如圖a);

(2)把紙片任意撕成兩部分(如圖b,如圖c);

(3)將撕好的如圖b沿正三角形的一邊作軸對稱,得到新的圖形;

(4)將(3)得到的圖形以正三角形的一個頂點作為旋轉中心旋轉,得到如圖(d)(如圖c保持不動);

(5)把如圖(d)平移到如圖(c)的右邊,得到如圖(e);

(6)對如圖(e)進行適當的修飾,使得到一個別致美麗的如圖(f)的圖案.

老師必要時可以給予一定的指導.

三、課堂小結

本節課應掌握:

利用平移、軸對稱和旋轉的圖形變換中的一種或組合設計圖案.

初三數學教案范文篇17

新的學期又開始了,我又擔任九年級數學學科的教學,九年級時間非常緊張,既要完成新課程的教學又要考慮下學期對初中階段整個數學知識的全面系統的復習。所以在注意時間的安排上,同時把握好教學進度的基礎上特制定本學期的教學計劃:

一、基本情況分析:

上學年學生期末考試的成績總體來看比較好,但是優生面不廣,尖子不尖。在學生所學知識的掌握程度上,良莠不齊,對優生來說,能夠透徹理解知識,知識間的內在聯系也較為清楚,對差一點的學生來說,有些基礎知識還不能有效的掌握,學生仍然缺少大量的推理題訓練,推理的思考方法與寫法上均存在著一定的困難,對幾何有畏難情緒,相關知識學得不很透徹。在學習能力上,學生課外主動獲取知識的能力較差,為減輕學生的經濟負擔與課業負擔,不提倡學生買教輔參考書,學生自主拓展知識面,向深處學習知識的能力沒有得到很好的培養。在以后的教學中,培養學生課外主動獲取知識的能力。學生的邏輯推理、邏輯思維能力,計算能力需要得到加強,以提升學生的整體成績,應在合適的時候補充課外知識,拓展學生的知識面,提升學生素質;在學習態度上,一部分學生上課能全神貫注,積極的投入到學習中去,大部分學生對數學學習好高鶩遠、心浮氣躁,學習態度和學習習慣還需培養。學生的學習習慣養成還不理想,預習的習慣,進行總結的習慣,自習課專心致志學習的習慣,主動糾正(考試、作業后)錯誤的習慣,有些學生不具有或不夠重視,需要教師的督促才能做,陶行知說:“教育就是培養習慣”,這是本期教學中重點予以關注的。

二、指導思想:

通過九年數學的教學,提供進一步學習所必需的數學基礎知識與基本技能,進一步培養學生的運算能力、思維能力和空間想象能力,能夠運用所學知識解決簡單的實際問題,教育學生掌握基礎知識與基本技能,培養學生的邏輯思維能力、運算能力、空間觀念和解決簡單實際問題的能力,使學生逐步學會正確、合理地進行運算,逐步學會觀察分析、綜合、抽象、概括。會用歸納演繹、類比進行簡單的推理。提高學習數學的興趣,逐步培養學生具有良好的學習習慣,實事求是的態度。頑強的學習毅力和獨立思考、探索的新思想。培養學生應用數學知識解決問題的能力。

三、教學內容

本學期的教學內容共五章:

第22章:二次根式;第23章:一元二次方程;第24章:圖形的相似;

第25章:解直角三角形;第26章:隨機事件的概率。

四、教學重點、難點

重點:

1、要求學生掌握證明的基本要求和方法,學會推理論證;

2、探索證明的思路和方法,提倡證明的多樣性。

難點:

1、引導學生探索、猜測、證明,體會證明的必要性;

2、在教學中滲透如歸納、類比、轉化等數學思想。

五、在教學過程中抓住以下幾個環節:

(1)認真備課。認真研究教材及考綱,明確教學目標,抓住重點、難點,精心設計教學過程,重視每一章節內容與前后知識的聯系及其地位,重視課后反思,設計好每一節課的師生互動的細節。

(2)抓住課堂45分鐘。嚴格按照教學計劃,精心設計每一節課的每一個環節,爭取每節課達到教學目標,突出重點,分散難點,增大課堂容量組織學生人人參與課堂活動,使每個學生積極主動參與課堂活動,使每個學生動手、動口、動腦,及時反饋信息提高課堂效益。

(3)課后反饋。精選適當的練習題、測試卷,及時批改作業,發現問題及時給學生面對面的指出并指導學生搞懂弄通,不留一個疑難點,讓學生學有所獲。

六、教學措施:

1.認真學習鉆研新課標,掌握教材。

2.認真備課,爭取充分掌握學生動態。

3.認真上好每一堂課。

4.落實每一堂課后輔助,查漏補缺。

5.積極與其它老師溝通,加強教研教改,提高教學水平。

6.復習階段多讓學生動腦、動手,通過各種習題、綜合試題和模擬試題的訓練,使學生逐步熟悉各知識點,并能熟練運用。

除了以上計劃外,我還將預計開展培優和治跛工作,教學中注重數學理論與社會實踐的聯系,鼓勵學生多觀察、多思考實際生活中蘊藏的數學問題,逐步培養學生運用書本知識解決實際問題的能力。

初三數學教案范文篇18

教材分析

本節內容是上一節課在學習余角補角基礎上學習的,學生有了一定的基礎,為以后平面直角坐標系的學習做好準備。

學情分析

本節課對于學生來說學習起來并不太難,在小學階段學生已經接觸過方位角的內容,而且本節課內容和生活中的方向聯系緊密,故學生比較有興趣。

教學目標

理解方位角的意義,掌握方位角的判別和應用,通過現實情境,充分利用學生的生活經驗去體會方位角的意義。

教學重點和難點

重點:方位角的判別與應用

難點:方位角的畫法及變式題

教學過程(本文來自優秀教育資源網斐.斐.課.件.園)

教學環節教師活動預設學生行為設計意圖

一、創設情境,導入新課

二、講授新課

三、鞏固練習

四、課時小結五、布置作業由四面八方這個成語引出學生對八個方位的理解

1.先以一個具體圖形告訴學生基本知識點,方位角一般是以正南正北為基準,然后向東或西旋轉所成的角的始邊方向。

2.師示范方位角的畫法

3.出示補充例題,引對學生通過小組合作完成。思考并回答老師提出的問題

生觀察圖并理解老師的講解。

生觀察并獨立完成書中的例題

生先獨立思考然后與同學合作完成。激發學生的學習興趣

通遼具體圖形使學生初步認識方位角的表示方法。

使學生通遼具體操作掌握畫方位角的方法

進一步掌握方位角的有關知識,達到知識提升。

板書設計

4.3.3余角和補角(二)——方位角

學生學習活動評價設計

我先將學生按人數分成若干小組,在課前先給學生發放導學單,課上先給學生充分的討論時間后學生由小組推薦代表發言,累積分數,每個小組輪流回答一次,學生代表回答完畢后,其它同學補充糾錯,然后從知識點是否準確,語言是否流利,思維是否創新,邏輯是否合理嚴密等方面來做出評價,然后給出相應分數。累積到小組積分中課上知識回答后在練習部分,設計搶答題,小組搶答完成。最后計算出總分評出本節課小組及個人獎,給予口頭表揚。

教學反思

本節課是在上節課余角和補角的基礎上學習的,而且在小學階段也已經接觸過這部分知識了,基于這個特點,在課堂上我主要采取了自主學習的方式,學生接受的不錯,本節課的知識雖然簡單但很重要是為以后平面直角坐標系做準備的。出現的問題是有個別同學對于A看B是北偏東30度,則B看A是什么方向不太清楚,我采取的措施是讓明白的同學講給不明白的同學聽,指導其主要從哪方面入手解決此類問題,還有一點,學生在畫圖后容易忽略寫結論,應強調。以前在上本節課時,我是采取的講授法,感覺學生不是很愛聽,后來一想,知道了是因為小學時他們已經接觸了這部分知識,所以不愛聽,針對于這種情況,這次我采用了自主學習的方式感覺學生的積極性上來了,一節課氣氛很好,相信效果也不錯。以后再講這節課我將繼續采用這種方式,在此基礎上使其更加完善。

74295 主站蜘蛛池模板: 塑料瓶罐_食品塑料瓶_保健品塑料瓶_调味品塑料瓶–东莞市富慷塑料制品有限公司 | 美国查特CHART MVE液氮罐_查特杜瓦瓶_制造全球品质液氮罐 | 喷砂机厂家_自动除锈抛丸机价格-成都泰盛吉自动化喷砂设备 | YT保温材料_YT无机保温砂浆_外墙保温材料_南阳银通节能建材高新技术开发有限公司 | 聚氨酯保温钢管_聚氨酯直埋保温管道_聚氨酯发泡保温管厂家-沧州万荣防腐保温管道有限公司 | 自动气象站_农业气象站_超声波气象站_防爆气象站-山东万象环境科技有限公司 | 隔爆型防爆端子分线箱_防爆空气开关箱|依客思| 电磁铁_小型推拉电磁铁_电磁阀厂家-深圳市宗泰电机有限公司 | 不锈钢钢格栅板_热浸锌钢格板_镀锌钢格栅板_钢格栅盖板-格美瑞 | 干法制粒机_智能干法制粒机_张家港市开创机械制造有限公司 | 建筑消防设施检测系统检测箱-电梯**检测仪器箱-北京宇成伟业科技有限责任公司 | 槽钢冲孔机,槽钢三面冲,带钢冲孔机-山东兴田阳光智能装备股份有限公司 | 空调风机,低噪声离心式通风机,不锈钢防爆风机,前倾皮带传动风机,后倾空调风机-山东捷风风机有限公司 | 鹤壁创新仪器公司-全自动量热仪,定硫仪,煤炭测硫仪,灰熔点测定仪,快速自动测氢仪,工业分析仪,煤质化验仪器 | 耐高温电缆厂家-远洋高温电缆| 金联宇电缆|广东金联宇电缆厂家_广东金联宇电缆实业有限公司 | 天津仓库出租网-天津电商仓库-天津云仓一件代发-【博程云仓】 | 中药超微粉碎机(中药细胞级微粉碎)-百科 | 水厂自动化-水厂控制系统-泵站自动化|控制系统-闸门自动化控制-济南华通中控科技有限公司 | 报警器_家用防盗报警器_烟雾报警器_燃气报警器_防盗报警系统厂家-深圳市刻锐智能科技有限公司 | 可程式恒温恒湿试验箱|恒温恒湿箱|恒温恒湿试验箱|恒温恒湿老化试验箱|高低温试验箱价格报价-广东德瑞检测设备有限公司 | 东莞猎头公司_深圳猎头公司_广州猎头公司-广东万诚猎头提供企业中高端人才招聘服务 | 济南网站策划设计_自适应网站制作_H5企业网站搭建_济南外贸网站制作公司_锐尚 | 耐高温硅酸铝板-硅酸铝棉保温施工|亿欧建设工程 | 西安微信朋友圈广告投放_微信朋友圈推广_西安度娘网络科技有限公司 | 艾乐贝拉细胞研究中心 | 国家组织工程种子细胞库华南分库 | 青岛空压机,青岛空压机维修/保养,青岛空压机销售/出租公司,青岛空压机厂家电话 | 智慧农业|农业物联网|现代农业物联网-托普云农物联网官方网站 | 搜活动房网—活动房_集装箱活动房_集成房屋_活动房屋 | 砂石生产线_石料生产线设备_制砂生产线设备价格_生产厂家-河南中誉鼎力智能装备有限公司 | 电车线(用于供电给电车的输电线路)-百科 | 杭州荣奥家具有限公司-浙江办公家具,杭州办公家具厂 | 专业深孔加工_东莞深孔钻加工_东莞深孔钻_东莞深孔加工_模具深孔钻加工厂-东莞市超耀实业有限公司 | NBA直播_NBA直播免费观看直播在线_NBA直播免费高清无插件在线观看-24直播网 | 翰香原枣子坊加盟费多少钱-正宗枣核糕配方培训利润高飘香 | 烟台金蝶财务软件,烟台网站建设,烟台网络推广 | 废旧物资回收公司_广州废旧设备回收_报废设备物资回收-益美工厂设备回收公司 | 振动时效_振动时效仪_超声波冲击设备-济南驰奥机电设备有限公司 北京宣传片拍摄_产品宣传片拍摄_宣传片制作公司-现像传媒 | 泰兴市热钻机械有限公司-热熔钻孔机-数控热熔钻-热熔钻孔攻牙一体机 | 隧道风机_DWEX边墙风机_SDS射流风机-绍兴市上虞科瑞风机有限公司 | 北京西风东韵品牌与包装设计公司,创造视觉销售力! |