小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教學(xué)設(shè)計(jì) >

初三數(shù)學(xué)教案案例

時(shí)間: 新華 教學(xué)設(shè)計(jì)

編寫教案可以使教師在教學(xué)前有充分的準(zhǔn)備,免除臨時(shí)抱佛腳的情況出現(xiàn)。初三數(shù)學(xué)教案案例怎么才能寫好?這里分享一些初三數(shù)學(xué)教案案例,方便大家學(xué)習(xí)。

初三數(shù)學(xué)教案案例篇1

理解間接即通過變形運(yùn)用開平方法降次解方程,并能熟練應(yīng)用它解決一些具體問題.

通過復(fù)習(xí)可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟.

重點(diǎn)

講清直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟.

難點(diǎn)

將不可直接降次解方程化為可直接降次解方程的“化為”的轉(zhuǎn)化方法與技巧.

一、復(fù)習(xí)引入

(學(xué)生活動(dòng))請(qǐng)同學(xué)們解下列方程:

(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7

老師點(diǎn)評(píng):上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±p或mx+n=±p(p≥0).

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9嗎?

二、探索新知

列出下面問題的方程并回答:

(1)列出的經(jīng)化簡(jiǎn)為一般形式的方程與剛才解題的方程有什么不同呢?

(2)能否直接用上面前三個(gè)方程的解法呢?

問題:要使一塊矩形場(chǎng)地的長(zhǎng)比寬多6m,并且面積為16m2,求場(chǎng)地的長(zhǎng)和寬各是多少?

(1)列出的經(jīng)化簡(jiǎn)為一般形式的方程與前面講的三道題不同之處是:前三個(gè)左邊是含有x的完全平方式而后二個(gè)不具有此特征.

(2)不能.

既然不能直接降次解方程,那么,我們就應(yīng)該設(shè)法把它轉(zhuǎn)化為可直接降次解方程的方程,下面,我們就來講如何轉(zhuǎn)化:

x2+6x-16=0移項(xiàng)→x2+6x=16

兩邊加(6/2)2使左邊配成x2+2bx+b2的形式→x2+6x+32=16+9

左邊寫成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以驗(yàn)證:x1=2,x2=-8都是方程的根,但場(chǎng)地的寬不能是負(fù)值,所以場(chǎng)地的寬為2m,長(zhǎng)為8m.

像上面的解題方法,通過配成完全平方形式來解一元二次方程的方法,叫配方法.

可以看出,配方法是為了降次,把一個(gè)一元二次方程轉(zhuǎn)化為兩個(gè)一元一次方程來解.

例1用配方法解下列關(guān)于x的方程:

(1)x2-8x+1=0(2)x2-2x-12=0

分析:(1)顯然方程的左邊不是一個(gè)完全平方式,因此,要按前面的方法化為完全平方式;(2)同上.

解:略.

三、鞏固練習(xí)

教材第9頁(yè)練習(xí)1,2.(1)(2).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:

左邊不含有x的完全平方形式的一元二次方程化為左邊是含有x的完全平方形式,右邊是非負(fù)數(shù),可以直接降次解方程的方程.

五、作業(yè)布置

初三數(shù)學(xué)教案案例篇2

教學(xué)目標(biāo)

1.初步掌握用直接開平方法解一元二次方程,會(huì)用直接開平方法解形如的方程;

2.初步掌握用配方法解一元二次方程,會(huì)用配方法解數(shù)字系數(shù)的一元二次方程;

3.掌握一元二次方程的求根公式的推導(dǎo),能夠運(yùn)用求根公式解一元二次方程;

4.會(huì)用因式分解法解某些一元二次方程。

5.通過對(duì)一元二次方程解法的教學(xué),使學(xué)生進(jìn)一步理解“降次”的數(shù)學(xué)方法,進(jìn)一步獲得對(duì)事物可以轉(zhuǎn)化的認(rèn)識(shí)。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):一元二次方程的四種解法。

難點(diǎn):選擇恰當(dāng)?shù)姆椒ń庖辉畏匠獭?/p>

教學(xué)建議:

一、教材分析:

1.知識(shí)結(jié)構(gòu):一元二次方程的解法

2.重點(diǎn)、難點(diǎn)分析

(1)熟練掌握開平方法解一元二次方程

用開平方法解一元二次方程,一種是直接開平方法,另一種是配方法。

如果一元二次方程的一邊是未知數(shù)的平方或含有未知數(shù)的一次式的平方,另一邊是一個(gè)非負(fù)數(shù),或完全平方式,如方程,和方程就可以直接開平方法求解,在開平方時(shí)注意取正、負(fù)兩個(gè)平方根。

配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,轉(zhuǎn)化為的形式來求解。配方時(shí)要注意把二次項(xiàng)系數(shù)化為1和方程兩邊都加上一次項(xiàng)系數(shù)一半的平方這兩個(gè)關(guān)鍵步驟。

(2)熟記求根公式和公式中字母的意義在使用求根公式時(shí)要注意以下三點(diǎn):

1)把方程化為一般形式,并做到、之間沒有公因數(shù),且二次項(xiàng)系數(shù)為正整數(shù),這樣代入公式計(jì)算較為簡(jiǎn)便。

2)把一元二次方程的各項(xiàng)系數(shù)、、代入公式時(shí),注意它們的符號(hào)。

3)當(dāng)時(shí),才能求出方程的兩根。

(3)抓住方程特點(diǎn),選用因式分解法解一元二次方程

如果一個(gè)一元二次方程的一邊是零,另一邊易于分解成兩個(gè)一次因式時(shí),就可以用因式分解法求解。這時(shí)只要使每個(gè)一次因式等于零,分別解兩個(gè)一元一次方程,得到兩個(gè)根就是一元二次方程的解。

我們共學(xué)習(xí)了四種解一元二次方程的方法:直接開平方法;配方法;公式法和因式分解法。解方程時(shí),要認(rèn)真觀察方程的特征,選用適當(dāng)?shù)姆椒ㄇ蠼狻?/p>

二、教法建議

1.教學(xué)方法建議采用啟發(fā)引導(dǎo),講練結(jié)合的授課方式,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位,學(xué)生獲取知識(shí)必須通過學(xué)生自己一系列思維活動(dòng)完成,啟發(fā)誘導(dǎo)學(xué)生深入思考問題,有利于培養(yǎng)學(xué)生思維靈活、嚴(yán)謹(jǐn)、深刻等良好思維品質(zhì).

2.注意培養(yǎng)應(yīng)用意識(shí).教學(xué)中應(yīng)不失時(shí)機(jī)地使學(xué)生認(rèn)識(shí)到數(shù)學(xué)源于實(shí)踐并反作用于實(shí)踐.

初三數(shù)學(xué)教案案例篇3

二次根式

教學(xué)目標(biāo)

1、了解二次根式的概念、

2、掌握二次根式的基本性質(zhì)

教學(xué)過程

一、提出問題

上一節(jié)我們學(xué)習(xí)了平方根和算術(shù)平方根的意義,引進(jìn)了一個(gè)新的記號(hào),現(xiàn)在請(qǐng)同學(xué)們思考并回答下面兩個(gè)問題:

1、表示什么?

2、a需要滿足什么條件?為什么?

二、合作交流,解決問題

讓學(xué)生合作交流,然后回答問題(可以補(bǔ)充),歸納為;

1、當(dāng)a是正數(shù)時(shí),表示a的算術(shù)平方根,即正數(shù)a的兩個(gè)平方根中的一個(gè)正數(shù);

2、當(dāng)a是零時(shí),表示零,也叫零的算術(shù)平方根;

3、a≥0,因?yàn)槿魏我粋€(gè)有理數(shù)的平方都大于或等于零

三、歸納特點(diǎn),引入二次根式概念

1、基本性質(zhì)、

問題1 你能用一句話概括以上3個(gè)結(jié)論嗎?

讓一個(gè)學(xué)生回答、其他學(xué)生補(bǔ)充,概括為:(a≥0)表示非負(fù)數(shù)a的算術(shù)平方根,也就是說,(a≥0)是一個(gè)非負(fù)數(shù),即≥0(a≥0)。

問題2 ()2(a≥0)等于什么?說說你的理由并舉例驗(yàn)證。

讓學(xué)生小組討論或自主探索得出結(jié)論:()2=a(a≥0),如()2=4,()2=2等、

以上兩個(gè)問題的結(jié)論就是基本性質(zhì),特別是()2=a(a≥0)可以當(dāng)公式使用,直接應(yīng)用于計(jì)算。反過來,把()2=a(a≥0)寫成a=()2(a≥0)的形式,這說明:任何一個(gè)非負(fù)數(shù)a都可以寫成一個(gè)數(shù)的平方的形式、例如:3=()2,0.3= ()2

提問:

(1)0=()2對(duì)不對(duì)?

(2)-5=()2對(duì)不對(duì)?如果不對(duì),錯(cuò)在哪里?

2、二次根式概念

形如(a≥0)的式子叫做二次根式、

說明:二次根式必須具備以下特點(diǎn);

(1)有二次根號(hào);

(2)被開方數(shù)不能小于0。

讓學(xué)生舉出二次根式的幾個(gè)例子,并判斷,(a<0)、、(a<o)是不是二次根式。< p="">

四、范例

例1、要使式子有意義,字母x的取值必須滿足什么條件?

提問:

若將式子改為,則字母x的取值必須滿足什么條件?

五、課堂練習(xí)

Pl0頁(yè)練習(xí)1、2、

六、思考提高

我們已經(jīng)研究了()2(a≥0)等于a,現(xiàn)在研究等于什么

提問:

1、對(duì)于抽象問題的研究,常常采用什么策略?

2、在中,a的取值有沒有限制?

3、取一些數(shù)值來驗(yàn)證。通過驗(yàn)證,你能發(fā)現(xiàn)什么規(guī)律?

因此,今后我們遇到時(shí),可先改寫成a的絕對(duì)值|a|,再按照a取正數(shù)值,0還是負(fù)數(shù)值來取值、例如當(dāng)x<0時(shí),=|4x|=-4x

4、()2與是一樣的嗎?說說你的理由,并與同學(xué)交流。

七、小結(jié)

1、什么叫做二次根式?你們能舉出幾個(gè)例子嗎?

2、二次根式有哪兩個(gè)形式上的特點(diǎn)?

3、二次根式有哪些性質(zhì)?

八、作業(yè)

習(xí)題22.1第1、2、3、4題、

教學(xué)后記:

初三數(shù)學(xué)教案案例篇4

教材分析

本節(jié)課是以成本下降為問題探究,討論平均變化率的問題,這類問題在現(xiàn)實(shí)世界中有很多的原型,例如經(jīng)濟(jì)增長(zhǎng)率、人口增長(zhǎng)率等等,聯(lián)系生活實(shí)際很密切,這類問題也是一元二次方程在生活中最典型的應(yīng)用。本節(jié)課主要是討論兩輪(即兩個(gè)時(shí)間段)的平均變化率,它可以用一元二次方程作為數(shù)學(xué)模型。

學(xué)情分析

1、由于我們的學(xué)生對(duì)列方程解應(yīng)用題有畏懼的心理,感覺很困難,根據(jù)探究1學(xué)生的掌握情況來看,決定把探究2作為一課時(shí),來專門學(xué)習(xí)。

2、學(xué)生對(duì)列方程解應(yīng)用題的步驟已經(jīng)很熟悉,而且有了第一課時(shí)連續(xù)傳播問題的做鋪墊,適合用自主探究,合作交流的學(xué)習(xí)方法。

3、連續(xù)增長(zhǎng)問題的中的數(shù)量關(guān)系、規(guī)律的發(fā)現(xiàn)是本節(jié)課的難點(diǎn),所以我把問題分解了讓學(xué)生逐個(gè)突破,由于九年級(jí)學(xué)生具有一定的解題歸納能力,所以采用從一般到特殊的探究方式。

教學(xué)目標(biāo)

知識(shí)與技能:

1、能根據(jù)具體問題中的數(shù)量關(guān)系,列出一元二次方程,體會(huì)方程是刻畫現(xiàn)實(shí)世界某些問題的一個(gè)有效的數(shù)學(xué)模型。

2、能根據(jù)具體問題的實(shí)際意義,檢驗(yàn)結(jié)果是否合理。

過程與方法:

1、經(jīng)歷將實(shí)際問題抽象為數(shù)學(xué)問題的過程,探索問題中的數(shù)量關(guān)系,并能運(yùn)用一元二次方程對(duì)之進(jìn)行描述。

2、通過成本降低、能源增長(zhǎng)等實(shí)際問題,學(xué)會(huì)將實(shí)際應(yīng)用問題轉(zhuǎn)化為數(shù)學(xué)問題,發(fā)展實(shí)踐應(yīng)用意識(shí)。

情感與態(tài)度:通過用一元一次方程解決身邊的問題,體會(huì)數(shù)學(xué)知識(shí)的應(yīng)用價(jià)值,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):利用增長(zhǎng)率問題中的數(shù)量關(guān)系,列出方程解決問題。

難點(diǎn):理清增長(zhǎng)率問題中的數(shù)量關(guān)系。

初三數(shù)學(xué)教案案例篇5

教學(xué)目標(biāo):

1.使學(xué)生理解直線和圓的相交、相切、相離的概念。

2.掌握直線與圓的位置關(guān)系的性質(zhì)與判定并能夠靈活運(yùn)用來解決實(shí)際問題。

3.培養(yǎng)學(xué)生把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力及分類和化歸的能力。

重點(diǎn)難點(diǎn):

1.重點(diǎn):直線與圓的三種位置關(guān)系的概念。

2.難點(diǎn):運(yùn)用直線與圓的位置關(guān)系的性質(zhì)及判定解決相關(guān)的問題。

教學(xué)過程:

一.復(fù)習(xí)引入

1.提問:復(fù)習(xí)點(diǎn)和圓的三種位置關(guān)系。

(目的:讓學(xué)生將點(diǎn)和圓的位置關(guān)系與直線和圓的位置關(guān)系進(jìn)行類比,以便更好的掌握直線和圓的位置關(guān)系)

2.由日出升起過程當(dāng)中的三個(gè)特殊位置引入直線與圓的位置關(guān)系問題。

(目的:讓學(xué)生感知直線和圓的位置關(guān)系,并培養(yǎng)學(xué)生把實(shí)際問題抽象成數(shù)學(xué)模型的能力)

二.定義、性質(zhì)和判定

1.結(jié)合關(guān)于日出的三幅圖形,通過學(xué)生討論,給出直線與圓的三種位置關(guān)系的定義。

(1)線和圓有兩個(gè)公共點(diǎn)時(shí),叫做直線和圓相交。這時(shí)直線叫做圓的割線。

(2)直線和圓有唯一的公點(diǎn)時(shí),叫做直線和圓相切。這時(shí)直線叫做圓的切線。唯一的公共點(diǎn)叫做切點(diǎn)。

(3)直線和圓沒有公共點(diǎn)時(shí),叫做直線和圓相離。

2.直線和圓三種位置關(guān)系的性質(zhì)和判定:

如果⊙O半徑為r,圓心O到直線l的距離為d,那么:

(1)線l與⊙O相交d<r

(2)直線l與⊙O相切d=r

(3)直線l與⊙O相離d>r

三.例題分析:

例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C為圓心,r為半徑。

①當(dāng)r=時(shí),圓與AB相切。

②當(dāng)r=2cm時(shí),圓與AB有怎樣的位置關(guān)系,為什么?

③當(dāng)r=3cm時(shí),圓與AB又是怎樣的位置關(guān)系,為什么?

④思考:當(dāng)r滿足什么條件時(shí)圓與斜邊AB有一個(gè)交點(diǎn)?

四.小結(jié)(學(xué)生完成)

五、隨堂練習(xí):

(1)直線和圓有種位置關(guān)系,是用直線和圓的個(gè)數(shù)來定義的;這也是判斷直線和圓的位置關(guān)系的.重要方法。

(2)已知⊙O的直徑為13cm,直線L與圓心O的距離為d。

①當(dāng)d=5cm時(shí),直線L與圓的位置關(guān)系是;

②當(dāng)d=13cm時(shí),直線L與圓的位置關(guān)系是;

③當(dāng)d=6。5cm時(shí),直線L與圓的位置關(guān)系是;

(目的:直線和圓的位置關(guān)系的判定的應(yīng)用)

(3)⊙O的半徑r=3cm,點(diǎn)O到直線L的距離為d,若直線L與⊙O至少有一個(gè)公共點(diǎn),則d應(yīng)滿足的條件是()

(A)d=3(B)d≤3(C)d<3d="">3

(目的:直線和圓的位置關(guān)系的性質(zhì)的應(yīng)用)

(4)⊙O半徑=3cm。點(diǎn)P在直線L上,若OP=5cm,則直線L與⊙O的位置關(guān)系是()

(A)相離(B)相切(C)相交(D)相切或相交

(目的:點(diǎn)和圓,直線和圓的位置關(guān)系的結(jié)合,提高學(xué)生的綜合、開放性思維)

想一想:

在平面直角坐標(biāo)系中有一點(diǎn)A(-3,-4),以點(diǎn)A為圓心,r長(zhǎng)為半徑時(shí),

思考:隨著r的變化,⊙A與坐標(biāo)軸交點(diǎn)的變化情況。(有五種情況)

六、作業(yè):P100—2、3

初三數(shù)學(xué)教案案例篇6

一、復(fù)習(xí)引入

學(xué)生活動(dòng):請(qǐng)同學(xué)們完成下列各題.

問題1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根據(jù)完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.

問題2:目前我們都學(xué)過哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過哪些降次的方法?

二、探索新知

上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?

(學(xué)生分組討論)

老師點(diǎn)評(píng):回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2

分析:(1)x2+4x+4是一個(gè)完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接開平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的兩根x1=-3+2,x2=-3-2

解:略.

例2市政府計(jì)劃2年內(nèi)將人均住房面積由現(xiàn)在的10m2提高到14.4m2,求每年人均住房面積增長(zhǎng)率.

分析:設(shè)每年人均住房面積增長(zhǎng)率為x,一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2

解:設(shè)每年人均住房面積增長(zhǎng)率為x,

則:10(1+x)2=14.4

(1+x)2=1.44

直接開平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因?yàn)槊磕耆司》棵娣e的增長(zhǎng)率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去.

所以,每年人均住房面積增長(zhǎng)率應(yīng)為20%.

(學(xué)生小結(jié))老師引導(dǎo)提問:解一元二次方程,它們的共同特點(diǎn)是什么?

共同特點(diǎn):把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元一次方程.我們把這種思想稱為“降次轉(zhuǎn)化思想”.

三、鞏固練習(xí)

教材第6頁(yè)練習(xí).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:由應(yīng)用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉(zhuǎn)化為應(yīng)用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達(dá)到降次轉(zhuǎn)化之目的.若p<0則方程無解.

五、作業(yè)布置

初三數(shù)學(xué)教案案例篇7

教學(xué)目標(biāo)

1、使學(xué)生理解弦、弧、弓形、同心圓、等圓、等孤的概念;初步會(huì)運(yùn)用這些概念判斷真假命題。

2、逐步培養(yǎng)學(xué)生閱讀教材、親自動(dòng)手實(shí)踐,總結(jié)出新概念的能力;進(jìn)一步指導(dǎo)學(xué)

生觀察、比較、分析、概括知識(shí)的能力。

3、通過動(dòng)手、動(dòng)腦的全過程,調(diào)動(dòng)學(xué)生主動(dòng)學(xué)習(xí)的積極性,使學(xué)生從積極主動(dòng)獲得知識(shí)。

教學(xué)重點(diǎn)、難點(diǎn)和疑點(diǎn)

1、重點(diǎn):理解圓的有關(guān)概念.

2、難點(diǎn):對(duì)“等圓”、“等弧”的定義中的“互相重合”這一特征的理解.

3、疑點(diǎn):學(xué)生容易把長(zhǎng)度相等的兩條弧看成是等弧。讓學(xué)生閱讀教材、理解、交流和與教師對(duì)話交流中排除疑難。

教學(xué)過程設(shè)計(jì):

(一)閱讀、理解

重點(diǎn)概念:

1、弦:連結(jié)圓上任意兩點(diǎn)的線段叫做弦.

2、直徑:經(jīng)過圓心的弦是直徑.

3、圓弧:圓上任意兩點(diǎn)間的部分叫做圓弧.簡(jiǎn)稱弧.

半圓弧:圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧叫做半圓;

優(yōu)弧:大于半圓的弧叫優(yōu)弧;

劣弧:小于半圓的弧叫做劣弧.

4、弓形:由弦及其所對(duì)的弧組成的圖形叫做弓形.

5、同心圓:即圓心相同,半徑不相等的兩個(gè)圓叫做同心圓.

6、等圓:能夠重合的兩個(gè)圓叫做等圓.

7、等弧:在同圓或等圓中,能夠互相重合的弧叫做等弧.

(二)小組交流、師生對(duì)話

問題:

1、一個(gè)圓有多少條弦?最長(zhǎng)的弦是什么?

2、弧分為哪幾種?怎樣表示?

3、弓形與弦有什么區(qū)別?在一個(gè)圓中一條弦能得到幾個(gè)弓形?

4、在等圓、等弧中,“互相重合”是什么含義?

(通過問題,使學(xué)生與學(xué)生,學(xué)生與老師進(jìn)行交流、學(xué)習(xí),加深對(duì)概念的理解,排除疑難)

(三)概念辨析:

判斷題目:

(1)直徑是弦()(2)弦是直徑()

(3)半圓是弧()(4)弧是半圓()

(5)長(zhǎng)度相等的兩段弧是等弧()(6)等弧的長(zhǎng)度相等()

(7)兩個(gè)劣弧之和等于半圓()(8)半徑相等的兩個(gè)半圓是等弧()

(主要理解以下概念:(1)弦與直徑;(2)弧與半圓;(3)同心圓、等圓指兩個(gè)圖形;(4)等圓、等弧是互相重合得到,等弧的條件作用.)

(四)應(yīng)用、練習(xí)

例1、已知:如圖,AB、CB為⊙O的兩條弦,試寫出圖中的所有弧.

解:一共有6條弧.、、、、、.

(目的:讓學(xué)生會(huì)表示弧,并加深理解優(yōu)弧和劣弧的概念)

例2、已知:如圖,在⊙O中,AB、CD為直徑.求證:AD∥BC.

(由學(xué)生分析,學(xué)生寫出證明過程,學(xué)生糾正存在問題.鍛煉學(xué)生動(dòng)口、動(dòng)腦、動(dòng)手實(shí)踐能力,調(diào)動(dòng)學(xué)生主動(dòng)學(xué)習(xí)的積極性,使學(xué)生從積極主動(dòng)獲得知識(shí).)

鞏固練習(xí):

教材P66練習(xí)中2題(學(xué)生自己完成).

(五)小結(jié)

教師引導(dǎo)學(xué)生自己做出總結(jié):

1、本節(jié)所學(xué)似的知識(shí)點(diǎn);

2、概念理解:①弦與直徑;②弧與半圓;③同心圓、等圓指兩個(gè)圖形;④等圓和等弧.

3、弧的表示方法.

(六)作業(yè)

教材P66練習(xí)中3題,P82習(xí)題l(3)、(4).

初三數(shù)學(xué)教案案例篇8

【學(xué)習(xí)目標(biāo)】

1.了解圓周角的概念.

2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.

3.理解圓周角定理的推論:半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑.

4.熟練掌握?qǐng)A周角的定理及其推理的靈活運(yùn)用.

設(shè)置情景,給出圓周角概念,探究這些圓周角與圓心角的關(guān)系,運(yùn)用數(shù)學(xué)分類思想給予邏輯證明定理,得出推導(dǎo),讓學(xué)生活動(dòng)證明定理推論的正確性,最后運(yùn)用定理及其推導(dǎo)解決一些實(shí)際問題

【學(xué)習(xí)過程】

一、溫故知新:

(學(xué)生活動(dòng))同學(xué)們口答下面兩個(gè)問題.

1.什么叫圓心角?

2.圓心角、弦、弧之間有什么內(nèi)在聯(lián)系呢?

二、自主學(xué)習(xí):

自學(xué)教材P90---P93,思考下列問題:

1、什么叫圓周角?圓周角的兩個(gè)特征:。

2、在下面空里作一個(gè)圓,在同一弧上作一些圓心角及圓周角。通過圓周角的概念和度量的方法回答下面的問題.

(1)一個(gè)弧上所對(duì)的圓周角的個(gè)數(shù)有多少個(gè)?

(2).同弧所對(duì)的圓周角的度數(shù)是否發(fā)生變化?

(3).同弧上的圓周角與圓心角有什么關(guān)系?

3、默寫圓周角定理及推論并證明。

4、能去掉"同圓或等圓"嗎?若把"同弧或等弧"改成"同弦或等弦"性質(zhì)成立嗎?

5、教材92頁(yè)思考?在同圓或等圓中,如果兩個(gè)圓周角相等,它們所對(duì)的弧一定相等嗎?為什么?

三、典型例題:

例1、(教材93頁(yè)例2)如圖,⊙O的直徑AB為10cm,弦AC為6cm,,∠ACB的平分線交⊙O于D,求BC、AD、BD的長(zhǎng)。

例2、如圖,AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到C,使AC=AB,BD與CD的大小有什么關(guān)系?為什么?

四、鞏固練習(xí):

1、(教材P93練習(xí)1)

解:

2、(教材P93練習(xí)2)

3、(教材P93練習(xí)3)

證明:

4、(教材P95習(xí)題24.1第9題)

五、總結(jié)反思:

【達(dá)標(biāo)檢測(cè)】

1.如圖1,A、B、C三點(diǎn)在⊙O上,∠AOC=100°,則∠ABC等于().

A.140°B.110°C.120°D.130°

(1)(2)(3)

2.如圖2,∠1、∠2、∠3、∠4的大小關(guān)系是()

A.∠4<∠1<∠2<∠3B.∠4<∠1=∠3<∠2

C.∠4<∠1<∠3∠2D.∠4<∠1<∠3=∠2

3.如圖3,(中考題)AB是⊙O的直徑,BC,CD,DA是⊙O的弦,且BC=CD=DA,則∠BCD等于()

A.100°B.110°C.120°D.130°

4.半徑為2a的⊙O中,弦AB的長(zhǎng)為2a,則弦AB所對(duì)的圓周角的度數(shù)是________.

5.如圖4,A、B是⊙O的直徑,C、D、E都是圓上的點(diǎn),則∠1+∠2=_______.

(4)(5)

6.(中考題)如圖5,于,若,則

7.如圖,弦AB把圓周分成1:2的兩部分,已知⊙O半徑為1,求弦長(zhǎng)AB.

【拓展創(chuàng)新】

1.如圖,已知AB=AC,∠APC=60°

(1)求證:△ABC是等邊三角形.

(2)若BC=4cm,求⊙O的面積.

3、教材P95習(xí)題24.1第12、13題。

【布置作業(yè)】

教材P95習(xí)題24.1第10、11題。

初三數(shù)學(xué)教案案例篇9

教學(xué)過程設(shè)計(jì)

一、創(chuàng)設(shè)情境引入課題

活動(dòng)1

問題:

你們還記得一次函數(shù)圖象與性質(zhì)嗎?

設(shè)計(jì)意圖

通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生復(fù)習(xí)一次函數(shù)圖象的知識(shí),激發(fā)學(xué)生參與課堂學(xué)習(xí)的熱情,為學(xué)習(xí)反比例函數(shù)的圖象奠定基礎(chǔ)。

師生形為:

教師提出問題。學(xué)生思考、交流,回答問題。教師根據(jù)學(xué)生活動(dòng)情況進(jìn)行補(bǔ)充和完善。

二、類比聯(lián)想探究交流

活動(dòng)2

問題:

例2畫出反比例函數(shù)y=與y=-的圖象。

(教師先引導(dǎo)學(xué)生思考,示范畫出反比例函數(shù)y=的圖象,再讓學(xué)生嘗試畫出反比例函數(shù)y=-的圖象。)

設(shè)計(jì)意圖:

通過畫反比例函數(shù)的圖象使學(xué)生進(jìn)一步了解用描點(diǎn)的方法畫函數(shù)圖象的基本步驟,其他函數(shù)的圖象奠定基礎(chǔ),同時(shí)也培養(yǎng)了學(xué)生動(dòng)手操作能力。

師生形為:

學(xué)生可以先自己動(dòng)手畫圖,相互觀摩。

在此活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:

1學(xué)生能否順利進(jìn)行三種表示方法的相互轉(zhuǎn)換:

2是否熟悉作出函數(shù)圖象的主要步驟,會(huì)作反比例函數(shù)的圖象;

3在動(dòng)手作圖的過程中,能否勤于動(dòng)手,樂于探索。

比較y=、y=-的圖象有什么共同特征?它們之間有什么關(guān)系?

(由學(xué)生觀察思考,回答問題,并使學(xué)生了解反比例函數(shù)的圖象是一種雙曲線。)

設(shè)計(jì)意圖:

學(xué)生通過觀察比較,總結(jié)兩個(gè)反比例函數(shù)圖象的共同特征(都是雙曲線),以及在平面直角坐標(biāo)系中的位置。在活動(dòng)中,讓學(xué)生自己去觀察、類比發(fā)現(xiàn),過程讓學(xué)生自己去感受,結(jié)論讓學(xué)生自己去總結(jié),實(shí)現(xiàn)學(xué)生主動(dòng)參與、探究新知的目的。

師生形為:

學(xué)生分組針對(duì)問題結(jié)合畫出的圖象分類討論,歸納總結(jié)反比例函數(shù)圖象的共同點(diǎn),為后面性質(zhì)的探索打下基礎(chǔ)。

教師參與到學(xué)生的討論中去,積極引導(dǎo)。

(三)探索比較發(fā)現(xiàn)規(guī)律

活動(dòng)3

問題:

觀察反比例函數(shù)y=與y=-的圖象。

你能發(fā)現(xiàn)它們的共同特征以及不同點(diǎn)嗎?

每個(gè)函數(shù)的圖象分別位于哪幾個(gè)象限?

在每一個(gè)象限內(nèi),y隨x的變化如何變化?

由學(xué)生分小組討論,觀察思考后進(jìn)行分析、歸納,得到反比例函數(shù)y=的性質(zhì):

形狀:反比例函數(shù)的圖象是由兩支雙曲線組成的.因此稱反比例函數(shù)的圖象為雙曲線;

位置:當(dāng)k0時(shí),兩支雙曲線分別位于第一,三象限內(nèi),在每個(gè)象限內(nèi)y隨x增大而減小;當(dāng)k0時(shí),兩支雙曲線分別位于第二,四象限內(nèi),在每個(gè)象限內(nèi)y隨x增大而增大;

任意一組變量的乘積是一個(gè)定值,即xy=k.

(注意:雙曲線的兩個(gè)分支都不會(huì)與x軸,y軸相交。)

學(xué)生通過對(duì)反比例函數(shù)圖象進(jìn)行觀察、分析,總結(jié)出了反比例函數(shù)的性質(zhì),使學(xué)生明白性質(zhì)的可靠性;通過對(duì)函數(shù)圖象的位置與k值符號(hào)關(guān)系的探討,以及反比例函數(shù)的兩個(gè)分支在相應(yīng)的象限內(nèi),y隨x值的增大(或減小)而增大(或減小)的探討,有利于加深學(xué)生對(duì)性質(zhì)的理解和掌握;使學(xué)生經(jīng)歷從特殊到一般的過程,體驗(yàn)知識(shí)產(chǎn)生、形成的過程,逐步達(dá)到培養(yǎng)學(xué)生抽象概括能力和激發(fā)求知欲望;同時(shí)通過對(duì)反比例函數(shù)增減性的討論,對(duì)學(xué)生進(jìn)行辯證唯物主義思想教育.

四、運(yùn)用新知拓展訓(xùn)練

設(shè)計(jì)意圖:

拓展練習(xí)是為了讓學(xué)生靈活運(yùn)用反比例函數(shù)性質(zhì)解決問題,學(xué)生在研究問題的特點(diǎn)時(shí),能夠緊扣性質(zhì)進(jìn)行分析,達(dá)到理解并掌握性質(zhì)的目的.

師生形為:

學(xué)生獨(dú)立思考完成。

教師巡視,引導(dǎo)學(xué)困生完成任務(wù)。

五、歸納總結(jié)布置作業(yè)

問題:

本節(jié)課學(xué)習(xí)了哪些知識(shí)?在知識(shí)應(yīng)用過程中需要注意什么?你有什么收獲?

初三數(shù)學(xué)教案案例篇10

教材分析

本節(jié)內(nèi)容是上一節(jié)課在學(xué)習(xí)余角補(bǔ)角基礎(chǔ)上學(xué)習(xí)的,學(xué)生有了一定的基礎(chǔ),為以后學(xué)面直角坐標(biāo)系的學(xué)習(xí)做好準(zhǔn)備。

學(xué)情分析

本節(jié)課對(duì)于學(xué)生來說學(xué)習(xí)起來并不太難,在小學(xué)階段學(xué)生已經(jīng)接觸過方位角的內(nèi)容,而且本節(jié)課內(nèi)容和生活中的方向聯(lián)系緊密,故學(xué)生比較有興趣。

教學(xué)目標(biāo)

理解方位角的意義,掌握方位角的判別和應(yīng)用,通過現(xiàn)實(shí)情境,充分利用學(xué)生的生活經(jīng)驗(yàn)去體會(huì)方位角的意義。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):方位角的判別與應(yīng)用

難點(diǎn):方位角的畫法及變式題

教學(xué)過程(本文來自優(yōu)秀教育資源網(wǎng)斐.斐.課.件.園)

教學(xué)環(huán)節(jié)教師活動(dòng)預(yù)設(shè)學(xué)生行為設(shè)計(jì)意圖

一、創(chuàng)設(shè)情境,導(dǎo)入新課

二、講授新課

三、鞏固練習(xí)

四、課時(shí)小結(jié)五、布置作業(yè)由四面八方這個(gè)成語引出學(xué)生對(duì)八個(gè)方位的理解

1.先以一個(gè)具體圖形告訴學(xué)生基本知識(shí)點(diǎn),方位角一般是以正南正北為基準(zhǔn),然后向東或西旋轉(zhuǎn)所成的角的始邊方向。

2.師示范方位角的畫法

3.出示補(bǔ)充例題,引對(duì)學(xué)生通過小組合作完成。思考并回答老師提出的問題

生觀察圖并理解老師的講解。

生觀察并獨(dú)立完成書中的例題

生先獨(dú)立思考然后與同學(xué)合作完成。激發(fā)學(xué)生的學(xué)習(xí)興趣

通遼具體圖形使學(xué)生初步認(rèn)識(shí)方位角的表示方法。

使學(xué)生通遼具體操作掌握畫方位角的方法

進(jìn)一步掌握方位角的有關(guān)知識(shí),達(dá)到知識(shí)提升。

板書設(shè)計(jì)

4.3.3余角和補(bǔ)角(二)——方位角

學(xué)生學(xué)習(xí)活動(dòng)評(píng)價(jià)設(shè)計(jì)

我先將學(xué)生按人數(shù)分成若干小組,在課前先給學(xué)生發(fā)放導(dǎo)學(xué)單,課上先給學(xué)生充分的討論時(shí)間后學(xué)生由小組推薦代表發(fā)言,累積分?jǐn)?shù),每個(gè)小組輪流回答一次,學(xué)生代表回答完畢后,其它同學(xué)補(bǔ)充糾錯(cuò),然后從知識(shí)點(diǎn)是否準(zhǔn)確,語言是否流利,思維是否創(chuàng)新,邏輯是否合理嚴(yán)密等方面來做出評(píng)價(jià),然后給出相應(yīng)分?jǐn)?shù)。累積到小組積分中課上知識(shí)回答后在練習(xí)部分,設(shè)計(jì)搶答題,小組搶答完成。最后計(jì)算出總分評(píng)出本節(jié)課小組及個(gè)人獎(jiǎng),給予口頭表?yè)P(yáng)。

教學(xué)反思

本節(jié)課是在上節(jié)課余角和補(bǔ)角的基礎(chǔ)上學(xué)習(xí)的,而且在小學(xué)階段也已經(jīng)接觸過這部分知識(shí)了,基于這個(gè)特點(diǎn),在課堂上我主要采取了自主學(xué)習(xí)的方式,學(xué)生接受的不錯(cuò),本節(jié)課的知識(shí)雖然簡(jiǎn)單但很重要是為以后學(xué)面直角坐標(biāo)系做準(zhǔn)備的。出現(xiàn)的問題是有個(gè)別同學(xué)對(duì)于A看B是北偏東30度,則B看A是什么方向不太清楚,我采取的措施是讓明白的同學(xué)講給不明白的同學(xué)聽,指導(dǎo)其主要從哪方面入手解決此類問題,還有一點(diǎn),學(xué)生在畫圖后容易忽略寫結(jié)論,應(yīng)強(qiáng)調(diào)。以前在上本節(jié)課時(shí),我是采取的講授法,感覺學(xué)生不是很愛聽,后來一想,知道了是因?yàn)樾W(xué)時(shí)他們已經(jīng)接觸了這部分知識(shí),所以不愛聽,針對(duì)于這種情況,這次我采用了自主學(xué)習(xí)的方式感覺學(xué)生的積極性上來了,一節(jié)課氣氛很好,相信效果也不錯(cuò)。以后再講這節(jié)課我將繼續(xù)采用這種方式,在此基礎(chǔ)上使其更加完善。

初三數(shù)學(xué)教案案例篇11

本學(xué)年既有新任務(wù)要完成還有復(fù)習(xí)更要兼顧,因此事非常重要的一個(gè)學(xué)期,要以培養(yǎng)學(xué)生創(chuàng)新精神和實(shí)踐能力為重點(diǎn),探索有效教學(xué)新模式。以課堂教學(xué)為中心,緊緊圍繞初中數(shù)學(xué)教材、數(shù)學(xué)學(xué)科“基本要求”進(jìn)行教學(xué),針對(duì)近年來中考命題的變化和趨勢(shì)進(jìn)行研究,收集試卷,精選習(xí)題,建立題庫(kù),努力把握中考方向,積極探索高效的復(fù)習(xí)途徑,力求達(dá)到減負(fù)、加壓、增效的目的,促進(jìn)學(xué)生生動(dòng)、活潑、主動(dòng)地學(xué)習(xí),力求中考取得好成績(jī)。通過數(shù)學(xué)課的教學(xué),使學(xué)生切實(shí)學(xué)好從事現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)所必須的基本知識(shí)和基本能力,在思維能力、情感態(tài)度與價(jià)值觀等多方面得到進(jìn)步和發(fā)展。

一、學(xué)情分析:

本學(xué)年我?guī)Ь拍昙?jí)二班,學(xué)生上學(xué)期成績(jī)居全縣第四,兩極分化越來越嚴(yán)重。有部分學(xué)生成績(jī)下滑很明顯,學(xué)習(xí)習(xí)慣較差。做事慢慢騰騰,有幾個(gè)學(xué)生應(yīng)該考優(yōu)生的學(xué)生都沒有考到優(yōu)生,如連清,趙熙,馬曉宇,李功奎,張信心,夏森,柯昭君,許鑫鑫,徐婷婷等,這些也許是老師督導(dǎo)不到位,也有少數(shù)學(xué)生自制能力較差,對(duì)自己要求不嚴(yán),甚至自暴自棄。這些都需要針對(duì)不同情況采取相應(yīng)措施,耐心教育。

二、教材分析:

本學(xué)期的新內(nèi)容只剩兩章:解直角三角形和投影。

四、教學(xué)目標(biāo):

1、在教學(xué)過程中抓住以下幾個(gè)環(huán)節(jié):(1)認(rèn)真?zhèn)湔n。認(rèn)真研究教材及考綱,明確教學(xué)目標(biāo),抓住重點(diǎn)、難點(diǎn),精心設(shè)計(jì)教學(xué)過程,重視每一章節(jié)內(nèi)容與前后知識(shí)的聯(lián)系及其地位,重視課后反思,設(shè)計(jì)好每一節(jié)課的師生互動(dòng)的細(xì)節(jié)。(2)上好課:在備好課的基礎(chǔ)上,上好每一個(gè)45分鐘,提高45分鐘的效率,讓每一位同學(xué)都聽的懂,對(duì)部分基礎(chǔ)較差者要循序漸進(jìn),以選用的例題的難易程度不同,使每個(gè)學(xué)生能“吃”飽、“吃”好。(3)注重課后反思,及時(shí)的將一節(jié)課的得失記錄下來,不斷積累教學(xué)經(jīng)驗(yàn)。(4)批好每一次作業(yè):作業(yè)反映了一節(jié)課的效果如何,學(xué)生對(duì)知識(shí)的掌握程度如何,認(rèn)真批改作業(yè),使教師能迅速掌握情況,對(duì)癥下藥。(5)按時(shí)檢驗(yàn)學(xué)習(xí)成果,做到單元測(cè)驗(yàn)的有效、及時(shí),測(cè)驗(yàn)卷子的批改不過夜。考后對(duì)典型錯(cuò)誤利用學(xué)生想馬上知道答案的心理立即點(diǎn)評(píng)。(6)及時(shí)指導(dǎo)、糾錯(cuò):爭(zhēng)取面批、面授,今天的任務(wù)不推托到明日,爭(zhēng)取一切時(shí)間,緊緊抓住初三階段的每分每秒。課后反饋。落實(shí)每一堂課后輔助,查漏補(bǔ)缺。精選適當(dāng)?shù)木毩?xí)題、測(cè)試卷,及時(shí)批改作業(yè),發(fā)現(xiàn)問題及時(shí)給學(xué)生面對(duì)面的指出并指導(dǎo)學(xué)生搞懂弄通,不留一個(gè)疑難點(diǎn),讓學(xué)生學(xué)有所獲。(7)積極與其它老師溝通,加強(qiáng)教研教改,提高教學(xué)水平。(8)經(jīng)常聽取學(xué)生良好的合理化建議。(9)以“兩頭”帶“中間”戰(zhàn)略思想不變。(10)深化兩極生的訓(xùn)導(dǎo)。

五、嚴(yán)格按照教學(xué)進(jìn)度,有序的進(jìn)行教學(xué)工作。用心去做,從細(xì)節(jié)去做,盡自己追大的努力,發(fā)揮自己的能力去做好初三畢業(yè)班的教學(xué)工作。

六、強(qiáng)化復(fù)習(xí)指導(dǎo)。分二階段復(fù)習(xí):(一)第一階段全面復(fù)習(xí)基礎(chǔ)知識(shí),加強(qiáng)基本技能訓(xùn)練讓學(xué)生全面掌握初中數(shù)學(xué)基礎(chǔ)知識(shí),提高基本技能,做到全面、扎實(shí)、系統(tǒng),形成知識(shí)網(wǎng)絡(luò)。

這個(gè)階段的復(fù)習(xí)目的是讓學(xué)生全面掌握初中數(shù)學(xué)基礎(chǔ)知識(shí),提高基本技能,做到全面、扎實(shí)、系統(tǒng),形成知識(shí)網(wǎng)絡(luò)。

1、重視課本,系統(tǒng)復(fù)習(xí)。現(xiàn)在中考命題仍然以基礎(chǔ)題為主,有些基礎(chǔ)題是課本上的原題或改造,后面的大題雖是“高于教材”,但原型一般還是教材中的例題或習(xí)題,是教材中題目的引伸、變形或組合,所以第一階段復(fù)習(xí)應(yīng)以課本為主。

2、按知識(shí)板塊組織復(fù)習(xí)。把知識(shí)進(jìn)行歸類,將全初中數(shù)學(xué)知識(shí)分為十一講:第一講數(shù)與式;第二講方程與不等式;第三講函數(shù);第四講統(tǒng)計(jì)與概率;第五講基本圖形;第六講圖形與變換;第七講角、相交線和平行線;第八講三角形;第九講四邊形;第十講三角函數(shù)學(xué);第十一講圓.復(fù)習(xí)中由教師提出每個(gè)講節(jié)的復(fù)習(xí)提要,指導(dǎo)學(xué)生按“提要”復(fù)習(xí),同時(shí)要注意引導(dǎo)學(xué)生根據(jù)個(gè)人具體情況把遺忘了知識(shí)重溫一遍,邊復(fù)習(xí)邊作知識(shí)歸類,加深記憶,注意引導(dǎo)學(xué)生弄清概念的內(nèi)涵和外延,掌握法則、公式、定理的推導(dǎo)或證明,例題的選擇要有針對(duì)性、典型性、層次性,并注意分析例題解答的思路和方法。

3、重視對(duì)基礎(chǔ)知識(shí)的理解和基本方法的指導(dǎo)。基礎(chǔ)知識(shí)即初中數(shù)學(xué)課程中所涉及的概念、公式、公理、定理等。要求學(xué)生掌握各知識(shí)點(diǎn)之間的內(nèi)在聯(lián)系,理清知識(shí)結(jié)構(gòu),形成整體的認(rèn)識(shí),并能綜合運(yùn)用。例如一元二次方程的根與二次函數(shù)圖形與x軸交點(diǎn)之間的關(guān)系,是中考常常涉及的內(nèi)容,在復(fù)習(xí)時(shí),應(yīng)從整體上理解這部分內(nèi)容,從結(jié)構(gòu)上把握教材,達(dá)到熟練地將這兩部分知識(shí)相互轉(zhuǎn)化。又如一元二次方程與幾何知識(shí)的聯(lián)系的題目有非常明顯的特點(diǎn),應(yīng)掌握其基本解法。

中考數(shù)學(xué)命題除了著重考查基礎(chǔ)知識(shí)外,還十分重視對(duì)數(shù)學(xué)方法的考查,如配方法,換元法,判別式法等操作性較強(qiáng)的數(shù)學(xué)方法。在復(fù)習(xí)時(shí)應(yīng)對(duì)每一種方法的內(nèi)涵,它所適應(yīng)的題型,包括解題步驟都應(yīng)熟練掌握。

4、重視對(duì)數(shù)學(xué)思想的理解及運(yùn)用。如函數(shù)的思想,方程思想,數(shù)形結(jié)合的思想等。

(二)第二階段綜合運(yùn)用知識(shí),加強(qiáng)能力培養(yǎng),構(gòu)建初中數(shù)學(xué)知識(shí)結(jié)構(gòu)和網(wǎng)絡(luò),從整體上把握數(shù)學(xué)內(nèi)容,以構(gòu)建初中數(shù)學(xué)知識(shí)結(jié)構(gòu)和網(wǎng)絡(luò)為主,從整體上把握數(shù)學(xué)內(nèi)容,提高能力。

培養(yǎng)綜合運(yùn)用數(shù)學(xué)知識(shí)解題的能力,是學(xué)習(xí)數(shù)學(xué)的重要目的之一。這個(gè)階段的復(fù)習(xí)目的是使學(xué)生能把各個(gè)講節(jié)中的知識(shí)聯(lián)系起來,并能綜合運(yùn)用,做到舉一反三、觸類旁通。這個(gè)階段的例題和練習(xí)題要有一定的難度,但又不是越難越好,要讓學(xué)生可接受,這樣才能既激發(fā)學(xué)生解難求進(jìn)的學(xué)習(xí)欲望,又使學(xué)生從解決較難問題中看到自己的力量,增強(qiáng)前進(jìn)的信心,產(chǎn)生更強(qiáng)的求知欲。第二階段就是第一階段復(fù)習(xí)的延伸和提高,應(yīng)側(cè)重培養(yǎng)學(xué)生的數(shù)學(xué)能力。這一階段尤其要精心設(shè)計(jì)每一節(jié)復(fù)習(xí)課,注意數(shù)學(xué)思想的形成和數(shù)學(xué)方法的掌握。初中總復(fù)習(xí)的內(nèi)容多,復(fù)習(xí)必須突出重點(diǎn),抓住關(guān)鍵,解決疑難,這就需要充分發(fā)揮教師的主導(dǎo)作用。而復(fù)習(xí)內(nèi)容是學(xué)生已經(jīng)學(xué)習(xí)過的,各個(gè)學(xué)生對(duì)教材內(nèi)容掌握的程度又各有差異,這就需要教師千方百計(jì)地激發(fā)學(xué)生復(fù)習(xí)的主動(dòng)性、積極性,引導(dǎo)學(xué)生有針對(duì)性的復(fù)習(xí),根據(jù)個(gè)人的具體情況,查漏補(bǔ)缺,做知識(shí)歸類、解題方法歸類,在形成知識(shí)結(jié)構(gòu)的基礎(chǔ)上加深記憶。除了復(fù)習(xí)形式要多樣,題型要新穎,能引起學(xué)生復(fù)習(xí)的興趣外,還要精心設(shè)計(jì)復(fù)習(xí)課的教學(xué)方法,提高復(fù)習(xí)效益

七、不斷鉆研業(yè)務(wù),提高業(yè)務(wù)能力及水平。

積極參加業(yè)務(wù)學(xué)習(xí),看書、看報(bào),參加學(xué)校組織的培訓(xùn),使之更好的為基礎(chǔ)教育的改革努力,掌握新的技能、技巧,不斷努力,取長(zhǎng)補(bǔ)短,揚(yáng)長(zhǎng)避短,努力使教學(xué)更開拓,方法更靈活,手段更先進(jìn)。

八、分層輔導(dǎo),因材施教對(duì)本年級(jí)的學(xué)生實(shí)施分層輔導(dǎo),利用優(yōu)勝劣汰的方法,激勵(lì)學(xué)生的學(xué)習(xí)激情,保證升學(xué)率及優(yōu)良率,提高及格率。對(duì)部分差生實(shí)行義務(wù)補(bǔ)課,以提高成績(jī)。

初三數(shù)學(xué)教案案例篇12

教材分析

本節(jié)內(nèi)容是上一節(jié)課在學(xué)習(xí)余角補(bǔ)角基礎(chǔ)上學(xué)習(xí)的,學(xué)生有了一定的基礎(chǔ),為以后平面直角坐標(biāo)系的學(xué)習(xí)做好準(zhǔn)備。

學(xué)情分析

本節(jié)課對(duì)于學(xué)生來說學(xué)習(xí)起來并不太難,在小學(xué)階段學(xué)生已經(jīng)接觸過方位角的內(nèi)容,而且本節(jié)課內(nèi)容和生活中的方向聯(lián)系緊密,故學(xué)生比較有興趣。

教學(xué)目標(biāo)

理解方位角的意義,掌握方位角的判別和應(yīng)用,通過現(xiàn)實(shí)情境,充分利用學(xué)生的生活經(jīng)驗(yàn)去體會(huì)方位角的意義。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):方位角的判別與應(yīng)用

難點(diǎn):方位角的畫法及變式題

教學(xué)過程(本文來自優(yōu)秀教育資源網(wǎng)斐.斐.課.件.園)

教學(xué)環(huán)節(jié)教師活動(dòng)預(yù)設(shè)學(xué)生行為設(shè)計(jì)意圖

一、創(chuàng)設(shè)情境,導(dǎo)入新課

二、講授新課

三、鞏固練習(xí)

四、課時(shí)小結(jié)五、布置作業(yè)由四面八方這個(gè)成語引出學(xué)生對(duì)八個(gè)方位的理解

1.先以一個(gè)具體圖形告訴學(xué)生基本知識(shí)點(diǎn),方位角一般是以正南正北為基準(zhǔn),然后向東或西旋轉(zhuǎn)所成的角的始邊方向。

2.師示范方位角的畫法

3.出示補(bǔ)充例題,引對(duì)學(xué)生通過小組合作完成。思考并回答老師提出的問題

生觀察圖并理解老師的講解。

生觀察并獨(dú)立完成書中的例題

生先獨(dú)立思考然后與同學(xué)合作完成。激發(fā)學(xué)生的學(xué)習(xí)興趣

通遼具體圖形使學(xué)生初步認(rèn)識(shí)方位角的表示方法。

使學(xué)生通遼具體操作掌握畫方位角的方法

進(jìn)一步掌握方位角的有關(guān)知識(shí),達(dá)到知識(shí)提升。

板書設(shè)計(jì)

4.3.3余角和補(bǔ)角(二)——方位角

學(xué)生學(xué)習(xí)活動(dòng)評(píng)價(jià)設(shè)計(jì)

我先將學(xué)生按人數(shù)分成若干小組,在課前先給學(xué)生發(fā)放導(dǎo)學(xué)單,課上先給學(xué)生充分的討論時(shí)間后學(xué)生由小組推薦代表發(fā)言,累積分?jǐn)?shù),每個(gè)小組輪流回答一次,學(xué)生代表回答完畢后,其它同學(xué)補(bǔ)充糾錯(cuò),然后從知識(shí)點(diǎn)是否準(zhǔn)確,語言是否流利,思維是否創(chuàng)新,邏輯是否合理嚴(yán)密等方面來做出評(píng)價(jià),然后給出相應(yīng)分?jǐn)?shù)。累積到小組積分中課上知識(shí)回答后在練習(xí)部分,設(shè)計(jì)搶答題,小組搶答完成。最后計(jì)算出總分評(píng)出本節(jié)課小組及個(gè)人獎(jiǎng),給予口頭表?yè)P(yáng)。

教學(xué)反思

本節(jié)課是在上節(jié)課余角和補(bǔ)角的基礎(chǔ)上學(xué)習(xí)的,而且在小學(xué)階段也已經(jīng)接觸過這部分知識(shí)了,基于這個(gè)特點(diǎn),在課堂上我主要采取了自主學(xué)習(xí)的方式,學(xué)生接受的不錯(cuò),本節(jié)課的知識(shí)雖然簡(jiǎn)單但很重要是為以后平面直角坐標(biāo)系做準(zhǔn)備的。出現(xiàn)的問題是有個(gè)別同學(xué)對(duì)于A看B是北偏東30度,則B看A是什么方向不太清楚,我采取的措施是讓明白的同學(xué)講給不明白的同學(xué)聽,指導(dǎo)其主要從哪方面入手解決此類問題,還有一點(diǎn),學(xué)生在畫圖后容易忽略寫結(jié)論,應(yīng)強(qiáng)調(diào)。以前在上本節(jié)課時(shí),我是采取的講授法,感覺學(xué)生不是很愛聽,后來一想,知道了是因?yàn)樾W(xué)時(shí)他們已經(jīng)接觸了這部分知識(shí),所以不愛聽,針對(duì)于這種情況,這次我采用了自主學(xué)習(xí)的方式感覺學(xué)生的積極性上來了,一節(jié)課氣氛很好,相信效果也不錯(cuò)。以后再講這節(jié)課我將繼續(xù)采用這種方式,在此基礎(chǔ)上使其更加完善。

初三數(shù)學(xué)教案案例篇13

21.2.1配方法(3課時(shí))

第1課時(shí)直接開平方法

理解一元二次方程“降次”——轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問題.

提出問題,列出缺一次項(xiàng)的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個(gè)方程,然后知識(shí)遷移到解a(ex+f)2+c=0型的一元二次方程.

重點(diǎn)

運(yùn)用開平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會(huì)降次——轉(zhuǎn)化的數(shù)學(xué)思想.

難點(diǎn)

通過根據(jù)平方根的意義解形如x2=n的方程,將知識(shí)遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程.

一、復(fù)習(xí)引入

學(xué)生活動(dòng):請(qǐng)同學(xué)們完成下列各題.

問題1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根據(jù)完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.

問題2:目前我們都學(xué)過哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過哪些降次的方法?

二、探索新知

上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?

(學(xué)生分組討論)

老師點(diǎn)評(píng):回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2

分析:(1)x2+4x+4是一個(gè)完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接開平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的兩根x1=-3+2,x2=-3-2

解:略.

例2市政府計(jì)劃2年內(nèi)將人均住房面積由現(xiàn)在的10m2提高到14.4m2,求每年人均住房面積增長(zhǎng)率.

分析:設(shè)每年人均住房面積增長(zhǎng)率為x,一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2

解:設(shè)每年人均住房面積增長(zhǎng)率為x,

則:10(1+x)2=14.4

(1+x)2=1.44

直接開平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因?yàn)槊磕耆司》棵娣e的增長(zhǎng)率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去.

所以,每年人均住房面積增長(zhǎng)率應(yīng)為20%.

(學(xué)生小結(jié))老師引導(dǎo)提問:解一元二次方程,它們的共同特點(diǎn)是什么?

共同特點(diǎn):把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元一次方程.我們把這種思想稱為“降次轉(zhuǎn)化思想”.

三、鞏固練習(xí)

教材第6頁(yè)練習(xí).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:由應(yīng)用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉(zhuǎn)化為應(yīng)用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達(dá)到降次轉(zhuǎn)化之目的.若p<0則方程無解.

五、作業(yè)布置

教材第16頁(yè)復(fù)習(xí)鞏固1.第2課時(shí)配方法的基本形式

理解間接即通過變形運(yùn)用開平方法降次解方程,并能熟練應(yīng)用它解決一些具體問題.

通過復(fù)習(xí)可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟.

重點(diǎn)

講清直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟.

難點(diǎn)

將不可直接降次解方程化為可直接降次解方程的“化為”的轉(zhuǎn)化方法與技巧.

一、復(fù)習(xí)引入

(學(xué)生活動(dòng))請(qǐng)同學(xué)們解下列方程:

(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7

老師點(diǎn)評(píng):上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±p或mx+n=±p(p≥0).

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9嗎?

二、探索新知

列出下面問題的方程并回答:

(1)列出的經(jīng)化簡(jiǎn)為一般形式的方程與剛才解題的方程有什么不同呢?

(2)能否直接用上面前三個(gè)方程的解法呢?

問題:要使一塊矩形場(chǎng)地的長(zhǎng)比寬多6m,并且面積為16m2,求場(chǎng)地的長(zhǎng)和寬各是多少?

(1)列出的經(jīng)化簡(jiǎn)為一般形式的方程與前面講的三道題不同之處是:前三個(gè)左邊是含有x的完全平方式而后二個(gè)不具有此特征.

(2)不能.

既然不能直接降次解方程,那么,我們就應(yīng)該設(shè)法把它轉(zhuǎn)化為可直接降次解方程的方程,下面,我們就來講如何轉(zhuǎn)化:

x2+6x-16=0移項(xiàng)→x2+6x=16

兩邊加(6/2)2使左邊配成x2+2bx+b2的形式→x2+6x+32=16+9

左邊寫成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以驗(yàn)證:x1=2,x2=-8都是方程的根,但場(chǎng)地的寬不能是負(fù)值,所以場(chǎng)地的寬為2m,長(zhǎng)為8m.

像上面的解題方法,通過配成完全平方形式來解一元二次方程的方法,叫配方法.

可以看出,配方法是為了降次,把一個(gè)一元二次方程轉(zhuǎn)化為兩個(gè)一元一次方程來解.

例1用配方法解下列關(guān)于x的方程:

(1)x2-8x+1=0(2)x2-2x-12=0

分析:(1)顯然方程的左邊不是一個(gè)完全平方式,因此,要按前面的方法化為完全平方式;(2)同上.

解:略.

三、鞏固練習(xí)

教材第9頁(yè)練習(xí)1,2.(1)(2).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:

左邊不含有x的完全平方形式的一元二次方程化為左邊是含有x的完全平方形式,右邊是非負(fù)數(shù),可以直接降次解方程的方程.

五、作業(yè)布置

教材第17頁(yè)復(fù)習(xí)鞏固2,3.(1)(2).第3課時(shí)配方法的靈活運(yùn)用

初三數(shù)學(xué)教案案例篇14

課題 二次函數(shù)y=ax2的圖象(一)

一、教學(xué)目的

1.使學(xué)生初步理解二次函數(shù)的概念。

2.使學(xué)生會(huì)用描點(diǎn)法畫二次函數(shù)y=ax2的圖象。

3.使學(xué)生結(jié)合y=ax2的圖象初步理解拋物線及其有關(guān)的概念。

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):對(duì)二次函數(shù)概念的初步理解。

難點(diǎn):會(huì)用描點(diǎn)法畫二次函數(shù)y=ax2的圖象。

三、教學(xué)過程

復(fù)習(xí)提問

1.在下列函數(shù)中,哪些是一次函數(shù)?哪些是正比例函數(shù)?

(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2-2。

2.什么是一無二次方程?

3.怎樣用找點(diǎn)法畫函數(shù)的圖象?

新課

1.由具體問題引出二次函數(shù)的定義。

(1)已知圓的面積是Scm2,圓的半徑是Rcm,寫出空上圓的面積S與半徑R之間的函數(shù)關(guān)系式。

(2)已知一個(gè)矩形的周長(zhǎng)是60m,一邊長(zhǎng)是Lm,寫出這個(gè)矩形的面積S(m2)與這個(gè)矩形的一邊長(zhǎng)L之間的函數(shù)關(guān)系式。

(3)農(nóng)機(jī)廠第一個(gè)月水泵的產(chǎn)量為50臺(tái),第三個(gè)月的產(chǎn)量y(臺(tái))與月平均增長(zhǎng)率x之間的函數(shù)關(guān)系如何表示?

解:(1)函數(shù)解析式是S=πR2;

(2)函數(shù)析式是S=30L—L2;

(3)函數(shù)解析式是y=50(1+x)2,即

y=50x2+100x+50。

由以上三例啟發(fā)學(xué)生歸納出:

(1)函數(shù)解析式均為整式;

(2)處變量的最高次數(shù)是2。

我們說三個(gè)式子都表示的是二次函數(shù)。

一般地,如果y=ax2+bx+c(a,b,c沒有限制而a≠0),那么y叫做x的二次函數(shù),請(qǐng)注意這里b,c沒有限制,而a≠0。

2.畫二次函數(shù)y=x2的圖象。

按照描點(diǎn)法分三步畫圖:

(1)列表∵x可取任意實(shí)數(shù),∴以0為中心選取x值,以1為間距取值,且取整數(shù)值,便于計(jì)算,又x取相反數(shù)時(shí),相應(yīng)的y值相同;

(2)描點(diǎn)按照表中所列出的函數(shù)對(duì)應(yīng)值,在平面直角坐標(biāo)系中描出相應(yīng)的7個(gè)點(diǎn);

(3)邊線用平滑曲線順次連接各點(diǎn),即得所求y=x2的圖象。

注意兩點(diǎn):

(1)由于我們只描出了7個(gè)點(diǎn),但自礦業(yè)量取值范圍是實(shí)數(shù),故我們只畫出了實(shí)際圖象的一部分,即畫出了在原點(diǎn)附近、自變量在-3到3這個(gè)區(qū)間的一部分。而圖象在x>3或x<-3的區(qū)間是無限延伸的。

(2)所畫的圖象是近似的。

3.在原點(diǎn)附近較精確地研究二次函數(shù)y=x2的圖象形狀到底如何?——我們–1與1之間每隔0。2的間距取x值表和圖13-14。按課本P118內(nèi)容講解。

4.引入拋物線的概念。

關(guān)于拋物線的頂點(diǎn)應(yīng)從兩方面分析:一是從圖象上看,y=x2的圖象的頂點(diǎn)是最低點(diǎn);一是從解析式y(tǒng)=x2看,當(dāng)x=0時(shí),y=x2取得最小值0,故拋物線y=x2的頂點(diǎn)是(0,0)。

小結(jié)

1.二次函數(shù)的定義。

(1)函數(shù)解析式關(guān)于自變量是整式;(2)函數(shù)自變量的最高次數(shù)是2。

2.二次函數(shù)y=x2的圖象。

(1)其圖象叫拋物線;(2)拋物線y=x2的對(duì)稱軸是y軸,開口向上,頂點(diǎn)是原點(diǎn)。

補(bǔ)充例題

下列函數(shù)中,哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a,b,c?

(1)y=2-3x2;(2)y=x(x-4);

(3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;

(5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。

作業(yè):P122中A組1,2,3。

四、教學(xué)注意問題

1.注意滲透局部和全體、有限和無限、近似和精確等矛盾對(duì)立統(tǒng)一的觀點(diǎn)。

2.注意培養(yǎng)學(xué)生觀察分析問題的能力。比如,結(jié)合所畫二次函數(shù)y=x2的圖象,要求學(xué)生思考:

(1)y=x2的圖象的圖象有什么特點(diǎn)。(答:具有對(duì)稱性。)

(2)如何判斷y=x2的.圖象有上面所說的特點(diǎn)?(答:由觀察圖象看出來;或由列表求值得出來;或由解析式y(tǒng)=x2看出來。)

課題 二次函數(shù)y=ax2的圖象(一)

一、教學(xué)目的

1.使學(xué)生初步理解二次函數(shù)的概念。

2.使學(xué)生會(huì)用描點(diǎn)法畫二次函數(shù)y=ax2的圖象。

3.使學(xué)生結(jié)合y=ax2的圖象初步理解拋物線及其有關(guān)的概念。

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):對(duì)二次函數(shù)概念的初步理解。

難點(diǎn):會(huì)用描點(diǎn)法畫二次函數(shù)y=ax2的圖象。

三、教學(xué)過程

復(fù)習(xí)提問

1.在下列函數(shù)中,哪些是一次函數(shù)?哪些是正比例函數(shù)?

(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2-2。

2.什么是一無二次方程?

3.怎樣用找點(diǎn)法畫函數(shù)的圖象?

新課

1.由具體問題引出二次函數(shù)的定義。

(1)已知圓的面積是Scm2,圓的半徑是Rcm,寫出空上圓的面積S與半徑R之間的函數(shù)關(guān)系式。

(2)已知一個(gè)矩形的周長(zhǎng)是60m,一邊長(zhǎng)是Lm,寫出這個(gè)矩形的面積S(m2)與這個(gè)矩形的一邊長(zhǎng)L之間的函數(shù)關(guān)系式。

(3)農(nóng)機(jī)廠第一個(gè)月水泵的產(chǎn)量為50臺(tái),第三個(gè)月的產(chǎn)量y(臺(tái))與月平均增長(zhǎng)率x之間的函數(shù)關(guān)系如何表示?

解:(1)函數(shù)解析式是S=πR2;

(2)函數(shù)析式是S=30L—L2;

(3)函數(shù)解析式是y=50(1+x)2,即

y=50x2+100x+50。

由以上三例啟發(fā)學(xué)生歸納出:

(1)函數(shù)解析式均為整式;

(2)處變量的最高次數(shù)是2。

我們說三個(gè)式子都表示的是二次函數(shù)。

一般地,如果y=ax2+bx+c(a,b,c沒有限制而a≠0),那么y叫做x的二次函數(shù),請(qǐng)注意這里b,c沒有限制,而a≠0。

2.畫二次函數(shù)y=x2的圖象。

按照描點(diǎn)法分三步畫圖:

(1)列表∵x可取任意實(shí)數(shù),∴以0為中心選取x值,以1為間距取值,且取整數(shù)值,便于計(jì)算,又x取相反數(shù)時(shí),相應(yīng)的y值相同;

(2)描點(diǎn)按照表中所列出的函數(shù)對(duì)應(yīng)值,在平面直角坐標(biāo)系中描出相應(yīng)的7個(gè)點(diǎn);

(3)邊線用平滑曲線順次連接各點(diǎn),即得所求y=x2的圖象。

注意兩點(diǎn):

(1)由于我們只描出了7個(gè)點(diǎn),但自礦業(yè)量取值范圍是實(shí)數(shù),故我們只畫出了實(shí)際圖象的一部分,即畫出了在原點(diǎn)附近、自變量在-3到3這個(gè)區(qū)間的一部分。而圖象在x>3或x<-3的區(qū)間是無限延伸的。

(2)所畫的圖象是近似的。

3.在原點(diǎn)附近較精確地研究二次函數(shù)y=x2的圖象形狀到底如何?——我們–1與1之間每隔0。2的間距取x值表和圖13-14。按課本P118內(nèi)容講解。

4.引入拋物線的概念。

關(guān)于拋物線的頂點(diǎn)應(yīng)從兩方面分析:一是從圖象上看,y=x2的圖象的頂點(diǎn)是最低點(diǎn);一是從解析式y(tǒng)=x2看,當(dāng)x=0時(shí),y=x2取得最小值0,故拋物線y=x2的頂點(diǎn)是(0,0)。

小結(jié)

1.二次函數(shù)的定義。

(1)函數(shù)解析式關(guān)于自變量是整式;(2)函數(shù)自變量的最高次數(shù)是2。

2.二次函數(shù)y=x2的圖象。

(1)其圖象叫拋物線;(2)拋物線y=x2的對(duì)稱軸是y軸,開口向上,頂點(diǎn)是原點(diǎn)。

補(bǔ)充例題

下列函數(shù)中,哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a,b,c?

(1)y=2-3x2;(2)y=x(x-4);

(3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;

(5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。

作業(yè):P122中A組1,2,3。

四、教學(xué)注意問題

1.注意滲透局部和全體、有限和無限、近似和精確等矛盾對(duì)立統(tǒng)一的觀點(diǎn)。

2.注意培養(yǎng)學(xué)生觀察分析問題的能力。比如,結(jié)合所畫二次函數(shù)y=x2的圖象,要求學(xué)生思考:

(1)y=x2的圖象的圖象有什么特點(diǎn)。(答:具有對(duì)稱性。)

(2)如何判斷y=x2的圖象有上面所說的特點(diǎn)?(答:由觀察圖象看出來;或由列表求值得出來;或由解析式y(tǒng)=x2看出來。)

初三數(shù)學(xué)教案案例篇15

[實(shí)踐與探索]

例1.在同一直角坐標(biāo)系中,畫出函數(shù)與的圖象.

解列表.

x…-3-2-10123…

…188202818…

…20104241020…

描點(diǎn)、連線,畫出這兩個(gè)函數(shù)的圖象,如圖26.2.3所示.

回顧與反思當(dāng)自變量x取同一數(shù)值時(shí),這兩個(gè)函數(shù)的函數(shù)值之間有什么關(guān)系?反映在圖象上,相應(yīng)的兩個(gè)點(diǎn)之間的位置又有什么關(guān)系?

探索觀察這兩個(gè)函數(shù),它們的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)有那些是相同的?又有哪些不同?你能由此說出函數(shù)與的圖象之間的關(guān)系嗎?

例2.在同一直角坐標(biāo)系中,畫出函數(shù)與的圖象,并說明,通過怎樣的平移,可以由拋物線得到拋物線.

解列表.

x…-3-2-10123…

…-8-3010-3-8…

…-10-5-2-1-2-5-10…

描點(diǎn)、連線,畫出這兩個(gè)函數(shù)的圖象,如圖26.2.4所示.

可以看出,拋物線是由拋物線向下平移兩個(gè)單位得到的.

回顧與反思拋物線和拋物線分別是由拋物線向上、向下平移一個(gè)單位得到的.

探索如果要得到拋物線,應(yīng)將拋物線作怎樣的平移?

例3.一條拋物線的開口方向、對(duì)稱軸與相同,頂點(diǎn)縱坐標(biāo)是-2,且拋物線經(jīng)過點(diǎn)(1,1),求這條拋物線的函數(shù)關(guān)系式.

解由題意可得,所求函數(shù)開口向上,對(duì)稱軸是y軸,頂點(diǎn)坐標(biāo)為(0,-2),

因此所求函數(shù)關(guān)系式可看作,又拋物線經(jīng)過點(diǎn)(1,1),

所以,,

解得.

故所求函數(shù)關(guān)系式為.

回顧與反思(a、k是常數(shù),a≠0)的圖象的開口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)歸納如下:

開口方向?qū)ΨQ軸頂點(diǎn)坐標(biāo)

[當(dāng)堂課內(nèi)練習(xí)]

1.在同一直角坐標(biāo)系中,畫出下列二次函數(shù)的圖象:

,,.

觀察三條拋物線的相互關(guān)系,并分別指出它們的開口方向及對(duì)稱軸、頂點(diǎn)的位置.你能說出拋物線的開口方向及對(duì)稱軸、頂點(diǎn)的位置嗎?

2.拋物線的開口,對(duì)稱軸是,頂點(diǎn)坐標(biāo)是,它可以看作是由拋物線向平移個(gè)單位得到的.

3.函數(shù),當(dāng)x時(shí),函數(shù)值y隨x的增大而減小.當(dāng)x時(shí),函數(shù)取得最值,最值y=.

[本課課外作業(yè)]

A組

1.已知函數(shù),,.

(1)分別畫出它們的圖象;

(2)說出各個(gè)圖象的開口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo);

(3)試說出函數(shù)的圖象的開口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo).

2.不畫圖象,說出函數(shù)的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo),并說明它是由函數(shù)通過怎樣的平移得到的.

3.若二次函數(shù)的圖象經(jīng)過點(diǎn)(-2,10),求a的值.這個(gè)函數(shù)有還是最小值?是多少?

B組

4.在同一直角坐標(biāo)系中與的圖象的大致位置是()

5.已知二次函數(shù),當(dāng)k為何值時(shí),此二次函數(shù)以y軸為對(duì)稱軸?寫出其函數(shù)關(guān)系式.

[本課學(xué)習(xí)體會(huì)]

初三數(shù)學(xué)教案案例篇16

教材分析

本節(jié)內(nèi)容是上一節(jié)課在學(xué)習(xí)余角補(bǔ)角基礎(chǔ)上學(xué)習(xí)的,學(xué)生有了一定的基礎(chǔ),為平面直角坐標(biāo)系的學(xué)習(xí)做好準(zhǔn)備。

學(xué)情分析

本節(jié)課對(duì)于學(xué)生來說學(xué)習(xí)起來并不太難,在小學(xué)階段學(xué)生已經(jīng)接觸過方位角的內(nèi)容,而且本節(jié)課內(nèi)容和生活中的方向聯(lián)系緊密,故學(xué)生比較有興趣。

教學(xué)目標(biāo)

理解方位角的意義,掌握方位角的判別和應(yīng)用,通過現(xiàn)實(shí)情境,充分利用學(xué)生的生活經(jīng)驗(yàn)去體會(huì)方位角的意義。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):方位角的判別與應(yīng)用

難點(diǎn):方位角的畫法及變式題

教學(xué)過程(本文來自優(yōu)秀教育資源網(wǎng)斐.斐.課.件.園)

教學(xué)環(huán)節(jié)教師活動(dòng)預(yù)設(shè)學(xué)生行為設(shè)計(jì)意圖

一、創(chuàng)設(shè)情境,導(dǎo)入新課

二、講授新課

三、鞏固練習(xí)

四、課時(shí)小結(jié)五、布置作業(yè)由四面八方這個(gè)成語引出學(xué)生對(duì)八個(gè)方位的理解

1.先以一個(gè)具體圖形告訴學(xué)生基本知識(shí)點(diǎn),方位角一般是以正南正北為基準(zhǔn),然后向東或西旋轉(zhuǎn)所成的角的始邊方向。

2.師示范方位角的畫法

3.出示補(bǔ)充例題,引對(duì)學(xué)生通過小組合作完成。思考并回答老師提出的問題

生觀察圖并理解老師的講解。

生觀察并獨(dú)立完成書中的例題

生先獨(dú)立思考然后與同學(xué)合作完成。激發(fā)學(xué)生的學(xué)習(xí)興趣

通遼具體圖形使學(xué)生初步認(rèn)識(shí)方位角的表示方法。

使學(xué)生通遼具體操作掌握畫方位角的方法

進(jìn)一步掌握方位角的有關(guān)知識(shí),達(dá)到知識(shí)提升。

板書設(shè)計(jì)

4.3.3余角和補(bǔ)角(二)——方位角

學(xué)生學(xué)習(xí)活動(dòng)評(píng)價(jià)設(shè)計(jì)

我先將學(xué)生按人數(shù)分成若干小組,在課前先給學(xué)生發(fā)放導(dǎo)學(xué)單,課上先給學(xué)生充分的討論時(shí)間后學(xué)生由小組推薦代表發(fā)言,累積分?jǐn)?shù),每個(gè)小組輪流回答一次,學(xué)生代表回答完畢后,其它同學(xué)補(bǔ)充糾錯(cuò),然后從知識(shí)點(diǎn)是否準(zhǔn)確,語言是否流利,思維是否創(chuàng)新,邏輯是否合理嚴(yán)密等方面來做出評(píng)價(jià),然后給出相應(yīng)分?jǐn)?shù)。累積到小組積分中課上知識(shí)回答后在練習(xí)部分,設(shè)計(jì)搶答題,小組搶答完成。最后計(jì)算出總分評(píng)出本節(jié)課小組及個(gè)人獎(jiǎng),給予口頭表?yè)P(yáng)。

教學(xué)反思

本節(jié)課是在上節(jié)課余角和補(bǔ)角的基礎(chǔ)上學(xué)習(xí)的,而且在小學(xué)階段也已經(jīng)接觸過這部分知識(shí)了,基于這個(gè)特點(diǎn),在課堂上我主要采取了自主學(xué)習(xí)的方式,學(xué)生接受的不錯(cuò),本節(jié)課的知識(shí)雖然簡(jiǎn)單但很重要是為以后平面直角坐標(biāo)系做準(zhǔn)備的。出現(xiàn)的問題是有個(gè)別同學(xué)對(duì)于A看B是北偏東30度,則B看A是什么方向不太清楚,我采取的措施是讓明白的同學(xué)講給不明白的同學(xué)聽,指導(dǎo)其主要從哪方面入手解決此類問題,還有一點(diǎn),學(xué)生在畫圖后容易忽略寫結(jié)論,應(yīng)強(qiáng)調(diào)。以前在上本節(jié)課時(shí),我是采取的講授法,感覺學(xué)生不是很愛聽,后來一想,知道了是因?yàn)樾W(xué)時(shí)他們已經(jīng)接觸了這部分知識(shí),所以不愛聽,針對(duì)于這種情況,這次我采用了自主學(xué)習(xí)的方式感覺學(xué)生的積極性上來了,一節(jié)課氣氛很好,相信效果也不錯(cuò)。以后再講這節(jié)課我將繼續(xù)采用這種方式,在此基礎(chǔ)上使其更加完善。

初三數(shù)學(xué)教案案例篇17

1、教材分析

(1)知識(shí)結(jié)構(gòu)

(2)重點(diǎn)、難點(diǎn)分析

重點(diǎn):①點(diǎn)和圓的三種位置關(guān)系,圓的有關(guān)概念,因?yàn)樗鼈兪茄芯繄A的基礎(chǔ);②五種常見的點(diǎn)的軌跡,一是對(duì)幾何圖形的深刻理解,二為今后立體幾何、解析幾何的學(xué)習(xí)作重要的準(zhǔn)備.

難點(diǎn):①圓的集合定義,學(xué)生不容易理解為什么必須滿足兩個(gè)條件,內(nèi)容本身屬于難點(diǎn);②點(diǎn)的軌跡,由于學(xué)生形象思維較強(qiáng),抽象思維弱,而這部分知識(shí)比較抽象和難懂.

2、教法建議

本節(jié)內(nèi)容需要4課時(shí)

第一課時(shí):圓的定義和點(diǎn)和圓的位置關(guān)系

(1)讓學(xué)生自己畫圓,自己給圓下定義,進(jìn)行交流,歸納、概括,調(diào)動(dòng)學(xué)生積極主動(dòng)的參與教學(xué)活動(dòng);對(duì)于高層次的學(xué)生可以直接通過點(diǎn)的集合來研究,給圓下定義(參看教案圓(一));

(2)點(diǎn)和圓的位置關(guān)系,讓學(xué)生自己觀察、分類、探究,在“數(shù)形”的過程中,學(xué)習(xí)新知識(shí).

第二課時(shí):圓的有關(guān)概念

(1)對(duì)(A)層學(xué)生放開自學(xué),對(duì)(B)層學(xué)生在老師引導(dǎo)下自學(xué),要提高學(xué)生的學(xué)習(xí)能力,特別是概念較多而沒有很多發(fā)揮的內(nèi)容,老師沒必要去講;

(2)課堂活動(dòng)要抓住:由“數(shù)”想“形”,由“形”思“數(shù)”,的主線.

第三、四課時(shí):點(diǎn)的軌跡

條件較好的學(xué)校可以利用電腦動(dòng)畫來加深和幫助學(xué)生對(duì)點(diǎn)的軌跡的理解,一般學(xué)校可讓學(xué)生動(dòng)手畫圖,使學(xué)生在動(dòng)手、動(dòng)腦、觀察、思考、理解的過程中,逐步從形象思維較強(qiáng)向抽象思維過度.但我的觀點(diǎn)是不管怎樣組織教學(xué),都要遵循學(xué)生是學(xué)習(xí)的主體這一原則.

第一課時(shí):圓(一)

教學(xué)目標(biāo):

1、理解圓的描述性定義,了解用集合的觀點(diǎn)對(duì)圓的定義;

2、理解點(diǎn)和圓的位置關(guān)系和確定圓的條件;

3、培養(yǎng)學(xué)生通過動(dòng)手實(shí)踐發(fā)現(xiàn)問題的能力;

4、滲透“觀察→分析→歸納→概括”的數(shù)學(xué)思想方法.

教學(xué)重點(diǎn):點(diǎn)和圓的關(guān)系

教學(xué)難點(diǎn):以點(diǎn)的集合定義圓所具備的兩個(gè)條件

教學(xué)方法:自主探討式

教學(xué)過程設(shè)計(jì)(總框架):

一、創(chuàng)設(shè)情境,開展學(xué)習(xí)活動(dòng)

1、讓學(xué)生畫圓、描述、交流,得出圓的第一定義:

定義1:在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫做圓.固定的端點(diǎn)O叫做圓心,線段OA叫做半徑.記作⊙O,讀作“圓O”.

2、讓學(xué)生觀察、思考、交流,并在老師的指導(dǎo)下,得出圓的第二定義.

從舊知識(shí)中發(fā)現(xiàn)新問題

觀察:

共性:這些點(diǎn)到O點(diǎn)的距離相等

想一想:在平面內(nèi)還有到O點(diǎn)的距離相等的點(diǎn)嗎?它們構(gòu)成什么圖形?

(1)圓上各點(diǎn)到定點(diǎn)(圓心O)的距離都等于定長(zhǎng)(半徑的長(zhǎng)r);

(2)到定點(diǎn)距離等于定長(zhǎng)的點(diǎn)都在圓上.

定義2:圓是到定點(diǎn)距離等于定長(zhǎng)的點(diǎn)的集合.

3、點(diǎn)和圓的位置關(guān)系

問題三:點(diǎn)和圓的位置關(guān)系怎樣?(學(xué)生自主完成得出結(jié)論)

如果圓的半徑為r,點(diǎn)到圓心的距離為d,則:

點(diǎn)在圓上d=r;

點(diǎn)在圓內(nèi)d

點(diǎn)在圓外d>r.

“數(shù)”“形”

二、例題分析,變式練習(xí)

練習(xí):已知⊙O的半徑為5cm,A為線段OP的中點(diǎn),當(dāng)OP=6cm時(shí),點(diǎn)A在⊙O________;當(dāng)OP=10cm時(shí),點(diǎn)A在⊙O________;當(dāng)OP=18cm時(shí),點(diǎn)A在⊙O___________.

例1求證:矩形的四個(gè)頂點(diǎn)在以對(duì)角線的交點(diǎn)為圓心的同一個(gè)圓上.

已知(略)

求證(略)

分析:四邊形ABCD是矩形

A=OC,OB=OD;AC=BD

OA=OC=OB=OD

要證A、B、C、D4個(gè)點(diǎn)在以O(shè)為圓心的圓上

證明:∵四邊形ABCD是矩形

∴OA=OC,OB=OD;AC=BD

∴OA=OC=OB=OD

∴A、B、C、D4個(gè)點(diǎn)在以O(shè)為圓心,OA為半徑的圓上.

符號(hào)“”的應(yīng)用(要求學(xué)生了解)

證明:四邊形ABCD是矩形

OA=OC=OB=OD

A、B、C、D4個(gè)點(diǎn)在以O(shè)為圓心,OA為半徑的圓上.

小結(jié):要證幾個(gè)點(diǎn)在同一個(gè)圓上,可以證明這幾個(gè)點(diǎn)與一個(gè)定點(diǎn)的距離相等.

問題拓展研究:我們所研究過的基本圖形中(平行四邊形,菱形,,正方形,等腰梯形)哪些圖形的頂點(diǎn)在同一個(gè)圓上.(讓學(xué)生探討)

練習(xí)1求證:菱形各邊的中點(diǎn)在同一個(gè)圓上.

(目的:培養(yǎng)學(xué)生的分析問題的能力和邏輯思維能力.A層自主完成)

練習(xí)2設(shè)AB=3cm,畫圖說明具有下列性質(zhì)的點(diǎn)的集合是怎樣的圖形.

(1)和點(diǎn)A的距離等于2cm的點(diǎn)的集合;

(2)和點(diǎn)B的距離等于2cm的點(diǎn)的集合;

(3)和點(diǎn)A,B的距離都等于2cm的點(diǎn)的集合;

(4)和點(diǎn)A,B的距離都小于2cm的點(diǎn)的集合;(A層自主完成)

三、課堂小結(jié)

問:這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?在學(xué)習(xí)時(shí)應(yīng)注意哪些問題?在學(xué)生回答的基礎(chǔ)上,強(qiáng)調(diào):

(1)主要學(xué)習(xí)了圓的兩種不同的定義方法與圓的三種位置關(guān)系;

(2)在用點(diǎn)的集合定義圓時(shí),必須注意應(yīng)具備兩個(gè)條件,二者缺一不可;

(3)注重對(duì)數(shù)學(xué)能力的培養(yǎng)

四、作業(yè)82頁(yè)2、3、4.

初三數(shù)學(xué)教案案例篇18

教材分析

本節(jié)內(nèi)容是上一節(jié)課在學(xué)習(xí)余角補(bǔ)角基礎(chǔ)上學(xué)習(xí)的,學(xué)生有了一定的基礎(chǔ),為以后學(xué)__面直角坐標(biāo)系的學(xué)習(xí)做好準(zhǔn)備。

學(xué)情分析

本節(jié)課對(duì)于學(xué)生來說學(xué)習(xí)起來并不太難,在小學(xué)階段學(xué)生已經(jīng)接觸過方位角的內(nèi)容,而且本節(jié)課內(nèi)容和生活中的方向聯(lián)系緊密,故學(xué)生比較有興趣。

教學(xué)目標(biāo)

理解方位角的意義,掌握方位角的判別和應(yīng)用,通過現(xiàn)實(shí)情境,充分利用學(xué)生的生活經(jīng)驗(yàn)去體會(huì)方位角的意義。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):方位角的判別與應(yīng)用

難點(diǎn):方位角的畫法及變式題

教學(xué)過程(本文來自優(yōu)秀教育資源網(wǎng)斐.斐.課.件.園)

教學(xué)環(huán)節(jié)教師活動(dòng)預(yù)設(shè)學(xué)生行為設(shè)計(jì)意圖

一、創(chuàng)設(shè)情境,導(dǎo)入新課

二、講授新課

三、鞏固練習(xí)

四、課時(shí)小結(jié)五、布置作業(yè)由四面八方這個(gè)成語引出學(xué)生對(duì)八個(gè)方位的理解

1.先以一個(gè)具體圖形告訴學(xué)生基本知識(shí)點(diǎn),方位角一般是以正南正北為基準(zhǔn),然后向東或西旋轉(zhuǎn)所成的角的始邊方向。

2.師示范方位角的畫法

3.出示補(bǔ)充例題,引對(duì)學(xué)生通過小組合作完成。思考并回答老師提出的問題

生觀察圖并理解老師的講解。

生觀察并獨(dú)立完成書中的例題

生先獨(dú)立思考然后與同學(xué)合作完成。激發(fā)學(xué)生的學(xué)習(xí)興趣

通遼具體圖形使學(xué)生初步認(rèn)識(shí)方位角的表示方法。

使學(xué)生通遼具體操作掌握畫方位角的方法

進(jìn)一步掌握方位角的有關(guān)知識(shí),達(dá)到知識(shí)提升。

板書設(shè)計(jì)

4.3.3余角和補(bǔ)角(二)——方位角

學(xué)生學(xué)習(xí)活動(dòng)評(píng)價(jià)設(shè)計(jì)

我先將學(xué)生按人數(shù)分成若干小組,在課前先給學(xué)生發(fā)放導(dǎo)學(xué)單,課上先給學(xué)生充分的討論時(shí)間后學(xué)生由小組推薦代表發(fā)言,累積分?jǐn)?shù),每個(gè)小組輪流回答一次,學(xué)生代表回答完畢后,其它同學(xué)補(bǔ)充糾錯(cuò),然后從知識(shí)點(diǎn)是否準(zhǔn)確,語言是否流利,思維是否創(chuàng)新,邏輯是否合理嚴(yán)密等方面來做出評(píng)價(jià),然后給出相應(yīng)分?jǐn)?shù)。累積到小組積分中課上知識(shí)回答后在練習(xí)部分,設(shè)計(jì)搶答題,小組搶答完成。最后計(jì)算出總分評(píng)出本節(jié)課小組及個(gè)人獎(jiǎng),給予口頭表?yè)P(yáng)。

教學(xué)反思

本節(jié)課是在上節(jié)課余角和補(bǔ)角的基礎(chǔ)上學(xué)習(xí)的,而且在小學(xué)階段也已經(jīng)接觸過這部分知識(shí)了,基于這個(gè)特點(diǎn),在課堂上我主要采取了自主學(xué)習(xí)的方式,學(xué)生接受的不錯(cuò),本節(jié)課的知識(shí)雖然簡(jiǎn)單但很重要是為以后學(xué)__面直角坐標(biāo)系做準(zhǔn)備的。出現(xiàn)的問題是有個(gè)別同學(xué)對(duì)于A看B是北偏東30度,則B看A是什么方向不太清楚,我采取的措施是讓明白的同學(xué)講給不明白的同學(xué)聽,指導(dǎo)其主要從哪方面入手解決此類問題,還有一點(diǎn),學(xué)生在畫圖后容易忽略寫結(jié)論,應(yīng)強(qiáng)調(diào)。以前在上本節(jié)課時(shí),我是采取的講授法,感覺學(xué)生不是很愛聽,后來一想,知道了是因?yàn)樾W(xué)時(shí)他們已經(jīng)接觸了這部分知識(shí),所以不愛聽,針對(duì)于這種情況,這次我采用了自主學(xué)習(xí)的方式感覺學(xué)生的積極性上來了,一節(jié)課氣氛很好,相信效果也不錯(cuò)。以后再講這節(jié)課我將繼續(xù)采用這種方式,在此基礎(chǔ)上使其更加完善。

72356 主站蜘蛛池模板: 范秘书_懂你的范文小秘书| 台式低速离心机-脱泡离心机-菌种摇床-常州市万丰仪器制造有限公司 | 春腾云财 - 为企业提供专业财税咨询、代理记账服务 | 贵阳用友软件,贵州财务软件,贵阳ERP软件_贵州优智信息技术有限公司 | 深圳离婚律师咨询「在线免费」华荣深圳婚姻律师事务所专办离婚纠纷案件 | 爱佩恒温恒湿测试箱|高低温实验箱|高低温冲击试验箱|冷热冲击试验箱-您身边的模拟环境试验设备技术专家-合作热线:400-6727-800-广东爱佩试验设备有限公司 | 3d可视化建模_三维展示_产品3d互动数字营销_三维动画制作_3D虚拟商城 【商迪3D】三维展示服务商 广东健伦体育发展有限公司-体育工程配套及销售运动器材的体育用品服务商 | 钢丝绳探伤仪-钢丝绳检测仪-钢丝绳探伤设备-洛阳泰斯特探伤技术有限公司 | 双相钢_双相不锈钢_双相钢圆钢棒_双相不锈钢报价「海新双相钢」 双能x射线骨密度检测仪_dxa骨密度仪_双能x线骨密度仪_品牌厂家【品源医疗】 | 全自动面膜机_面膜折叠机价格_面膜灌装机定制_高速折棉机厂家-深圳市益豪科技有限公司 | 银川美容培训-美睫美甲培训-彩妆纹绣培训-新娘化妆-学化妆-宁夏倍莱妮职业技能培训学校有限公司 临时厕所租赁_玻璃钢厕所租赁_蹲式|坐式厕所出租-北京慧海通 | 济南品牌包装设计公司_济南VI标志设计公司_山东锐尚文化传播 | 山东氧化铁红,山东铁红-淄博科瑞化工有限公司 | 湖南自考_湖南自学考试 | 郑州爱婴幼师学校_专业幼师培训_托育师培训_幼儿教育培训学校 | 合肥角钢_合肥槽钢_安徽镀锌管厂家-昆瑟商贸有限公司 | 铸钢件厂家-铸钢齿轮-减速机厂家-淄博凯振机械有限公司 | 耐破强度测试仪-纸箱破裂强度试验机-济南三泉中石单品站 | 合肥网络推广_合肥SEO网站优化-安徽沃龙First | 节流截止放空阀-不锈钢阀门-气动|电动截止阀-鸿华阀门有限公司 | 电缆隧道在线监测-智慧配电站房-升压站在线监测-江苏久创电气科技有限公司 | 泰来华顿液氮罐,美国MVE液氮罐,自增压液氮罐,定制液氮生物容器,进口杜瓦瓶-上海京灿精密机械有限公司 | 非小号行情 - 专业的区块链、数字藏品行情APP、金色财经官网 | 影合社-影视人的内容合作平台| 合肥触摸一体机_触摸查询机厂家_合肥拼接屏-安徽迅博智能科技 | 云南外加剂,云南速凝剂,云南外加剂代加工-普洱澜湄新材料科技有限公司 | 【法利莱住人集装箱厂家】—活动集装箱房,集装箱租赁_大品牌,更放心 | TYPE-C厂家|TYPE-C接口|TYPE-C防水母座|TYPE-C贴片-深圳步步精 | 精密光学实验平台-红外粉末压片机模具-天津博君 | 折弯机-刨槽机-数控折弯机-数控刨槽机-数控折弯机厂家-深圳豐科机械有限公司 | 污水/卧式/潜水/钻井/矿用/大型/小型/泥浆泵,价格,参数,型号,厂家 - 安平县鼎千泵业制造厂 | 玻璃钢型材_拉挤模具_玻璃钢拉挤设备——滑县康百思 | 济南菜鸟驿站广告|青岛快递车车体|社区媒体-抖音|墙体广告-山东揽胜广告传媒有限公司 | 丝杆升降机-不锈钢丝杆升降机-非标定制丝杆升降机厂家-山东鑫光减速机有限公司 | 浇注料-高铝砖耐火砖-郑州凯瑞得窑炉耐火材料有限公司 | 小型铜米机-干式铜米机-杂线全自动铜米机-河南鑫世昌机械制造有限公司 | 搬运设备、起重设备、吊装设备—『龙海起重成套设备』 | 玻璃钢格栅盖板|玻璃钢盖板|玻璃钢格栅板|树篦子-长沙川皖玻璃钢制品有限公司 | 家乐事净水器官网-净水器厂家「官方」 | 南昌旅行社_南昌国际旅行社_南昌国旅在线 | 聚丙烯酰胺_阴离子_阳离子「用量少」巩义亿腾厂家直销,售后无忧 聚合甘油__盐城市飞龙油脂有限公司 |