初三的數(shù)學(xué)教案
編寫教案有助于教師提高教學(xué)水平,使教學(xué)更加規(guī)范化和科學(xué)化。初三的數(shù)學(xué)教案怎么寫才規(guī)范?下面給大家分享初三的數(shù)學(xué)教案,希望對大家有所幫助。
初三的數(shù)學(xué)教案篇1
教學(xué)目標(biāo)
1、使學(xué)生理解弦、弧、弓形、同心圓、等圓、等孤的概念;初步會運用這些概念判斷真假命題。
2、逐步培養(yǎng)學(xué)生閱讀教材、親自動手實踐,總結(jié)出新概念的能力;進(jìn)一步指導(dǎo)學(xué)
生觀察、比較、分析、概括知識的能力。
3、通過動手、動腦的全過程,調(diào)動學(xué)生主動學(xué)習(xí)的積極性,使學(xué)生從積極主動獲得知識。
教學(xué)重點、難點和疑點
1、重點:理解圓的有關(guān)概念.
2、難點:對“等圓”、“等弧”的定義中的“互相重合”這一特征的理解.
3、疑點:學(xué)生容易把長度相等的兩條弧看成是等弧。讓學(xué)生閱讀教材、理解、交流和與教師對話交流中排除疑難。
教學(xué)過程設(shè)計:
(一)閱讀、理解
重點概念:
1、弦:連結(jié)圓上任意兩點的線段叫做弦.
2、直徑:經(jīng)過圓心的弦是直徑.
3、圓弧:圓上任意兩點間的部分叫做圓弧.簡稱弧.
半圓弧:圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧叫做半圓;
優(yōu)弧:大于半圓的弧叫優(yōu)弧;
劣弧:小于半圓的弧叫做劣弧.
4、弓形:由弦及其所對的弧組成的圖形叫做弓形.
5、同心圓:即圓心相同,半徑不相等的兩個圓叫做同心圓.
6、等圓:能夠重合的兩個圓叫做等圓.
7、等弧:在同圓或等圓中,能夠互相重合的弧叫做等弧.
(二)小組交流、師生對話
問題:
1、一個圓有多少條弦?最長的弦是什么?
2、弧分為哪幾種?怎樣表示?
3、弓形與弦有什么區(qū)別?在一個圓中一條弦能得到幾個弓形?
4、在等圓、等弧中,“互相重合”是什么含義?
(通過問題,使學(xué)生與學(xué)生,學(xué)生與老師進(jìn)行交流、學(xué)習(xí),加深對概念的理解,排除疑難)
(三)概念辨析:
判斷題目:
(1)直徑是弦()(2)弦是直徑()
(3)半圓是弧()(4)弧是半圓()
(5)長度相等的兩段弧是等弧()(6)等弧的長度相等()
(7)兩個劣弧之和等于半圓()(8)半徑相等的兩個半圓是等弧()
(主要理解以下概念:(1)弦與直徑;(2)弧與半圓;(3)同心圓、等圓指兩個圖形;(4)等圓、等弧是互相重合得到,等弧的條件作用.)
(四)應(yīng)用、練習(xí)
例1、已知:如圖,AB、CB為⊙O的兩條弦,試寫出圖中的所有弧.
解:一共有6條弧.、、、、、.
(目的:讓學(xué)生會表示弧,并加深理解優(yōu)弧和劣弧的概念)
例2、已知:如圖,在⊙O中,AB、CD為直徑.求證:AD∥BC.
(由學(xué)生分析,學(xué)生寫出證明過程,學(xué)生糾正存在問題.鍛煉學(xué)生動口、動腦、動手實踐能力,調(diào)動學(xué)生主動學(xué)習(xí)的積極性,使學(xué)生從積極主動獲得知識.)
鞏固練習(xí):
教材P66練習(xí)中2題(學(xué)生自己完成).
(五)小結(jié)
教師引導(dǎo)學(xué)生自己做出總結(jié):
1、本節(jié)所學(xué)似的知識點;
2、概念理解:①弦與直徑;②弧與半圓;③同心圓、等圓指兩個圖形;④等圓和等弧.
3、弧的表示方法.
(六)作業(yè)
教材P66練習(xí)中3題,P82習(xí)題l(3)、(4).
初三的數(shù)學(xué)教案篇2
教學(xué)內(nèi)容
24。2圓的切線(1)
教學(xué)目標(biāo) 使學(xué)生掌握切線的識別方法,并能初步運用它解決有關(guān)問題
通過切線識別方法的學(xué)習(xí),培養(yǎng)學(xué)生觀察、分析、歸納問題的能力
教學(xué)重點 切線的識別方法
教學(xué)難點 方法的理解及實際運用
教具準(zhǔn)備 投影儀,膠片
教學(xué)過程 教師活動學(xué)生活動
(一)復(fù)習(xí)情境導(dǎo)入
1、復(fù)習(xí)、回顧直線與圓的三種位置關(guān)系。
2、請學(xué)生判斷直線和圓的位置關(guān)系。
學(xué)生判斷的過程,提問:你是怎樣判斷出圖中的直線和圓相切的?根據(jù)學(xué)生的回答,繼續(xù)提出問題:如何界定直線與圓是否只有一個公共點?教師指出,根據(jù)切線的定義可以識別一條直線是不是圓的切線,但有時使用定義識別很不方便,為此我們還要學(xué)習(xí)識別切線的其它方法。(板書課題)搶答
學(xué)生總結(jié)判別方法
(二)
實踐與探索1:圓的切線的判斷方法1、由上面的復(fù)習(xí),我們可以把上節(jié)課所學(xué)的切線的定義作為識別切線的方法1——定義法:與圓只有一個公共點的直線是圓的切線。
2、當(dāng)然,我們還可以由上節(jié)課所學(xué)的用圓心到直線的距離與半徑之間的關(guān)系來判斷直線與圓是否相切,即:當(dāng)時,直線與圓的位置關(guān)系是相切。以此作為識別切線的方法2——數(shù)量關(guān)系法:圓心到直線的距離等于半徑的直線是圓的切線。
3、實驗:作⊙O的半徑OA,過A作l⊥OA可以發(fā)現(xiàn):
(1)直線經(jīng)過半徑的外端點;
(2)直線垂直于半徑。這樣我們就得到了從位置上來判斷直線是圓的切線的方法3——位置關(guān)系法:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線。理解并識記圓的切線的幾種方法,并比較應(yīng)用。
通過實驗探究圓的切線的位置判別方法,深入理解它的兩個要義。
三、課堂練習(xí)
思考:現(xiàn)在,任意給定一個圓,你能不能作出圓的切線?應(yīng)該如何作?
請學(xué)生回顧作圖過程,切線是如何作出來的?它滿足哪些條件?引導(dǎo)學(xué)生總結(jié)出:①經(jīng)過半徑外端;②垂直于這條半徑。
請學(xué)生繼續(xù)思考:這兩個條件缺少一個行不行?(學(xué)生畫出反例圖)
(圖1)(圖2)圖(3)
圖(1)中直線經(jīng)過半徑外端,但不與半徑垂直;圖(2)中直線與半徑垂直,但不經(jīng)過半徑外端。從以上兩個反例可以看出,只滿足其中一個條件的直線不是圓的切線。
最后引導(dǎo)學(xué)生分析,方法3實際上是從前一節(jié)所講的“圓心到直線的距離等于半徑時直線和圓相切”這個結(jié)論直接得出來的,只是為了便于應(yīng)用把它改寫成“經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線”這種形式。試驗體會圓的位置判別方法。
理解位置判別方法的兩個要素。
(四)應(yīng)用與拓展例1、如圖,已知直線AB經(jīng)過⊙O上的點A,并且AB=OA,OBA=45,直線AB是⊙O的切線嗎?為什么?
例2、如圖,線段AB經(jīng)過圓心O,交⊙O于點A、C,BAD=B=30,邊BD交圓于點D。BD是⊙O的切線嗎?為什么?
分析:欲證BD是⊙O的切線,由于BD過圓上點D,若連結(jié)OD,則BD過半徑OD的外端,因此只需證明BD⊥OD,因OA=OD,BAD=B,易證BD⊥OD。
教師板演,給出解答過程及格式。
課堂練習(xí):課本練習(xí)1-4先選擇方法,弄清位置判別方法與數(shù)量判別方法的本質(zhì)區(qū)別。
注意圓的切線的特征與識別的區(qū)別。
(四)小結(jié)與作業(yè)識別一條直線是圓的切線,有三種方法:
(1)根據(jù)切線定義判定,即與圓只有一個公共點的直線是圓的切線;
(2)根據(jù)圓心到直線的距離來判定,即與圓心的距離等于圓的半徑的直線是圓的切線;
(3)根據(jù)直線的位置關(guān)系來判定,即經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線,
說明一條直線是圓的切線,常常需要作輔助線,如果已知直線過圓上某一點,則作出過這一點的半徑,證明直線垂直于半徑即可(如例2)。
各抒己見,談收獲。
(五)板書設(shè)計
識別一條直線是圓的切線,有三種方法:例:
(1)根據(jù)切線定義判定,即與圓只有一個公共點的直線是圓的切線;
(2)根據(jù)圓心到直線的距離來判定,即與圓心的距離等于圓的半徑的直線是圓的切線;
(3)根據(jù)直線的位置關(guān)系來判定,即經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線,
說明一條直線是圓的切線,常常需要作輔助線,如果已知直線過圓上某一點,則作出過這一點的半徑,證明直線垂直于半徑
(六)教學(xué)后記
教學(xué)內(nèi)容 24。2圓的切線(2)課型新授課課時執(zhí)教
教學(xué)目標(biāo) 通過探究,使學(xué)生發(fā)現(xiàn)、掌握切線長定理,并初步長定理,并初步學(xué)會應(yīng)用切線長定理解決問題,同時通過從三角形紙片中剪出最大圓的實驗的過程中發(fā)現(xiàn)三角形內(nèi)切圓的畫法,能用內(nèi)心的性質(zhì)解決問題。
教學(xué)重點 切線長定理及其應(yīng)用,三角形的內(nèi)切圓的畫法和內(nèi)心的性質(zhì)。
教學(xué)難點 三角形的內(nèi)心及其半徑的確定。
教具準(zhǔn)備 投影儀,膠片
教學(xué)過程 教師活動學(xué)生活動
(一)復(fù)習(xí)導(dǎo)入:
請同學(xué)們回顧一下,如何判斷一條直線是圓的切線?圓的切線具有什么性質(zhì)?(經(jīng)過半徑外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經(jīng)過切點的半徑。)
你能說明以下這個問題?
如右圖所示,PA是的平分線,AB是⊙O的切線,切點E,那么AC是⊙O的切線嗎?為什么?
回顧舊知,看誰說的全。
利用舊知,分析解決該問題。
(二)
實踐與探索問題1、從圓外一點可以作圓的幾條切線?請同學(xué)們畫一畫。
2、請問:這一點與切點的兩條線段的長度相等嗎?為什么?
3、切線長的定義是什么?
通過以上幾個問題的解決,使同學(xué)們得出以下的結(jié)論:
從圓外一點可以引圓的兩條切線,切線長相等。這一點與圓心的連線
平分兩條切線的夾角。在解決以上問題時,鼓勵同學(xué)們用不同的觀點、不同的知識來解決問題,它既可以用書上闡述的對稱的觀點解決,也可以用以前學(xué)習(xí)的其他知識來解決問題。
(三)拓展與應(yīng)用例:右圖,PA、PB是,切點分別是A、B,直線EF也是⊙O的切線,切點為P,交PA、PB為E、F點,已知,,(1)求的周長;(2)求的度數(shù)。
解:(1)連結(jié)PA、PB、EF是⊙O的切線
所以,,
所以的周長(2)因為PA、PB、EF是⊙O的切線
所以,,,
所以
所以
畫圖分析探究,教學(xué)中應(yīng)注重基本圖形的教學(xué),引導(dǎo)學(xué)生發(fā)現(xiàn)基本圖形,應(yīng)用基本圖形解決問題。
(四)小結(jié)與作業(yè)談一下本節(jié)課的收獲?各抒己見,看誰說得最好
(五)板書設(shè)計
切線(2)
切線長相等例:
切線長性質(zhì)
點與圓心連線平分兩切線夾角
(六)教學(xué)后記
初三的數(shù)學(xué)教案篇3
本學(xué)年既有新任務(wù)要完成還有復(fù)習(xí)更要兼顧,因此事非常重要的一個學(xué)期,要以培養(yǎng)學(xué)生創(chuàng)新精神和實踐能力為重點,探索有效教學(xué)新模式。以課堂教學(xué)為中心,緊緊圍繞初中數(shù)學(xué)教材、數(shù)學(xué)學(xué)科“基本要求”進(jìn)行教學(xué),針對近年來中考命題的變化和趨勢進(jìn)行研究,收集試卷,精選習(xí)題,建立題庫,努力把握中考方向,積極探索高效的復(fù)習(xí)途徑,力求達(dá)到減負(fù)、加壓、增效的目的,促進(jìn)學(xué)生生動、活潑、主動地學(xué)習(xí),力求中考取得好成績。通過數(shù)學(xué)課的教學(xué),使學(xué)生切實學(xué)好從事現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)所必須的基本知識和基本能力,在思維能力、情感態(tài)度與價值觀等多方面得到進(jìn)步和發(fā)展。
一、學(xué)情分析:
本學(xué)年我?guī)Ь拍昙壎啵瑢W(xué)生上學(xué)期成績居全縣第四,兩極分化越來越嚴(yán)重。有部分學(xué)生成績下滑很明顯,學(xué)習(xí)習(xí)慣較差。做事慢慢騰騰,有幾個學(xué)生應(yīng)該考優(yōu)生的學(xué)生都沒有考到優(yōu)生,如連清,趙熙,馬曉宇,李功奎,張信心,夏森,柯昭君,許鑫鑫,徐婷婷等,這些也許是老師督導(dǎo)不到位,也有少數(shù)學(xué)生自制能力較差,對自己要求不嚴(yán),甚至自暴自棄。這些都需要針對不同情況采取相應(yīng)措施,耐心教育。
二、教材分析:
本學(xué)期的新內(nèi)容只剩兩章:解直角三角形和投影。
四、教學(xué)目標(biāo):
1、在教學(xué)過程中抓住以下幾個環(huán)節(jié):(1)認(rèn)真?zhèn)湔n。認(rèn)真研究教材及考綱,明確教學(xué)目標(biāo),抓住重點、難點,精心設(shè)計教學(xué)過程,重視每一章節(jié)內(nèi)容與前后知識的聯(lián)系及其地位,重視課后反思,設(shè)計好每一節(jié)課的師生互動的細(xì)節(jié)。(2)上好課:在備好課的基礎(chǔ)上,上好每一個45分鐘,提高45分鐘的效率,讓每一位同學(xué)都聽的懂,對部分基礎(chǔ)較差者要循序漸進(jìn),以選用的例題的難易程度不同,使每個學(xué)生能“吃”飽、“吃”好。(3)注重課后反思,及時的將一節(jié)課的得失記錄下來,不斷積累教學(xué)經(jīng)驗。(4)批好每一次作業(yè):作業(yè)反映了一節(jié)課的效果如何,學(xué)生對知識的掌握程度如何,認(rèn)真批改作業(yè),使教師能迅速掌握情況,對癥下藥。(5)按時檢驗學(xué)習(xí)成果,做到單元測驗的有效、及時,測驗卷子的批改不過夜。考后對典型錯誤利用學(xué)生想馬上知道答案的心理立即點評。(6)及時指導(dǎo)、糾錯:爭取面批、面授,今天的任務(wù)不推托到明日,爭取一切時間,緊緊抓住初三階段的每分每秒。課后反饋。落實每一堂課后輔助,查漏補(bǔ)缺。精選適當(dāng)?shù)木毩?xí)題、測試卷,及時批改作業(yè),發(fā)現(xiàn)問題及時給學(xué)生面對面的指出并指導(dǎo)學(xué)生搞懂弄通,不留一個疑難點,讓學(xué)生學(xué)有所獲。(7)積極與其它老師溝通,加強(qiáng)教研教改,提高教學(xué)水平。(8)經(jīng)常聽取學(xué)生良好的合理化建議。(9)以“兩頭”帶“中間”戰(zhàn)略思想不變。(10)深化兩極生的訓(xùn)導(dǎo)。
五、嚴(yán)格按照教學(xué)進(jìn)度,有序的進(jìn)行教學(xué)工作。用心去做,從細(xì)節(jié)去做,盡自己追大的努力,發(fā)揮自己的能力去做好初三畢業(yè)班的教學(xué)工作。
六、強(qiáng)化復(fù)習(xí)指導(dǎo)。分二階段復(fù)習(xí):(一)第一階段全面復(fù)習(xí)基礎(chǔ)知識,加強(qiáng)基本技能訓(xùn)練讓學(xué)生全面掌握初中數(shù)學(xué)基礎(chǔ)知識,提高基本技能,做到全面、扎實、系統(tǒng),形成知識網(wǎng)絡(luò)。
這個階段的復(fù)習(xí)目的是讓學(xué)生全面掌握初中數(shù)學(xué)基礎(chǔ)知識,提高基本技能,做到全面、扎實、系統(tǒng),形成知識網(wǎng)絡(luò)。
1、重視課本,系統(tǒng)復(fù)習(xí)。現(xiàn)在中考命題仍然以基礎(chǔ)題為主,有些基礎(chǔ)題是課本上的原題或改造,后面的大題雖是“高于教材”,但原型一般還是教材中的例題或習(xí)題,是教材中題目的引伸、變形或組合,所以第一階段復(fù)習(xí)應(yīng)以課本為主。
2、按知識板塊組織復(fù)習(xí)。把知識進(jìn)行歸類,將全初中數(shù)學(xué)知識分為十一講:第一講數(shù)與式;第二講方程與不等式;第三講函數(shù);第四講統(tǒng)計與概率;第五講基本圖形;第六講圖形與變換;第七講角、相交線和平行線;第八講三角形;第九講四邊形;第十講三角函數(shù)學(xué);第十一講圓.復(fù)習(xí)中由教師提出每個講節(jié)的復(fù)習(xí)提要,指導(dǎo)學(xué)生按“提要”復(fù)習(xí),同時要注意引導(dǎo)學(xué)生根據(jù)個人具體情況把遺忘了知識重溫一遍,邊復(fù)習(xí)邊作知識歸類,加深記憶,注意引導(dǎo)學(xué)生弄清概念的內(nèi)涵和外延,掌握法則、公式、定理的推導(dǎo)或證明,例題的選擇要有針對性、典型性、層次性,并注意分析例題解答的思路和方法。
3、重視對基礎(chǔ)知識的理解和基本方法的指導(dǎo)。基礎(chǔ)知識即初中數(shù)學(xué)課程中所涉及的概念、公式、公理、定理等。要求學(xué)生掌握各知識點之間的內(nèi)在聯(lián)系,理清知識結(jié)構(gòu),形成整體的認(rèn)識,并能綜合運用。例如一元二次方程的根與二次函數(shù)圖形與x軸交點之間的關(guān)系,是中考常常涉及的內(nèi)容,在復(fù)習(xí)時,應(yīng)從整體上理解這部分內(nèi)容,從結(jié)構(gòu)上把握教材,達(dá)到熟練地將這兩部分知識相互轉(zhuǎn)化。又如一元二次方程與幾何知識的聯(lián)系的題目有非常明顯的特點,應(yīng)掌握其基本解法。
中考數(shù)學(xué)命題除了著重考查基礎(chǔ)知識外,還十分重視對數(shù)學(xué)方法的考查,如配方法,換元法,判別式法等操作性較強(qiáng)的數(shù)學(xué)方法。在復(fù)習(xí)時應(yīng)對每一種方法的內(nèi)涵,它所適應(yīng)的題型,包括解題步驟都應(yīng)熟練掌握。
4、重視對數(shù)學(xué)思想的理解及運用。如函數(shù)的思想,方程思想,數(shù)形結(jié)合的思想等。
(二)第二階段綜合運用知識,加強(qiáng)能力培養(yǎng),構(gòu)建初中數(shù)學(xué)知識結(jié)構(gòu)和網(wǎng)絡(luò),從整體上把握數(shù)學(xué)內(nèi)容,以構(gòu)建初中數(shù)學(xué)知識結(jié)構(gòu)和網(wǎng)絡(luò)為主,從整體上把握數(shù)學(xué)內(nèi)容,提高能力。
培養(yǎng)綜合運用數(shù)學(xué)知識解題的能力,是學(xué)習(xí)數(shù)學(xué)的重要目的之一。這個階段的復(fù)習(xí)目的是使學(xué)生能把各個講節(jié)中的知識聯(lián)系起來,并能綜合運用,做到舉一反三、觸類旁通。這個階段的例題和練習(xí)題要有一定的難度,但又不是越難越好,要讓學(xué)生可接受,這樣才能既激發(fā)學(xué)生解難求進(jìn)的學(xué)習(xí)欲望,又使學(xué)生從解決較難問題中看到自己的力量,增強(qiáng)前進(jìn)的信心,產(chǎn)生更強(qiáng)的求知欲。第二階段就是第一階段復(fù)習(xí)的延伸和提高,應(yīng)側(cè)重培養(yǎng)學(xué)生的數(shù)學(xué)能力。這一階段尤其要精心設(shè)計每一節(jié)復(fù)習(xí)課,注意數(shù)學(xué)思想的形成和數(shù)學(xué)方法的掌握。初中總復(fù)習(xí)的內(nèi)容多,復(fù)習(xí)必須突出重點,抓住關(guān)鍵,解決疑難,這就需要充分發(fā)揮教師的主導(dǎo)作用。而復(fù)習(xí)內(nèi)容是學(xué)生已經(jīng)學(xué)習(xí)過的,各個學(xué)生對教材內(nèi)容掌握的程度又各有差異,這就需要教師千方百計地激發(fā)學(xué)生復(fù)習(xí)的主動性、積極性,引導(dǎo)學(xué)生有針對性的復(fù)習(xí),根據(jù)個人的具體情況,查漏補(bǔ)缺,做知識歸類、解題方法歸類,在形成知識結(jié)構(gòu)的基礎(chǔ)上加深記憶。除了復(fù)習(xí)形式要多樣,題型要新穎,能引起學(xué)生復(fù)習(xí)的興趣外,還要精心設(shè)計復(fù)習(xí)課的教學(xué)方法,提高復(fù)習(xí)效益
七、不斷鉆研業(yè)務(wù),提高業(yè)務(wù)能力及水平。
積極參加業(yè)務(wù)學(xué)習(xí),看書、看報,參加學(xué)校組織的培訓(xùn),使之更好的為基礎(chǔ)教育的改革努力,掌握新的技能、技巧,不斷努力,取長補(bǔ)短,揚長避短,努力使教學(xué)更開拓,方法更靈活,手段更先進(jìn)。
八、分層輔導(dǎo),因材施教對本年級的學(xué)生實施分層輔導(dǎo),利用優(yōu)勝劣汰的方法,激勵學(xué)生的學(xué)習(xí)激情,保證升學(xué)率及優(yōu)良率,提高及格率。對部分差生實行義務(wù)補(bǔ)課,以提高成績。
初三的數(shù)學(xué)教案篇4
教學(xué)內(nèi)容
一元二次方程概念及一元二次方程一般式及有關(guān)概念.教學(xué)目標(biāo)
2
了解一元二次方程的概念;一般式ax+bx+c=0(a≠0)及其派生的概念;?應(yīng)用一元二次方程概念解決一些簡單題目.
1.通過設(shè)臵問題,建立數(shù)學(xué)模型,?模仿一元一次方程概念給一元二次方程下定義.2.一元二次方程的一般形式及其有關(guān)概念.3.解決一些概念性的題目.
4.通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情.重難點關(guān)鍵
1.?重點:一元二次方程的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題.2.難點關(guān)鍵:通過提出問題,建立一元二次方程的數(shù)學(xué)模型,?再由一元一次方程的概念遷移到一元二次方程的概念.教學(xué)過程
一、復(fù)習(xí)引入
學(xué)生活動:列方程.問題(1)古算趣題:“執(zhí)竿進(jìn)屋”
笨人執(zhí)竿要進(jìn)屋,無奈門框攔住竹,橫多四尺豎多二,沒法急得放聲哭。有個鄰居聰明者,教他斜竿對兩角,笨伯依言試一試,不多不少剛抵足。借問竿長多少數(shù),誰人算出我佩服。
如果假設(shè)門的高為x?尺,?那么,?這個門的寬為_______?尺,長為_______?尺,?根據(jù)題意,?得________.整理、化簡,得:__________.二、探索新知
學(xué)生活動:請口答下面問題.
(1)上面三個方程整理后含有幾個未知數(shù)?
(2)按照整式中的多項式的規(guī)定,它們次數(shù)是幾次?(3)有等號嗎?還是與多項式一樣只有式子?老師點評:(1)都只含一個未知數(shù)x;(2)它們的次數(shù)都是2次的;(3)?都有等號,是方程.因此,像這樣的方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的次數(shù)是2(二次)的方程,叫做一元二次方程.
2
一般地,任何一個關(guān)于x的一元二次方程,?經(jīng)過整理,?都能化成如下形式ax+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.
2
一個一元二次方程經(jīng)過整理化成ax+bx+c=0(a≠0)后,其中ax是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項.
例1.將方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并寫出其中的二次項系數(shù)、一次項系數(shù)及常數(shù)項.
2
分析:一元二次方程的一般形式是ax+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必須運用整式運算進(jìn)行整理,包括去括號、移項等.
解:略
注意:二次項、二次項系數(shù)、一次項、一次項系數(shù)、常數(shù)項都包括前面的符號.
2
例2.(學(xué)生活動:請二至三位同學(xué)上臺演練)將方程(x+1)+(x-2)(x+2)=?1化成一元二次方程的一般形式,并寫出其中的二次項、二次項系數(shù);一次項、一次項系數(shù);常數(shù)項.
22
分析:通過完全平方公式和平方差公式把(x+1)+(x-2)(x+2)=1化成ax+bx+c=0(a≠0)的形式.解:略
三、鞏固練習(xí)
教材練習(xí)1、2
補(bǔ)充練習(xí):判斷下列方程是否為一元二次方程?
(1)3x+2=5y-3(2)x=4(3)3x-2
2
22
5222
=0(4)x-4=(x+2)(5)ax+bx+c=0x
四、應(yīng)用拓展
22
例3.求證:關(guān)于x的方程(m-8m+17)x+2mx+1=0,不論m取何值,該方程都是一元二次方程.
2
分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m-8m+17?≠0即可.
22
證明:m-8m+17=(m-4)+1
2
∵(m-4)≥0
22
∴(m-4)+1>0,即(m-4)+1≠0
∴不論m取何值,該方程都是一元二次方程.
2
?練習(xí):1.方程(2a—4)x—2bx+a=0,在什么條件下此方程為一元二次方程?在什么條件下此方程為
一元一次方程?
/4m/-4
2.當(dāng)m為何值時,方程(m+1)x+27mx+5=0是關(guān)于的一元二次方程五、歸納小結(jié)(學(xué)生總結(jié),老師點評)本節(jié)課要掌握:
2
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax+bx+c=0(a≠0)?和二次項、二次項系數(shù),一次項、一次項系數(shù),常數(shù)項的概念及其它們的運用.
初三的數(shù)學(xué)教案篇5
教學(xué)目標(biāo)
1、在了解用集合的觀點定義圓的基礎(chǔ)上,進(jìn)一步使學(xué)生了解軌跡的有關(guān)概念以及熟悉五種常用的點的軌跡;
2、培養(yǎng)學(xué)生從形象思維向抽象思維的過渡;
3、提高學(xué)生數(shù)學(xué)來源于實踐,反過來又作用于實踐的辯證唯物主義觀點的認(rèn)識。
重點、難點
1、重點:對圓點的.軌跡的認(rèn)識。
2、難點:對點的軌跡概念的認(rèn)識,因為這個概念比較抽象。
教學(xué)活動設(shè)計(在老師與學(xué)生的交流對話中完成教學(xué)目標(biāo))
(一)創(chuàng)設(shè)學(xué)習(xí)情境
1、對“圓”的形成觀察——理解——引出軌跡的概念
(使學(xué)生在老師的引導(dǎo)下從感性知識到理性知識)
觀察:圓是到定點的距離等于定長的的點的集合;(電腦動畫)
理解:圓上的點具有兩個性質(zhì):
(1)圓上各點到定點(圓心O)的距離都等于定長(半徑的長r);
(2)到定點距離等于定長的的點都在圓上;(結(jié)合下圖)
引出軌跡的概念:我們把符合某一條件的所有的點所組成的圖形,叫做符合這個條件的點的軌跡.這里含有兩層意思:(1)圖形是由符合條件的那些點組成的,就是說,圖形上的任何一點都符合條件;(2)圖形包含了符合條件的所有的點,就是說,符合條件的任何一點都在圖形上.(軌跡的概念非常抽象,是教學(xué)的難點,這里教師要精講,細(xì)講)
上面左圖符合(1)但不符合(2);中圖不符合(1)但符合(2);只有右圖(1)(2)都符合.因此“到定點距離等于定長的點的軌跡”是圓.
軌跡1:“到定點距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓”。(研究圓是軌跡概念的切入口、基礎(chǔ)和關(guān)鍵)
(二)類比、研究1
(在老師指導(dǎo)下,通過電腦動畫,學(xué)生歸納、整理、概括、遷移,獲得新知識)
軌跡2:和已知線段兩個端點距離相等的點的軌跡,是這條線段的垂直平分線;
軌跡3:到已知角兩邊的距離相等的點的軌跡,是這個角的平分線;
(三)鞏固概念
練習(xí):畫圖說明滿足下列條件的點的軌跡:
(1)到定點A的距離等于3cm的點的軌跡;
(2)到∠AOC的兩邊距離相等的點的軌跡;
(3)經(jīng)過已知點A、B的圓O,圓心O的軌跡.
(A層學(xué)生獨立畫圖,回答滿足這個條件的軌跡是什么?歸納出每一個題的點的軌跡屬于哪一個基本軌跡;B、C層學(xué)生在老師的指導(dǎo)或帶領(lǐng)下完成)
(四)類比、研究2
(這是第二次“類比”,目的:使學(xué)生的知識和能力螺旋上升.這次通過電腦動畫,使A層學(xué)生自己做,進(jìn)一步提高學(xué)生歸納、整理、概括、遷移等能力)
軌跡4:到直線l的距離等于定長d的點的軌跡,是平行于這條直線,并且到這條直線的距離等于定長的兩條直線;
軌跡5:到兩條平行線的距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線.
(五)鞏固訓(xùn)練
練習(xí)題1:畫圖說明滿足下面條件的點的軌跡:
1.到直線l的距離等于2cm的點的軌跡;
2.已知直線AB∥CD,到AB、CD距離相等的點的軌跡.
(A層學(xué)生獨立畫圖探索;然后回答出點的軌跡是什么,對B、C層學(xué)生回答有一定的困難,這時教師要從規(guī)律上和方法上指導(dǎo)學(xué)生)
練習(xí)題2:判斷題
1、到一條直線的距離等于定長的點的軌跡,是平行于這條直線到這條直線的距離等于定長的直線.()
2、和點B的距離等于5cm的點的軌跡,是到點B的距離等于5cm的圓.()
3、到兩條平行線的距離等于8cm的點的軌跡,是和這兩條平行線的平行且距離等于8cm的一條直線.()
4、底邊為a的等腰三角形的頂點軌跡,是底邊a的垂直平分線.()
(這組練習(xí)題的目的,訓(xùn)練學(xué)生思維的準(zhǔn)確性和語言表達(dá)的正確性.題目由學(xué)生自主完成、交流、反思)
(教材的練習(xí)題、習(xí)題即可,因為這部分知識屬于選學(xué)內(nèi)容,而軌跡概念又比較抽象,不要對學(xué)生要求太高,了解就行、理解就高要求)
(六)理解、小結(jié)
(1)軌跡的定義兩層意思;
(2)常見的五種軌跡。
(七)作業(yè)
教材P82習(xí)題2、6
初三的數(shù)學(xué)教案篇6
課題 二次函數(shù)y=ax2的圖象(一)
一、教學(xué)目的
1.使學(xué)生初步理解二次函數(shù)的概念。
2.使學(xué)生會用描點法畫二次函數(shù)y=ax2的圖象。
3.使學(xué)生結(jié)合y=ax2的圖象初步理解拋物線及其有關(guān)的概念。
二、教學(xué)重點、難點
重點:對二次函數(shù)概念的初步理解。
難點:會用描點法畫二次函數(shù)y=ax2的圖象。
三、教學(xué)過程
復(fù)習(xí)提問
1.在下列函數(shù)中,哪些是一次函數(shù)?哪些是正比例函數(shù)?
(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2-2。
2.什么是一無二次方程?
3.怎樣用找點法畫函數(shù)的圖象?
新課
1.由具體問題引出二次函數(shù)的定義。
(1)已知圓的面積是Scm2,圓的半徑是Rcm,寫出空上圓的面積S與半徑R之間的函數(shù)關(guān)系式。
(2)已知一個矩形的周長是60m,一邊長是Lm,寫出這個矩形的面積S(m2)與這個矩形的一邊長L之間的函數(shù)關(guān)系式。
(3)農(nóng)機(jī)廠第一個月水泵的產(chǎn)量為50臺,第三個月的產(chǎn)量y(臺)與月平均增長率x之間的函數(shù)關(guān)系如何表示?
解:(1)函數(shù)解析式是S=πR2;
(2)函數(shù)析式是S=30L—L2;
(3)函數(shù)解析式是y=50(1+x)2,即
y=50x2+100x+50。
由以上三例啟發(fā)學(xué)生歸納出:
(1)函數(shù)解析式均為整式;
(2)處變量的最高次數(shù)是2。
我們說三個式子都表示的是二次函數(shù)。
一般地,如果y=ax2+bx+c(a,b,c沒有限制而a≠0),那么y叫做x的二次函數(shù),請注意這里b,c沒有限制,而a≠0。
2.畫二次函數(shù)y=x2的圖象。
按照描點法分三步畫圖:
(1)列表∵x可取任意實數(shù),∴以0為中心選取x值,以1為間距取值,且取整數(shù)值,便于計算,又x取相反數(shù)時,相應(yīng)的y值相同;
(2)描點按照表中所列出的函數(shù)對應(yīng)值,在平面直角坐標(biāo)系中描出相應(yīng)的7個點;
(3)邊線用平滑曲線順次連接各點,即得所求y=x2的圖象。
注意兩點:
(1)由于我們只描出了7個點,但自礦業(yè)量取值范圍是實數(shù),故我們只畫出了實際圖象的一部分,即畫出了在原點附近、自變量在-3到3這個區(qū)間的一部分。而圖象在x>3或x<-3的區(qū)間是無限延伸的。
(2)所畫的圖象是近似的。
3.在原點附近較精確地研究二次函數(shù)y=x2的圖象形狀到底如何?——我們–1與1之間每隔0。2的間距取x值表和圖13-14。按課本P118內(nèi)容講解。
4.引入拋物線的概念。
關(guān)于拋物線的頂點應(yīng)從兩方面分析:一是從圖象上看,y=x2的圖象的頂點是最低點;一是從解析式y(tǒng)=x2看,當(dāng)x=0時,y=x2取得最小值0,故拋物線y=x2的頂點是(0,0)。
小結(jié)
1.二次函數(shù)的定義。
(1)函數(shù)解析式關(guān)于自變量是整式;(2)函數(shù)自變量的最高次數(shù)是2。
2.二次函數(shù)y=x2的圖象。
(1)其圖象叫拋物線;(2)拋物線y=x2的對稱軸是y軸,開口向上,頂點是原點。
補(bǔ)充例題
下列函數(shù)中,哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a,b,c?
(1)y=2-3x2;(2)y=x(x-4);
(3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;
(5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。
作業(yè):P122中A組1,2,3。
四、教學(xué)注意問題
1.注意滲透局部和全體、有限和無限、近似和精確等矛盾對立統(tǒng)一的觀點。
2.注意培養(yǎng)學(xué)生觀察分析問題的能力。比如,結(jié)合所畫二次函數(shù)y=x2的圖象,要求學(xué)生思考:
(1)y=x2的圖象的圖象有什么特點。(答:具有對稱性。)
(2)如何判斷y=x2的.圖象有上面所說的特點?(答:由觀察圖象看出來;或由列表求值得出來;或由解析式y(tǒng)=x2看出來。)
課題 二次函數(shù)y=ax2的圖象(一)
一、教學(xué)目的
1.使學(xué)生初步理解二次函數(shù)的概念。
2.使學(xué)生會用描點法畫二次函數(shù)y=ax2的圖象。
3.使學(xué)生結(jié)合y=ax2的圖象初步理解拋物線及其有關(guān)的概念。
二、教學(xué)重點、難點
重點:對二次函數(shù)概念的初步理解。
難點:會用描點法畫二次函數(shù)y=ax2的圖象。
三、教學(xué)過程
復(fù)習(xí)提問
1.在下列函數(shù)中,哪些是一次函數(shù)?哪些是正比例函數(shù)?
(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2-2。
2.什么是一無二次方程?
3.怎樣用找點法畫函數(shù)的圖象?
新課
1.由具體問題引出二次函數(shù)的定義。
(1)已知圓的面積是Scm2,圓的半徑是Rcm,寫出空上圓的面積S與半徑R之間的函數(shù)關(guān)系式。
(2)已知一個矩形的周長是60m,一邊長是Lm,寫出這個矩形的面積S(m2)與這個矩形的一邊長L之間的函數(shù)關(guān)系式。
(3)農(nóng)機(jī)廠第一個月水泵的產(chǎn)量為50臺,第三個月的產(chǎn)量y(臺)與月平均增長率x之間的函數(shù)關(guān)系如何表示?
解:(1)函數(shù)解析式是S=πR2;
(2)函數(shù)析式是S=30L—L2;
(3)函數(shù)解析式是y=50(1+x)2,即
y=50x2+100x+50。
由以上三例啟發(fā)學(xué)生歸納出:
(1)函數(shù)解析式均為整式;
(2)處變量的最高次數(shù)是2。
我們說三個式子都表示的是二次函數(shù)。
一般地,如果y=ax2+bx+c(a,b,c沒有限制而a≠0),那么y叫做x的二次函數(shù),請注意這里b,c沒有限制,而a≠0。
2.畫二次函數(shù)y=x2的圖象。
按照描點法分三步畫圖:
(1)列表∵x可取任意實數(shù),∴以0為中心選取x值,以1為間距取值,且取整數(shù)值,便于計算,又x取相反數(shù)時,相應(yīng)的y值相同;
(2)描點按照表中所列出的函數(shù)對應(yīng)值,在平面直角坐標(biāo)系中描出相應(yīng)的7個點;
(3)邊線用平滑曲線順次連接各點,即得所求y=x2的圖象。
注意兩點:
(1)由于我們只描出了7個點,但自礦業(yè)量取值范圍是實數(shù),故我們只畫出了實際圖象的一部分,即畫出了在原點附近、自變量在-3到3這個區(qū)間的一部分。而圖象在x>3或x<-3的區(qū)間是無限延伸的。
(2)所畫的圖象是近似的。
3.在原點附近較精確地研究二次函數(shù)y=x2的圖象形狀到底如何?——我們–1與1之間每隔0。2的間距取x值表和圖13-14。按課本P118內(nèi)容講解。
4.引入拋物線的概念。
關(guān)于拋物線的頂點應(yīng)從兩方面分析:一是從圖象上看,y=x2的圖象的頂點是最低點;一是從解析式y(tǒng)=x2看,當(dāng)x=0時,y=x2取得最小值0,故拋物線y=x2的頂點是(0,0)。
小結(jié)
1.二次函數(shù)的定義。
(1)函數(shù)解析式關(guān)于自變量是整式;(2)函數(shù)自變量的最高次數(shù)是2。
2.二次函數(shù)y=x2的圖象。
(1)其圖象叫拋物線;(2)拋物線y=x2的對稱軸是y軸,開口向上,頂點是原點。
補(bǔ)充例題
下列函數(shù)中,哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a,b,c?
(1)y=2-3x2;(2)y=x(x-4);
(3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;
(5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。
作業(yè):P122中A組1,2,3。
四、教學(xué)注意問題
1.注意滲透局部和全體、有限和無限、近似和精確等矛盾對立統(tǒng)一的觀點。
2.注意培養(yǎng)學(xué)生觀察分析問題的能力。比如,結(jié)合所畫二次函數(shù)y=x2的圖象,要求學(xué)生思考:
(1)y=x2的圖象的圖象有什么特點。(答:具有對稱性。)
(2)如何判斷y=x2的圖象有上面所說的特點?(答:由觀察圖象看出來;或由列表求值得出來;或由解析式y(tǒng)=x2看出來。)
初三的數(shù)學(xué)教案篇7
一、概念:三、例1----------四、特殊角的正余弦值
-------------------------------------------------------
二、范圍:------------------五、例2------------
正弦和余弦(三)
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點
使學(xué)生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系.
(二)能力訓(xùn)練點
逐步培養(yǎng)學(xué)生觀察、比較、分析、綜合、抽象、概括的邏輯思維能力.
(三)德育滲透點
培養(yǎng)學(xué)生獨立思考、勇于創(chuàng)新的精神.
二、教學(xué)重點、難點
1.重點:使學(xué)生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系并會應(yīng)用.
2.難點:一個銳角的正弦(余弦)與它的余角的余弦(正弦)之間的關(guān)系的應(yīng)用.
三、教學(xué)步驟
(一)明確目標(biāo)
1.復(fù)習(xí)提問
(1)、什么是∠A的正弦、什么是∠A的余弦,結(jié)合圖形請學(xué)生回答.因為正弦、余弦的概念是研究本課內(nèi)容的知識基礎(chǔ),請中下學(xué)生回答,從中可以了解教學(xué)班還有多少人不清楚的,可以采取適當(dāng)?shù)难a(bǔ)救措施.
(2)請同學(xué)們回憶30°、45°、60°角的正、余弦值(教師板書).
(3)請同學(xué)們觀察,從中發(fā)現(xiàn)什么特征?學(xué)生一定會回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,這三個角的正弦值等于它們余角的余弦值”.
2.導(dǎo)入新課
根據(jù)這一特征,學(xué)生們可能會猜想“一個銳角的正弦(余弦)值等于它的余角的余弦(正弦)值.”這是否是真命題呢?引出課題.
(二)、整體感知
關(guān)于銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系,是通過30°、45°、60°角的正弦、余弦值之間的關(guān)系引入的,然后加以證明.引入這兩個關(guān)系式是為了便于查“正弦和余弦表”,關(guān)系式雖然用黑體字并加以文字語言的證明,但不標(biāo)明是定理,其證明也不要求學(xué)生理解,更不應(yīng)要求學(xué)生利用這兩個關(guān)系式去推證其他三角恒等式.在本章,這兩個關(guān)系式的用處僅僅限于查表和計算,而不是證明.
(三)重點、難點的學(xué)習(xí)和目標(biāo)完成過程
1.通過復(fù)習(xí)特殊角的三角函數(shù)值,引導(dǎo)學(xué)生觀察,并猜想“任一銳角的正弦(余弦)值等于它的余角的余弦(正弦)值嗎?”提出問題,激發(fā)學(xué)生的學(xué)習(xí)熱情,使學(xué)生的思維積極活躍.
2.這時少數(shù)反應(yīng)快的學(xué)生可能頭腦中已經(jīng)“畫”出了圖形,并有了思路,但對部分學(xué)生來說仍思路凌亂.因此教師應(yīng)進(jìn)一步引導(dǎo):sinA=cos(90°-A),cosA=sin(90°-A)(A是銳角)成立嗎?這時,學(xué)生結(jié)合正、余弦的概念,完全可以自己解決,教師要給學(xué)生足夠的研究解決問題的時間,以培養(yǎng)學(xué)生邏輯思維能力及獨立思考、勇于創(chuàng)新的精神.
3.教師板書:
任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值.
sinA=cos(90°-A),cosA=sin(90°-A).
4.在學(xué)習(xí)了正、余弦概念的基礎(chǔ)上,學(xué)生了解以上內(nèi)容并不困難,但是,由于學(xué)生初次接觸三角函數(shù),還不熟練,而定理又涉及余角、余函數(shù),使學(xué)生極易混淆.因此,定理的應(yīng)用對學(xué)生來說是難點、在給出定理后,需加以鞏固.
已知∠A和∠B都是銳角,
(1)把cos(90°-A)寫成∠A的正弦.
(2)把sin(90°-A)寫成∠A的余弦.
這一練習(xí)只能起到鞏固定理的作用.為了運用定理,教材安排了例3.
(2)已知sin35°=0.5736,求cos55°;
(3)已知cos47°6′=0.6807,求sin42°54′.
(1)問比較簡單,對照定理,學(xué)生立即可以回答.(2)、(3)比(1)則更深一步,因為(1)明確指出∠B與∠A互余,(2)、(3)讓學(xué)生自己發(fā)現(xiàn)35°與55°的角,47°6′分42°54′的角互余,從而根據(jù)定理得出答案,因此(2)、(3)問在課堂上應(yīng)該請基礎(chǔ)好一些的同學(xué)講清思維過程,便于全體學(xué)生掌握,在三個問題處理完之后,最好將題目變形:
(2)已知sin35°=0.5736,則cos______=0.5736.
(3)cos47°6′=0.6807,則sin______=0.6807,以培養(yǎng)學(xué)生思維能力.
為了配合例3的教學(xué),教材中配備了練習(xí)題2.
(2)已知sin67°18′=0.9225,求cos22°42′;
(3)已知cos4°24′=0.9971,求sin85°36′.
學(xué)生獨立完成練習(xí)2,就說明定理的教學(xué)較成功,學(xué)生基本會運用.
教材中3的設(shè)置,實際上是對前二節(jié)課內(nèi)容的綜合運用,既考察學(xué)生正、余弦概念的掌握程度,同時又對本課知識加以鞏固練習(xí),因此例3的安排恰到好處.同時,做例3也為下一節(jié)查正余弦表做了準(zhǔn)備.
(四)小結(jié)與擴(kuò)展
1.請學(xué)生做知識小結(jié),使學(xué)生對所學(xué)內(nèi)容進(jìn)行歸納總結(jié),將所學(xué)內(nèi)容變成自己知識的組成部分.
2.本節(jié)課我們由特殊角的正弦(余弦)和它的余角的余弦(正弦)值間關(guān)系,以及正弦、余弦的概念得出的結(jié)論:任意一個銳角的正弦值等于它的余角的余弦值,任意一個銳角的余弦值等于它的余角的正弦值.
四、布置作業(yè)
教材習(xí)題14.1A組4、5.
五、板書設(shè)計
初三的數(shù)學(xué)教案篇8
直接開平方法
理解一元二次方程“降次”——轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問題.
提出問題,列出缺一次項的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個方程,然后知識遷移到解a(ex+f)2+c=0型的一元二次方程.
重點
運用開平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會降次——轉(zhuǎn)化的數(shù)學(xué)思想.
難點
通過根據(jù)平方根的意義解形如x2=n的方程,將知識遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程.
一、復(fù)習(xí)引入
學(xué)生活動:請同學(xué)們完成下列各題.
問題1:填空
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
解:根據(jù)完全平方公式可得:(1)16 4;(2)4 2;(3)(2p)22p.
問題2:目前我們都學(xué)過哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過哪些降次的方法?
二、探索新知
上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?
(學(xué)生分組討論)
老師點評:回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的兩根為t1=1,t2=-2
例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2
分析:(1)x2+4x+4是一個完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.
(2)由已知,得:(x+3)2=2
直接開平方,得:x+3=±
即x+3=,x+3=-
所以,方程的兩根x1=-3+,x2=-3-
解:略.
例2 市政府計劃2年內(nèi)將人均住房面積由現(xiàn)在的10 m2提高到14.4 m2,求每年人均住房面積增長率.
分析:設(shè)每年人均住房面積增長率為x,一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2
解:設(shè)每年人均住房面積增長率為x,
則:10(1+x)2=14.4
(1+x)2=1.44
直接開平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的兩根是x1=0.2=20%,x2=-2.2
因為每年人均住房面積的增長率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去.
所以,每年人均住房面積增長率應(yīng)為20%.
(學(xué)生小結(jié))老師引導(dǎo)提問:解一元二次方程,它們的共同特點是什么?
共同特點:把一個一元二次方程“降次”,轉(zhuǎn)化為兩個一元一次方程.我們把這種思想稱為“降次轉(zhuǎn)化思想”.
三、鞏固練習(xí)
教材第6頁 練習(xí).
四、課堂小結(jié)
本節(jié)課應(yīng)掌握:由應(yīng)用直接開平方法解形如x2=p(p≥0)的方程,那么x=±轉(zhuǎn)化為應(yīng)用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±,達(dá)到降次轉(zhuǎn)化之目的.若p<0則方程無解.
五、作業(yè)布置
教材第16頁 復(fù)習(xí)鞏固1.
初三的數(shù)學(xué)教案篇9
教學(xué)目標(biāo)
知識與技能目標(biāo)
1、構(gòu)建本章的部分知識框圖。
2、復(fù)習(xí)一元二次方程的概念、解法。
過程與方法
1、通過對本章方程解法的復(fù)習(xí),進(jìn)一步提高學(xué)生的運算能力。
2、在解一元二次方程的過程中體會轉(zhuǎn)化等數(shù)學(xué)思想。
情感、態(tài)度與價值觀
通過師生共同的活動,使學(xué)生在交流和反思的過程中建立本章的知識體系,從而體驗學(xué)習(xí)數(shù)學(xué)的成就感.
教學(xué)重點
1、一元二次方程的概念
2、一元二次方程的四種解法:直接開平方法、配方法、公式法、因式分解法;
教學(xué)難點
解法的靈活選擇;例4和例5的解法。
教學(xué)過程
一、創(chuàng)設(shè)情境
導(dǎo)入新課
問題:本章中,我們有哪些收獲?(教師點撥引導(dǎo)學(xué)生構(gòu)建本章部分知識框圖)
二、師生互動
共同探究
1、復(fù)習(xí)概念
例1
例2
2、四種解法
(1)
解法及其關(guān)系
(2)
根的形式
x1=3
x2=4
(3)熟悉解法
例3用四種解法分別解此方程
(4)方法優(yōu)選
3、方法補(bǔ)充
例4
4、解法糾錯
例5
解關(guān)于x的方程
錯誤解法
正確解法
三、小結(jié)反思
提煉思想
我們有哪些收獲?解方程的思想方法是什么?
四、布置作業(yè)
鞏固提高
初三的數(shù)學(xué)教案篇10
二次根式
教學(xué)目標(biāo)
1、了解二次根式的概念、
2、掌握二次根式的基本性質(zhì)
教學(xué)過程
一、提出問題
上一節(jié)我們學(xué)習(xí)了平方根和算術(shù)平方根的意義,引進(jìn)了一個新的記號,現(xiàn)在請同學(xué)們思考并回答下面兩個問題:
1、表示什么?
2、a需要滿足什么條件?為什么?
二、合作交流,解決問題
讓學(xué)生合作交流,然后回答問題(可以補(bǔ)充),歸納為;
1、當(dāng)a是正數(shù)時,表示a的算術(shù)平方根,即正數(shù)a的兩個平方根中的一個正數(shù);
2、當(dāng)a是零時,表示零,也叫零的算術(shù)平方根;
3、a≥0,因為任何一個有理數(shù)的平方都大于或等于零
三、歸納特點,引入二次根式概念
1、基本性質(zhì)、
問題1 你能用一句話概括以上3個結(jié)論嗎?
讓一個學(xué)生回答、其他學(xué)生補(bǔ)充,概括為:(a≥0)表示非負(fù)數(shù)a的算術(shù)平方根,也就是說,(a≥0)是一個非負(fù)數(shù),即≥0(a≥0)。
問題2 ()2(a≥0)等于什么?說說你的理由并舉例驗證。
讓學(xué)生小組討論或自主探索得出結(jié)論:()2=a(a≥0),如()2=4,()2=2等、
以上兩個問題的結(jié)論就是基本性質(zhì),特別是()2=a(a≥0)可以當(dāng)公式使用,直接應(yīng)用于計算。反過來,把()2=a(a≥0)寫成a=()2(a≥0)的形式,這說明:任何一個非負(fù)數(shù)a都可以寫成一個數(shù)的平方的形式、例如:3=()2,0.3= ()2
提問:
(1)0=()2對不對?
(2)-5=()2對不對?如果不對,錯在哪里?
2、二次根式概念
形如(a≥0)的式子叫做二次根式、
說明:二次根式必須具備以下特點;
(1)有二次根號;
(2)被開方數(shù)不能小于0。
讓學(xué)生舉出二次根式的幾個例子,并判斷,(a<0)、、(a<o)是不是二次根式。< p="">
四、范例
例1、要使式子有意義,字母x的取值必須滿足什么條件?
提問:
若將式子改為,則字母x的取值必須滿足什么條件?
五、課堂練習(xí)
Pl0頁練習(xí)1、2、
六、思考提高
我們已經(jīng)研究了()2(a≥0)等于a,現(xiàn)在研究等于什么
提問:
1、對于抽象問題的研究,常常采用什么策略?
2、在中,a的取值有沒有限制?
3、取一些數(shù)值來驗證。通過驗證,你能發(fā)現(xiàn)什么規(guī)律?
因此,今后我們遇到時,可先改寫成a的絕對值|a|,再按照a取正數(shù)值,0還是負(fù)數(shù)值來取值、例如當(dāng)x<0時,=|4x|=-4x
4、()2與是一樣的嗎?說說你的理由,并與同學(xué)交流。
七、小結(jié)
1、什么叫做二次根式?你們能舉出幾個例子嗎?
2、二次根式有哪兩個形式上的特點?
3、二次根式有哪些性質(zhì)?
八、作業(yè)
習(xí)題22.1第1、2、3、4題、
教學(xué)后記:
初三的數(shù)學(xué)教案篇11
教學(xué)內(nèi)容
一元二次方程概念及一元二次方程一般式及有關(guān)概念.
教學(xué)目標(biāo)
了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;應(yīng)用一元二次方程概念解決一些簡單題目.
1.通過設(shè)置問題,建立數(shù)學(xué)模型,模仿一元一次方程概念給一元二次方程下定義.
2.一元二次方程的一般形式及其有關(guān)概念.
3.解決一些概念性的題目.
4.態(tài)度、情感、價值觀
4.通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情.
重難點關(guān)鍵
1.重點:一元二次方程的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題.
2.難點關(guān)鍵:通過提出問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念.
教學(xué)過程
一、復(fù)習(xí)引入
學(xué)生活動:列方程.
問題(1)《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”
大意是說:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少?
如果假設(shè)門的高為x尺,那么,這個門的寬為_______尺,根據(jù)題意,得________.
整理、化簡,得:__________.
問題(2)如圖,如果,那么點C叫做線段AB的黃金分割點.
如果假設(shè)剪后的正方形邊長為x,那么原來長方形長是________,寬是_____,根據(jù)題意,得:_______.
整理,得:________.
老師點評并分析如何建立一元二次方程的數(shù)學(xué)模型,并整理.
二、探索新知
學(xué)生活動:請口答下面問題.
(1)上面三個方程整理后含有幾個未知數(shù)?
(2)按照整式中的多項式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號嗎?或與以前多項式一樣只有式子?
老師點評:(1)都只含一個未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號,是方程.
因此,像這樣的方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程.
一般地,任何一個關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.
一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項.
例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項系數(shù)、一次項系數(shù)及常數(shù)項.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必須運用整式運算進(jìn)行整理,包括去括號、移項等.
解:去括號,得:
40-16x-10x+4x2=18
移項,得:4x2-26x+22=0
其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22.
例2.(學(xué)生活動:請二至三位同學(xué)上臺演練)將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項、二次項系數(shù);一次項、一次項系數(shù);常數(shù)項.
分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.
解:去括號,得:
x2+2x+1+x2-4=1
移項,合并得:2x2+2x-4=0
其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4.
三、鞏固練習(xí)
教材P32練習(xí)1、2
四、應(yīng)用拓展
例3.求證:關(guān)于x的方程(2-8+17)x2+2x+1=0,不論取何值,該方程都是一元二次方程.
分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可.
證明:2-8+17=(-4)2+1
∵(-4)2≥0
∴(-4)2+1>0,即(-4)2+1≠0
∴不論取何值,該方程都是一元二次方程.
五、歸納小結(jié)(學(xué)生總結(jié),老師點評)
本節(jié)課要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次項、二次項系數(shù),一次項、一次項系數(shù),常數(shù)項的概念及其它們的運用.
六、布置作業(yè)
初三的數(shù)學(xué)教案篇12
理解間接即通過變形運用開平方法降次解方程,并能熟練應(yīng)用它解決一些具體問題.
通過復(fù)習(xí)可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟.
重點
講清直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟.
難點
將不可直接降次解方程化為可直接降次解方程的“化為”的轉(zhuǎn)化方法與技巧.
一、復(fù)習(xí)引入
(學(xué)生活動)請同學(xué)們解下列方程:
(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7
老師點評:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±p或mx+n=±p(p≥0).
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9嗎?
二、探索新知
列出下面問題的方程并回答:
(1)列出的經(jīng)化簡為一般形式的方程與剛才解題的方程有什么不同呢?
(2)能否直接用上面前三個方程的解法呢?
問題:要使一塊矩形場地的長比寬多6m,并且面積為16m2,求場地的長和寬各是多少?
(1)列出的經(jīng)化簡為一般形式的方程與前面講的三道題不同之處是:前三個左邊是含有x的完全平方式而后二個不具有此特征.
(2)不能.
既然不能直接降次解方程,那么,我們就應(yīng)該設(shè)法把它轉(zhuǎn)化為可直接降次解方程的方程,下面,我們就來講如何轉(zhuǎn)化:
x2+6x-16=0移項→x2+6x=16
兩邊加(6/2)2使左邊配成x2+2bx+b2的形式→x2+6x+32=16+9
左邊寫成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以驗證:x1=2,x2=-8都是方程的根,但場地的寬不能是負(fù)值,所以場地的寬為2m,長為8m.
像上面的解題方法,通過配成完全平方形式來解一元二次方程的方法,叫配方法.
可以看出,配方法是為了降次,把一個一元二次方程轉(zhuǎn)化為兩個一元一次方程來解.
例1用配方法解下列關(guān)于x的方程:
(1)x2-8x+1=0(2)x2-2x-12=0
分析:(1)顯然方程的左邊不是一個完全平方式,因此,要按前面的方法化為完全平方式;(2)同上.
解:略.
三、鞏固練習(xí)
教材第9頁練習(xí)1,2.(1)(2).
四、課堂小結(jié)
本節(jié)課應(yīng)掌握:
左邊不含有x的完全平方形式的一元二次方程化為左邊是含有x的完全平方形式,右邊是非負(fù)數(shù),可以直接降次解方程的方程.
五、作業(yè)布置
初三的數(shù)學(xué)教案篇13
1、教材分析
(1)知識結(jié)構(gòu)
(2)重點、難點分析
重點:①點和圓的三種位置關(guān)系,圓的有關(guān)概念,因為它們是研究圓的基礎(chǔ);②五種常見的點的軌跡,一是對幾何圖形的深刻理解,二為今后立體幾何、解析幾何的學(xué)習(xí)作重要的準(zhǔn)備.
難點:①圓的集合定義,學(xué)生不容易理解為什么必須滿足兩個條件,內(nèi)容本身屬于難點;②點的軌跡,由于學(xué)生形象思維較強(qiáng),抽象思維弱,而這部分知識比較抽象和難懂.
2、教法建議
本節(jié)內(nèi)容需要4課時
第一課時:圓的定義和點和圓的位置關(guān)系
(1)讓學(xué)生自己畫圓,自己給圓下定義,進(jìn)行交流,歸納、概括,調(diào)動學(xué)生積極主動的參與教學(xué)活動;對于高層次的學(xué)生可以直接通過點的集合來研究,給圓下定義(參看教案圓(一));
(2)點和圓的位置關(guān)系,讓學(xué)生自己觀察、分類、探究,在“數(shù)形”的過程中,學(xué)習(xí)新知識.
第二課時:圓的有關(guān)概念
(1)對(A)層學(xué)生放開自學(xué),對(B)層學(xué)生在老師引導(dǎo)下自學(xué),要提高學(xué)生的學(xué)習(xí)能力,特別是概念較多而沒有很多發(fā)揮的內(nèi)容,老師沒必要去講;
(2)課堂活動要抓住:由“數(shù)”想“形”,由“形”思“數(shù)”,的主線.
第三、四課時:點的軌跡
條件較好的學(xué)校可以利用電腦動畫來加深和幫助學(xué)生對點的軌跡的理解,一般學(xué)校可讓學(xué)生動手畫圖,使學(xué)生在動手、動腦、觀察、思考、理解的過程中,逐步從形象思維較強(qiáng)向抽象思維過度.但我的觀點是不管怎樣組織教學(xué),都要遵循學(xué)生是學(xué)習(xí)的主體這一原則.
第一課時:圓(一)
教學(xué)目標(biāo):
1、理解圓的描述性定義,了解用集合的觀點對圓的定義;
2、理解點和圓的位置關(guān)系和確定圓的條件;
3、培養(yǎng)學(xué)生通過動手實踐發(fā)現(xiàn)問題的能力;
4、滲透“觀察→分析→歸納→概括”的數(shù)學(xué)思想方法.
教學(xué)重點:點和圓的關(guān)系
教學(xué)難點:以點的集合定義圓所具備的兩個條件
教學(xué)方法:自主探討式
教學(xué)過程設(shè)計(總框架):
一、創(chuàng)設(shè)情境,開展學(xué)習(xí)活動
1、讓學(xué)生畫圓、描述、交流,得出圓的第一定義:
定義1:在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A隨之旋轉(zhuǎn)所形成的圖形叫做圓.固定的端點O叫做圓心,線段OA叫做半徑.記作⊙O,讀作“圓O”.
2、讓學(xué)生觀察、思考、交流,并在老師的指導(dǎo)下,得出圓的第二定義.
從舊知識中發(fā)現(xiàn)新問題
觀察:
共性:這些點到O點的距離相等
想一想:在平面內(nèi)還有到O點的距離相等的點嗎?它們構(gòu)成什么圖形?
(1)圓上各點到定點(圓心O)的距離都等于定長(半徑的長r);
(2)到定點距離等于定長的點都在圓上.
定義2:圓是到定點距離等于定長的點的集合.
3、點和圓的位置關(guān)系
問題三:點和圓的位置關(guān)系怎樣?(學(xué)生自主完成得出結(jié)論)
如果圓的半徑為r,點到圓心的距離為d,則:
點在圓上d=r;
點在圓內(nèi)d
點在圓外d>r.
“數(shù)”“形”
二、例題分析,變式練習(xí)
練習(xí):已知⊙O的半徑為5cm,A為線段OP的中點,當(dāng)OP=6cm時,點A在⊙O________;當(dāng)OP=10cm時,點A在⊙O________;當(dāng)OP=18cm時,點A在⊙O___________.
例1求證:矩形的四個頂點在以對角線的交點為圓心的同一個圓上.
已知(略)
求證(略)
分析:四邊形ABCD是矩形
A=OC,OB=OD;AC=BD
OA=OC=OB=OD
要證A、B、C、D4個點在以O(shè)為圓心的圓上
證明:∵四邊形ABCD是矩形
∴OA=OC,OB=OD;AC=BD
∴OA=OC=OB=OD
∴A、B、C、D4個點在以O(shè)為圓心,OA為半徑的圓上.
符號“”的應(yīng)用(要求學(xué)生了解)
證明:四邊形ABCD是矩形
OA=OC=OB=OD
A、B、C、D4個點在以O(shè)為圓心,OA為半徑的圓上.
小結(jié):要證幾個點在同一個圓上,可以證明這幾個點與一個定點的距離相等.
問題拓展研究:我們所研究過的基本圖形中(平行四邊形,菱形,,正方形,等腰梯形)哪些圖形的頂點在同一個圓上.(讓學(xué)生探討)
練習(xí)1求證:菱形各邊的中點在同一個圓上.
(目的:培養(yǎng)學(xué)生的分析問題的能力和邏輯思維能力.A層自主完成)
練習(xí)2設(shè)AB=3cm,畫圖說明具有下列性質(zhì)的點的集合是怎樣的圖形.
(1)和點A的距離等于2cm的點的集合;
(2)和點B的距離等于2cm的點的集合;
(3)和點A,B的距離都等于2cm的點的集合;
(4)和點A,B的距離都小于2cm的點的集合;(A層自主完成)
三、課堂小結(jié)
問:這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?在學(xué)習(xí)時應(yīng)注意哪些問題?在學(xué)生回答的基礎(chǔ)上,強(qiáng)調(diào):
(1)主要學(xué)習(xí)了圓的兩種不同的定義方法與圓的三種位置關(guān)系;
(2)在用點的集合定義圓時,必須注意應(yīng)具備兩個條件,二者缺一不可;
(3)注重對數(shù)學(xué)能力的培養(yǎng)
四、作業(yè)82頁2、3、4.
初三的數(shù)學(xué)教案篇14
新的學(xué)期又開始了,我又擔(dān)任九年級數(shù)學(xué)學(xué)科的教學(xué),九年級時間非常緊張,既要完成新課程的教學(xué)又要考慮下學(xué)期對初中階段整個數(shù)學(xué)知識的全面系統(tǒng)的復(fù)習(xí)。所以在注意時間的安排上,同時把握好教學(xué)進(jìn)度的基礎(chǔ)上特制定本學(xué)期的教學(xué)計劃:
一、基本情況分析:
上學(xué)年學(xué)生期末考試的成績總體來看比較好,但是優(yōu)生面不廣,尖子不尖。在學(xué)生所學(xué)知識的掌握程度上,良莠不齊,對優(yōu)生來說,能夠透徹理解知識,知識間的內(nèi)在聯(lián)系也較為清楚,對差一點的學(xué)生來說,有些基礎(chǔ)知識還不能有效的掌握,學(xué)生仍然缺少大量的推理題訓(xùn)練,推理的思考方法與寫法上均存在著一定的困難,對幾何有畏難情緒,相關(guān)知識學(xué)得不很透徹。在學(xué)習(xí)能力上,學(xué)生課外主動獲取知識的能力較差,為減輕學(xué)生的經(jīng)濟(jì)負(fù)擔(dān)與課業(yè)負(fù)擔(dān),不提倡學(xué)生買教輔參考書,學(xué)生自主拓展知識面,向深處學(xué)習(xí)知識的能力沒有得到很好的培養(yǎng)。在以后的教學(xué)中,培養(yǎng)學(xué)生課外主動獲取知識的能力。學(xué)生的邏輯推理、邏輯思維能力,計算能力需要得到加強(qiáng),以提升學(xué)生的整體成績,應(yīng)在合適的時候補(bǔ)充課外知識,拓展學(xué)生的知識面,提升學(xué)生素質(zhì);在學(xué)習(xí)態(tài)度上,一部分學(xué)生上課能全神貫注,積極的投入到學(xué)習(xí)中去,大部分學(xué)生對數(shù)學(xué)學(xué)習(xí)好高鶩遠(yuǎn)、心浮氣躁,學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣還需培養(yǎng)。學(xué)生的學(xué)習(xí)習(xí)慣養(yǎng)成還不理想,預(yù)習(xí)的習(xí)慣,進(jìn)行總結(jié)的習(xí)慣,自習(xí)課專心致志學(xué)習(xí)的習(xí)慣,主動糾正(考試、作業(yè)后)錯誤的習(xí)慣,有些學(xué)生不具有或不夠重視,需要教師的督促才能做,陶行知說:“教育就是培養(yǎng)習(xí)慣”,這是本期教學(xué)中重點予以關(guān)注的。
二、指導(dǎo)思想:
通過九年數(shù)學(xué)的教學(xué),提供進(jìn)一步學(xué)習(xí)所必需的數(shù)學(xué)基礎(chǔ)知識與基本技能,進(jìn)一步培養(yǎng)學(xué)生的運算能力、思維能力和空間想象能力,能夠運用所學(xué)知識解決簡單的實際問題,教育學(xué)生掌握基礎(chǔ)知識與基本技能,培養(yǎng)學(xué)生的邏輯思維能力、運算能力、空間觀念和解決簡單實際問題的能力,使學(xué)生逐步學(xué)會正確、合理地進(jìn)行運算,逐步學(xué)會觀察分析、綜合、抽象、概括。會用歸納演繹、類比進(jìn)行簡單的推理。提高學(xué)習(xí)數(shù)學(xué)的興趣,逐步培養(yǎng)學(xué)生具有良好的學(xué)習(xí)習(xí)慣,實事求是的態(tài)度。頑強(qiáng)的學(xué)習(xí)毅力和獨立思考、探索的新思想。培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識解決問題的能力。
三、教學(xué)內(nèi)容
本學(xué)期的教學(xué)內(nèi)容共五章:
第22章:二次根式;第23章:一元二次方程;第24章:圖形的相似;
第25章:解直角三角形;第26章:隨機(jī)事件的概率。
四、教學(xué)重點、難點
重點:
1、要求學(xué)生掌握證明的基本要求和方法,學(xué)會推理論證;
2、探索證明的思路和方法,提倡證明的多樣性。
難點:
1、引導(dǎo)學(xué)生探索、猜測、證明,體會證明的必要性;
2、在教學(xué)中滲透如歸納、類比、轉(zhuǎn)化等數(shù)學(xué)思想。
五、在教學(xué)過程中抓住以下幾個環(huán)節(jié):
(1)認(rèn)真?zhèn)湔n。認(rèn)真研究教材及考綱,明確教學(xué)目標(biāo),抓住重點、難點,精心設(shè)計教學(xué)過程,重視每一章節(jié)內(nèi)容與前后知識的聯(lián)系及其地位,重視課后反思,設(shè)計好每一節(jié)課的師生互動的細(xì)節(jié)。
(2)抓住課堂45分鐘。嚴(yán)格按照教學(xué)計劃,精心設(shè)計每一節(jié)課的每一個環(huán)節(jié),爭取每節(jié)課達(dá)到教學(xué)目標(biāo),突出重點,分散難點,增大課堂容量組織學(xué)生人人參與課堂活動,使每個學(xué)生積極主動參與課堂活動,使每個學(xué)生動手、動口、動腦,及時反饋信息提高課堂效益。
(3)課后反饋。精選適當(dāng)?shù)木毩?xí)題、測試卷,及時批改作業(yè),發(fā)現(xiàn)問題及時給學(xué)生面對面的指出并指導(dǎo)學(xué)生搞懂弄通,不留一個疑難點,讓學(xué)生學(xué)有所獲。
六、教學(xué)措施:
1.認(rèn)真學(xué)習(xí)鉆研新課標(biāo),掌握教材。
2.認(rèn)真?zhèn)湔n,爭取充分掌握學(xué)生動態(tài)。
3.認(rèn)真上好每一堂課。
4.落實每一堂課后輔助,查漏補(bǔ)缺。
5.積極與其它老師溝通,加強(qiáng)教研教改,提高教學(xué)水平。
6.復(fù)習(xí)階段多讓學(xué)生動腦、動手,通過各種習(xí)題、綜合試題和模擬試題的訓(xùn)練,使學(xué)生逐步熟悉各知識點,并能熟練運用。
除了以上計劃外,我還將預(yù)計開展培優(yōu)和治跛工作,教學(xué)中注重數(shù)學(xué)理論與社會實踐的聯(lián)系,鼓勵學(xué)生多觀察、多思考實際生活中蘊藏的數(shù)學(xué)問題,逐步培養(yǎng)學(xué)生運用書本知識解決實際問題的能力。
初三的數(shù)學(xué)教案篇15
教材分析
本節(jié)課是以成本下降為問題探究,討論平均變化率的問題,這類問題在現(xiàn)實世界中有很多的原型,例如經(jīng)濟(jì)增長率、人口增長率等等,聯(lián)系生活實際很密切,這類問題也是一元二次方程在生活中最典型的應(yīng)用。本節(jié)課主要是討論兩輪(即兩個時間段)的平均變化率,它可以用一元二次方程作為數(shù)學(xué)模型。
學(xué)情分析
1、由于我們的學(xué)生對列方程解應(yīng)用題有畏懼的心理,感覺很困難,根據(jù)探究1學(xué)生的掌握情況來看,決定把探究2作為一課時,來專門學(xué)習(xí)。
2、學(xué)生對列方程解應(yīng)用題的步驟已經(jīng)很熟悉,而且有了第一課時連續(xù)傳播問題的做鋪墊,適合用自主探究,合作交流的學(xué)習(xí)方法。
3、連續(xù)增長問題的中的數(shù)量關(guān)系、規(guī)律的發(fā)現(xiàn)是本節(jié)課的難點,所以我把問題分解了讓學(xué)生逐個突破,由于九年級學(xué)生具有一定的解題歸納能力,所以采用從一般到特殊的探究方式。
教學(xué)目標(biāo)
知識與技能:
1、能根據(jù)具體問題中的數(shù)量關(guān)系,列出一元二次方程,體會方程是刻畫現(xiàn)實世界某些問題的一個有效的數(shù)學(xué)模型。
2、能根據(jù)具體問題的實際意義,檢驗結(jié)果是否合理。
過程與方法:
1、經(jīng)歷將實際問題抽象為數(shù)學(xué)問題的過程,探索問題中的數(shù)量關(guān)系,并能運用一元二次方程對之進(jìn)行描述。
2、通過成本降低、能源增長等實際問題,學(xué)會將實際應(yīng)用問題轉(zhuǎn)化為數(shù)學(xué)問題,發(fā)展實踐應(yīng)用意識。
情感與態(tài)度:通過用一元一次方程解決身邊的問題,體會數(shù)學(xué)知識的應(yīng)用價值,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點和難點
重點:利用增長率問題中的數(shù)量關(guān)系,列出方程解決問題。
難點:理清增長率問題中的數(shù)量關(guān)系。
初三的數(shù)學(xué)教案篇16
回顧與反思當(dāng)自變量x取同一數(shù)值時,這兩個函數(shù)的函數(shù)值之間有什么關(guān)系?反映在圖象上,相應(yīng)的兩個點之間的位置又有什么關(guān)系?
探索觀察這兩個函數(shù),它們的開口方向、對稱軸和頂點坐標(biāo)有那些是相同的?又有哪些不同?你能由此說出函數(shù)與的圖象之間的關(guān)系嗎?
例2.在同一直角坐標(biāo)系中,畫出函數(shù)與的圖象,并說明,通過怎樣的平移,可以由拋物線得到拋物線.
解列表.
x…-3-2-10123…
…-8-3010-3-8…
…-10-5-2-1-2-5-10…
描點、連線,畫出這兩個函數(shù)的圖象,如圖26.2.4所示.
可以看出,拋物線是由拋物線向下平移兩個單位得到的.
回顧與反思拋物線和拋物線分別是由拋物線向上、向下平移一個單位得到的.
探索如果要得到拋物線,應(yīng)將拋物線作怎樣的平移?
例3.一條拋物線的開口方向、對稱軸與相同,頂點縱坐標(biāo)是-2,且拋物線經(jīng)過點(1,1),求這條拋物線的函數(shù)關(guān)系式.
解由題意可得,所求函數(shù)開口向上,對稱軸是y軸,頂點坐標(biāo)為(0,-2),
因此所求函數(shù)關(guān)系式可看作,又拋物線經(jīng)過點(1,1),
所以,,
解得.
故所求函數(shù)關(guān)系式為.
回顧與反思(a、k是常數(shù),a≠0)的圖象的開口方向、對稱軸、頂點坐標(biāo)歸納如下:
開口方向?qū)ΨQ軸頂點坐標(biāo)
[當(dāng)堂課內(nèi)練習(xí)]
1.在同一直角坐標(biāo)系中,畫出下列二次函數(shù)的圖象:
,,.
觀察三條拋物線的相互關(guān)系,并分別指出它們的開口方向及對稱軸、頂點的位置.你能說出拋物線的開口方向及對稱軸、頂點的位置嗎?
2.拋物線的開口,對稱軸是,頂點坐標(biāo)是,它可以看作是由拋物線向平移個單位得到的.
3.函數(shù),當(dāng)x時,函數(shù)值y隨x的增大而減小.當(dāng)x時,函數(shù)取得最值,最值y=.
[本課課外作業(yè)]
A組
1.已知函數(shù),,.
(1)分別畫出它們的圖象;
(2)說出各個圖象的開口方向、對稱軸、頂點坐標(biāo);
(3)試說出函數(shù)的圖象的開口方向、對稱軸、頂點坐標(biāo).
2.不畫圖象,說出函數(shù)的開口方向、對稱軸和頂點坐標(biāo),并說明它是由函數(shù)通過怎樣的平移得到的.
3.若二次函數(shù)的圖象經(jīng)過點(-2,10),求a的值.這個函數(shù)有還是最小值?是多少?
B組
4.在同一直角坐標(biāo)系中與的圖象的大致位置是()
5.已知二次函數(shù),當(dāng)k為何值時,此二次函數(shù)以y軸為對稱軸?寫出其函數(shù)關(guān)系式.
初三的數(shù)學(xué)教案篇17
教材分析
本節(jié)內(nèi)容是上一節(jié)課在學(xué)習(xí)余角補(bǔ)角基礎(chǔ)上學(xué)習(xí)的,學(xué)生有了一定的基礎(chǔ),為以后學(xué)面直角坐標(biāo)系的學(xué)習(xí)做好準(zhǔn)備。
學(xué)情分析
本節(jié)課對于學(xué)生來說學(xué)習(xí)起來并不太難,在小學(xué)階段學(xué)生已經(jīng)接觸過方位角的內(nèi)容,而且本節(jié)課內(nèi)容和生活中的方向聯(lián)系緊密,故學(xué)生比較有興趣。
教學(xué)目標(biāo)
理解方位角的意義,掌握方位角的判別和應(yīng)用,通過現(xiàn)實情境,充分利用學(xué)生的生活經(jīng)驗去體會方位角的意義。
教學(xué)重點和難點
重點:方位角的判別與應(yīng)用
難點:方位角的畫法及變式題
教學(xué)過程(本文來自優(yōu)秀教育資源網(wǎng)斐.斐.課.件.園)
教學(xué)環(huán)節(jié)教師活動預(yù)設(shè)學(xué)生行為設(shè)計意圖
一、創(chuàng)設(shè)情境,導(dǎo)入新課
二、講授新課
三、鞏固練習(xí)
四、課時小結(jié)五、布置作業(yè)由四面八方這個成語引出學(xué)生對八個方位的理解
1.先以一個具體圖形告訴學(xué)生基本知識點,方位角一般是以正南正北為基準(zhǔn),然后向東或西旋轉(zhuǎn)所成的角的始邊方向。
2.師示范方位角的畫法
3.出示補(bǔ)充例題,引對學(xué)生通過小組合作完成。思考并回答老師提出的問題
生觀察圖并理解老師的講解。
生觀察并獨立完成書中的例題
生先獨立思考然后與同學(xué)合作完成。激發(fā)學(xué)生的學(xué)習(xí)興趣
通遼具體圖形使學(xué)生初步認(rèn)識方位角的表示方法。
使學(xué)生通遼具體操作掌握畫方位角的方法
進(jìn)一步掌握方位角的有關(guān)知識,達(dá)到知識提升。
板書設(shè)計
4.3.3余角和補(bǔ)角(二)——方位角
學(xué)生學(xué)習(xí)活動評價設(shè)計
我先將學(xué)生按人數(shù)分成若干小組,在課前先給學(xué)生發(fā)放導(dǎo)學(xué)單,課上先給學(xué)生充分的討論時間后學(xué)生由小組推薦代表發(fā)言,累積分?jǐn)?shù),每個小組輪流回答一次,學(xué)生代表回答完畢后,其它同學(xué)補(bǔ)充糾錯,然后從知識點是否準(zhǔn)確,語言是否流利,思維是否創(chuàng)新,邏輯是否合理嚴(yán)密等方面來做出評價,然后給出相應(yīng)分?jǐn)?shù)。累積到小組積分中課上知識回答后在練習(xí)部分,設(shè)計搶答題,小組搶答完成。最后計算出總分評出本節(jié)課小組及個人獎,給予口頭表揚。
教學(xué)反思
本節(jié)課是在上節(jié)課余角和補(bǔ)角的基礎(chǔ)上學(xué)習(xí)的,而且在小學(xué)階段也已經(jīng)接觸過這部分知識了,基于這個特點,在課堂上我主要采取了自主學(xué)習(xí)的方式,學(xué)生接受的不錯,本節(jié)課的知識雖然簡單但很重要是為以后學(xué)面直角坐標(biāo)系做準(zhǔn)備的。出現(xiàn)的問題是有個別同學(xué)對于A看B是北偏東30度,則B看A是什么方向不太清楚,我采取的措施是讓明白的同學(xué)講給不明白的同學(xué)聽,指導(dǎo)其主要從哪方面入手解決此類問題,還有一點,學(xué)生在畫圖后容易忽略寫結(jié)論,應(yīng)強(qiáng)調(diào)。以前在上本節(jié)課時,我是采取的講授法,感覺學(xué)生不是很愛聽,后來一想,知道了是因為小學(xué)時他們已經(jīng)接觸了這部分知識,所以不愛聽,針對于這種情況,這次我采用了自主學(xué)習(xí)的方式感覺學(xué)生的積極性上來了,一節(jié)課氣氛很好,相信效果也不錯。以后再講這節(jié)課我將繼續(xù)采用這種方式,在此基礎(chǔ)上使其更加完善。
初三的數(shù)學(xué)教案篇18
教學(xué)目標(biāo):
1.使學(xué)生理解直線和圓的相交、相切、相離的概念。
2.掌握直線與圓的位置關(guān)系的性質(zhì)與判定并能夠靈活運用來解決實際問題。
3.培養(yǎng)學(xué)生把實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力及分類和化歸的能力。
重點難點:
1.重點:直線與圓的三種位置關(guān)系的概念。
2.難點:運用直線與圓的位置關(guān)系的性質(zhì)及判定解決相關(guān)的問題。
教學(xué)過程:
一.復(fù)習(xí)引入
1.提問:復(fù)習(xí)點和圓的三種位置關(guān)系。
(目的:讓學(xué)生將點和圓的位置關(guān)系與直線和圓的位置關(guān)系進(jìn)行類比,以便更好的掌握直線和圓的位置關(guān)系)
2.由日出升起過程當(dāng)中的三個特殊位置引入直線與圓的位置關(guān)系問題。
(目的:讓學(xué)生感知直線和圓的位置關(guān)系,并培養(yǎng)學(xué)生把實際問題抽象成數(shù)學(xué)模型的能力)
二.定義、性質(zhì)和判定
1.結(jié)合關(guān)于日出的三幅圖形,通過學(xué)生討論,給出直線與圓的三種位置關(guān)系的定義。
(1)線和圓有兩個公共點時,叫做直線和圓相交。這時直線叫做圓的割線。
(2)直線和圓有唯一的公點時,叫做直線和圓相切。這時直線叫做圓的切線。唯一的公共點叫做切點。
(3)直線和圓沒有公共點時,叫做直線和圓相離。
2.直線和圓三種位置關(guān)系的性質(zhì)和判定:
如果⊙O半徑為r,圓心O到直線l的距離為d,那么:
(1)線l與⊙O相交d<r
(2)直線l與⊙O相切d=r
(3)直線l與⊙O相離d>r
三.例題分析:
例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C為圓心,r為半徑。
①當(dāng)r=時,圓與AB相切。
②當(dāng)r=2cm時,圓與AB有怎樣的位置關(guān)系,為什么?
③當(dāng)r=3cm時,圓與AB又是怎樣的位置關(guān)系,為什么?
④思考:當(dāng)r滿足什么條件時圓與斜邊AB有一個交點?
四.小結(jié)(學(xué)生完成)
五、隨堂練習(xí):
(1)直線和圓有種位置關(guān)系,是用直線和圓的個數(shù)來定義的;這也是判斷直線和圓的位置關(guān)系的.重要方法。
(2)已知⊙O的直徑為13cm,直線L與圓心O的距離為d。
①當(dāng)d=5cm時,直線L與圓的位置關(guān)系是;
②當(dāng)d=13cm時,直線L與圓的位置關(guān)系是;
③當(dāng)d=6。5cm時,直線L與圓的位置關(guān)系是;
(目的:直線和圓的位置關(guān)系的判定的應(yīng)用)
(3)⊙O的半徑r=3cm,點O到直線L的距離為d,若直線L與⊙O至少有一個公共點,則d應(yīng)滿足的條件是()
(A)d=3(B)d≤3(C)d<3d="">3
(目的:直線和圓的位置關(guān)系的性質(zhì)的應(yīng)用)
(4)⊙O半徑=3cm。點P在直線L上,若OP=5cm,則直線L與⊙O的位置關(guān)系是()
(A)相離(B)相切(C)相交(D)相切或相交
(目的:點和圓,直線和圓的位置關(guān)系的結(jié)合,提高學(xué)生的綜合、開放性思維)
想一想:
在平面直角坐標(biāo)系中有一點A(-3,-4),以點A為圓心,r長為半徑時,
思考:隨著r的變化,⊙A與坐標(biāo)軸交點的變化情況。(有五種情況)
六、作業(yè):P100—2、3