小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教學(xué)設(shè)計(jì) >

免費(fèi)下載初三數(shù)學(xué)教案

時(shí)間: 新華 教學(xué)設(shè)計(jì)

教案可以幫助教師及時(shí)了解學(xué)生的學(xué)習(xí)情況和學(xué)習(xí)成果,從而針對性地調(diào)整教學(xué)策略。這里提供優(yōu)秀的免費(fèi)下載初三數(shù)學(xué)教案,方便大家寫免費(fèi)下載初三數(shù)學(xué)教案參考。

免費(fèi)下載初三數(shù)學(xué)教案篇1

本學(xué)年既有新任務(wù)要完成還有復(fù)習(xí)更要兼顧,因此事非常重要的一個(gè)學(xué)期,要以培養(yǎng)學(xué)生創(chuàng)新精神和實(shí)踐能力為重點(diǎn),探索有效教學(xué)新模式。以課堂教學(xué)為中心,緊緊圍繞初中數(shù)學(xué)教材、數(shù)學(xué)學(xué)科“基本要求”進(jìn)行教學(xué),針對近年來中考命題的變化和趨勢進(jìn)行研究,收集試卷,精選習(xí)題,建立題庫,努力把握中考方向,積極探索高效的復(fù)習(xí)途徑,力求達(dá)到減負(fù)、加壓、增效的目的,促進(jìn)學(xué)生生動、活潑、主動地學(xué)習(xí),力求中考取得好成績。通過數(shù)學(xué)課的教學(xué),使學(xué)生切實(shí)學(xué)好從事現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)所必須的基本知識和基本能力,在思維能力、情感態(tài)度與價(jià)值觀等多方面得到進(jìn)步和發(fā)展。

一、學(xué)情分析:

本學(xué)年我?guī)Ь拍昙壎啵瑢W(xué)生上學(xué)期成績居全縣第四,兩極分化越來越嚴(yán)重。有部分學(xué)生成績下滑很明顯,學(xué)習(xí)習(xí)慣較差。做事慢慢騰騰,有幾個(gè)學(xué)生應(yīng)該考優(yōu)生的學(xué)生都沒有考到優(yōu)生,如連清,趙熙,馬曉宇,李功奎,張信心,夏森,柯昭君,許鑫鑫,徐婷婷等,這些也許是老師督導(dǎo)不到位,也有少數(shù)學(xué)生自制能力較差,對自己要求不嚴(yán),甚至自暴自棄。這些都需要針對不同情況采取相應(yīng)措施,耐心教育。

二、教材分析:

本學(xué)期的新內(nèi)容只剩兩章:解直角三角形和投影。

四、教學(xué)目標(biāo):

1、在教學(xué)過程中抓住以下幾個(gè)環(huán)節(jié):(1)認(rèn)真?zhèn)湔n。認(rèn)真研究教材及考綱,明確教學(xué)目標(biāo),抓住重點(diǎn)、難點(diǎn),精心設(shè)計(jì)教學(xué)過程,重視每一章節(jié)內(nèi)容與前后知識的聯(lián)系及其地位,重視課后反思,設(shè)計(jì)好每一節(jié)課的師生互動的細(xì)節(jié)。(2)上好課:在備好課的基礎(chǔ)上,上好每一個(gè)45分鐘,提高45分鐘的效率,讓每一位同學(xué)都聽的懂,對部分基礎(chǔ)較差者要循序漸進(jìn),以選用的例題的難易程度不同,使每個(gè)學(xué)生能“吃”飽、“吃”好。(3)注重課后反思,及時(shí)的將一節(jié)課的得失記錄下來,不斷積累教學(xué)經(jīng)驗(yàn)。(4)批好每一次作業(yè):作業(yè)反映了一節(jié)課的效果如何,學(xué)生對知識的掌握程度如何,認(rèn)真批改作業(yè),使教師能迅速掌握情況,對癥下藥。(5)按時(shí)檢驗(yàn)學(xué)習(xí)成果,做到單元測驗(yàn)的有效、及時(shí),測驗(yàn)卷子的批改不過夜。考后對典型錯(cuò)誤利用學(xué)生想馬上知道答案的心理立即點(diǎn)評。(6)及時(shí)指導(dǎo)、糾錯(cuò):爭取面批、面授,今天的任務(wù)不推托到明日,爭取一切時(shí)間,緊緊抓住初三階段的每分每秒。課后反饋。落實(shí)每一堂課后輔助,查漏補(bǔ)缺。精選適當(dāng)?shù)木毩?xí)題、測試卷,及時(shí)批改作業(yè),發(fā)現(xiàn)問題及時(shí)給學(xué)生面對面的指出并指導(dǎo)學(xué)生搞懂弄通,不留一個(gè)疑難點(diǎn),讓學(xué)生學(xué)有所獲。(7)積極與其它老師溝通,加強(qiáng)教研教改,提高教學(xué)水平。(8)經(jīng)常聽取學(xué)生良好的合理化建議。(9)以“兩頭”帶“中間”戰(zhàn)略思想不變。(10)深化兩極生的訓(xùn)導(dǎo)。

五、嚴(yán)格按照教學(xué)進(jìn)度,有序的進(jìn)行教學(xué)工作。用心去做,從細(xì)節(jié)去做,盡自己追大的努力,發(fā)揮自己的能力去做好初三畢業(yè)班的教學(xué)工作。

六、強(qiáng)化復(fù)習(xí)指導(dǎo)。分二階段復(fù)習(xí):(一)第一階段全面復(fù)習(xí)基礎(chǔ)知識,加強(qiáng)基本技能訓(xùn)練讓學(xué)生全面掌握初中數(shù)學(xué)基礎(chǔ)知識,提高基本技能,做到全面、扎實(shí)、系統(tǒng),形成知識網(wǎng)絡(luò)。

這個(gè)階段的復(fù)習(xí)目的是讓學(xué)生全面掌握初中數(shù)學(xué)基礎(chǔ)知識,提高基本技能,做到全面、扎實(shí)、系統(tǒng),形成知識網(wǎng)絡(luò)。

1、重視課本,系統(tǒng)復(fù)習(xí)。現(xiàn)在中考命題仍然以基礎(chǔ)題為主,有些基礎(chǔ)題是課本上的原題或改造,后面的大題雖是“高于教材”,但原型一般還是教材中的例題或習(xí)題,是教材中題目的引伸、變形或組合,所以第一階段復(fù)習(xí)應(yīng)以課本為主。

2、按知識板塊組織復(fù)習(xí)。把知識進(jìn)行歸類,將全初中數(shù)學(xué)知識分為十一講:第一講數(shù)與式;第二講方程與不等式;第三講函數(shù);第四講統(tǒng)計(jì)與概率;第五講基本圖形;第六講圖形與變換;第七講角、相交線和平行線;第八講三角形;第九講四邊形;第十講三角函數(shù)學(xué);第十一講圓.復(fù)習(xí)中由教師提出每個(gè)講節(jié)的復(fù)習(xí)提要,指導(dǎo)學(xué)生按“提要”復(fù)習(xí),同時(shí)要注意引導(dǎo)學(xué)生根據(jù)個(gè)人具體情況把遺忘了知識重溫一遍,邊復(fù)習(xí)邊作知識歸類,加深記憶,注意引導(dǎo)學(xué)生弄清概念的內(nèi)涵和外延,掌握法則、公式、定理的推導(dǎo)或證明,例題的選擇要有針對性、典型性、層次性,并注意分析例題解答的思路和方法。

3、重視對基礎(chǔ)知識的理解和基本方法的指導(dǎo)。基礎(chǔ)知識即初中數(shù)學(xué)課程中所涉及的概念、公式、公理、定理等。要求學(xué)生掌握各知識點(diǎn)之間的內(nèi)在聯(lián)系,理清知識結(jié)構(gòu),形成整體的認(rèn)識,并能綜合運(yùn)用。例如一元二次方程的根與二次函數(shù)圖形與x軸交點(diǎn)之間的關(guān)系,是中考常常涉及的內(nèi)容,在復(fù)習(xí)時(shí),應(yīng)從整體上理解這部分內(nèi)容,從結(jié)構(gòu)上把握教材,達(dá)到熟練地將這兩部分知識相互轉(zhuǎn)化。又如一元二次方程與幾何知識的聯(lián)系的題目有非常明顯的特點(diǎn),應(yīng)掌握其基本解法。

中考數(shù)學(xué)命題除了著重考查基礎(chǔ)知識外,還十分重視對數(shù)學(xué)方法的考查,如配方法,換元法,判別式法等操作性較強(qiáng)的數(shù)學(xué)方法。在復(fù)習(xí)時(shí)應(yīng)對每一種方法的內(nèi)涵,它所適應(yīng)的題型,包括解題步驟都應(yīng)熟練掌握。

4、重視對數(shù)學(xué)思想的理解及運(yùn)用。如函數(shù)的思想,方程思想,數(shù)形結(jié)合的思想等。

(二)第二階段綜合運(yùn)用知識,加強(qiáng)能力培養(yǎng),構(gòu)建初中數(shù)學(xué)知識結(jié)構(gòu)和網(wǎng)絡(luò),從整體上把握數(shù)學(xué)內(nèi)容,以構(gòu)建初中數(shù)學(xué)知識結(jié)構(gòu)和網(wǎng)絡(luò)為主,從整體上把握數(shù)學(xué)內(nèi)容,提高能力。

培養(yǎng)綜合運(yùn)用數(shù)學(xué)知識解題的能力,是學(xué)習(xí)數(shù)學(xué)的重要目的之一。這個(gè)階段的復(fù)習(xí)目的是使學(xué)生能把各個(gè)講節(jié)中的知識聯(lián)系起來,并能綜合運(yùn)用,做到舉一反三、觸類旁通。這個(gè)階段的例題和練習(xí)題要有一定的難度,但又不是越難越好,要讓學(xué)生可接受,這樣才能既激發(fā)學(xué)生解難求進(jìn)的學(xué)習(xí)欲望,又使學(xué)生從解決較難問題中看到自己的力量,增強(qiáng)前進(jìn)的信心,產(chǎn)生更強(qiáng)的求知欲。第二階段就是第一階段復(fù)習(xí)的延伸和提高,應(yīng)側(cè)重培養(yǎng)學(xué)生的數(shù)學(xué)能力。這一階段尤其要精心設(shè)計(jì)每一節(jié)復(fù)習(xí)課,注意數(shù)學(xué)思想的形成和數(shù)學(xué)方法的掌握。初中總復(fù)習(xí)的內(nèi)容多,復(fù)習(xí)必須突出重點(diǎn),抓住關(guān)鍵,解決疑難,這就需要充分發(fā)揮教師的主導(dǎo)作用。而復(fù)習(xí)內(nèi)容是學(xué)生已經(jīng)學(xué)習(xí)過的,各個(gè)學(xué)生對教材內(nèi)容掌握的程度又各有差異,這就需要教師千方百計(jì)地激發(fā)學(xué)生復(fù)習(xí)的主動性、積極性,引導(dǎo)學(xué)生有針對性的復(fù)習(xí),根據(jù)個(gè)人的具體情況,查漏補(bǔ)缺,做知識歸類、解題方法歸類,在形成知識結(jié)構(gòu)的基礎(chǔ)上加深記憶。除了復(fù)習(xí)形式要多樣,題型要新穎,能引起學(xué)生復(fù)習(xí)的興趣外,還要精心設(shè)計(jì)復(fù)習(xí)課的教學(xué)方法,提高復(fù)習(xí)效益

七、不斷鉆研業(yè)務(wù),提高業(yè)務(wù)能力及水平。

積極參加業(yè)務(wù)學(xué)習(xí),看書、看報(bào),參加學(xué)校組織的培訓(xùn),使之更好的為基礎(chǔ)教育的改革努力,掌握新的技能、技巧,不斷努力,取長補(bǔ)短,揚(yáng)長避短,努力使教學(xué)更開拓,方法更靈活,手段更先進(jìn)。

八、分層輔導(dǎo),因材施教對本年級的學(xué)生實(shí)施分層輔導(dǎo),利用優(yōu)勝劣汰的方法,激勵(lì)學(xué)生的學(xué)習(xí)激情,保證升學(xué)率及優(yōu)良率,提高及格率。對部分差生實(shí)行義務(wù)補(bǔ)課,以提高成績。

免費(fèi)下載初三數(shù)學(xué)教案篇2

教學(xué)內(nèi)容

一元二次方程概念及一元二次方程一般式及有關(guān)概念.

教學(xué)目標(biāo)

了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;應(yīng)用一元二次方程概念解決一些簡單題目.

1.通過設(shè)置問題,建立數(shù)學(xué)模型,模仿一元一次方程概念給一元二次方程下定義.

2.一元二次方程的一般形式及其有關(guān)概念.

3.解決一些概念性的題目.

4.態(tài)度、情感、價(jià)值觀

4.通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情.

重難點(diǎn)關(guān)鍵

1.重點(diǎn):一元二次方程的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題.

2.難點(diǎn)關(guān)鍵:通過提出問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念.

教學(xué)過程

一、復(fù)習(xí)引入

學(xué)生活動:列方程.

問題(1)《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”

大意是說:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少?

如果假設(shè)門的高為x尺,那么,這個(gè)門的寬為_______尺,根據(jù)題意,得________.

整理、化簡,得:__________.

問題(2)如圖,如果,那么點(diǎn)C叫做線段AB的黃金分割點(diǎn).

如果假設(shè)剪后的正方形邊長為x,那么原來長方形長是________,寬是_____,根據(jù)題意,得:_______.

整理,得:________.

老師點(diǎn)評并分析如何建立一元二次方程的數(shù)學(xué)模型,并整理.

二、探索新知

學(xué)生活動:請口答下面問題.

(1)上面三個(gè)方程整理后含有幾個(gè)未知數(shù)?

(2)按照整式中的多項(xiàng)式的規(guī)定,它們最高次數(shù)是幾次?

(3)有等號嗎?或與以前多項(xiàng)式一樣只有式子?

老師點(diǎn)評:(1)都只含一個(gè)未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號,是方程.

因此,像這樣的方程兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程.

一般地,任何一個(gè)關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.

一個(gè)一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng).

例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).

分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必須運(yùn)用整式運(yùn)算進(jìn)行整理,包括去括號、移項(xiàng)等.

解:去括號,得:

40-16x-10x+4x2=18

移項(xiàng),得:4x2-26x+22=0

其中二次項(xiàng)系數(shù)為4,一次項(xiàng)系數(shù)為-26,常數(shù)項(xiàng)為22.

例2.(學(xué)生活動:請二至三位同學(xué)上臺演練)將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項(xiàng)、二次項(xiàng)系數(shù);一次項(xiàng)、一次項(xiàng)系數(shù);常數(shù)項(xiàng).

分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.

解:去括號,得:

x2+2x+1+x2-4=1

移項(xiàng),合并得:2x2+2x-4=0

其中:二次項(xiàng)2x2,二次項(xiàng)系數(shù)2;一次項(xiàng)2x,一次項(xiàng)系數(shù)2;常數(shù)項(xiàng)-4.

三、鞏固練習(xí)

教材P32練習(xí)1、2

四、應(yīng)用拓展

例3.求證:關(guān)于x的方程(2-8+17)x2+2x+1=0,不論取何值,該方程都是一元二次方程.

分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可.

證明:2-8+17=(-4)2+1

∵(-4)2≥0

∴(-4)2+1>0,即(-4)2+1≠0

∴不論取何值,該方程都是一元二次方程.

五、歸納小結(jié)(學(xué)生總結(jié),老師點(diǎn)評)

本節(jié)課要掌握:

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次項(xiàng)、二次項(xiàng)系數(shù),一次項(xiàng)、一次項(xiàng)系數(shù),常數(shù)項(xiàng)的概念及其它們的運(yùn)用.

六、布置作業(yè)

免費(fèi)下載初三數(shù)學(xué)教案篇3

教學(xué)目標(biāo)

1、使學(xué)生理解弦、弧、弓形、同心圓、等圓、等孤的概念;初步會運(yùn)用這些概念判斷真假命題。

2、逐步培養(yǎng)學(xué)生閱讀教材、親自動手實(shí)踐,總結(jié)出新概念的能力;進(jìn)一步指導(dǎo)學(xué)

生觀察、比較、分析、概括知識的能力。

3、通過動手、動腦的全過程,調(diào)動學(xué)生主動學(xué)習(xí)的積極性,使學(xué)生從積極主動獲得知識。

教學(xué)重點(diǎn)、難點(diǎn)和疑點(diǎn)

1、重點(diǎn):理解圓的有關(guān)概念.

2、難點(diǎn):對“等圓”、“等弧”的定義中的“互相重合”這一特征的理解.

3、疑點(diǎn):學(xué)生容易把長度相等的兩條弧看成是等弧。讓學(xué)生閱讀教材、理解、交流和與教師對話交流中排除疑難。

教學(xué)過程設(shè)計(jì):

(一)閱讀、理解

重點(diǎn)概念:

1、弦:連結(jié)圓上任意兩點(diǎn)的線段叫做弦.

2、直徑:經(jīng)過圓心的弦是直徑.

3、圓弧:圓上任意兩點(diǎn)間的部分叫做圓弧.簡稱弧.

半圓弧:圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧叫做半圓;

優(yōu)弧:大于半圓的弧叫優(yōu)弧;

劣弧:小于半圓的弧叫做劣弧.

4、弓形:由弦及其所對的弧組成的圖形叫做弓形.

5、同心圓:即圓心相同,半徑不相等的兩個(gè)圓叫做同心圓.

6、等圓:能夠重合的兩個(gè)圓叫做等圓.

7、等弧:在同圓或等圓中,能夠互相重合的弧叫做等弧.

(二)小組交流、師生對話

問題:

1、一個(gè)圓有多少條弦?最長的弦是什么?

2、弧分為哪幾種?怎樣表示?

3、弓形與弦有什么區(qū)別?在一個(gè)圓中一條弦能得到幾個(gè)弓形?

4、在等圓、等弧中,“互相重合”是什么含義?

(通過問題,使學(xué)生與學(xué)生,學(xué)生與老師進(jìn)行交流、學(xué)習(xí),加深對概念的理解,排除疑難)

(三)概念辨析:

判斷題目:

(1)直徑是弦()(2)弦是直徑()

(3)半圓是弧()(4)弧是半圓()

(5)長度相等的兩段弧是等弧()(6)等弧的長度相等()

(7)兩個(gè)劣弧之和等于半圓()(8)半徑相等的兩個(gè)半圓是等弧()

(主要理解以下概念:(1)弦與直徑;(2)弧與半圓;(3)同心圓、等圓指兩個(gè)圖形;(4)等圓、等弧是互相重合得到,等弧的條件作用.)

(四)應(yīng)用、練習(xí)

例1、已知:如圖,AB、CB為⊙O的兩條弦,試寫出圖中的所有弧.

解:一共有6條弧.、、、、、.

(目的:讓學(xué)生會表示弧,并加深理解優(yōu)弧和劣弧的概念)

例2、已知:如圖,在⊙O中,AB、CD為直徑.求證:AD∥BC.

(由學(xué)生分析,學(xué)生寫出證明過程,學(xué)生糾正存在問題.鍛煉學(xué)生動口、動腦、動手實(shí)踐能力,調(diào)動學(xué)生主動學(xué)習(xí)的積極性,使學(xué)生從積極主動獲得知識.)

鞏固練習(xí):

教材P66練習(xí)中2題(學(xué)生自己完成).

(五)小結(jié)

教師引導(dǎo)學(xué)生自己做出總結(jié):

1、本節(jié)所學(xué)似的知識點(diǎn);

2、概念理解:①弦與直徑;②弧與半圓;③同心圓、等圓指兩個(gè)圖形;④等圓和等弧.

3、弧的表示方法.

(六)作業(yè)

教材P66練習(xí)中3題,P82習(xí)題l(3)、(4).

免費(fèi)下載初三數(shù)學(xué)教案篇4

教材分析

本節(jié)內(nèi)容是上一節(jié)課在學(xué)習(xí)余角補(bǔ)角基礎(chǔ)上學(xué)習(xí)的,學(xué)生有了一定的基礎(chǔ),為平面直角坐標(biāo)系的學(xué)習(xí)做好準(zhǔn)備。

學(xué)情分析

本節(jié)課對于學(xué)生來說學(xué)習(xí)起來并不太難,在小學(xué)階段學(xué)生已經(jīng)接觸過方位角的內(nèi)容,而且本節(jié)課內(nèi)容和生活中的方向聯(lián)系緊密,故學(xué)生比較有興趣。

教學(xué)目標(biāo)

理解方位角的意義,掌握方位角的判別和應(yīng)用,通過現(xiàn)實(shí)情境,充分利用學(xué)生的生活經(jīng)驗(yàn)去體會方位角的意義。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):方位角的判別與應(yīng)用

難點(diǎn):方位角的畫法及變式題

教學(xué)過程(本文來自優(yōu)秀教育資源網(wǎng)斐.斐.課.件.園)

教學(xué)環(huán)節(jié)教師活動預(yù)設(shè)學(xué)生行為設(shè)計(jì)意圖

一、創(chuàng)設(shè)情境,導(dǎo)入新課

二、講授新課

三、鞏固練習(xí)

四、課時(shí)小結(jié)五、布置作業(yè)由四面八方這個(gè)成語引出學(xué)生對八個(gè)方位的理解

1.先以一個(gè)具體圖形告訴學(xué)生基本知識點(diǎn),方位角一般是以正南正北為基準(zhǔn),然后向東或西旋轉(zhuǎn)所成的角的始邊方向。

2.師示范方位角的畫法

3.出示補(bǔ)充例題,引對學(xué)生通過小組合作完成。思考并回答老師提出的問題

生觀察圖并理解老師的講解。

生觀察并獨(dú)立完成書中的例題

生先獨(dú)立思考然后與同學(xué)合作完成。激發(fā)學(xué)生的學(xué)習(xí)興趣

通遼具體圖形使學(xué)生初步認(rèn)識方位角的表示方法。

使學(xué)生通遼具體操作掌握畫方位角的方法

進(jìn)一步掌握方位角的有關(guān)知識,達(dá)到知識提升。

板書設(shè)計(jì)

4.3.3余角和補(bǔ)角(二)——方位角

學(xué)生學(xué)習(xí)活動評價(jià)設(shè)計(jì)

我先將學(xué)生按人數(shù)分成若干小組,在課前先給學(xué)生發(fā)放導(dǎo)學(xué)單,課上先給學(xué)生充分的討論時(shí)間后學(xué)生由小組推薦代表發(fā)言,累積分?jǐn)?shù),每個(gè)小組輪流回答一次,學(xué)生代表回答完畢后,其它同學(xué)補(bǔ)充糾錯(cuò),然后從知識點(diǎn)是否準(zhǔn)確,語言是否流利,思維是否創(chuàng)新,邏輯是否合理嚴(yán)密等方面來做出評價(jià),然后給出相應(yīng)分?jǐn)?shù)。累積到小組積分中課上知識回答后在練習(xí)部分,設(shè)計(jì)搶答題,小組搶答完成。最后計(jì)算出總分評出本節(jié)課小組及個(gè)人獎(jiǎng),給予口頭表揚(yáng)。

教學(xué)反思

本節(jié)課是在上節(jié)課余角和補(bǔ)角的基礎(chǔ)上學(xué)習(xí)的,而且在小學(xué)階段也已經(jīng)接觸過這部分知識了,基于這個(gè)特點(diǎn),在課堂上我主要采取了自主學(xué)習(xí)的方式,學(xué)生接受的不錯(cuò),本節(jié)課的知識雖然簡單但很重要是為以后平面直角坐標(biāo)系做準(zhǔn)備的。出現(xiàn)的問題是有個(gè)別同學(xué)對于A看B是北偏東30度,則B看A是什么方向不太清楚,我采取的措施是讓明白的同學(xué)講給不明白的同學(xué)聽,指導(dǎo)其主要從哪方面入手解決此類問題,還有一點(diǎn),學(xué)生在畫圖后容易忽略寫結(jié)論,應(yīng)強(qiáng)調(diào)。以前在上本節(jié)課時(shí),我是采取的講授法,感覺學(xué)生不是很愛聽,后來一想,知道了是因?yàn)樾W(xué)時(shí)他們已經(jīng)接觸了這部分知識,所以不愛聽,針對于這種情況,這次我采用了自主學(xué)習(xí)的方式感覺學(xué)生的積極性上來了,一節(jié)課氣氛很好,相信效果也不錯(cuò)。以后再講這節(jié)課我將繼續(xù)采用這種方式,在此基礎(chǔ)上使其更加完善。

免費(fèi)下載初三數(shù)學(xué)教案篇5

教學(xué)過程設(shè)計(jì)

一、創(chuàng)設(shè)情境引入課題

活動1

問題:

你們還記得一次函數(shù)圖象與性質(zhì)嗎?

設(shè)計(jì)意圖

通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生復(fù)習(xí)一次函數(shù)圖象的知識,激發(fā)學(xué)生參與課堂學(xué)習(xí)的熱情,為學(xué)習(xí)反比例函數(shù)的圖象奠定基礎(chǔ)。

師生形為:

教師提出問題。學(xué)生思考、交流,回答問題。教師根據(jù)學(xué)生活動情況進(jìn)行補(bǔ)充和完善。

二、類比聯(lián)想探究交流

活動2

問題:

例2畫出反比例函數(shù)y=與y=-的圖象。

(教師先引導(dǎo)學(xué)生思考,示范畫出反比例函數(shù)y=的圖象,再讓學(xué)生嘗試畫出反比例函數(shù)y=-的圖象。)

設(shè)計(jì)意圖:

通過畫反比例函數(shù)的圖象使學(xué)生進(jìn)一步了解用描點(diǎn)的方法畫函數(shù)圖象的基本步驟,其他函數(shù)的圖象奠定基礎(chǔ),同時(shí)也培養(yǎng)了學(xué)生動手操作能力。

師生形為:

學(xué)生可以先自己動手畫圖,相互觀摩。

在此活動中,教師應(yīng)重點(diǎn)關(guān)注:

1學(xué)生能否順利進(jìn)行三種表示方法的相互轉(zhuǎn)換:

2是否熟悉作出函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象;

3在動手作圖的過程中,能否勤于動手,樂于探索。

比較y=、y=-的圖象有什么共同特征?它們之間有什么關(guān)系?

(由學(xué)生觀察思考,回答問題,并使學(xué)生了解反比例函數(shù)的圖象是一種雙曲線。)

設(shè)計(jì)意圖:

學(xué)生通過觀察比較,總結(jié)兩個(gè)反比例函數(shù)圖象的共同特征(都是雙曲線),以及在平面直角坐標(biāo)系中的位置。在活動中,讓學(xué)生自己去觀察、類比發(fā)現(xiàn),過程讓學(xué)生自己去感受,結(jié)論讓學(xué)生自己去總結(jié),實(shí)現(xiàn)學(xué)生主動參與、探究新知的目的。

師生形為:

學(xué)生分組針對問題結(jié)合畫出的圖象分類討論,歸納總結(jié)反比例函數(shù)圖象的共同點(diǎn),為后面性質(zhì)的探索打下基礎(chǔ)。

教師參與到學(xué)生的討論中去,積極引導(dǎo)。

(三)探索比較發(fā)現(xiàn)規(guī)律

活動3

問題:

觀察反比例函數(shù)y=與y=-的圖象。

你能發(fā)現(xiàn)它們的共同特征以及不同點(diǎn)嗎?

每個(gè)函數(shù)的圖象分別位于哪幾個(gè)象限?

在每一個(gè)象限內(nèi),y隨x的變化如何變化?

由學(xué)生分小組討論,觀察思考后進(jìn)行分析、歸納,得到反比例函數(shù)y=的性質(zhì):

形狀:反比例函數(shù)的圖象是由兩支雙曲線組成的.因此稱反比例函數(shù)的圖象為雙曲線;

位置:當(dāng)k0時(shí),兩支雙曲線分別位于第一,三象限內(nèi),在每個(gè)象限內(nèi)y隨x增大而減小;當(dāng)k0時(shí),兩支雙曲線分別位于第二,四象限內(nèi),在每個(gè)象限內(nèi)y隨x增大而增大;

任意一組變量的乘積是一個(gè)定值,即xy=k.

(注意:雙曲線的兩個(gè)分支都不會與x軸,y軸相交。)

學(xué)生通過對反比例函數(shù)圖象進(jìn)行觀察、分析,總結(jié)出了反比例函數(shù)的性質(zhì),使學(xué)生明白性質(zhì)的可靠性;通過對函數(shù)圖象的位置與k值符號關(guān)系的探討,以及反比例函數(shù)的兩個(gè)分支在相應(yīng)的象限內(nèi),y隨x值的增大(或減小)而增大(或減小)的探討,有利于加深學(xué)生對性質(zhì)的理解和掌握;使學(xué)生經(jīng)歷從特殊到一般的過程,體驗(yàn)知識產(chǎn)生、形成的過程,逐步達(dá)到培養(yǎng)學(xué)生抽象概括能力和激發(fā)求知欲望;同時(shí)通過對反比例函數(shù)增減性的討論,對學(xué)生進(jìn)行辯證唯物主義思想教育.

四、運(yùn)用新知拓展訓(xùn)練

設(shè)計(jì)意圖:

拓展練習(xí)是為了讓學(xué)生靈活運(yùn)用反比例函數(shù)性質(zhì)解決問題,學(xué)生在研究問題的特點(diǎn)時(shí),能夠緊扣性質(zhì)進(jìn)行分析,達(dá)到理解并掌握性質(zhì)的目的.

師生形為:

學(xué)生獨(dú)立思考完成。

教師巡視,引導(dǎo)學(xué)困生完成任務(wù)。

五、歸納總結(jié)布置作業(yè)

問題:

本節(jié)課學(xué)習(xí)了哪些知識?在知識應(yīng)用過程中需要注意什么?你有什么收獲?

免費(fèi)下載初三數(shù)學(xué)教案篇6

直接開平方法

理解一元二次方程“降次”——轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問題.

提出問題,列出缺一次項(xiàng)的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個(gè)方程,然后知識遷移到解a(ex+f)2+c=0型的一元二次方程.

重點(diǎn)

運(yùn)用開平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會降次——轉(zhuǎn)化的數(shù)學(xué)思想.

難點(diǎn)

通過根據(jù)平方根的意義解形如x2=n的方程,將知識遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程.

一、復(fù)習(xí)引入

學(xué)生活動:請同學(xué)們完成下列各題.

問題1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根據(jù)完全平方公式可得:(1)16 4;(2)4 2;(3)(2p)22p.

問題2:目前我們都學(xué)過哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過哪些降次的方法?

二、探索新知

上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?

(學(xué)生分組討論)

老師點(diǎn)評:回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2

分析:(1)x2+4x+4是一個(gè)完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接開平方,得:x+3=±

即x+3=,x+3=-

所以,方程的兩根x1=-3+,x2=-3-

解:略.

例2 市政府計(jì)劃2年內(nèi)將人均住房面積由現(xiàn)在的10 m2提高到14.4 m2,求每年人均住房面積增長率.

分析:設(shè)每年人均住房面積增長率為x,一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2

解:設(shè)每年人均住房面積增長率為x,

則:10(1+x)2=14.4

(1+x)2=1.44

直接開平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因?yàn)槊磕耆司》棵娣e的增長率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去.

所以,每年人均住房面積增長率應(yīng)為20%.

(學(xué)生小結(jié))老師引導(dǎo)提問:解一元二次方程,它們的共同特點(diǎn)是什么?

共同特點(diǎn):把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元一次方程.我們把這種思想稱為“降次轉(zhuǎn)化思想”.

三、鞏固練習(xí)

教材第6頁 練習(xí).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:由應(yīng)用直接開平方法解形如x2=p(p≥0)的方程,那么x=±轉(zhuǎn)化為應(yīng)用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±,達(dá)到降次轉(zhuǎn)化之目的.若p<0則方程無解.

五、作業(yè)布置

教材第16頁 復(fù)習(xí)鞏固1.

免費(fèi)下載初三數(shù)學(xué)教案篇7

課題 二次函數(shù)y=ax2的圖象(一)

一、教學(xué)目的

1.使學(xué)生初步理解二次函數(shù)的概念。

2.使學(xué)生會用描點(diǎn)法畫二次函數(shù)y=ax2的圖象。

3.使學(xué)生結(jié)合y=ax2的圖象初步理解拋物線及其有關(guān)的概念。

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):對二次函數(shù)概念的初步理解。

難點(diǎn):會用描點(diǎn)法畫二次函數(shù)y=ax2的圖象。

三、教學(xué)過程

復(fù)習(xí)提問

1.在下列函數(shù)中,哪些是一次函數(shù)?哪些是正比例函數(shù)?

(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2-2。

2.什么是一無二次方程?

3.怎樣用找點(diǎn)法畫函數(shù)的圖象?

新課

1.由具體問題引出二次函數(shù)的定義。

(1)已知圓的面積是Scm2,圓的半徑是Rcm,寫出空上圓的面積S與半徑R之間的函數(shù)關(guān)系式。

(2)已知一個(gè)矩形的周長是60m,一邊長是Lm,寫出這個(gè)矩形的面積S(m2)與這個(gè)矩形的一邊長L之間的函數(shù)關(guān)系式。

(3)農(nóng)機(jī)廠第一個(gè)月水泵的產(chǎn)量為50臺,第三個(gè)月的產(chǎn)量y(臺)與月平均增長率x之間的函數(shù)關(guān)系如何表示?

解:(1)函數(shù)解析式是S=πR2;

(2)函數(shù)析式是S=30L—L2;

(3)函數(shù)解析式是y=50(1+x)2,即

y=50x2+100x+50。

由以上三例啟發(fā)學(xué)生歸納出:

(1)函數(shù)解析式均為整式;

(2)處變量的最高次數(shù)是2。

我們說三個(gè)式子都表示的是二次函數(shù)。

一般地,如果y=ax2+bx+c(a,b,c沒有限制而a≠0),那么y叫做x的二次函數(shù),請注意這里b,c沒有限制,而a≠0。

2.畫二次函數(shù)y=x2的圖象。

按照描點(diǎn)法分三步畫圖:

(1)列表∵x可取任意實(shí)數(shù),∴以0為中心選取x值,以1為間距取值,且取整數(shù)值,便于計(jì)算,又x取相反數(shù)時(shí),相應(yīng)的y值相同;

(2)描點(diǎn)按照表中所列出的函數(shù)對應(yīng)值,在平面直角坐標(biāo)系中描出相應(yīng)的7個(gè)點(diǎn);

(3)邊線用平滑曲線順次連接各點(diǎn),即得所求y=x2的圖象。

注意兩點(diǎn):

(1)由于我們只描出了7個(gè)點(diǎn),但自礦業(yè)量取值范圍是實(shí)數(shù),故我們只畫出了實(shí)際圖象的一部分,即畫出了在原點(diǎn)附近、自變量在-3到3這個(gè)區(qū)間的一部分。而圖象在x>3或x<-3的區(qū)間是無限延伸的。

(2)所畫的圖象是近似的。

3.在原點(diǎn)附近較精確地研究二次函數(shù)y=x2的圖象形狀到底如何?——我們–1與1之間每隔0。2的間距取x值表和圖13-14。按課本P118內(nèi)容講解。

4.引入拋物線的概念。

關(guān)于拋物線的頂點(diǎn)應(yīng)從兩方面分析:一是從圖象上看,y=x2的圖象的頂點(diǎn)是最低點(diǎn);一是從解析式y(tǒng)=x2看,當(dāng)x=0時(shí),y=x2取得最小值0,故拋物線y=x2的頂點(diǎn)是(0,0)。

小結(jié)

1.二次函數(shù)的定義。

(1)函數(shù)解析式關(guān)于自變量是整式;(2)函數(shù)自變量的最高次數(shù)是2。

2.二次函數(shù)y=x2的圖象。

(1)其圖象叫拋物線;(2)拋物線y=x2的對稱軸是y軸,開口向上,頂點(diǎn)是原點(diǎn)。

補(bǔ)充例題

下列函數(shù)中,哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a,b,c?

(1)y=2-3x2;(2)y=x(x-4);

(3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;

(5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。

作業(yè):P122中A組1,2,3。

四、教學(xué)注意問題

1.注意滲透局部和全體、有限和無限、近似和精確等矛盾對立統(tǒng)一的觀點(diǎn)。

2.注意培養(yǎng)學(xué)生觀察分析問題的能力。比如,結(jié)合所畫二次函數(shù)y=x2的圖象,要求學(xué)生思考:

(1)y=x2的圖象的圖象有什么特點(diǎn)。(答:具有對稱性。)

(2)如何判斷y=x2的.圖象有上面所說的特點(diǎn)?(答:由觀察圖象看出來;或由列表求值得出來;或由解析式y(tǒng)=x2看出來。)

課題 二次函數(shù)y=ax2的圖象(一)

一、教學(xué)目的

1.使學(xué)生初步理解二次函數(shù)的概念。

2.使學(xué)生會用描點(diǎn)法畫二次函數(shù)y=ax2的圖象。

3.使學(xué)生結(jié)合y=ax2的圖象初步理解拋物線及其有關(guān)的概念。

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):對二次函數(shù)概念的初步理解。

難點(diǎn):會用描點(diǎn)法畫二次函數(shù)y=ax2的圖象。

三、教學(xué)過程

復(fù)習(xí)提問

1.在下列函數(shù)中,哪些是一次函數(shù)?哪些是正比例函數(shù)?

(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2-2。

2.什么是一無二次方程?

3.怎樣用找點(diǎn)法畫函數(shù)的圖象?

新課

1.由具體問題引出二次函數(shù)的定義。

(1)已知圓的面積是Scm2,圓的半徑是Rcm,寫出空上圓的面積S與半徑R之間的函數(shù)關(guān)系式。

(2)已知一個(gè)矩形的周長是60m,一邊長是Lm,寫出這個(gè)矩形的面積S(m2)與這個(gè)矩形的一邊長L之間的函數(shù)關(guān)系式。

(3)農(nóng)機(jī)廠第一個(gè)月水泵的產(chǎn)量為50臺,第三個(gè)月的產(chǎn)量y(臺)與月平均增長率x之間的函數(shù)關(guān)系如何表示?

解:(1)函數(shù)解析式是S=πR2;

(2)函數(shù)析式是S=30L—L2;

(3)函數(shù)解析式是y=50(1+x)2,即

y=50x2+100x+50。

由以上三例啟發(fā)學(xué)生歸納出:

(1)函數(shù)解析式均為整式;

(2)處變量的最高次數(shù)是2。

我們說三個(gè)式子都表示的是二次函數(shù)。

一般地,如果y=ax2+bx+c(a,b,c沒有限制而a≠0),那么y叫做x的二次函數(shù),請注意這里b,c沒有限制,而a≠0。

2.畫二次函數(shù)y=x2的圖象。

按照描點(diǎn)法分三步畫圖:

(1)列表∵x可取任意實(shí)數(shù),∴以0為中心選取x值,以1為間距取值,且取整數(shù)值,便于計(jì)算,又x取相反數(shù)時(shí),相應(yīng)的y值相同;

(2)描點(diǎn)按照表中所列出的函數(shù)對應(yīng)值,在平面直角坐標(biāo)系中描出相應(yīng)的7個(gè)點(diǎn);

(3)邊線用平滑曲線順次連接各點(diǎn),即得所求y=x2的圖象。

注意兩點(diǎn):

(1)由于我們只描出了7個(gè)點(diǎn),但自礦業(yè)量取值范圍是實(shí)數(shù),故我們只畫出了實(shí)際圖象的一部分,即畫出了在原點(diǎn)附近、自變量在-3到3這個(gè)區(qū)間的一部分。而圖象在x>3或x<-3的區(qū)間是無限延伸的。

(2)所畫的圖象是近似的。

3.在原點(diǎn)附近較精確地研究二次函數(shù)y=x2的圖象形狀到底如何?——我們–1與1之間每隔0。2的間距取x值表和圖13-14。按課本P118內(nèi)容講解。

4.引入拋物線的概念。

關(guān)于拋物線的頂點(diǎn)應(yīng)從兩方面分析:一是從圖象上看,y=x2的圖象的頂點(diǎn)是最低點(diǎn);一是從解析式y(tǒng)=x2看,當(dāng)x=0時(shí),y=x2取得最小值0,故拋物線y=x2的頂點(diǎn)是(0,0)。

小結(jié)

1.二次函數(shù)的定義。

(1)函數(shù)解析式關(guān)于自變量是整式;(2)函數(shù)自變量的最高次數(shù)是2。

2.二次函數(shù)y=x2的圖象。

(1)其圖象叫拋物線;(2)拋物線y=x2的對稱軸是y軸,開口向上,頂點(diǎn)是原點(diǎn)。

補(bǔ)充例題

下列函數(shù)中,哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a,b,c?

(1)y=2-3x2;(2)y=x(x-4);

(3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;

(5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。

作業(yè):P122中A組1,2,3。

四、教學(xué)注意問題

1.注意滲透局部和全體、有限和無限、近似和精確等矛盾對立統(tǒng)一的觀點(diǎn)。

2.注意培養(yǎng)學(xué)生觀察分析問題的能力。比如,結(jié)合所畫二次函數(shù)y=x2的圖象,要求學(xué)生思考:

(1)y=x2的圖象的圖象有什么特點(diǎn)。(答:具有對稱性。)

(2)如何判斷y=x2的圖象有上面所說的特點(diǎn)?(答:由觀察圖象看出來;或由列表求值得出來;或由解析式y(tǒng)=x2看出來。)

免費(fèi)下載初三數(shù)學(xué)教案篇8

圖案設(shè)計(jì)

利用平移、軸對稱和旋轉(zhuǎn)的這些圖形變換中的一種或組合進(jìn)行圖案設(shè)計(jì),設(shè)計(jì)出稱心如意的圖案.

通過復(fù)習(xí)軸對稱、平移、旋轉(zhuǎn)的知識,然后利用這些知識讓學(xué)生開動腦筋,敝開胸懷大膽聯(lián)想,設(shè)計(jì)出一幅幅美麗的圖案.

1、設(shè)計(jì)圖案.

2、如何利用平移、軸對稱、旋轉(zhuǎn)等圖形變換中的一種或它們的組合得出圖案.

一、復(fù)習(xí)引入

1.如圖,已知線段CD是線段AB平移后的圖形,D是B點(diǎn)的對稱點(diǎn),作出線段AB,并回答AB與CD有什么位置關(guān)系.

2.如圖,已知線段CD,作出線段CD關(guān)于對稱軸l的對稱線段C′D′,并說明CD與對稱線段C′D′之間有什么關(guān)系?

3.如圖,已知線段CD,作出線段CD關(guān)于D點(diǎn)旋轉(zhuǎn)90°的旋轉(zhuǎn)后的圖形,并說明這兩條線段之間有什么關(guān)系?

1.AB與CD平行且相等;

2.過D點(diǎn)作DE⊥l,垂足為E并延長,使ED′=ED,同理作出C′點(diǎn),連接C′D′,則C′D′即為所求.

CD的延長線與C′D′的延長線相交于一點(diǎn),這一點(diǎn)在l上并且CD=C′D′.

3.以D點(diǎn)為旋轉(zhuǎn)中心,旋轉(zhuǎn)后CD⊥C′D,垂足為D,并且CD=C′D.

二、探索新知

請用以上所講的平移、軸對稱、旋轉(zhuǎn)等圖形變換中的一種或幾種組合完成下面的圖案設(shè)計(jì).

例1 (學(xué)生活動)學(xué)生親自動手操作題.

按下面的步驟,請每一位同學(xué)完成一個(gè)別致的圖案.

(1)準(zhǔn)備一張正三角形紙片(課前準(zhǔn)備)(如圖a);

(2)把紙片任意撕成兩部分(如圖b,如圖c);

(3)將撕好的如圖b沿正三角形的一邊作軸對稱,得到新的圖形;

(4)將(3)得到的圖形以正三角形的一個(gè)頂點(diǎn)作為旋轉(zhuǎn)中心旋轉(zhuǎn),得到如圖(d)(如圖c保持不動);

(5)把如圖(d)平移到如圖(c)的右邊,得到如圖(e);

(6)對如圖(e)進(jìn)行適當(dāng)?shù)男揎棧沟玫揭粋€(gè)別致美麗的如圖(f)的圖案.

老師必要時(shí)可以給予一定的指導(dǎo).

三、課堂小結(jié)

本節(jié)課應(yīng)掌握:

利用平移、軸對稱和旋轉(zhuǎn)的圖形變換中的一種或組合設(shè)計(jì)圖案.

免費(fèi)下載初三數(shù)學(xué)教案篇9

學(xué)習(xí)目標(biāo)

1、一元二次方程的求根公式的推導(dǎo)

2、會用求根公式解一元二次方程.

3、通過運(yùn)用公式法解一元二次方程的訓(xùn)練,提高學(xué)生的運(yùn)算能力,養(yǎng)成良好的運(yùn)算習(xí)慣

學(xué)習(xí)重、難點(diǎn)

重點(diǎn):一元二次方程的求根公式.

難點(diǎn):求根公式的條件:b2-4ac≥0

學(xué)習(xí)過程:

一、自學(xué)質(zhì)疑:

1、用配方法解方程:2x2-7x+3=0.

2、用配方解一元二次方程的步驟是什么?

3、用配方法解一元二次方程,計(jì)算比較麻煩,能否研究出一種更好的方法,迅速求得一元二次方程的實(shí)數(shù)根呢?

二、交流展示:

剛才我們已經(jīng)利用配方法求解了一元二次方程,那你能否利用配方法的基本步驟解方程ax2+bx+c=0(a≠0)呢?

三、互動探究:

一般地,對于一元二次方程ax2+bx+c=0

(a≠0),當(dāng)b2-4ac≥0時(shí),它的根是

用求根公式解一元二次方程的方法稱為公式法

由此我們可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系數(shù)a、b、c確定的.因此,在解一元二次方程時(shí),先將方程化為一般形式,然后在b2-4ac≥0的前提條件下,把各項(xiàng)系數(shù)a、b、c的值代入,就可以求得方程的根.

注:(1)把方程化為一般形式后,在確定a、b、c時(shí),需注意符號.

(2)在運(yùn)用求根公式求解時(shí),應(yīng)先計(jì)算b2-4ac的值;當(dāng)b2-4ac≥0時(shí),可以用公式求出兩個(gè)不相等的實(shí)數(shù)解;當(dāng)b2-4ac<0時(shí),方程沒有實(shí)數(shù)解.就不必再代入公式計(jì)算了.

四、精講點(diǎn)撥:

例1、課本例題

總結(jié):其一般步驟是:

(1)把方程化為一般形式,進(jìn)而確定a、b,c的值.(注意符號)

(2)求出b2-4ac的值.(先判別方程是否有根)

(3)在b2-4ac≥0的前提下,把a(bǔ)、b、c的直代入求根公式,求出的值,最后寫出方程的根.

例2、解方程:

(1)2x2-7x+3=0(2)x2-7x-1=0

(3)2x2-9x+8=0(4)9x2+6x+1=0

五、糾正反饋:

做書上第P90練習(xí)。

六、遷移應(yīng)用:

例3、一個(gè)直角三角形三邊的長為三個(gè)連續(xù)偶數(shù),求這個(gè)三角形的三條邊長.

例4、求方程的兩根之和以及兩根之積

拓展應(yīng)用:關(guān)于的一元二次方程的一個(gè)根是,則;

方程的另一根是

免費(fèi)下載初三數(shù)學(xué)教案篇10

教材分析

本節(jié)內(nèi)容是上一節(jié)課在學(xué)習(xí)余角補(bǔ)角基礎(chǔ)上學(xué)習(xí)的,學(xué)生有了一定的基礎(chǔ),為以后學(xué)面直角坐標(biāo)系的學(xué)習(xí)做好準(zhǔn)備。

學(xué)情分析

本節(jié)課對于學(xué)生來說學(xué)習(xí)起來并不太難,在小學(xué)階段學(xué)生已經(jīng)接觸過方位角的內(nèi)容,而且本節(jié)課內(nèi)容和生活中的方向聯(lián)系緊密,故學(xué)生比較有興趣。

教學(xué)目標(biāo)

理解方位角的意義,掌握方位角的判別和應(yīng)用,通過現(xiàn)實(shí)情境,充分利用學(xué)生的生活經(jīng)驗(yàn)去體會方位角的意義。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):方位角的判別與應(yīng)用

難點(diǎn):方位角的畫法及變式題

教學(xué)過程(本文來自優(yōu)秀教育資源網(wǎng)斐.斐.課.件.園)

教學(xué)環(huán)節(jié)教師活動預(yù)設(shè)學(xué)生行為設(shè)計(jì)意圖

一、創(chuàng)設(shè)情境,導(dǎo)入新課

二、講授新課

三、鞏固練習(xí)

四、課時(shí)小結(jié)五、布置作業(yè)由四面八方這個(gè)成語引出學(xué)生對八個(gè)方位的理解

1.先以一個(gè)具體圖形告訴學(xué)生基本知識點(diǎn),方位角一般是以正南正北為基準(zhǔn),然后向東或西旋轉(zhuǎn)所成的角的始邊方向。

2.師示范方位角的畫法

3.出示補(bǔ)充例題,引對學(xué)生通過小組合作完成。思考并回答老師提出的問題

生觀察圖并理解老師的講解。

生觀察并獨(dú)立完成書中的例題

生先獨(dú)立思考然后與同學(xué)合作完成。激發(fā)學(xué)生的學(xué)習(xí)興趣

通遼具體圖形使學(xué)生初步認(rèn)識方位角的表示方法。

使學(xué)生通遼具體操作掌握畫方位角的方法

進(jìn)一步掌握方位角的有關(guān)知識,達(dá)到知識提升。

板書設(shè)計(jì)

4.3.3余角和補(bǔ)角(二)——方位角

學(xué)生學(xué)習(xí)活動評價(jià)設(shè)計(jì)

我先將學(xué)生按人數(shù)分成若干小組,在課前先給學(xué)生發(fā)放導(dǎo)學(xué)單,課上先給學(xué)生充分的討論時(shí)間后學(xué)生由小組推薦代表發(fā)言,累積分?jǐn)?shù),每個(gè)小組輪流回答一次,學(xué)生代表回答完畢后,其它同學(xué)補(bǔ)充糾錯(cuò),然后從知識點(diǎn)是否準(zhǔn)確,語言是否流利,思維是否創(chuàng)新,邏輯是否合理嚴(yán)密等方面來做出評價(jià),然后給出相應(yīng)分?jǐn)?shù)。累積到小組積分中課上知識回答后在練習(xí)部分,設(shè)計(jì)搶答題,小組搶答完成。最后計(jì)算出總分評出本節(jié)課小組及個(gè)人獎(jiǎng),給予口頭表揚(yáng)。

教學(xué)反思

本節(jié)課是在上節(jié)課余角和補(bǔ)角的基礎(chǔ)上學(xué)習(xí)的,而且在小學(xué)階段也已經(jīng)接觸過這部分知識了,基于這個(gè)特點(diǎn),在課堂上我主要采取了自主學(xué)習(xí)的方式,學(xué)生接受的不錯(cuò),本節(jié)課的知識雖然簡單但很重要是為以后學(xué)面直角坐標(biāo)系做準(zhǔn)備的。出現(xiàn)的問題是有個(gè)別同學(xué)對于A看B是北偏東30度,則B看A是什么方向不太清楚,我采取的措施是讓明白的同學(xué)講給不明白的同學(xué)聽,指導(dǎo)其主要從哪方面入手解決此類問題,還有一點(diǎn),學(xué)生在畫圖后容易忽略寫結(jié)論,應(yīng)強(qiáng)調(diào)。以前在上本節(jié)課時(shí),我是采取的講授法,感覺學(xué)生不是很愛聽,后來一想,知道了是因?yàn)樾W(xué)時(shí)他們已經(jīng)接觸了這部分知識,所以不愛聽,針對于這種情況,這次我采用了自主學(xué)習(xí)的方式感覺學(xué)生的積極性上來了,一節(jié)課氣氛很好,相信效果也不錯(cuò)。以后再講這節(jié)課我將繼續(xù)采用這種方式,在此基礎(chǔ)上使其更加完善。

免費(fèi)下載初三數(shù)學(xué)教案篇11

[實(shí)踐與探索]

例1.在同一直角坐標(biāo)系中,畫出函數(shù)與的圖象.

解列表.

x…-3-2-10123…

…188202818…

…20104241020…

描點(diǎn)、連線,畫出這兩個(gè)函數(shù)的圖象,如圖26.2.3所示.

回顧與反思當(dāng)自變量x取同一數(shù)值時(shí),這兩個(gè)函數(shù)的函數(shù)值之間有什么關(guān)系?反映在圖象上,相應(yīng)的兩個(gè)點(diǎn)之間的位置又有什么關(guān)系?

探索觀察這兩個(gè)函數(shù),它們的開口方向、對稱軸和頂點(diǎn)坐標(biāo)有那些是相同的?又有哪些不同?你能由此說出函數(shù)與的圖象之間的關(guān)系嗎?

例2.在同一直角坐標(biāo)系中,畫出函數(shù)與的圖象,并說明,通過怎樣的平移,可以由拋物線得到拋物線.

解列表.

x…-3-2-10123…

…-8-3010-3-8…

…-10-5-2-1-2-5-10…

描點(diǎn)、連線,畫出這兩個(gè)函數(shù)的圖象,如圖26.2.4所示.

可以看出,拋物線是由拋物線向下平移兩個(gè)單位得到的.

回顧與反思拋物線和拋物線分別是由拋物線向上、向下平移一個(gè)單位得到的.

探索如果要得到拋物線,應(yīng)將拋物線作怎樣的平移?

例3.一條拋物線的開口方向、對稱軸與相同,頂點(diǎn)縱坐標(biāo)是-2,且拋物線經(jīng)過點(diǎn)(1,1),求這條拋物線的函數(shù)關(guān)系式.

解由題意可得,所求函數(shù)開口向上,對稱軸是y軸,頂點(diǎn)坐標(biāo)為(0,-2),

因此所求函數(shù)關(guān)系式可看作,又拋物線經(jīng)過點(diǎn)(1,1),

所以,,

解得.

故所求函數(shù)關(guān)系式為.

回顧與反思(a、k是常數(shù),a≠0)的圖象的開口方向、對稱軸、頂點(diǎn)坐標(biāo)歸納如下:

開口方向?qū)ΨQ軸頂點(diǎn)坐標(biāo)

[當(dāng)堂課內(nèi)練習(xí)]

1.在同一直角坐標(biāo)系中,畫出下列二次函數(shù)的圖象:

,,.

觀察三條拋物線的相互關(guān)系,并分別指出它們的開口方向及對稱軸、頂點(diǎn)的位置.你能說出拋物線的開口方向及對稱軸、頂點(diǎn)的位置嗎?

2.拋物線的開口,對稱軸是,頂點(diǎn)坐標(biāo)是,它可以看作是由拋物線向平移個(gè)單位得到的.

3.函數(shù),當(dāng)x時(shí),函數(shù)值y隨x的增大而減小.當(dāng)x時(shí),函數(shù)取得最值,最值y=.

[本課課外作業(yè)]

A組

1.已知函數(shù),,.

(1)分別畫出它們的圖象;

(2)說出各個(gè)圖象的開口方向、對稱軸、頂點(diǎn)坐標(biāo);

(3)試說出函數(shù)的圖象的開口方向、對稱軸、頂點(diǎn)坐標(biāo).

2.不畫圖象,說出函數(shù)的開口方向、對稱軸和頂點(diǎn)坐標(biāo),并說明它是由函數(shù)通過怎樣的平移得到的.

3.若二次函數(shù)的圖象經(jīng)過點(diǎn)(-2,10),求a的值.這個(gè)函數(shù)有還是最小值?是多少?

B組

4.在同一直角坐標(biāo)系中與的圖象的大致位置是()

5.已知二次函數(shù),當(dāng)k為何值時(shí),此二次函數(shù)以y軸為對稱軸?寫出其函數(shù)關(guān)系式.

[本課學(xué)習(xí)體會]

免費(fèi)下載初三數(shù)學(xué)教案篇12

一、概念:三、例1----------四、特殊角的正余弦值

-------------------------------------------------------

二、范圍:------------------五、例2------------

正弦和余弦(三)

一、素質(zhì)教育目標(biāo)

(一)知識教學(xué)點(diǎn)

使學(xué)生了解一個(gè)銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系.

(二)能力訓(xùn)練點(diǎn)

逐步培養(yǎng)學(xué)生觀察、比較、分析、綜合、抽象、概括的邏輯思維能力.

(三)德育滲透點(diǎn)

培養(yǎng)學(xué)生獨(dú)立思考、勇于創(chuàng)新的精神.

二、教學(xué)重點(diǎn)、難點(diǎn)

1.重點(diǎn):使學(xué)生了解一個(gè)銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系并會應(yīng)用.

2.難點(diǎn):一個(gè)銳角的正弦(余弦)與它的余角的余弦(正弦)之間的關(guān)系的應(yīng)用.

三、教學(xué)步驟

(一)明確目標(biāo)

1.復(fù)習(xí)提問

(1)、什么是∠A的正弦、什么是∠A的余弦,結(jié)合圖形請學(xué)生回答.因?yàn)檎摇⒂嘞业母拍钍茄芯勘菊n內(nèi)容的知識基礎(chǔ),請中下學(xué)生回答,從中可以了解教學(xué)班還有多少人不清楚的,可以采取適當(dāng)?shù)难a(bǔ)救措施.

(2)請同學(xué)們回憶30°、45°、60°角的正、余弦值(教師板書).

(3)請同學(xué)們觀察,從中發(fā)現(xiàn)什么特征?學(xué)生一定會回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,這三個(gè)角的正弦值等于它們余角的余弦值”.

2.導(dǎo)入新課

根據(jù)這一特征,學(xué)生們可能會猜想“一個(gè)銳角的正弦(余弦)值等于它的余角的余弦(正弦)值.”這是否是真命題呢?引出課題.

(二)、整體感知

關(guān)于銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系,是通過30°、45°、60°角的正弦、余弦值之間的關(guān)系引入的,然后加以證明.引入這兩個(gè)關(guān)系式是為了便于查“正弦和余弦表”,關(guān)系式雖然用黑體字并加以文字語言的證明,但不標(biāo)明是定理,其證明也不要求學(xué)生理解,更不應(yīng)要求學(xué)生利用這兩個(gè)關(guān)系式去推證其他三角恒等式.在本章,這兩個(gè)關(guān)系式的用處僅僅限于查表和計(jì)算,而不是證明.

(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)和目標(biāo)完成過程

1.通過復(fù)習(xí)特殊角的三角函數(shù)值,引導(dǎo)學(xué)生觀察,并猜想“任一銳角的正弦(余弦)值等于它的余角的余弦(正弦)值嗎?”提出問題,激發(fā)學(xué)生的學(xué)習(xí)熱情,使學(xué)生的思維積極活躍.

2.這時(shí)少數(shù)反應(yīng)快的學(xué)生可能頭腦中已經(jīng)“畫”出了圖形,并有了思路,但對部分學(xué)生來說仍思路凌亂.因此教師應(yīng)進(jìn)一步引導(dǎo):sinA=cos(90°-A),cosA=sin(90°-A)(A是銳角)成立嗎?這時(shí),學(xué)生結(jié)合正、余弦的概念,完全可以自己解決,教師要給學(xué)生足夠的研究解決問題的時(shí)間,以培養(yǎng)學(xué)生邏輯思維能力及獨(dú)立思考、勇于創(chuàng)新的精神.

3.教師板書:

任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值.

sinA=cos(90°-A),cosA=sin(90°-A).

4.在學(xué)習(xí)了正、余弦概念的基礎(chǔ)上,學(xué)生了解以上內(nèi)容并不困難,但是,由于學(xué)生初次接觸三角函數(shù),還不熟練,而定理又涉及余角、余函數(shù),使學(xué)生極易混淆.因此,定理的應(yīng)用對學(xué)生來說是難點(diǎn)、在給出定理后,需加以鞏固.

已知∠A和∠B都是銳角,

(1)把cos(90°-A)寫成∠A的正弦.

(2)把sin(90°-A)寫成∠A的余弦.

這一練習(xí)只能起到鞏固定理的作用.為了運(yùn)用定理,教材安排了例3.

(2)已知sin35°=0.5736,求cos55°;

(3)已知cos47°6′=0.6807,求sin42°54′.

(1)問比較簡單,對照定理,學(xué)生立即可以回答.(2)、(3)比(1)則更深一步,因?yàn)?1)明確指出∠B與∠A互余,(2)、(3)讓學(xué)生自己發(fā)現(xiàn)35°與55°的角,47°6′分42°54′的角互余,從而根據(jù)定理得出答案,因此(2)、(3)問在課堂上應(yīng)該請基礎(chǔ)好一些的同學(xué)講清思維過程,便于全體學(xué)生掌握,在三個(gè)問題處理完之后,最好將題目變形:

(2)已知sin35°=0.5736,則cos______=0.5736.

(3)cos47°6′=0.6807,則sin______=0.6807,以培養(yǎng)學(xué)生思維能力.

為了配合例3的教學(xué),教材中配備了練習(xí)題2.

(2)已知sin67°18′=0.9225,求cos22°42′;

(3)已知cos4°24′=0.9971,求sin85°36′.

學(xué)生獨(dú)立完成練習(xí)2,就說明定理的教學(xué)較成功,學(xué)生基本會運(yùn)用.

教材中3的設(shè)置,實(shí)際上是對前二節(jié)課內(nèi)容的綜合運(yùn)用,既考察學(xué)生正、余弦概念的掌握程度,同時(shí)又對本課知識加以鞏固練習(xí),因此例3的安排恰到好處.同時(shí),做例3也為下一節(jié)查正余弦表做了準(zhǔn)備.

(四)小結(jié)與擴(kuò)展

1.請學(xué)生做知識小結(jié),使學(xué)生對所學(xué)內(nèi)容進(jìn)行歸納總結(jié),將所學(xué)內(nèi)容變成自己知識的組成部分.

2.本節(jié)課我們由特殊角的正弦(余弦)和它的余角的余弦(正弦)值間關(guān)系,以及正弦、余弦的概念得出的結(jié)論:任意一個(gè)銳角的正弦值等于它的余角的余弦值,任意一個(gè)銳角的余弦值等于它的余角的正弦值.

四、布置作業(yè)

教材習(xí)題14.1A組4、5.

五、板書設(shè)計(jì)

免費(fèi)下載初三數(shù)學(xué)教案篇13

1.經(jīng)歷用一元二次方程解決實(shí)際問題的過程,總結(jié)列一元二次方程解決實(shí)際問題的一般步驟.

2.通過學(xué)生自主探究,會根據(jù)傳播問題、百分率問題中的數(shù)量關(guān)系列一元二次方程并求解,熟悉解題的具體步驟.

3.通過實(shí)際問題的解答,讓學(xué)生認(rèn)識到對方程的解必須要進(jìn)行檢驗(yàn),方程的解是否舍去要以是否符合問題的實(shí)際意義為標(biāo)準(zhǔn).

重點(diǎn)

利用一元二次方程解決傳播問題、百分率問題.

難點(diǎn)

如果理解傳播問題的傳播過程和百分率問題中的增長(降低)過程,找到傳播問題和百分率問題中的數(shù)量關(guān)系.

一、引入新課

1.列方程解應(yīng)用題的基本步驟有哪些?應(yīng)注意什么?

2.科學(xué)家在細(xì)胞研究過程中發(fā)現(xiàn):

(1)一個(gè)細(xì)胞一次可分裂成2個(gè),經(jīng)過3次分裂后共有多少個(gè)細(xì)胞?

(2)一個(gè)細(xì)胞一次可分裂成x個(gè),經(jīng)過3次分裂后共有多少個(gè)細(xì)胞?

(3)如是一個(gè)細(xì)胞一次可分裂成2個(gè),分裂后原有細(xì)胞仍然存在并能再次分裂,試問經(jīng)過3次分裂后共有多少個(gè)細(xì)胞?

二、教學(xué)活動

活動1:自學(xué)教材第19頁探究1,思考教師所提問題.

有一人患了流感,經(jīng)過兩輪傳染后,有121人患了流感,每輪傳染中平均一個(gè)人傳染了幾個(gè)人?

(1)如何理解“兩輪傳染”?如果設(shè)每輪傳染中平均一個(gè)人傳染了x個(gè)人,第一輪傳染后共有________人患流感.第二輪傳染后共有________人患流感.

(2)本題中有哪些數(shù)量關(guān)系?

(3)如何利用已知的數(shù)量關(guān)系選取未知數(shù)并列出方程?

解答:設(shè)每輪傳染中平均一個(gè)人傳染了x個(gè)人,則依題意第一輪傳染后有(x+1)人患了流感,第二輪有x(1+x)人被傳染上了流感.于是可列方程:

1+x+x(1+x)=121

解方程得x1=10,x2=-12(不合題意舍去)

因此每輪傳染中平均一個(gè)人傳染了10個(gè)人.

變式練習(xí):如果按這樣的傳播速度,三輪傳染后有多少人患了流感?

活動2:自學(xué)教材第19頁~第20頁探究2,思考老師所提問題.

兩年前生產(chǎn)1噸甲種藥品的成本是5000元,生產(chǎn)1噸乙種藥品的成本是6000元,隨著生產(chǎn)技術(shù)的進(jìn)步,現(xiàn)在生產(chǎn)1噸甲種藥品的成本是3000元,生產(chǎn)1噸乙種藥品的成本是3600元,哪種藥品成本的年平均下降率較大?

(1)如何理解年平均下降額與年平均下降率?它們相等嗎?

(2)若設(shè)甲種藥品年平均下降率為x,則一年后,甲種藥品的成本下降了________元,此時(shí)成本為________元;兩年后,甲種藥品下降了________元,此時(shí)成本為________元.

(3)增長率(下降率)公式的歸納:設(shè)基準(zhǔn)數(shù)為a,增長率為x,則一月(或一年)后產(chǎn)量為a(1±x);

二月(或二年)后產(chǎn)量為a(1±x)2;

n月(或n年)后產(chǎn)量為a(1±x)n;

如果已知n月(n年)后總產(chǎn)量為M,則有下面等式:M=a(1±x)n.

(4)對甲種藥品而言根據(jù)等量關(guān)系列方程為:________________.

三、課堂小結(jié)與作業(yè)布置

課堂小結(jié)

1.列一元二次方程解應(yīng)用題的步驟:審、設(shè)、找、列、解、答.最后要檢驗(yàn)根是否符合實(shí)際.

2.傳播問題解決的關(guān)鍵是傳播源的確定和等量關(guān)系的建立.

3.若平均增長(降低)率為x,增長(或降低)前的基準(zhǔn)數(shù)是a,增長(或降低)n次后的量是b,則有:a(1±x)n=b(常見n=2).

4.成本下降額較大的藥品,它的下降率不一定也較大,成本下降額較小的藥品,它的下降率不一定也較小.

作業(yè)布置

教材第21-22頁習(xí)題21.3第2-7題.第2課時(shí)解決幾何問題

1.通過探究,學(xué)會分析幾何問題中蘊(yùn)含的數(shù)量關(guān)系,列出一元二次方程解決幾何問題.

2.通過探究,使學(xué)生認(rèn)識在幾何問題中可以將圖形進(jìn)行適當(dāng)變換,使列方程更容易.

3.通過實(shí)際問題的解答,再次讓學(xué)生認(rèn)識到對方程的解必須要進(jìn)行檢驗(yàn),方程的解是否舍去要以是否符合問題的實(shí)際意義為標(biāo)準(zhǔn).

重點(diǎn)

通過實(shí)際圖形問題,培養(yǎng)學(xué)生運(yùn)用一元二次方程分析和解決幾何問題的能力.

難點(diǎn)

在探究幾何問題的過程中,找出數(shù)量關(guān)系,正確地建立一元二次方程.

活動1創(chuàng)設(shè)情境

1.長方形的周長________,面積________,長方體的體積公式________.

2.如圖所示:

(1)一塊長方形鐵皮的長是10cm,寬是8cm,四角各截去一個(gè)邊長為2cm的小正方形,制成一個(gè)長方體容器,這個(gè)長方體容器的底面積是________,高是________,體積是________.

(2)一塊長方形鐵皮的長是10cm,寬是8cm,四角各截去一個(gè)邊長為xcm的小正方形,制成一個(gè)長方體容器,這個(gè)長方體容器的底面積是________,高是________,體積是________.

活動2自學(xué)教材第20頁~第21頁探究3,思考老師所提問題

要設(shè)計(jì)一本書的封面,封面長27cm,寬21cm,正中央是一個(gè)與整個(gè)封面長寬比例相同的矩形,如果要使四周的彩色邊襯所占面積是封面面積的四分之一,上下邊襯等寬,左右邊襯等寬,應(yīng)如何設(shè)計(jì)四周邊襯的寬度(精確到0.1cm).

(1)要設(shè)計(jì)書本封面的長與寬的比是________,則正中央矩形的長與寬的比是________.

(2)為什么說上下邊襯寬與左右邊襯寬之比為9∶7?試與同伴交流一下.

(3)若設(shè)上、下邊襯的寬均為9xcm,左、右邊襯的寬均為7xcm,則中央矩形的長為________cm,寬為________cm,面積為________cm2.

(4)根據(jù)等量關(guān)系:________,可列方程為:________.

(5)你能寫出解題過程嗎?(注意對結(jié)果是否合理進(jìn)行檢驗(yàn).)

(6)思考如果設(shè)正中央矩形的長與寬分別為9xcm和7xcm,你又怎樣去求上下、左右邊襯的寬?

活動3變式練習(xí)

如圖所示,在一個(gè)長為50米,寬為30米的矩形空地上,建造一個(gè)花園,要求花園的面積占整塊面積的75%,等寬且互相垂直的兩條路的面積占25%,求路的寬度.

答案:路的寬度為5米.

活動4課堂小結(jié)與作業(yè)布置

課堂小結(jié)

1.利用已學(xué)的特殊圖形的面積(或體積)公式建立一元二次方程的數(shù)學(xué)模型,并運(yùn)用它解決實(shí)際問題的關(guān)鍵是弄清題目中的數(shù)量關(guān)系.

2.根據(jù)面積與面積(或體積)之間的等量關(guān)系建立一元二次方程,并能正確解方程,最后對所得結(jié)果是否合理要進(jìn)行檢驗(yàn).

作業(yè)布置

教材第22頁習(xí)題21.3第8,10題.

免費(fèi)下載初三數(shù)學(xué)教案篇14

二次根式

教學(xué)目標(biāo)

1、了解二次根式的概念、

2、掌握二次根式的基本性質(zhì)

教學(xué)過程

一、提出問題

上一節(jié)我們學(xué)習(xí)了平方根和算術(shù)平方根的意義,引進(jìn)了一個(gè)新的記號,現(xiàn)在請同學(xué)們思考并回答下面兩個(gè)問題:

1、表示什么?

2、a需要滿足什么條件?為什么?

二、合作交流,解決問題

讓學(xué)生合作交流,然后回答問題(可以補(bǔ)充),歸納為;

1、當(dāng)a是正數(shù)時(shí),表示a的算術(shù)平方根,即正數(shù)a的兩個(gè)平方根中的一個(gè)正數(shù);

2、當(dāng)a是零時(shí),表示零,也叫零的算術(shù)平方根;

3、a≥0,因?yàn)槿魏我粋€(gè)有理數(shù)的平方都大于或等于零

三、歸納特點(diǎn),引入二次根式概念

1、基本性質(zhì)、

問題1 你能用一句話概括以上3個(gè)結(jié)論嗎?

讓一個(gè)學(xué)生回答、其他學(xué)生補(bǔ)充,概括為:(a≥0)表示非負(fù)數(shù)a的算術(shù)平方根,也就是說,(a≥0)是一個(gè)非負(fù)數(shù),即≥0(a≥0)。

問題2 ()2(a≥0)等于什么?說說你的理由并舉例驗(yàn)證。

讓學(xué)生小組討論或自主探索得出結(jié)論:()2=a(a≥0),如()2=4,()2=2等、

以上兩個(gè)問題的結(jié)論就是基本性質(zhì),特別是()2=a(a≥0)可以當(dāng)公式使用,直接應(yīng)用于計(jì)算。反過來,把()2=a(a≥0)寫成a=()2(a≥0)的形式,這說明:任何一個(gè)非負(fù)數(shù)a都可以寫成一個(gè)數(shù)的平方的形式、例如:3=()2,0.3= ()2

提問:

(1)0=()2對不對?

(2)-5=()2對不對?如果不對,錯(cuò)在哪里?

2、二次根式概念

形如(a≥0)的式子叫做二次根式、

說明:二次根式必須具備以下特點(diǎn);

(1)有二次根號;

(2)被開方數(shù)不能小于0。

讓學(xué)生舉出二次根式的幾個(gè)例子,并判斷,(a<0)、、(a<o)是不是二次根式。< p="">

四、范例

例1、要使式子有意義,字母x的取值必須滿足什么條件?

提問:

若將式子改為,則字母x的取值必須滿足什么條件?

五、課堂練習(xí)

Pl0頁練習(xí)1、2、

六、思考提高

我們已經(jīng)研究了()2(a≥0)等于a,現(xiàn)在研究等于什么

提問:

1、對于抽象問題的研究,常常采用什么策略?

2、在中,a的取值有沒有限制?

3、取一些數(shù)值來驗(yàn)證。通過驗(yàn)證,你能發(fā)現(xiàn)什么規(guī)律?

因此,今后我們遇到時(shí),可先改寫成a的絕對值|a|,再按照a取正數(shù)值,0還是負(fù)數(shù)值來取值、例如當(dāng)x<0時(shí),=|4x|=-4x

4、()2與是一樣的嗎?說說你的理由,并與同學(xué)交流。

七、小結(jié)

1、什么叫做二次根式?你們能舉出幾個(gè)例子嗎?

2、二次根式有哪兩個(gè)形式上的特點(diǎn)?

3、二次根式有哪些性質(zhì)?

八、作業(yè)

習(xí)題22.1第1、2、3、4題、

教學(xué)后記:

免費(fèi)下載初三數(shù)學(xué)教案篇15

新的學(xué)期又開始了,我又擔(dān)任九年級數(shù)學(xué)學(xué)科的教學(xué),九年級時(shí)間非常緊張,既要完成新課程的教學(xué)又要考慮下學(xué)期對初中階段整個(gè)數(shù)學(xué)知識的全面系統(tǒng)的復(fù)習(xí)。所以在注意時(shí)間的安排上,同時(shí)把握好教學(xué)進(jìn)度的基礎(chǔ)上特制定本學(xué)期的教學(xué)計(jì)劃:

一、基本情況分析:

上學(xué)年學(xué)生期末考試的成績總體來看比較好,但是優(yōu)生面不廣,尖子不尖。在學(xué)生所學(xué)知識的掌握程度上,良莠不齊,對優(yōu)生來說,能夠透徹理解知識,知識間的內(nèi)在聯(lián)系也較為清楚,對差一點(diǎn)的學(xué)生來說,有些基礎(chǔ)知識還不能有效的掌握,學(xué)生仍然缺少大量的推理題訓(xùn)練,推理的思考方法與寫法上均存在著一定的困難,對幾何有畏難情緒,相關(guān)知識學(xué)得不很透徹。在學(xué)習(xí)能力上,學(xué)生課外主動獲取知識的能力較差,為減輕學(xué)生的經(jīng)濟(jì)負(fù)擔(dān)與課業(yè)負(fù)擔(dān),不提倡學(xué)生買教輔參考書,學(xué)生自主拓展知識面,向深處學(xué)習(xí)知識的能力沒有得到很好的培養(yǎng)。在以后的教學(xué)中,培養(yǎng)學(xué)生課外主動獲取知識的能力。學(xué)生的邏輯推理、邏輯思維能力,計(jì)算能力需要得到加強(qiáng),以提升學(xué)生的整體成績,應(yīng)在合適的時(shí)候補(bǔ)充課外知識,拓展學(xué)生的知識面,提升學(xué)生素質(zhì);在學(xué)習(xí)態(tài)度上,一部分學(xué)生上課能全神貫注,積極的投入到學(xué)習(xí)中去,大部分學(xué)生對數(shù)學(xué)學(xué)習(xí)好高鶩遠(yuǎn)、心浮氣躁,學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣還需培養(yǎng)。學(xué)生的學(xué)習(xí)習(xí)慣養(yǎng)成還不理想,預(yù)習(xí)的習(xí)慣,進(jìn)行總結(jié)的習(xí)慣,自習(xí)課專心致志學(xué)習(xí)的習(xí)慣,主動糾正(考試、作業(yè)后)錯(cuò)誤的習(xí)慣,有些學(xué)生不具有或不夠重視,需要教師的督促才能做,陶行知說:“教育就是培養(yǎng)習(xí)慣”,這是本期教學(xué)中重點(diǎn)予以關(guān)注的。

二、指導(dǎo)思想:

通過九年數(shù)學(xué)的教學(xué),提供進(jìn)一步學(xué)習(xí)所必需的數(shù)學(xué)基礎(chǔ)知識與基本技能,進(jìn)一步培養(yǎng)學(xué)生的運(yùn)算能力、思維能力和空間想象能力,能夠運(yùn)用所學(xué)知識解決簡單的實(shí)際問題,教育學(xué)生掌握基礎(chǔ)知識與基本技能,培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間觀念和解決簡單實(shí)際問題的能力,使學(xué)生逐步學(xué)會正確、合理地進(jìn)行運(yùn)算,逐步學(xué)會觀察分析、綜合、抽象、概括。會用歸納演繹、類比進(jìn)行簡單的推理。提高學(xué)習(xí)數(shù)學(xué)的興趣,逐步培養(yǎng)學(xué)生具有良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的態(tài)度。頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索的新思想。培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識解決問題的能力。

三、教學(xué)內(nèi)容

本學(xué)期的教學(xué)內(nèi)容共五章:

第22章:二次根式;第23章:一元二次方程;第24章:圖形的相似;

第25章:解直角三角形;第26章:隨機(jī)事件的概率。

四、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):

1、要求學(xué)生掌握證明的基本要求和方法,學(xué)會推理論證;

2、探索證明的思路和方法,提倡證明的多樣性。

難點(diǎn):

1、引導(dǎo)學(xué)生探索、猜測、證明,體會證明的必要性;

2、在教學(xué)中滲透如歸納、類比、轉(zhuǎn)化等數(shù)學(xué)思想。

五、在教學(xué)過程中抓住以下幾個(gè)環(huán)節(jié):

(1)認(rèn)真?zhèn)湔n。認(rèn)真研究教材及考綱,明確教學(xué)目標(biāo),抓住重點(diǎn)、難點(diǎn),精心設(shè)計(jì)教學(xué)過程,重視每一章節(jié)內(nèi)容與前后知識的聯(lián)系及其地位,重視課后反思,設(shè)計(jì)好每一節(jié)課的師生互動的細(xì)節(jié)。

(2)抓住課堂45分鐘。嚴(yán)格按照教學(xué)計(jì)劃,精心設(shè)計(jì)每一節(jié)課的每一個(gè)環(huán)節(jié),爭取每節(jié)課達(dá)到教學(xué)目標(biāo),突出重點(diǎn),分散難點(diǎn),增大課堂容量組織學(xué)生人人參與課堂活動,使每個(gè)學(xué)生積極主動參與課堂活動,使每個(gè)學(xué)生動手、動口、動腦,及時(shí)反饋信息提高課堂效益。

(3)課后反饋。精選適當(dāng)?shù)木毩?xí)題、測試卷,及時(shí)批改作業(yè),發(fā)現(xiàn)問題及時(shí)給學(xué)生面對面的指出并指導(dǎo)學(xué)生搞懂弄通,不留一個(gè)疑難點(diǎn),讓學(xué)生學(xué)有所獲。

六、教學(xué)措施:

1.認(rèn)真學(xué)習(xí)鉆研新課標(biāo),掌握教材。

2.認(rèn)真?zhèn)湔n,爭取充分掌握學(xué)生動態(tài)。

3.認(rèn)真上好每一堂課。

4.落實(shí)每一堂課后輔助,查漏補(bǔ)缺。

5.積極與其它老師溝通,加強(qiáng)教研教改,提高教學(xué)水平。

6.復(fù)習(xí)階段多讓學(xué)生動腦、動手,通過各種習(xí)題、綜合試題和模擬試題的訓(xùn)練,使學(xué)生逐步熟悉各知識點(diǎn),并能熟練運(yùn)用。

除了以上計(jì)劃外,我還將預(yù)計(jì)開展培優(yōu)和治跛工作,教學(xué)中注重?cái)?shù)學(xué)理論與社會實(shí)踐的聯(lián)系,鼓勵(lì)學(xué)生多觀察、多思考實(shí)際生活中蘊(yùn)藏的數(shù)學(xué)問題,逐步培養(yǎng)學(xué)生運(yùn)用書本知識解決實(shí)際問題的能力。

免費(fèi)下載初三數(shù)學(xué)教案篇16

1、教材分析

(1)知識結(jié)構(gòu)

(2)重點(diǎn)、難點(diǎn)分析

重點(diǎn):①點(diǎn)和圓的三種位置關(guān)系,圓的有關(guān)概念,因?yàn)樗鼈兪茄芯繄A的基礎(chǔ);②五種常見的點(diǎn)的軌跡,一是對幾何圖形的深刻理解,二為今后立體幾何、解析幾何的學(xué)習(xí)作重要的準(zhǔn)備.

難點(diǎn):①圓的集合定義,學(xué)生不容易理解為什么必須滿足兩個(gè)條件,內(nèi)容本身屬于難點(diǎn);②點(diǎn)的軌跡,由于學(xué)生形象思維較強(qiáng),抽象思維弱,而這部分知識比較抽象和難懂.

2、教法建議

本節(jié)內(nèi)容需要4課時(shí)

第一課時(shí):圓的定義和點(diǎn)和圓的位置關(guān)系

(1)讓學(xué)生自己畫圓,自己給圓下定義,進(jìn)行交流,歸納、概括,調(diào)動學(xué)生積極主動的參與教學(xué)活動;對于高層次的學(xué)生可以直接通過點(diǎn)的集合來研究,給圓下定義(參看教案圓(一));

(2)點(diǎn)和圓的位置關(guān)系,讓學(xué)生自己觀察、分類、探究,在“數(shù)形”的過程中,學(xué)習(xí)新知識.

第二課時(shí):圓的有關(guān)概念

(1)對(A)層學(xué)生放開自學(xué),對(B)層學(xué)生在老師引導(dǎo)下自學(xué),要提高學(xué)生的學(xué)習(xí)能力,特別是概念較多而沒有很多發(fā)揮的內(nèi)容,老師沒必要去講;

(2)課堂活動要抓住:由“數(shù)”想“形”,由“形”思“數(shù)”,的主線.

第三、四課時(shí):點(diǎn)的軌跡

條件較好的學(xué)校可以利用電腦動畫來加深和幫助學(xué)生對點(diǎn)的軌跡的理解,一般學(xué)校可讓學(xué)生動手畫圖,使學(xué)生在動手、動腦、觀察、思考、理解的過程中,逐步從形象思維較強(qiáng)向抽象思維過度.但我的觀點(diǎn)是不管怎樣組織教學(xué),都要遵循學(xué)生是學(xué)習(xí)的主體這一原則.

第一課時(shí):圓(一)

教學(xué)目標(biāo):

1、理解圓的描述性定義,了解用集合的觀點(diǎn)對圓的定義;

2、理解點(diǎn)和圓的位置關(guān)系和確定圓的條件;

3、培養(yǎng)學(xué)生通過動手實(shí)踐發(fā)現(xiàn)問題的能力;

4、滲透“觀察→分析→歸納→概括”的數(shù)學(xué)思想方法.

教學(xué)重點(diǎn):點(diǎn)和圓的關(guān)系

教學(xué)難點(diǎn):以點(diǎn)的集合定義圓所具備的兩個(gè)條件

教學(xué)方法:自主探討式

教學(xué)過程設(shè)計(jì)(總框架):

一、創(chuàng)設(shè)情境,開展學(xué)習(xí)活動

1、讓學(xué)生畫圓、描述、交流,得出圓的第一定義:

定義1:在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫做圓.固定的端點(diǎn)O叫做圓心,線段OA叫做半徑.記作⊙O,讀作“圓O”.

2、讓學(xué)生觀察、思考、交流,并在老師的指導(dǎo)下,得出圓的第二定義.

從舊知識中發(fā)現(xiàn)新問題

觀察:

共性:這些點(diǎn)到O點(diǎn)的距離相等

想一想:在平面內(nèi)還有到O點(diǎn)的距離相等的點(diǎn)嗎?它們構(gòu)成什么圖形?

(1)圓上各點(diǎn)到定點(diǎn)(圓心O)的距離都等于定長(半徑的長r);

(2)到定點(diǎn)距離等于定長的點(diǎn)都在圓上.

定義2:圓是到定點(diǎn)距離等于定長的點(diǎn)的集合.

3、點(diǎn)和圓的位置關(guān)系

問題三:點(diǎn)和圓的位置關(guān)系怎樣?(學(xué)生自主完成得出結(jié)論)

如果圓的半徑為r,點(diǎn)到圓心的距離為d,則:

點(diǎn)在圓上d=r;

點(diǎn)在圓內(nèi)d

點(diǎn)在圓外d>r.

“數(shù)”“形”

二、例題分析,變式練習(xí)

練習(xí):已知⊙O的半徑為5cm,A為線段OP的中點(diǎn),當(dāng)OP=6cm時(shí),點(diǎn)A在⊙O________;當(dāng)OP=10cm時(shí),點(diǎn)A在⊙O________;當(dāng)OP=18cm時(shí),點(diǎn)A在⊙O___________.

例1求證:矩形的四個(gè)頂點(diǎn)在以對角線的交點(diǎn)為圓心的同一個(gè)圓上.

已知(略)

求證(略)

分析:四邊形ABCD是矩形

A=OC,OB=OD;AC=BD

OA=OC=OB=OD

要證A、B、C、D4個(gè)點(diǎn)在以O(shè)為圓心的圓上

證明:∵四邊形ABCD是矩形

∴OA=OC,OB=OD;AC=BD

∴OA=OC=OB=OD

∴A、B、C、D4個(gè)點(diǎn)在以O(shè)為圓心,OA為半徑的圓上.

符號“”的應(yīng)用(要求學(xué)生了解)

證明:四邊形ABCD是矩形

OA=OC=OB=OD

A、B、C、D4個(gè)點(diǎn)在以O(shè)為圓心,OA為半徑的圓上.

小結(jié):要證幾個(gè)點(diǎn)在同一個(gè)圓上,可以證明這幾個(gè)點(diǎn)與一個(gè)定點(diǎn)的距離相等.

問題拓展研究:我們所研究過的基本圖形中(平行四邊形,菱形,,正方形,等腰梯形)哪些圖形的頂點(diǎn)在同一個(gè)圓上.(讓學(xué)生探討)

練習(xí)1求證:菱形各邊的中點(diǎn)在同一個(gè)圓上.

(目的:培養(yǎng)學(xué)生的分析問題的能力和邏輯思維能力.A層自主完成)

練習(xí)2設(shè)AB=3cm,畫圖說明具有下列性質(zhì)的點(diǎn)的集合是怎樣的圖形.

(1)和點(diǎn)A的距離等于2cm的點(diǎn)的集合;

(2)和點(diǎn)B的距離等于2cm的點(diǎn)的集合;

(3)和點(diǎn)A,B的距離都等于2cm的點(diǎn)的集合;

(4)和點(diǎn)A,B的距離都小于2cm的點(diǎn)的集合;(A層自主完成)

三、課堂小結(jié)

問:這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?在學(xué)習(xí)時(shí)應(yīng)注意哪些問題?在學(xué)生回答的基礎(chǔ)上,強(qiáng)調(diào):

(1)主要學(xué)習(xí)了圓的兩種不同的定義方法與圓的三種位置關(guān)系;

(2)在用點(diǎn)的集合定義圓時(shí),必須注意應(yīng)具備兩個(gè)條件,二者缺一不可;

(3)注重對數(shù)學(xué)能力的培養(yǎng)

四、作業(yè)82頁2、3、4.

免費(fèi)下載初三數(shù)學(xué)教案篇17

教學(xué)目標(biāo)

1.初步掌握用直接開平方法解一元二次方程,會用直接開平方法解形如的方程;

2.初步掌握用配方法解一元二次方程,會用配方法解數(shù)字系數(shù)的一元二次方程;

3.掌握一元二次方程的求根公式的推導(dǎo),能夠運(yùn)用求根公式解一元二次方程;

4.會用因式分解法解某些一元二次方程。

5.通過對一元二次方程解法的教學(xué),使學(xué)生進(jìn)一步理解“降次”的數(shù)學(xué)方法,進(jìn)一步獲得對事物可以轉(zhuǎn)化的認(rèn)識。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):一元二次方程的四種解法。

難點(diǎn):選擇恰當(dāng)?shù)姆椒ń庖辉畏匠獭?/p>

教學(xué)建議:

一、教材分析:

1.知識結(jié)構(gòu):一元二次方程的解法

2.重點(diǎn)、難點(diǎn)分析

(1)熟練掌握開平方法解一元二次方程

用開平方法解一元二次方程,一種是直接開平方法,另一種是配方法。

如果一元二次方程的一邊是未知數(shù)的平方或含有未知數(shù)的一次式的平方,另一邊是一個(gè)非負(fù)數(shù),或完全平方式,如方程,和方程就可以直接開平方法求解,在開平方時(shí)注意取正、負(fù)兩個(gè)平方根。

配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,轉(zhuǎn)化為的形式來求解。配方時(shí)要注意把二次項(xiàng)系數(shù)化為1和方程兩邊都加上一次項(xiàng)系數(shù)一半的平方這兩個(gè)關(guān)鍵步驟。

(2)熟記求根公式和公式中字母的意義在使用求根公式時(shí)要注意以下三點(diǎn):

1)把方程化為一般形式,并做到、之間沒有公因數(shù),且二次項(xiàng)系數(shù)為正整數(shù),這樣代入公式計(jì)算較為簡便。

2)把一元二次方程的各項(xiàng)系數(shù)、、代入公式時(shí),注意它們的符號。

3)當(dāng)時(shí),才能求出方程的兩根。

(3)抓住方程特點(diǎn),選用因式分解法解一元二次方程

如果一個(gè)一元二次方程的一邊是零,另一邊易于分解成兩個(gè)一次因式時(shí),就可以用因式分解法求解。這時(shí)只要使每個(gè)一次因式等于零,分別解兩個(gè)一元一次方程,得到兩個(gè)根就是一元二次方程的解。

我們共學(xué)習(xí)了四種解一元二次方程的方法:直接開平方法;配方法;公式法和因式分解法。解方程時(shí),要認(rèn)真觀察方程的特征,選用適當(dāng)?shù)姆椒ㄇ蠼狻?/p>

二、教法建議

1.教學(xué)方法建議采用啟發(fā)引導(dǎo),講練結(jié)合的授課方式,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位,學(xué)生獲取知識必須通過學(xué)生自己一系列思維活動完成,啟發(fā)誘導(dǎo)學(xué)生深入思考問題,有利于培養(yǎng)學(xué)生思維靈活、嚴(yán)謹(jǐn)、深刻等良好思維品質(zhì).

2.注意培養(yǎng)應(yīng)用意識.教學(xué)中應(yīng)不失時(shí)機(jī)地使學(xué)生認(rèn)識到數(shù)學(xué)源于實(shí)踐并反作用于實(shí)踐.

免費(fèi)下載初三數(shù)學(xué)教案篇18

一、復(fù)習(xí)引入

學(xué)生活動:請同學(xué)們完成下列各題.

問題1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根據(jù)完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.

問題2:目前我們都學(xué)過哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過哪些降次的方法?

二、探索新知

上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?

(學(xué)生分組討論)

老師點(diǎn)評:回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2

分析:(1)x2+4x+4是一個(gè)完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接開平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的兩根x1=-3+2,x2=-3-2

解:略.

例2市政府計(jì)劃2年內(nèi)將人均住房面積由現(xiàn)在的10m2提高到14.4m2,求每年人均住房面積增長率.

分析:設(shè)每年人均住房面積增長率為x,一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2

解:設(shè)每年人均住房面積增長率為x,

則:10(1+x)2=14.4

(1+x)2=1.44

直接開平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因?yàn)槊磕耆司》棵娣e的增長率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去.

所以,每年人均住房面積增長率應(yīng)為20%.

(學(xué)生小結(jié))老師引導(dǎo)提問:解一元二次方程,它們的共同特點(diǎn)是什么?

共同特點(diǎn):把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元一次方程.我們把這種思想稱為“降次轉(zhuǎn)化思想”.

三、鞏固練習(xí)

教材第6頁練習(xí).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:由應(yīng)用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉(zhuǎn)化為應(yīng)用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達(dá)到降次轉(zhuǎn)化之目的.若p<0則方程無解.

五、作業(yè)布置

71559 主站蜘蛛池模板: 北京翻译公司_同传翻译_字幕翻译_合同翻译_英语陪同翻译_影视翻译_翻译盖章-译铭信息 | 高精度-恒温冷水机-螺杆式冰水机-蒸发冷冷水机-北京蓝海神骏科技有限公司 | 鼓风干燥箱_真空烘箱_高温干燥箱_恒温培养箱-上海笃特科学仪器 | EPK超声波测厚仪,德国EPK测厚仪维修-上海树信仪器仪表有限公司 | 北京中航时代-耐电压击穿试验仪厂家-电压击穿试验机 | 农产品溯源系统_农产品质量安全追溯系统_溯源系统 | 浴室柜-浴室镜厂家-YINAISI · 意大利设计师品牌 | 咿耐斯 |-浙江台州市丰源卫浴有限公司 | 学考网学历中心| 标准件-非标紧固件-不锈钢螺栓-非标不锈钢螺丝-非标螺母厂家-三角牙锁紧自攻-南京宝宇标准件有限公司 | 碳刷_刷握_集电环_恒压簧_电刷厂家-上海丹臻机电科技有限公司 | 正压送风机-多叶送风口-板式排烟口-德州志诺通风设备 | 优秀的临床医学知识库,临床知识库,医疗知识库,满足电子病历四级要求,免费试用 | 定做大型恒温循环水浴槽-工业用不锈钢恒温水箱-大容量低温恒温水槽-常州精达仪器 | 上海风淋室_上海风淋室厂家_上海风淋室价格_上海伯淋 | 恒温恒湿试验箱厂家-高低温试验箱维修价格_东莞环仪仪器_东莞环仪仪器 | 招商帮-一站式网络营销服务|搜索营销推广|信息流推广|短视视频营销推广|互联网整合营销|网络推广代运营|招商帮企业招商好帮手 | 章丘丰源机械有限公司 - 三叶罗茨风机,罗茨鼓风机,罗茨风机 | 泰来华顿液氮罐,美国MVE液氮罐,自增压液氮罐,定制液氮生物容器,进口杜瓦瓶-上海京灿精密机械有限公司 | 环压强度试验机-拉链拉力试验机-上海倾技仪器仪表科技有限公司 | 高扬程排污泵_隔膜泵_磁力泵_节能自吸离心水泵厂家-【上海博洋】 | 分子蒸馏设备(短程分子蒸馏装置)_上海达丰仪器 | 无压烧结银_有压烧结银_导电银胶_导电油墨_导电胶-善仁(浙江)新材料 | 泰国试管婴儿_泰国第三代试管婴儿费用|成功率|医院—新生代海外医疗 | 消泡剂_水处理消泡剂_切削液消泡剂_涂料消泡剂_有机硅消泡剂_广州中万新材料生产厂家 | 防弹玻璃厂家_防爆炸玻璃_电磁屏蔽玻璃-四川大硅特玻科技有限公司 | 一体式钢筋扫描仪-楼板测厚仪-裂缝检测仪-泰仕特(北京) | 传递窗_超净|洁净工作台_高效过滤器-传递窗厂家广州梓净公司 | 自动记录数据电子台秤,记忆储存重量电子桌称,设定时间记录电子秤-昆山巨天 | 储气罐,真空罐,缓冲罐,隔膜气压罐厂家批发价格,空压机储气罐规格型号-上海申容压力容器集团有限公司 | 北京亦庄厂房出租_经开区产业园招商信息平台 | 上海皓越真空设备有限公司官网-真空炉-真空热压烧结炉-sps放电等离子烧结炉 | 网站建设-临朐爱采购-抖音运营-山东兆通网络科技 | Trimos测长机_测高仪_TESA_mahr,WYLER水平仪,PWB对刀仪-德瑞华测量技术(苏州)有限公司 | 整车VOC采样环境舱-甲醛VOC预处理舱-多舱法VOC检测环境仓-上海科绿特科技仪器有限公司 | 空气弹簧|橡胶气囊|橡胶空气弹簧-上海松夏减震器有限公司 | 棉服定制/厂家/公司_棉袄订做/价格/费用-北京圣达信棉服 | 热缩管切管机-超声波切带机-织带切带机-无纺布切布机-深圳市宸兴业科技有限公司 | 开平机_纵剪机厂家_开平机生产厂家|诚信互赢-泰安瑞烨精工机械制造有限公司 | 西门子伺服电机维修,西门子电源模块维修,西门子驱动模块维修-上海渠利 | 帽子厂家_帽子工厂_帽子定做_义乌帽厂_帽厂_制帽厂_帽子厂_浙江高普制帽厂 | 布袋除尘器|除尘器设备|除尘布袋|除尘设备_诺和环保设备 |