小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教案模板 >

初三數學教案反思怎么寫

時間: 新華 教案模板

初三數學教案反思怎么寫篇1

21.2.1配方法(3課時)

第1課時直接開平方法

理解一元二次方程“降次”——轉化的數學思想,并能應用它解決一些具體問題.

提出問題,列出缺一次項的一元二次方程ax2+c=0,根據平方根的意義解出這個方程,然后知識遷移到解a(ex+f)2+c=0型的一元二次方程.

重點

運用開平方法解形如(x+m)2=n(n≥0)的方程,領會降次——轉化的數學思想.

難點

通過根據平方根的意義解形如x2=n的方程,將知識遷移到根據平方根的意義解形如(x+m)2=n(n≥0)的方程.

一、復習引入

學生活動:請同學們完成下列各題.

問題1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根據完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.

問題2:目前我們都學過哪些方程?二元怎樣轉化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉化成一次?怎樣降次?以前學過哪些降次的方法?

二、探索新知

上面我們已經講了x2=9,根據平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?

(學生分組討論)

老師點評:回答是肯定的,把2t+1變為上面的x,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2

分析:(1)x2+4x+4是一個完全平方公式,那么原方程就轉化為(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接開平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的兩根x1=-3+2,x2=-3-2

解:略.

例2市政府計劃2年內將人均住房面積由現在的10m2提高到14.4m2,求每年人均住房面積增長率.

分析:設每年人均住房面積增長率為x,一年后人均住房面積就應該是10+10x=10(1+x);二年后人均住房面積就應該是10(1+x)+10(1+x)x=10(1+x)2

解:設每年人均住房面積增長率為x,

則:10(1+x)2=14.4

(1+x)2=1.44

直接開平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因為每年人均住房面積的增長率應為正的,因此,x2=-2.2應舍去.

所以,每年人均住房面積增長率應為20%.

(學生小結)老師引導提問:解一元二次方程,它們的共同特點是什么?

共同特點:把一個一元二次方程“降次”,轉化為兩個一元一次方程.我們把這種思想稱為“降次轉化思想”.

三、鞏固練習

教材第6頁練習.

四、課堂小結

本節課應掌握:由應用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉化為應用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達到降次轉化之目的.若p<0則方程無解.

五、作業布置

教材第16頁復習鞏固1.第2課時配方法的基本形式

理解間接即通過變形運用開平方法降次解方程,并能熟練應用它解決一些具體問題.

通過復習可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟.

重點

講清直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟.

難點

將不可直接降次解方程化為可直接降次解方程的“化為”的轉化方法與技巧.

一、復習引入

(學生活動)請同學們解下列方程:

(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7

老師點評:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±p或mx+n=±p(p≥0).

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9嗎?

二、探索新知

列出下面問題的方程并回答:

(1)列出的經化簡為一般形式的方程與剛才解題的方程有什么不同呢?

(2)能否直接用上面前三個方程的解法呢?

問題:要使一塊矩形場地的長比寬多6m,并且面積為16m2,求場地的長和寬各是多少?

(1)列出的經化簡為一般形式的方程與前面講的三道題不同之處是:前三個左邊是含有x的完全平方式而后二個不具有此特征.

(2)不能.

既然不能直接降次解方程,那么,我們就應該設法把它轉化為可直接降次解方程的方程,下面,我們就來講如何轉化:

x2+6x-16=0移項→x2+6x=16

兩邊加(6/2)2使左邊配成x2+2bx+b2的形式→x2+6x+32=16+9

左邊寫成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以驗證:x1=2,x2=-8都是方程的根,但場地的寬不能是負值,所以場地的寬為2m,長為8m.

像上面的解題方法,通過配成完全平方形式來解一元二次方程的方法,叫配方法.

可以看出,配方法是為了降次,把一個一元二次方程轉化為兩個一元一次方程來解.

例1用配方法解下列關于x的方程:

(1)x2-8x+1=0(2)x2-2x-12=0

分析:(1)顯然方程的左邊不是一個完全平方式,因此,要按前面的方法化為完全平方式;(2)同上.

解:略.

三、鞏固練習

教材第9頁練習1,2.(1)(2).

四、課堂小結

本節課應掌握:

左邊不含有x的完全平方形式的一元二次方程化為左邊是含有x的完全平方形式,右邊是非負數,可以直接降次解方程的方程.

五、作業布置

教材第17頁復習鞏固2,3.(1)(2).第3課時配方法的靈活運用

初三數學教案反思怎么寫篇2

教學內容

一元二次方程概念及一元二次方程一般式及有關概念.教學目標

2

了解一元二次方程的概念;一般式ax+bx+c=0(a≠0)及其派生的概念;?應用一元二次方程概念解決一些簡單題目.

1.通過設臵問題,建立數學模型,?模仿一元一次方程概念給一元二次方程下定義.2.一元二次方程的一般形式及其有關概念.3.解決一些概念性的題目.

4.通過生活學習數學,并用數學解決生活中的問題來激發學生的學習熱情.重難點關鍵

1.?重點:一元二次方程的概念及其一般形式和一元二次方程的有關概念并用這些概念解決問題.2.難點關鍵:通過提出問題,建立一元二次方程的數學模型,?再由一元一次方程的概念遷移到一元二次方程的概念.教學過程

一、復習引入

學生活動:列方程.問題(1)古算趣題:“執竿進屋”

笨人執竿要進屋,無奈門框攔住竹,橫多四尺豎多二,沒法急得放聲哭。有個鄰居聰明者,教他斜竿對兩角,笨伯依言試一試,不多不少剛抵足。借問竿長多少數,誰人算出我佩服。

如果假設門的高為x?尺,?那么,?這個門的寬為_______?尺,長為_______?尺,?根據題意,?得________.整理、化簡,得:__________.二、探索新知

學生活動:請口答下面問題.

(1)上面三個方程整理后含有幾個未知數?

(2)按照整式中的多項式的規定,它們次數是幾次?(3)有等號嗎?還是與多項式一樣只有式子?老師點評:(1)都只含一個未知數x;(2)它們的次數都是2次的;(3)?都有等號,是方程.因此,像這樣的方程兩邊都是整式,只含有一個未知數(一元),并且未知數的次數是2(二次)的方程,叫做一元二次方程.

2

一般地,任何一個關于x的一元二次方程,?經過整理,?都能化成如下形式ax+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.

2

一個一元二次方程經過整理化成ax+bx+c=0(a≠0)后,其中ax是二次項,a是二次項系數;bx是一次項,b是一次項系數;c是常數項.

例1.將方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并寫出其中的二次項系數、一次項系數及常數項.

2

分析:一元二次方程的一般形式是ax+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必須運用整式運算進行整理,包括去括號、移項等.

解:略

注意:二次項、二次項系數、一次項、一次項系數、常數項都包括前面的符號.

2

例2.(學生活動:請二至三位同學上臺演練)將方程(x+1)+(x-2)(x+2)=?1化成一元二次方程的一般形式,并寫出其中的二次項、二次項系數;一次項、一次項系數;常數項.

22

分析:通過完全平方公式和平方差公式把(x+1)+(x-2)(x+2)=1化成ax+bx+c=0(a≠0)的形式.解:略

三、鞏固練習

教材練習1、2

補充練習:判斷下列方程是否為一元二次方程?

(1)3x+2=5y-3(2)x=4(3)3x-2

2

22

5222

=0(4)x-4=(x+2)(5)ax+bx+c=0x

四、應用拓展

22

例3.求證:關于x的方程(m-8m+17)x+2mx+1=0,不論m取何值,該方程都是一元二次方程.

2

分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m-8m+17?≠0即可.

22

證明:m-8m+17=(m-4)+1

2

∵(m-4)≥0

22

∴(m-4)+1>0,即(m-4)+1≠0

∴不論m取何值,該方程都是一元二次方程.

2

?練習:1.方程(2a—4)x—2bx+a=0,在什么條件下此方程為一元二次方程?在什么條件下此方程為

一元一次方程?

/4m/-4

2.當m為何值時,方程(m+1)x+27mx+5=0是關于的一元二次方程五、歸納小結(學生總結,老師點評)本節課要掌握:

2

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax+bx+c=0(a≠0)?和二次項、二次項系數,一次項、一次項系數,常數項的概念及其它們的運用. 

初三數學教案反思怎么寫篇3

新的學期又開始了,我又擔任九年級數學學科的教學,九年級時間非常緊張,既要完成新課程的教學又要考慮下學期對初中階段整個數學知識的全面系統的復習。所以在注意時間的安排上,同時把握好教學進度的基礎上特制定本學期的教學計劃:

一、基本情況分析:

上學年學生期末考試的成績總體來看比較好,但是優生面不廣,尖子不尖。在學生所學知識的掌握程度上,良莠不齊,對優生來說,能夠透徹理解知識,知識間的內在聯系也較為清楚,對差一點的學生來說,有些基礎知識還不能有效的掌握,學生仍然缺少大量的推理題訓練,推理的思考方法與寫法上均存在著一定的困難,對幾何有畏難情緒,相關知識學得不很透徹。在學習能力上,學生課外主動獲取知識的能力較差,為減輕學生的經濟負擔與課業負擔,不提倡學生買教輔參考書,學生自主拓展知識面,向深處學習知識的能力沒有得到很好的培養。在以后的教學中,培養學生課外主動獲取知識的能力。學生的邏輯推理、邏輯思維能力,計算能力需要得到加強,以提升學生的整體成績,應在合適的時候補充課外知識,拓展學生的知識面,提升學生素質;在學習態度上,一部分學生上課能全神貫注,積極的投入到學習中去,大部分學生對數學學習好高鶩遠、心浮氣躁,學習態度和學習習慣還需培養。學生的學習習慣養成還不理想,預習的習慣,進行總結的習慣,自習課專心致志學習的習慣,主動糾正(考試、作業后)錯誤的習慣,有些學生不具有或不夠重視,需要教師的督促才能做,陶行知說:“教育就是培養習慣”,這是本期教學中重點予以關注的。

二、指導思想:

通過九年數學的教學,提供進一步學習所必需的數學基礎知識與基本技能,進一步培養學生的運算能力、思維能力和空間想象能力,能夠運用所學知識解決簡單的實際問題,教育學生掌握基礎知識與基本技能,培養學生的邏輯思維能力、運算能力、空間觀念和解決簡單實際問題的能力,使學生逐步學會正確、合理地進行運算,逐步學會觀察分析、綜合、抽象、概括。會用歸納演繹、類比進行簡單的推理。提高學習數學的興趣,逐步培養學生具有良好的學習習慣,實事求是的態度。頑強的學習毅力和獨立思考、探索的新思想。培養學生應用數學知識解決問題的能力。

三、教學內容

本學期的教學內容共五章:

第22章:二次根式;第23章:一元二次方程;第24章:圖形的相似;

第25章:解直角三角形;第26章:隨機事件的概率。

四、教學重點、難點

重點:

1、要求學生掌握證明的基本要求和方法,學會推理論證;

2、探索證明的思路和方法,提倡證明的多樣性。

難點:

1、引導學生探索、猜測、證明,體會證明的必要性;

2、在教學中滲透如歸納、類比、轉化等數學思想。

五、在教學過程中抓住以下幾個環節:

(1)認真備課。認真研究教材及考綱,明確教學目標,抓住重點、難點,精心設計教學過程,重視每一章節內容與前后知識的聯系及其地位,重視課后反思,設計好每一節課的師生互動的細節。

(2)抓住課堂45分鐘。嚴格按照教學計劃,精心設計每一節課的每一個環節,爭取每節課達到教學目標,突出重點,分散難點,增大課堂容量組織學生人人參與課堂活動,使每個學生積極主動參與課堂活動,使每個學生動手、動口、動腦,及時反饋信息提高課堂效益。

(3)課后反饋。精選適當的練習題、測試卷,及時批改作業,發現問題及時給學生面對面的指出并指導學生搞懂弄通,不留一個疑難點,讓學生學有所獲。

六、教學措施:

1.認真學習鉆研新課標,掌握教材。

2.認真備課,爭取充分掌握學生動態。

3.認真上好每一堂課。

4.落實每一堂課后輔助,查漏補缺。

5.積極與其它老師溝通,加強教研教改,提高教學水平。

6.復習階段多讓學生動腦、動手,通過各種習題、綜合試題和模擬試題的訓練,使學生逐步熟悉各知識點,并能熟練運用。

除了以上計劃外,我還將預計開展培優和治跛工作,教學中注重數學理論與社會實踐的聯系,鼓勵學生多觀察、多思考實際生活中蘊藏的數學問題,逐步培養學生運用書本知識解決實際問題的能力。

初三數學教案反思怎么寫篇4

一元二次方程

教學內容

一元二次方程概念及一元二次方程一般式及有關概念.

教學目標

了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;應用一元二次方程概念解決一些簡單題目.

1.通過設置問題,建立數學模型,模仿一元一次方程概念給一元二次方程下定義.

2.一元二次方程的一般形式及其有關概念.

3.解決一些概念性的題目.

4.通過生活學習數學,并用數學解決生活中的問題來激發學生的學習熱情.

重難點關鍵

1.重點:一元二次方程的概念及其一般形式和一元二次方程的有關概念并用這些概念解決問題.

2.難點關鍵:通過提出問題,建立一元二次方程的數學模型,再由一元一次方程的概念遷移到一元二次方程的概念.

教學過程

一、復習引入

學生活動:列方程.

問題(1)古算趣題:“執竿進屋”

笨人執竿要進屋,無奈門框攔住竹,橫多四尺豎多二,沒法急得放聲哭。

有個鄰居聰明者,教他斜竿對兩角,笨伯依言試一試,不多不少剛抵足。

借問竿長多少數,誰人算出我佩服。

如果假設門的高為x尺,那么,這個門的寬為_______尺,長為_______尺,

根據題意,得________.

整理、化簡,得:__________.

二、探索新知

學生活動:請口答下面問題.

(1)上面三個方程整理后含有幾個未知數?

(2)按照整式中的多項式的規定,它們最高次數是幾次?

(3)有等號嗎?還是與多項式一樣只有式子?

老師點評:(1)都只含一個未知數x;(2)它們的最高次數都是2次的;(3)都有等號,是方程.

因此,像這樣的方程兩邊都是整式,只含有一個未知數(一元),并且未知數的最高次數是2(二次)的方程,叫做一元二次方程.

一般地,任何一個關于x的一元二次方程,經過整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.

一個一元二次方程經過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項,a是二次項系數;bx是一次項,b是一次項系數;c是常數項.

例1.將方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并寫出其中的二次項系數、一次項系數及常數項.

分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必須運用整式運算進行整理,包括去括號、移項等.

解:略

注意:二次項、二次項系數、一次項、一次項系數、常數項都包括前面的符號.

例2.(學生活動:請二至三位同學上臺演練) 將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項、二次項系數;一次項、一次項系數;常數項.

分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.

解:略

三、鞏固練習

教材 練習1、2

補充練習:判斷下列方程是否為一元二次方程?

(1)3x+2=5y-3 (2) x2=4 (3) 3x2-=0 (4) x2-4=(x+2) 2 (5)ax2+bx+c=0

四、應用拓展

例3.求證:關于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.

分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+17≠0即可.

證明:m2-8m+17=(m-4)2+1

∵(m-4)2≥0

∴(m-4)2+1>0,即(m-4)2+1≠0

∴不論m取何值,該方程都是一元二次方程.

? 練習:1.方程(2a—4)x2—2bx+a=0,在什么條件下此方程為一元二次方程?在什么條件下此方程為一元一次方程?

2.當m為何值時,方程(m+1)x/4m/-4+27mx+5=0是關于的一元二次方程

五、歸納小結(學生總結,老師點評)

本節課要掌握:

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次項、二次項系數,一次項、一次項系數,常數項的概念及其它們的運用.

六、布置作業

初三數學教案反思怎么寫篇5

理解間接即通過變形運用開平方法降次解方程,并能熟練應用它解決一些具體問題.

通過復習可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟.

重點

講清直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟.

難點

將不可直接降次解方程化為可直接降次解方程的“化為”的轉化方法與技巧.

一、復習引入

(學生活動)請同學們解下列方程:

(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7

老師點評:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±p或mx+n=±p(p≥0).

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9嗎?

二、探索新知

列出下面問題的方程并回答:

(1)列出的經化簡為一般形式的方程與剛才解題的方程有什么不同呢?

(2)能否直接用上面前三個方程的解法呢?

問題:要使一塊矩形場地的長比寬多6m,并且面積為16m2,求場地的長和寬各是多少?

(1)列出的經化簡為一般形式的方程與前面講的三道題不同之處是:前三個左邊是含有x的完全平方式而后二個不具有此特征.

(2)不能.

既然不能直接降次解方程,那么,我們就應該設法把它轉化為可直接降次解方程的方程,下面,我們就來講如何轉化:

x2+6x-16=0移項→x2+6x=16

兩邊加(6/2)2使左邊配成x2+2bx+b2的形式→x2+6x+32=16+9

左邊寫成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以驗證:x1=2,x2=-8都是方程的根,但場地的寬不能是負值,所以場地的寬為2m,長為8m.

像上面的解題方法,通過配成完全平方形式來解一元二次方程的方法,叫配方法.

可以看出,配方法是為了降次,把一個一元二次方程轉化為兩個一元一次方程來解.

例1用配方法解下列關于x的方程:

(1)x2-8x+1=0(2)x2-2x-12=0

分析:(1)顯然方程的左邊不是一個完全平方式,因此,要按前面的方法化為完全平方式;(2)同上.

解:略.

三、鞏固練習

教材第9頁練習1,2.(1)(2).

四、課堂小結

本節課應掌握:

左邊不含有x的完全平方形式的一元二次方程化為左邊是含有x的完全平方形式,右邊是非負數,可以直接降次解方程的方程.

五、作業布置

初三數學教案反思怎么寫篇6

學習目標

1.了解圓周角的概念.

2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.

3.理解圓周角定理的推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.

4.熟練掌握圓周角的定理及其推理的靈活運用.

設置情景,給出圓周角概念,探究這些圓周角與圓心角的關系,運用數學分類思想給予邏輯證明定理,得出推導,讓學生活動證明定理推論的正確性,最后運用定理及其推導解決一些實際問題

學習過程

一、溫故知新:

(學生活動)同學們口答下面兩個問題.二、自主學習:

1.什么叫圓心角?

2.圓心角、弦、弧之間有什么內在聯系呢?

自學教材P90---P93,思考下列問題:

1、什么叫圓周角?圓周角的兩個特征:。

2、在下面空里作一個圓,在同一弧上作一些圓心角及圓周角。通過圓周角的概念和度量的方法回答下面的問題.

(1)一個弧上所對的圓周角的個數有多少個?

(2).同弧所對的圓周角的度數是否發生變化?

(3).同弧上的圓周角與圓心角有什么關系?

3、默寫圓周角定理及推論并證明。

4、能去掉"同圓或等圓"嗎?若把"同弧或等弧"改成"同弦或等弦"性質成立嗎?

5、教材92頁思考?在同圓或等圓中,如果兩個圓周角相等,它們所對的弧一定相等嗎?為什么?

三、典型例題:

例1、(教材93頁例2)如圖,⊙O的直徑AB為10cm,弦AC為6cm,,∠ACB的平分線交⊙O于D,求BC、AD、BD的長。

例2、如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到C,使AC=AB,BD與CD的大小有什么關系?為什么?

四、鞏固練習:

1、(教材P93練習1)

解:

2、(教材P93練習2)

3、(教材P93練習3)

證明:

4、(教材P95習題24.1第9題)

五、總結反思:

達標檢測

1.如圖1,A、B、C三點在⊙O上,∠AOC=100°,則∠ABC等于().

A.140°B.110°C.120°D.130°

(1)(2)(3)

2.如圖2,∠1、∠2、∠3、∠4的大小關系是()

A.∠4<∠1<∠2<∠3B.∠4<∠1=∠3<∠2

C.∠4<∠1<∠3∠2D.∠4<∠1<∠3=∠2

3.如圖3,(中考題)AB是⊙O的直徑,BC,CD,DA是⊙O的弦,且BC=CD=DA,則∠BCD等于()

A.100°B.110°C.120°D.130°

4.半徑為2a的⊙O中,弦AB的長為2a,則弦AB所對的圓周角的度數是________.

5.如圖4,A、B是⊙O的直徑,C、D、E都是圓上的點,則∠1+∠2=_______.

(4)(5)

6.(中考題)如圖5,于,若,則

7.如圖,弦AB把圓周分成1:2的兩部分,已知⊙O半徑為1,求弦長AB.

拓展創新

1.如圖,已知AB=AC,∠APC=60°

(1)求證:△ABC是等邊三角形.

(2)若BC=4cm,求⊙O的面積.

3、教材P95習題24.1第12、13題。

布置作業教材P95習題24.1第10、11題。

初三數學教案反思怎么寫篇7

教材分析

本節內容是上一節課在學習余角補角基礎上學習的,學生有了一定的基礎,為以后學__面直角坐標系的學習做好準備。

學情分析

本節課對于學生來說學習起來并不太難,在小學階段學生已經接觸過方位角的內容,而且本節課內容和生活中的方向聯系緊密,故學生比較有興趣。

教學目標

理解方位角的意義,掌握方位角的判別和應用,通過現實情境,充分利用學生的生活經驗去體會方位角的意義。

教學重點和難點

重點:方位角的判別與應用

難點:方位角的畫法及變式題

教學過程(本文來自優秀教育資源網斐.斐.課.件.園)

教學環節教師活動預設學生行為設計意圖

一、創設情境,導入新課

二、講授新課

三、鞏固練習

四、課時小結五、布置作業由四面八方這個成語引出學生對八個方位的理解

1.先以一個具體圖形告訴學生基本知識點,方位角一般是以正南正北為基準,然后向東或西旋轉所成的角的始邊方向。

2.師示范方位角的畫法

3.出示補充例題,引對學生通過小組合作完成。思考并回答老師提出的問題

生觀察圖并理解老師的講解。

生觀察并獨立完成書中的例題

生先獨立思考然后與同學合作完成。激發學生的學習興趣

通遼具體圖形使學生初步認識方位角的表示方法。

使學生通遼具體操作掌握畫方位角的方法

進一步掌握方位角的有關知識,達到知識提升。

板書設計

4.3.3余角和補角(二)——方位角

學生學習活動評價設計

我先將學生按人數分成若干小組,在課前先給學生發放導學單,課上先給學生充分的討論時間后學生由小組推薦代表發言,累積分數,每個小組輪流回答一次,學生代表回答完畢后,其它同學補充糾錯,然后從知識點是否準確,語言是否流利,思維是否創新,邏輯是否合理嚴密等方面來做出評價,然后給出相應分數。累積到小組積分中課上知識回答后在練習部分,設計搶答題,小組搶答完成。最后計算出總分評出本節課小組及個人獎,給予口頭表揚。

教學反思

本節課是在上節課余角和補角的基礎上學習的,而且在小學階段也已經接觸過這部分知識了,基于這個特點,在課堂上我主要采取了自主學習的方式,學生接受的不錯,本節課的知識雖然簡單但很重要是為以后學__面直角坐標系做準備的。出現的問題是有個別同學對于A看B是北偏東30度,則B看A是什么方向不太清楚,我采取的措施是讓明白的同學講給不明白的同學聽,指導其主要從哪方面入手解決此類問題,還有一點,學生在畫圖后容易忽略寫結論,應強調。以前在上本節課時,我是采取的講授法,感覺學生不是很愛聽,后來一想,知道了是因為小學時他們已經接觸了這部分知識,所以不愛聽,針對于這種情況,這次我采用了自主學習的方式感覺學生的積極性上來了,一節課氣氛很好,相信效果也不錯。以后再講這節課我將繼續采用這種方式,在此基礎上使其更加完善。

59693 主站蜘蛛池模板: 药品冷藏箱厂家_低温冰箱_洁净工作台-济南欧莱博电子商务有限公司官网 | 锻造液压机,粉末冶金,拉伸,坩埚成型液压机定制生产厂家-山东威力重工官方网站 | 电子万能试验机_液压拉力试验机_冲击疲劳试验机_材料试验机厂家-济南众标仪器设备有限公司 | 股指期货-期货开户-交易手续费佣金加1分-保证金低-期货公司排名靠前-万利信息开户 | 欧洲MV日韩MV国产_人妻无码一区二区三区免费_少妇被 到高潮喷出白浆av_精品少妇自慰到喷水AV网站 | 不锈钢水箱生产厂家_消防水箱生产厂家-河南联固供水设备有限公司 | 广州展览设计公司_展台设计搭建_展位设计装修公司-众派展览装饰 广州展览制作工厂—[优简]直营展台制作工厂_展会搭建资质齐全 | 环球电气之家-中国专业电气电子产品行业服务网站! | 变频器维修公司_plc维修_伺服驱动器维修_工控机维修 - 夫唯科技 变位机,焊接变位机,焊接变位器,小型变位机,小型焊接变位机-济南上弘机电设备有限公司 | 厦门ISO认证|厦门ISO9001认证|厦门ISO14001认证|厦门ISO45001认证-艾索咨询专注ISO认证行业 | 我车网|我关心的汽车资讯_汽车图片_汽车生活! | 创富网-B2B网站|供求信息网|b2b平台|专业电子商务网站 | 日本东丽膜_反渗透膜_RO膜价格_超滤膜_纳滤膜-北京东丽阳光官网 日本细胞免疫疗法_肿瘤免疫治疗_NK细胞疗法 - 免疫密码 | 蓝莓施肥机,智能施肥机,自动施肥机,水肥一体化项目,水肥一体机厂家,小型施肥机,圣大节水,滴灌施工方案,山东圣大节水科技有限公司官网17864474793 | 行星搅拌机,双行星搅拌机,动力混合机,无锡米克斯行星搅拌机生产厂家 | GEDORE扭力螺丝刀-GORDON防静电刷-CHEMTRONICS吸锡线-上海卓君电子有限公司 | 钢丝绳探伤仪-钢丝绳检测仪-钢丝绳探伤设备-洛阳泰斯特探伤技术有限公司 | 二手Sciex液质联用仪-岛津气质联用仪-二手安捷伦气质联用仪-上海隐智科学仪器有限公司 | 进口试验机价格-进口生物材料试验机-西安卡夫曼测控技术有限公司 | 粉末冶金-粉末冶金齿轮-粉末冶金零件厂家-东莞市正朗精密金属零件有限公司 | 水篦子|雨篦子|镀锌格栅雨水篦子|不锈钢排水篦子|地下车库水箅子—安平县云航丝网制品厂 | 道达尔润滑油-食品级润滑油-道达尔导热油-合成导热油,深圳道达尔代理商合-深圳浩方正大官网 | 山东信蓝建设有限公司官网 | 大米加工设备|大米加工机械|碾米成套设备|大米加工成套设备-河南成立粮油机械有限公司 | 卫生纸复卷机|抽纸机|卫生纸加工设备|做卫生纸机器|小型卫生纸加工需要什么设备|卫生纸机器设备多少钱一台|许昌恒源纸品机械有限公司 | 丹佛斯变频器-Danfoss战略代理经销商-上海津信变频器有限公司 | 转子泵_凸轮泵_凸轮转子泵厂家-青岛罗德通用机械设备有限公司 | 高铝矾土熟料_细粉_骨料_消失模_铸造用铝矾土_铝酸钙粉—嵩峰厂家 | 首页-恒温恒湿试验箱_恒温恒湿箱_高低温试验箱_高低温交变湿热试验箱_苏州正合 | 硅胶制品-硅橡胶制品-东莞硅胶制品厂家-广东帝博科技有限公司 | Eiafans.com_环评爱好者 环评网|环评论坛|环评报告公示网|竣工环保验收公示网|环保验收报告公示网|环保自主验收公示|环评公示网|环保公示网|注册环评工程师|环境影响评价|环评师|规划环评|环评报告|环评考试网|环评论坛 - Powered by Discuz! | 浩方智通 - 防关联浏览器 - 跨境电商浏览器 - 云雀浏览器 | 国际船舶网 - 船厂、船舶、造船、船舶设备、航运及海洋工程等相关行业综合信息平台 | 定做大型恒温循环水浴槽-工业用不锈钢恒温水箱-大容量低温恒温水槽-常州精达仪器 | 英国雷迪地下管线探测仪-雷迪RD8100管线仪-多功能数字听漏仪-北京迪瑞进创科技有限公司 | 东莞市超赞电子科技有限公司 全系列直插/贴片铝电解电容,电解电容,电容器 | 喷播机厂家_二手喷播机租赁_水泥浆洒布机-河南青山绿水机电设备有限公司 | 酒糟烘干机-豆渣烘干机-薯渣烘干机-糟渣烘干设备厂家-焦作市真节能环保设备科技有限公司 | China plate rolling machine manufacturer,cone rolling machine-Saint Fighter | 多功能真空滤油机_润滑油全自动滤油机_高效真空滤油机价格-重庆润华通驰 | 焊接烟尘净化器__焊烟除尘设备_打磨工作台_喷漆废气治理设备 -催化燃烧设备 _天津路博蓝天环保科技有限公司 |