小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數學教案 >

高三數學學生教案

時間: 沐欽 數學教案

高三數學學生教案都有哪些?數學定義的三種主要類型被稱為邏輯學家、直覺主義者和形式主義者,每一種都反映了不同的哲學思想流派。存在嚴重問題,一般沒人接受,不和解似乎可行。下面是小編為大家帶來的高三數學學生教案七篇,希望大家能夠喜歡!

高三數學學生教案

高三數學學生教案(精選篇1)

教學目標:

結合已學過的數學實例和生活中的實例,體會演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理。

教學重點:

掌握演繹推理的基本模式,并能運用它們進行一些簡單推理。

教學過程

一、復習

二、引入新課

1.假言推理

假言推理是以假言判斷為前提的演繹推理。假言推理分為充分條件假言推理和必要條件假言推理兩種。

(1)充分條件假言推理的基本原則是:小前提肯定大前提的前件,結論就肯定大前提的后件;小前提否定大前提的后件,結論就否定大前提的前件。

(2)必要條件假言推理的基本原則是:小前提肯定大前提的后件,結論就要肯定大前提的前件;小前提否定大前提的前件,結論就要否定大前提的后件。

2.三段論

三段論是指由兩個簡單判斷作前提和一個簡單判斷作結論組成的演繹推理。三段論中三個簡單判斷只包含三個不同的概念,每個概念都重復出現一次。這三個概念都有專門名稱:結論中的賓詞叫“大詞”,結論中的主詞叫“小詞”,結論不出現的那個概念叫“中詞”,在兩個前提中,包含大詞的叫“大前提”,包含小詞的叫“小前提”。

3.關系推理指前提中至少有一個是關系判斷的推理,它是根據關系的邏輯性質進行推演的??煞譃榧冴P系推理和混合關系推理。純關系推理就是前提和結論都是關系判斷的推理,包括對稱性關系推理、反對稱性關系推理、傳遞性關系推理和反傳遞性關系推理。

(1)對稱性關系推理是根據關系的對稱性進行的推理。

(2)反對稱性關系推理是根據關系的反對稱性進行的推理。

(3)傳遞性關系推理是根據關系的傳遞性進行的推理。

(4)反傳遞性關系推理是根據關系的反傳遞性進行的推理。

4.完全歸納推理是這樣一種歸納推理:根據對某類事物的全部個別對象的考察,已知它們都具有某種性質,由此得出結論說:該類事物都具有某種性質。

完全歸納推理的基本特點在于:前提中所考察的個別對象,必須是該類事物的全部個別對象。否則,只要其中有一個個別對象沒有考察,這樣的歸納推理就不能稱做完全歸納推理。完全歸納推理的結論所斷定的范圍,并未超出前提所斷定的范圍。所以,結論是由前提必然得出的。應用完全歸納推理,只要遵循以下兩點,那末結論就必然是真實的:(1)對于個別對象的斷定都是真實的;(2)被斷定的個別對象是該類的全部個別對象。

高三數學學生教案(精選篇2)

(一)引入:

(1)情景1

王老漢的疑惑:秋收過后,村中擁入了不少生意人,收購大豆與紅薯,精明的王老漢上了心,一打聽,頓時喜上眉梢.村中大豆的收購價是5元/千克,紅薯的收購價是

2元/千克,而送到縣城每千克大豆可獲利1.2元,每千克紅薯可獲利0.6元,王老漢決定明天就帶上家中僅有的1000元現金,踏著可載重350千克的三輪車開始自己的發財大計,可明天應該收購多少大豆與紅薯呢?王老漢決定與家人合計.回家一討論,問題來了.孫女說:“收購大豆每千克獲利多故應收購大豆”,孫子說:“收購紅薯每元成本獲利多故應收購紅薯”,王老漢一聽,好像都對,可誰說得更有理呢?精明的王老漢心中更糊涂了。

【問題情景使學生感受到數學是來自現實生活的,讓學生體會從實際問題中抽象出數學問題的過程;通過情景我們不僅能從中引出本堂課的內容“二元一次不等式(組)的概念,及其所表示的平面區域”,也為后面的內容“簡單的線性規劃問題”埋下了伏筆.】

(2)問題與探究

師:同學們,你們能用具體的數字體現出王老漢的兩個孫子的收購方案嗎?

生,討論并很快給出答案.(師,記錄數據)

師:請你們各自為王老漢設計一種收購方案.

生,獨立思考,并寫出自己的方案.(師,查看學生各人的設計方案并有針對性的請幾個同學說出自己的方案并記錄,注意:要特意選出2個不合理的方案)

師:這些同學的方案都是對的嗎?

生,討論并找出其中不合理的方案.

師:為什么這些方案就不行呢?

生,討論后并回答

師:滿足什么條件的方案才是合理的呢?

生,討論思考.(師,引導學生設出未知量,列出起約束作用的不等式組)

師,讓幾個學生上黑板列出不等式組,并對之分析指正

(教師用多媒體展示所列不等式組,并介紹二元一次不等式,二元一次不等式組的概念.)

師:同學們還記得什么是方程的解嗎?你能說出二元一次方程二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的一組解嗎?

生,討論并回答(教師記錄幾組,并引導學生表示成有序實數對形式.)

師:同學們能說出什么是不等式(組)的解嗎?你能說出二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的一組解嗎?

生,討論并回答(教師對于學生的回答指正并有選擇性的記錄幾組比較簡單的數據,對于這些數據要事先設計好并在課件的坐標系中標出備用)

(教師對引例中給出的不等式組介紹,并指出上面的正確的設計方案都是不等式組的解.進而介紹二元一次不等式(組)解與解集的概念)

師:我們知道每一組有序實數對都對應于平面直角坐標系上的一個點,你能把上面記錄的不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解在平面直角坐標系上標記出來嗎?

生,討論并在下面作圖(師巡視檢查并對個別同學的錯誤進行指正)

師,利用多媒體課件展示平面直角坐標系及不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解所對應的一些點,讓學生觀察并思考討論:不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解在平面直角坐標系中的位置有什么特點?(由于點太少,我們的學生可能得不出結論)

師,引導學生在同一平面直角坐標系中畫出方程二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解所對應的圖形(一條直線,指導學生用與坐標軸的兩個交點作出直線),再提出問題:二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解為坐標的點在平面直角坐標系中的位置有什么特點?

生,提出猜想:直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計分得的左下半平面.

【教師通過幾個簡單的問題,讓學生產生了利用平面區域表示二元一次不等式的想法,而后再讓學生大膽的猜想,細心的論證,讓他們從中讓體會到對新知識進行科學探索的全過程.】

師:這個結論正確嗎?你能說出理由來嗎?

生,分組討論,并利用自己的數學知識去探究.(由于沒有給出一個固定的方向,所以各人用的方法不一,有的可能用特殊點再去檢驗,有的可能會試著用坐標軸的正方向去說明,也有的可能會用直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計下方的點與對應直線上的點對照比較的方法進行說明)

師,在巡視的基礎上請運用不同方法的同學闡述自己的理由,并對于正確的作法給予表揚,然后用多媒體展示出利用與直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計橫坐標相同而縱坐標不同的點對應分析的方法進行證明.

師:直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的右上半平面應怎么表示?

生:表示為二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計,(很快回答)

師:從中你能得出什么結論?

生,討論并得到一般性結論(教師總結糾正)

(教師總結并用多媒體展示,二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計表示直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的某側所有點組成的平面區域,因不包含邊界故直線畫成虛線;二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計表示的平面區域因包含邊界故直線畫成實線.)

師:點O(0,0)是不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計一個解嗎?據此你能說出不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計對應的平面區域相對與直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的位置嗎?

生,作圖分析,討論并回答(師,對學生的回答進行分析)

師:結合上面問題請同學們歸納出作不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計對應的平面區域的過程.

生,討論并回答(師,對于學生的答案給以分析,并肯定其中正確的結論)

師:你們能說出作二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計對應的平面區域的過程嗎?

生,討論并回答(教師總結并用多媒體展示:直線定界,特殊點定域)

師:若點P(3,-1),點Q(2,4)在直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的異側,你能用數學語言表示嗎?

生,討論,思考(教師巡視,并觀察學生的解答過程,最后引導學生得出:一個是不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解,一個是不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解)

師:你能在這個條件下求出二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的范圍嗎?

生.討論分析,最后得到不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計并求解.

師:若把上面問題改為點在同側呢?請同學們課后完成.

【在教師的幫助下學生通過自己的分析得出了正確的結論,讓他們從中體會到了獲取新知后的成就感,從而增加了對數學的學習興趣.同時也讓他們體會人們在認識新生事物時從特殊到一般,再從一般到特殊的認知過程.】

(二)實例展示:

例1、畫出不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計表示的平面區域.

例2、用平面區域表示不等式組二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解集.

【通過利用多媒體對實例的展示讓學生體會到畫出不等式表示的平面區域的基本流程:直線定界,特殊點定域,而不等式(組)表示的平面區域是各個不等式表示的平面區域的公共部分.同時對具體作圖中的細節問題進行點拔.】

(三)練習:

學生練習P86第1-3題.

【及時鞏固所學,進一步體會畫出不等式(組)表示的平面區域的基本流程】

(四)課后延伸:

師:我們在今天主要解決了在給出不等式(組)的情況下如何用平面區域來表示出來的問題.如果反過來給出了平面區域你能寫出相關的不等式(組)嗎?例如你能寫出A(2,4),B(2,0),C(1,2)三點構成的三角形內部區域對應的不等式組嗎?

你能寫出不等式形如二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計這種不等式表示的平面區域?

(五)小結與作業:

二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計表示直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計某側所有點組成的平面區域,畫出不等式(組)表示的平面區域的基本流程:直線定界,特殊點定域(一般找原點)

作業:第93頁A組習題1、2,

補充作業:若線段PQ的兩個端點坐標為P(3,-1),Q(2,4),且直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計與線段PQ

高三數學學生教案(精選篇3)

一.課標要求:

(1)空間向量及其運算

① 經歷向量及其運算由平面向空間推廣的過程;

② 了解空間向量的概念,了解空間向量的基本定理及其意義,掌握空間向量的正交分解及其坐標表示;

③ 掌握空間向量的線性運算及其坐標表示;

④ 掌握空間向量的數量積及其坐標表示,能運用向量的數量積判斷向量的共線與垂直。

(2)空間向量的應用

① 理解直線的方向向量與平面的法向量;

② 能用向量語言表述線線、線面、面面的垂直、平行關系;

③ 能用向量方法證明有關線、面位置關系的一些定理(包括三垂線定理);

④ 能用向量方法解決線線、線面、面面的夾角的計算問題,體會向量方法在研究幾何問題中的作用。

二.命題走向

本講內容主要涉及空間向量的坐標及運算、空間向量的應用。本講是立體幾何的核心內容,高考對本講的考察形式為:以客觀題形式考察空間向量的概念和運算,結合主觀題借助空間向量求夾角和距離。

預測20_年高考對本講內容的考查將側重于向量的應用,尤其是求夾角、求距離,教材上淡化了利用空間關系找角、找距離這方面的講解,加大了向量的應用,因此作為立體幾何解答題,用向量法處理角和距離將是主要方法,在復習時應加大這方面的訓練力度。

三.要點精講

1.空間向量的概念

向量:在空間,我們把具有大小和方向的量叫做向量。如位移、速度、力等。

相等向量:長度相等且方向相同的向量叫做相等向量。

表示方法:用有向線段表示,并且同向且等長的有向線段表示同一向量或相等的向量。

說明:①由相等向量的概念可知,一個向量在空間平移到任何位置,仍與原來的向量相等,用同向且等長的有向線段表示;②平面向量僅限于研究同一平面內的平移,而空間向量研究的是空間的平移。

2.向量運算和運算率

加法交換率:

加法結合率:

數乘分配率:

說明:①引導學生利用右圖驗證加法交換率,然后推廣到首尾相接的若干向量之和;②向量加法的平行四邊形法則在空間仍成立。

3.平行向量(共線向量):

如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量。 平行于 記作 ∥ 。

注意:當我們說 、 共線時,對應的有向線段所在直線可能是同一直線,也可能是平行直線;當我們說 、 平行時,也具有同樣的意義。

共線向量定理:對空間任意兩個向量 ( )、 , ∥ 的充要條件是存在實數 使 =

注:⑴上述定理包含兩個方面:①性質定理:若 ∥ ( 0),則有 = ,其中 是唯一確定的實數。②判斷定理:若存在唯一實數 ,使 = ( 0),則有 ∥ (若用此結論判斷 、 所在直線平行,還需 (或 )上有一點不在 (或 )上)。

⑵對于確定的 和 , = 表示空間與 平行或共線,長度為 | |,當 0時與 同向,當 0時與 反向的所有向量。

⑶若直線l∥ , ,P為l上任一點,O為空間任一點,下面根據上述定理來推導 的表達式。

推論:如果 l為經過已知點A且平行于已知非零向量 的直線,那么對任一點O,點P在直線l上的充要條件是存在實數t,滿足等式

①其中向量 叫做直線l的方向向量。

在l上取 ,則①式可化為 ②

當 時,點P是線段AB的中點,則 ③

①或②叫做空間直線的向量參數表示式,③是線段AB的中點公式。

注意:⑴表示式(﹡)、(﹡﹡)既是表示式①,②的基礎,也是常用的直線參數方程的表示形式;⑵推論的用途:解決三點共線問題。⑶結合三角形法則記憶方程。

4.向量與平面平行:

如果表示向量 的有向線段所在直線與平面 平行或 在 平面內,我們就說向量 平行于平面 ,記作 ∥ 。注意:向量 ∥ 與直線a∥ 的聯系與區別。

共面向量:我們把平行于同一平面的向量叫做共面向量。

共面向量定理 如果兩個向量 、 不共線,則向量 與向量 、 共面的充要條件是存在實數對x、y,使 ①

注:與共線向量定理一樣,此定理包含性質和判定兩個方面。

推論:空間一點P位于平面MAB內的充要條件是存在有序實數對x、y,使

④或對空間任一定點O,有 ⑤

在平面MAB內,點P對應的實數對(x, y)是唯一的。①式叫做平面MAB的向量表示式。

又∵ 代入⑤,整理得

⑥由于對于空間任意一點P,只要滿足等式④、⑤、⑥之一(它們只是形式不同的同一等式),點P就在平面MAB內;對于平面MAB內的任意一點P,都滿足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共線的兩個向量 、 (或不共線三點M、A、B)確定的空間平面的向量參數方程,也是M、A、B、P四點共面的充要條件。

5.空間向量基本定理:如果三個向量 、 、 不共面,那么對空間任一向量,存在一個唯一的有序實數組x, y, z, 使

說明:⑴由上述定理知,如果三個向量 、 、 不共面,那么所有空間向量所組成的集合就是 ,這個集合可看作由向量 、 、 生成的,所以我們把{ , , }叫做空間的一個基底, , , 都叫做基向量;⑵空間任意三個不共面向量都可以作為空間向量的一個基底;⑶一個基底是指一個向量組,一個基向量是指基底中的某一個向量,二者是相關聯的不同的概念;⑷由于 可視為與任意非零向量共線。與任意兩個非零向量共面,所以,三個向量不共面就隱含著它們都不是 。

推論:設O、A、B、C是不共面的四點,則對空間任一點P,都存在唯一的有序實數組 ,使

6.數量積

(1)夾角:已知兩個非零向量 、 ,在空間任取一點O,作 , ,則角AOB叫做向量 與 的夾角,記作

說明:⑴規定0 ,因而 = ;

⑵如果 = ,則稱 與 互相垂直,記作

⑶在表示兩個向量的夾角時,要使有向線段的起點重合,注意圖(3)、(4)中的兩個向量的夾角不同,

圖(3)中AOB= ,

圖(4)中AOB= ,

從而有 = = .

(2)向量的模:表示向量的有向線段的長度叫做向量的長度或模。

(3)向量的數量積: 叫做向量 、 的數量積,記作 。

即 = ,

向量 :

(4)性質與運算率

⑴ 。 ⑴

⑵ =0 ⑵ =

⑶ ⑶

四.典例解析

題型1:空間向量的概念及性質

例1.有以下命題:①如果向量 與任何向量不能構成空間向量的一組基底,那么 的關系是不共線;② 為空間四點,且向量 不構成空間的一個基底,那么點 一定共面;③已知向量 是空間的一個基底,則向量 ,也是空間的一個基底。其中正確的命題是( )

①② ①③ ②③ ①②③

解析:對于①如果向量 與任何向量不能構成空間向量的一組基底,那么 的關系一定共線所以①錯誤。②③正確。

例2.下列命題正確的是( )

若 與 共線, 與 共線,則 與 共線;

向量 共面就是它們所在的直線共面;

零向量沒有確定的方向;

若 ,則存在唯一的實數 使得 ;

解析:A中向量 為零向量時要注意,B中向量的共線、共面與直線的共線、共面不一樣,D中需保證 不為零向量。

題型2:空間向量的基本運算

例3.如圖:在平行六面體 中, 為 與 的交點。若 , , ,則下列向量中與 相等的向量是( )

例4.已知: 且 不共面.若 ∥ ,求 的值.

題型3:空間向量的坐標

例5.(1)已知兩個非零向量 =(a1,a2,a3), =(b1,b2,b3),它們平行的充要條件是()

A. :| |= :| |B.a1b1=a2b2=a3b3

C.a1b1+a2b2+a3b3=0D.存在非零實數k,使 =k

(2)已知向量 =(2,4,x), =(2,y,2),若| |=6, ,則x+y的值是()

A. -3或1 B.3或-1 C. -3 D.1

(3)下列各組向量共面的是()

A. =(1,2,3), =(3,0,2), =(4,2,5)

B. =(1,0,0), =(0,1,0), =(0,0,1)

C. =(1,1,0), =(1,0,1), =(0,1,1)

D. =(1,1,1), =(1,1,0), =(1,0,1)

解析:(1)D;點撥:由共線向量定線易知;

(2)A 點撥:由題知 或 ;

例6.已知空間三點A(-2,0,2),B(-1,1,2),C(-3,0,4)。設 = , = ,(1)求 和 的夾角 ;(2)若向量k + 與k -2 互相垂直,求k的值.

思維入門指導:本題考查向量夾角公式以及垂直條件的應用,套用公式即可得到所要求的結果.

解:∵A(-2,0,2),B(-1,1,2),C(-3,0,4), = , = ,

=(1,1,0), =(-1,0,2).

(1)cos = = - ,

和 的夾角為- 。

(2)∵k + =k(1,1,0)+(-1,0,2)=(k-1,k,2),

k -2 =(k+2,k,-4),且(k + )(k -2 ),

(k-1,k,2)(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0。

則k=- 或k=2。

點撥:第(2)問在解答時也可以按運算律做。( + )(k -2 )=k2 2-k -2 2=2k2+k-10=0,解得k=- ,或k=2。

題型4:數量積

例7.設 、 、c是任意的非零平面向量,且相互不共線,則

①( ) -( ) = ②| |-| || - | ③( ) -( ) 不與 垂直

④(3 +2 )(3 -2 )=9| |2-4| |2中,是真命題的有( )

A.①② B.②③ C.③④ D.②④

答案:D

解析:①平面向量的數量積不滿足結合律.故①假;

②由向量的減法運算可知| |、| |、| - |恰為一個三角形的三條邊長,由兩邊之差小于第三邊,故②真;

③因為[( ) -( ) ] =( ) -( ) =0,所以垂直.故③假;

例8.(1)已知向量 和 的夾角為120,且| |=2,| |=5,則(2 - ) =_____.

(2)設空間兩個不同的單位向量 =(x1,y1,0), =(x2,y2,0)與向量 =(1,1,1)的夾角都等于 。(1)求x1+y1和x1y1的值;(2)求 , 的大小(其中0 , 。

解析:(1)答案:13;解析:∵(2 - ) =2 2- =2| |2-| || |cos120=24-25(- )=13。

(2)解:(1)∵| |=| |=1,x +y =1,x =y =1.

又∵ 與 的夾角為 , =| || |cos = = .

又∵ =x1+y1,x1+y1= 。

另外x +y =(x1+y1)2-2x1y1=1,2x1y1=( )2-1= .x1y1= 。

(2)cos , = =x1x2+y1y2,由(1)知,x1+y1= ,x1y1= .x1,y1是方程x2- x+ =0的解.

或 同理可得 或

∵ , 或

cos , + = + = .

∵0 , , , = 。

評述:本題考查向量數量積的運算法則。

題型5:空間向量的應用

例9.(1)已知a、b、c為正數,且a+b+c=1,求證: + + 4 。

(2)已知F1=i+2j+3k,F2=-2i+3j-k,F3=3i-4j+5k,若F1,F2,F3共同作用于同一物體上,使物體從點M1(1,-2,1)移到點M2(3,1,2),求物體合力做的功。

解析:(1)設 =( , , ), =(1,1,1),

則| |=4,| |= .

∵ | || |,

= + + | || |=4 .

當 = = 時,即a=b=c= 時,取=號。

例10.如圖,直三棱柱 中, 求證:

證明:

五.思維總結

本講內容主要有空間直角坐標系,空間向量的坐標表示,空間向量的坐標運算,平行向量,垂直向量坐標之間的關系以及中點公式.空間直角坐標系是選取空間任意一點O和一個單位正交基底{i,j,k}建立坐標系,對于O點的選取要既有作圖的直觀性,而且使各點的坐標,直線的坐標表示簡化,要充分利用空間圖形中已有的直線的關系和性質;空間向量的坐標運算同平面向量類似,具有類似的運算法則.一個向量在不同空間的表達方式不一樣,實質沒有改變.因而運算的方法和運算規律結論沒變。如向量的數量積ab=|a||b|cos在二維、三維都是這樣定義的,不同點僅是向量在不同空間具有不同表達形式.空間兩向量平行時同平面兩向量平行時表達式不一樣,但實質是一致的,即對應坐標成比例,且比值為 ,對于中點公式要熟記。

對本講內容的考查主要分以下三類:

1.以選擇、填空題型考查本章的基本概念和性質

此類題一般難度不大,用以解決有關長度、夾角、垂直、判斷多邊形形狀等問題。

2.向量在空間中的應用

在空間坐標系下,通過向量的坐標的表示,運用計算的方法研究三維空間幾何圖形的性質。

在復習過程中,抓住源于課本,高于課本的指導方針。本講考題大多數是課本的變式題,即源于課本。因此,掌握雙基、精通課本是本章關鍵。

高三數學學生教案(精選篇4)

教學目標

知識目標等差數列定義等差數列通項公式

能力目標掌握等差數列定義等差數列通項公式

情感目標培養學生的觀察、推理、歸納能力

教學重難點

教學重點等差數列的概念的理解與掌握

等差數列通項公式推導及應用教學難點等差數列“等差”的理解、把握和應用

教學過程

由_《紅高粱》主題曲“酒神曲”引入等差數列定義

問題:多媒體演示,觀察————發現?

一、等差數列定義:

一般地,如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列。這個常數叫做等差數列的公差,通常用字母d表示。

例1:觀察下面數列是否是等差數列:…。

二、等差數列通項公式:

已知等差數列{an}的首項是a1,公差是d。

則由定義可得:

a2—a1=d

a3—a2=d

a4—a3=d

……

an—an—1=d

即可得:

an=a1+(n—1)d

例2已知等差數列的首項a1是3,公差d是2,求它的通項公式。

分析:知道a1,d,求an。代入通項公式

解:∵a1=3,d=2

∴an=a1+(n—1)d

=3+(n—1)×2

=2n+1

例3求等差數列10,8,6,4…的第20項。

分析:根據a1=10,d=—2,先求出通項公式an,再求出a20

解:∵a1=10,d=8—10=—2,n=20

由an=a1+(n—1)d得

∴a20=a1+(n—1)d

=10+(20—1)×(—2)

=—28

例4:在等差數列{an}中,已知a6=12,a18=36,求通項an。

分析:此題已知a6=12,n=6;a18=36,n=18分別代入通項公式an=a1+(n—1)d中,可得兩個方程,都含a1與d兩個未知數組成方程組,可解出a1與d。

解:由題意可得

a1+5d=12

a1+17d=36

∴d=2a1=2

∴an=2+(n—1)×2=2n

練習

1、判斷下列數列是否為等差數列:

①23,25,26,27,28,29,30;

②0,0,0,0,0,0,…

③52,50,48,46,44,42,40,35;

④—1,—8,—15,—22,—29;

答案:①不是②是①不是②是

2、等差數列{an}的前三項依次為a—6,—3a—5,—10a—1,則a等于()

A、1B、—1C、—1/3D、5/11

提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)

3、在數列{an}中a1=1,an=an+1+4,則a10=。

提示:d=an+1—an=—4

教師繼續提出問題

已知數列{an}前n項和為……

作業

P116習題3。21,2

高三數學學生教案(精選篇5)

一、教學內容分析

本小節是普通高中課程標準實驗教科書數學5(必修)第三章第3小節,主要內容是利用平面區域體現二元一次不等式(組)的解集;借助圖解法解決在線性約束條件下的二元線性目標函數的最值與解問題;運用線性規劃知識解決一些簡單的實際問題(如資源利用,人力調配,生產安排等)。突出體現了優化思想,與數形結合的思想。本小節是利用數學知識解決實際問題的典例,它體現了數學源于生活而用于生活的特性。

二、學生學習情況分析

本小節內容建立在學生學習了一元不等式(組)及其應用、直線與方程的基礎之上,學生對于將實際問題轉化為數學問題,數形結合思想有所了解.但從數學知識上看學生對于涉及多個已知數據、多個字母變量,多個不等關系的知識接觸尚少,從數學方法上看,學生對于圖解法還缺少認識,對數形結合的思想方法的掌握還需時日,而這些都將成為學生學習中的難點。

三、設計思想

以問題為載體,以學生為主體,以探究歸納為主要手段,以問題解決為目的,以多媒體為重要工具,激發學生的動手、觀察、思考、猜想探究的興趣。注重引導學生充分體驗“從實際問題到數學問題”的數學建模過程,體會“從具體到一般”的抽象思維過程,從“特殊到一般”的探究新知的過程;提高學生應用“數形結合”的思想方法解題的能力;培養學生的分析問題、解決問題的能力。

四、教學目標

1、知識與技能:了解二元一次不等式(組)的概念,掌握用平面區域刻畫二元一次

不等式(組)的方法;了解線性規劃的意義,了解線性約束條件、線性目標函數、

可行解、可行域和解等概念;理解線性規劃問題的圖解法;會利用圖解法求線性目標函數的最值與相應解;

2、過程與方法:從實際問題中抽象出簡單的線性規劃問題,提高學生的數學建模能力;

在探究的過程中讓學生體驗到數學活動中充滿著探索與創造,培養學生的數據分析能力、化歸能力、探索能力、合情推理能力;

3、情態與價值:在應用圖解法解題的過程中,培養學生的化歸能力與運用數形結合思想的能力;體會線性規劃的基本思想,培養學生的數學應用意識;體驗數學來源于生活而服務于生活的特性.

五、教學重點和難點

重點:從實際問題中抽象出二元一次不等式(組),用平面區域刻畫二元一次不等式組的解集及用圖解法解簡單的二元線性規劃問題;

難點:二元一次不等式所表示的平面區域的探究,從實際情境中抽象出數學問題的過

程探究,簡單的二元線性規劃問題的圖解法的探究.

六、教學基本流程

第一課時,利用生動的情景激起學生求知的__,從中抽象出數學問題,引出二元一次不等式(組)的基本概念,并為線性規劃問題的引出埋下伏筆.通過學生的自主探究,分類討論,大膽猜想,細心求證,得出二元一次不等式所表示的平面區域,從而突破本小節的第一個難點;通過例1、例2的討論與求解引導學生歸納出畫二元一次不等式(組)所表示的平面區域的具體解答步驟(直線定界,特殊點定域);最后通過練習加以鞏固。

第二課時,重現引例,在學生的回顧、探討中解決引例中的可用方案問題,并由此歸納總結出從實際問題中抽象出數學問題的基本過程:理清數據關系(列表)→設立決策變量→建立數學關系式→畫出平面區域.讓學生對例3、例4進行分析與討論進一步完善這一過程,突破本小節的第二個難點。

第三課時,設計情景,借助前兩個課時所學,設立決策變量,畫出平面區域并引出新的問題,從中引出線性規劃的相關概念,并讓學生思考探究,利用特殊值進行猜測,找到方案;再引導學生對目標函數進行變形轉化,利用直線的圖象對上述問題進行幾何探究,把最值問題轉化為截距問題,通過幾何方法對引例做出完美的解答;回顧整個探究過程,讓學生在討論中達成共識,總結出簡單線性規劃問題的圖解法的基本步驟.通過例5的展示讓學生從動態的角度感受圖解法.最后再現情景1,并對之作出完美的解答。

第四課時,給出新的引例,讓學生體會到線性規劃問題的普遍性.讓學生討論分析,對引例給出解答,并綜合前三個課時的教學內容,連綴成線,總結出簡單線性規劃的應用性問題的一般解答步驟,通過例6,例7的分析與展示進一步完善這一過程.總結線性規劃的應用性問題的幾種類型,讓學生更深入的體會到優化理論,更好的認識到數學來源于生活而運用于生活的特點。

高三數學學生教案(精選篇6)

教學目標:

1、知識與技能:

1)了解導數概念的實際背景;

2)理解導數的概念、掌握簡單函數導數符號表示和基本導數求解方法;

3)理解導數的幾何意義;

4)能進行簡單的導數四則運算。

2、過程與方法:

先理解導數概念背景,培養觀察問題的能力;再掌握定義和幾何意義,培養轉化問題的能力;最后求切線方程及運算,培養解決問題的能力。

3、情態及價值觀;

讓學生感受數學與生活之間的聯系,體會數學的美,激發學生學習興趣與主動性。

教學重點:

1、導數的求解方法和過程;

2、導數公式及運算法則的熟練運用。

教學難點:

1、導數概念及其幾何意義的理解;

2、數形結合思想的靈活運用。

教學課型:復習課(高三一輪)

教學課時:約1課時

高三數學學生教案(精選篇7)

一、指導思想與理論依據

數學是一門培養人的思維,發展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節課我以建構主義的“創設問題情境——提出數學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現的更加完美。

二、教材分析

三角函數的誘導公式是普通高中課程標準實驗教科書(人教A版)數學必修四,第一章第三節的內容,其主要內容是三角函數誘導公式中的公式(二)至公式(六).本節是第一課時,教學內容為公式(二)、(三)、(四).教材要求通過學生在已經掌握的任意角的三角函數的定義和誘導公式(一)的基礎上,利用對稱思想發現任意角與、、終邊的對稱關系,發現他們與單位圓的交點坐標之間關系,進而發現他們的三角函數值的關系,即發現、掌握、應用三角函數的誘導公式公式(二)、(三)、(四).同時教材滲透了轉化與化歸等數學思想方法,為培養學生養成良好的學習習慣提出了要求.為此本節內容在三角函數中占有非常重要的地位.

三、學情分析

本節課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發現的教學方法應該能輕松的完成本節課的教學內容.

四、教學目標

(1).基礎知識目標:理解誘導公式的發現過程,掌握正弦、余弦、正切的誘導公式;

(2).能力訓練目標:能正確運用誘導公式求任意角的正弦、余弦、正切值,以及進行簡單的三角函數求值與化簡;

(3).創新素質目標:通過對公式的推導和運用,提高三角恒等變形的能力和滲透化歸、數形結合的數學思想,提高學生分析問題、解決問題的能力;

(4).個性品質目標:通過誘導公式的學習和應用,感受事物之間的普通聯系規律,運用化歸等數學思想方法,揭示事物的本質屬性,培養學生的唯物史觀.

五、教學重點和難點

1.教學重點

理解并掌握誘導公式.

2.教學難點

正確運用誘導公式,求三角函數值,化簡三角函數式.

六、教法學法以及預期效果分析

“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想方法,如何實現這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預期效果等三個方面做如下分析.

1.教法

數學教學是數學思維活動的教學,而不僅僅是數學活動的結果,數學學習的目的不僅僅是為了獲得數學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質.

在本節課的教學過程中,本人以學生為主題,以發現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環境,讓學生體味學習的快樂和成功的喜悅.

2.學法

“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生程度的消化知識,提高學習熱情是教者必須思考的問題.

在本節課的教學過程中,本人引導學生的學法為思考問題、共同探討、解決問題簡單應用、重現探索過程、練習鞏固。讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉化為主動的自主學習.

3.預期效果

本節課預期讓學生能正確理解誘導公式的發現、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題.

35419 主站蜘蛛池模板: 标准品网_标准品信息网_【中检计量】| 西安耀程造价培训机构_工程预算实训_广联达实作实操培训 | 众能联合-提供高空车_升降机_吊车_挖机等一站工程设备租赁 | 铝机箱_铝外壳加工_铝外壳厂家_CNC散热器加工-惠州市铂源五金制品有限公司 | 北京四合院出租,北京四合院出售,北京平房买卖 - 顺益兴四合院 | 网站建设-临朐爱采购-抖音运营-山东兆通网络科技 | 德州万泰装饰 - 万泰装饰装修设计软装家居馆 | 科昊仪器超纯水机系统-可成气相液氮罐-美菱超低温冰箱-西安昊兴生物科技有限公司 | 北京租车公司_汽车/客车/班车/大巴车租赁_商务会议/展会用车/旅游大巴出租_北京桐顺创业租车公司 | 列管冷凝器,刮板蒸发器,外盘管反应釜厂家-无锡曼旺化工设备有限公司 | 混合气体腐蚀试验箱_盐雾/硫化氢/气体腐蚀试验箱厂家-北京中科博达 | 户外健身路径_小区健身器材_室外健身器材厂家_价格-浩然体育 | 筛分机|振动筛分机|气流筛分机|筛分机厂家-新乡市大汉振动机械有限公司 | 北京网站建设-企业网站建设-建站公司-做网站-北京良言多米网络公司 | 日本东丽膜_反渗透膜_RO膜价格_超滤膜_纳滤膜-北京东丽阳光官网 日本细胞免疫疗法_肿瘤免疫治疗_NK细胞疗法 - 免疫密码 | 彼得逊采泥器-定深式采泥器-电动土壤采样器-土壤样品风干机-常州索奥仪器制造有限公司 | 1000帧高速摄像机|工业高速相机厂家|科天健光电技术 | 环氧树脂地坪_防静电地坪漆_环氧地坪漆涂料厂家-地壹涂料地坪漆 环球电气之家-中国专业电气电子产品行业服务网站! | 光泽度计_测量显微镜_苏州压力仪_苏州扭力板手维修-苏州日升精密仪器有限公司 | 防渗土工膜|污水处理防渗膜|垃圾填埋场防渗膜-泰安佳路通工程材料有限公司 | 水厂污泥地磅|污泥处理地磅厂家|地磅无人值守称重系统升级改造|地磅自动称重系统维修-河南成辉电子科技有限公司 | 济南网站建设|济南建网站|济南网站建设公司【济南腾飞网络】【荐】 | 齿辊分级破碎机,高低压压球机,立式双动力磨粉机-郑州长城冶金设备有限公司 | Jaeaiot捷易科技-英伟达AI显卡模组/GPU整机服务器供应商 | 雨燕360体育免费直播_雨燕360免费NBA直播_NBA篮球高清直播无插件-雨燕360体育直播 | ORP控制器_ORP电极价格-上优泰百科| 档案密集架,移动密集架,手摇式密集架,吉林档案密集架-厂家直销★价格公道★质量保证 | 【直乐】河北石家庄脊柱侧弯医院_治疗椎间盘突出哪家医院好_骨科脊柱外科专业医院_治疗抽动症/关节病骨伤权威医院|排行-直乐矫形中医医院 | 防爆电机-高压防爆电机-ybx4电动机厂家-河南省南洋防爆电机有限公司 | 高扬程排污泵_隔膜泵_磁力泵_节能自吸离心水泵厂家-【上海博洋】 | 伸缩器_伸缩接头_传力接头-巩义市润达管道设备制造有限公司 | LCD3D打印机|教育|桌面|光固化|FDM3D打印机|3D打印设备-广州造维科技有限公司 | 天津货架厂_穿梭车货架_重型仓储货架_阁楼货架定制-天津钢力仓储货架生产厂家_天津钢力智能仓储装备 | LOGO设计_品牌设计_VI设计 - 特创易 | 小型UV打印机-UV平板打印机-大型uv打印机-UV打印机源头厂家 |松普集团 | 湖南教师资格网-湖南教师资格证考试网| 动力配电箱-不锈钢配电箱-高压开关柜-重庆宇轩机电设备有限公司 聚天冬氨酸,亚氨基二琥珀酸四钠,PASP,IDS - 远联化工 | 招商帮-一站式网络营销服务|搜索营销推广|信息流推广|短视视频营销推广|互联网整合营销|网络推广代运营|招商帮企业招商好帮手 | 重庆监控_电子围栏设备安装公司_门禁停车场管理系统-劲浪科技公司 | 浙江寺庙设计-杭州寺院设计-宁波寺庙规划_汉匠 | 工业机械三维动画制作 环保设备原理三维演示动画 自动化装配产线三维动画制作公司-南京燃动数字 聚合氯化铝_喷雾聚氯化铝_聚合氯化铝铁厂家_郑州亿升化工有限公司 |