小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數學教案 >

高考數學第一輪復習教案

時間: 沐欽 數學教案

高考數學第一輪復習教案都有哪些?新的數學方法和概念,常常比解決數學問題本身更重要。下面是小編為大家帶來的高考數學第一輪復習教案七篇,希望大家能夠喜歡!

高考數學第一輪復習教案

高考數學第一輪復習教案篇1

教學目標

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數的意義,能根據具體的問題,寫出符合要求的排列;

(3)掌握排列數公式,并能根據具體的問題,寫出符合要求的排列數;

(4)會分析與數字有關的排列問題,培養學生的抽象能力和邏輯思維能力;

(5)通過對排列應用問題的學習,讓學生通過對具體事例的觀察、歸納中找出規律,得出結論,以培養學生嚴謹的學習態度。

教學建議

一、知識結構

二、重點難點分析

本小節的重點是排列的定義、排列數及排列數的公式,并運用這個公式去解決有關排列數的應用問題.難點是導出排列數的公式和解有關排列的應用題.突破重點、難點的關鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應用問題當中.

從n個不同元素中任取m(m≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取m個元素的一個排列.因此,兩個相同排列,當且僅當他們的元素完全相同,并且元素的排列順序也完全相同.排列數是指從n個不同元素中任取m(m≤n)個元素的所有不同排列的種數,只要弄清相同排列、不同排列,才有可能計算相應的排列數.排列與排列數是兩個概念,前者是具有m個元素的排列,后者是這種排列的不同種數.從集合的角度看,從n個元素的有限集中取出m個組成的有序集,相當于一個排列,而這種有序集的個數,就是相應的排列數.

公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解.要重點分析好 的推導.

排列的應用題是本節教材的難點,通過本節例題的分析,應注意培養學生解決應用問題的能力.

在分析應用題的解法時,教材上先畫出框圖,然后分析逐次填入時的種數,這樣解釋比較直觀,教學上要充分利用,要求學生作題時也應盡量采用.

在教學排列應用題時,開始應要求學生寫解法要有簡要的文字說明,防止單純的只寫一個排列數,這樣可以培養學生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求.

三、教法建議

①在講解排列數的概念時,要注意區分“排列數”與“一個排列”這兩個概念.一個排列是指“從n個不同元素中,任取出m個元素,按照一定的順序擺成一排”,它不是一個數,而是具體的一件事;排列數是指“從n個不同元素中取出m個元素的所有排列的個數”,它是一個數.例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:

ab,ac,ba,bc,ca,cb,

其中每一種都叫一個排列,共有6種,而數字6就是排列數,符號 表示排列數.

②排列的定義中包含兩個基本內容,一是“取出元素”,二是“按一定順序排列”.

從定義知,只有當元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列.

在定義中“一定順序”就是說與位置有關,在實際問題中,要由具體問題的性質和條件來決定,這一點要特別注意,這也是與后面學習的組合的根本區別.

在排列的定義中 ,如果 有的書上叫選排列,如果 ,此時叫全排列.

要特別注意,不加特殊說明,本章不研究重復排列問題.

③關于排列數公式的推導的教學.公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解.課本上用的是不完全歸納法,先推導 , ,…,再推廣到 ,這樣由特殊到一般,由具體到抽象的講法,學生是不難理解的.

導出公式 后要分析這個公式的構成特點,以便幫助學生正確地記憶公式,防止學生在“n”、“m”比較復雜的時候把公式寫錯.這個公式的特點可見課本第229頁的一段話:“其中,公式右邊第一個因數是n,后面每個因數都比它前面一個因數少1,最后一個因數是 ,共m個因數相乘.”這實際是講三個特點:第一個因數是什么?最后一個因數是什么?一共有多少個連續的自然數相乘.

公式 是在引出全排列數公式 后,將排列數公式變形后得到的公式.對這個公式指出兩點:(1)在一般情況下,要計算具體的排列數的值,常用前一個公式,而要對含有字母的排列數的式子進行變形或作有關的論證,要用到這個公式,教材中第230頁例2就是用這個公式證明的問題;(2)為使這個公式在 時也能成立,規定 ,如同 時 一樣,是一種規定,因此,不能按階乘數的原意作解釋.

④建議應充分利用樹形圖對問題進行分析,這樣比較直觀,便于理解.

⑤學生在開始做排列應用題的作業時,應要求他們寫出解法的簡要說明,而不能只列出算式、得出答數,這樣有利于學生得更加扎實.隨著學生解題熟練程度的提高,可以逐步降低這種要求.

高考數學第一輪復習教案篇2

教學分析

本節課的研究是對初中不等式學習的延續和拓展,也是實數理論的進一步發展.在本節課的學習過程中,將讓學生回憶實數的基本理論,并能用實數的基本理論來比較兩個代數式的大小.

通過本節課的學習, 讓學生從一系列的具體問題情境中,感受到在現實世界和日常生活中存在著大量的不等關系,并充分認識不等關系的存在與應用.對不等關系的相關素材,用數學觀點進行觀察、歸納、抽象,完成量與量的比較過程.即能用不等式或不等式組把這些不等關系表示出來.在本節課的學習過程中還安排了一些簡單的、學生易于處理的問題,其用意在于讓學生注意對數學知識和方法的應用,同時也能激發學生的學習興趣,并由衷地產生用數學工具研究不等關系的愿望.根據本節課的教學內容,應用再現、回憶得出實數的基本理論,并能用實數的基本理論來比較兩個代數式的大小.

在本節教學中,教師可讓學生閱讀書中實例,充分利用數軸這一簡單的數形結合工具,直接用實數與數軸上 點的一一對應關系,從數與形兩方面建立實數的順序關系.要在溫故知新的基礎上提高學生對不等式的認識.

三維目標

1.在學生了解不等式產生的實際背景下,利用數軸回憶實數的基本理論,理解實數的大小關系,理解實數大小與數軸上對應點位置間的關系.

2.會用作差法判斷實數與代數式的大小,會用配方法判斷二次式的大小和范圍.

3.通過溫故知新,提高學生對不等式的認識,激發學生的學習興趣,體會數學的奧秘與數學的結構美.

重點難點

教學重點:比較實數與代數式的大小關系,判斷二次式的大小和范圍.

教學難點:準確比較兩個代數式的大小.

課時安排

1課時

教學過程

導入新課

思路1.(章頭圖導入)通過多媒體展示衛星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學生帶入“橫看成嶺側成峰,遠近高低各不同”的大自然和浩瀚的宇宙中,使學生在具體情境中感受到不等關系在現實世界和日常生活中是大量存在的,由此產生用數學研究不等關系的強烈愿望,自然地引入新課.

思路2.(情境導入)列舉出學生身體的高矮、身體的輕重、距離學校路程的遠近、百米賽跑的時間、數學成績的多少等現實生活中學生身邊熟悉的事例,描述出某種客觀事物在數量上存在的不等關系.這些不等關系怎樣在數學上表示出來呢?讓學生自由地展開聯想,教師組織不等關系的相關素材,讓學 生用數學的觀點進行觀察、歸納,使學生在具體情境中感受到不等關系與相等關系一樣,在現實世界和日常生活中大量存在著.這樣學生會由衷地產生用數學工具研究不等關系的愿望,從而進入進一步的探究學習,由此引入新課.

推進新課

新知探究

提出問題

?1?回憶初中學過的不等式,讓學生說出“不等關系”與“不等式”的異同.怎樣利用不等式研究及表示不等關系?

?2?在現實世界和日常生活中,既有相等關系,又存在著大量的不等關系.你能舉出一些實際例子嗎?

?3?數軸上的任意兩 點與對應的兩實數具有怎樣的關系?

?4?任意兩個實數具有怎樣的關系?用邏輯用語怎樣表達這個關系?

活動:教師引導學生回憶初中學過的不等式概念,使學生明確“不等關系”與“不等式”的異同.不等關系強調的是關系,可用符號“>”“<”“≠”“≥”“≤”表示,而不等式則是表示兩者的不等關系,可用“a>b”“a

教師與學生一起舉出我們日常生活中不等關系的例子,可讓學生充分合作討論,使學生感受到現實世界中存在著大量的不等關系.在學生了解了一些不等式產生的實際背景的前提下,進一步學習不等式的有關內容.

實例1:某天的天氣預報報道,氣溫32 ℃,最低氣溫26 ℃.

實例2:對于數軸上任意不同的兩點A、B,若點A在點B的左邊,則xA

實例3:若一個數是非負數,則這個數大于或等于零.

實例4:兩點之間線段最短.

實例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.

實例6:限速40 km/h的路標指示司機在前方路段行駛時,應使汽車的速度v不超過40 km/h.

實例7:某品牌酸奶的質量檢查規定,酸奶中脂肪的含量f應不少于2.5%,蛋白質的含量p應不少于2.3%.

教師進一步點撥:能夠發現身 邊的數學當然很好,這說明同學們已經走進了數學這門學科,但作為我們研究數學的人來說,能用數學的眼光、數學的觀點進行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個研究數學的人必須要做的,那么,我們可以用我們所研究過的什么知識來表示這些不等關系呢?學生很容易想到,用不等式或不等式組來表示這些不等關系.那么不等式就是用不等號將兩個代數式連結起來所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.

教師引導學生將上述的7個實例用不等式表示出來.實例1,若用t表示某天的氣溫,則26 ℃≤t≤32 ℃.實例3,若用x表示一個非負數,則x≥0.實例5,|AC|+|BC|>|AB|,如下圖.

|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.

|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交換被減數與減數的位置也可以.

實例6,若用v表示速度,則v≤40 km/h.實例7,f≥2.5%,p≥2.3%.對于實例7,教師應點撥學生注意酸奶中的脂肪含量與蛋白質含量需同時滿足,避免寫成f≥2.5%或p≥2.3%,這是不對的.但可表示為f≥2.5%且p≥2.3%.

對以上問題,教師讓學生輪流回答,再用投影儀給出課本上的兩個結論.

討論結果:

(1)(2)略;(3)數軸上任意兩點中,右邊點對應的實數比左邊點對應的實數大.

(4)對于任意兩個實數a和b,在a=b,a>b,a應用示例

例1(教材本節例1和例2)

活動:通過兩例讓學生熟悉兩個代數式的大小比較的基本方法:作差,配方法.

點評:本節兩例的求解,是借助因式分解和應用配方法完成的,這兩種方法是代數式變形時經常使用的方法,應讓學生熟練掌握.

變式訓練

1.若f(x)=3x2-x+1,g(x)=2x2+x-1,則f(x)與g(x)的大小關系是(  )

A.f(x)>g(x)       B.f(x)=g(x)

C.f(x)

答案:A

解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).

2.已知x≠0,比較(x2+1)2與x4+x2+1的大小.

解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.

∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.

例2比較下列各組數的大小(a≠b).

(1)a+b2與21a+1b(a>0,b>0);

(2)a4-b4與4a3(a-b).

活動:比較兩個實數的大小,常根據實數的運算性質與大小順序的關系,歸結為判斷它們的差的符號來確定.本例可由學生獨立完成,但要點撥學生在最后的符號判斷說理中,要理由充分,不可忽略這點.

解:(1)a+b2-21a+1b=a+b2-2aba+b=?a+b?2-4ab2?a+b?=?a-b?22?a+b?.

∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴?a-b?22?a+b?>0,即a+b2>21a+1b.

(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)

=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]

=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].

∵2a2+(a+b)2≥0(當且僅當a=b=0時取等號),

又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.

∴a4-b4<4a3(a-b).

點評:比較大小常用作差法,一般步驟是作差——變形——判斷符號.變形常用的手段是分解因式和配方,前者將“差”變為“積”,后者將“差”化為一個或幾個完全平方式的“和”,也可兩者并用.

變式訓練

已知x>y,且y≠0,比較xy與1的大小.

活動:要比較任意兩個數或式的大小關系,只需確定它們的差與0的大小關系.

解:xy-1=x-yy.

∵x>y,∴x-y>0.

當y<0時,x-yy<0,即xy-1<0. ∴xy<1;

當y>0時,x-yy>0,即xy-1>0.∴xy>1.

點評:當字母y取不同范圍的值時,差xy-1的正負情況不同,所以需對y分類討論.

例3建筑設計規定,民用住宅的窗戶面積必須小于地板面積.但按采光標準,窗戶面積與地板面積的比值應不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積, 住宅的采光條件是變好了,還是變壞了?請說明理由.

活動:解題關鍵首先是把文 字語言轉換成數學語言,然后比較前后比值的大小,采用作差法.

解:設住宅窗戶面積和地板面積分別為a、b,同時增加的面積為m,根據問題的要求a

由于a+mb+m-ab=m?b-a?b?b+m?>0,于是a+mb+m>ab.又ab≥10%,

因此a+mb+m>ab≥10%.

所以同時增加相等的窗戶面積和地板面積后,住宅的采光條件變好了.

點評:一般地,設a、b為正實數,且a

變式訓練

已知a1,a2,…為各項都大于零的等比數列,公比q≠1,則(  )

A.a1+a8>a4+a5        B.a1+a8

C.a1+a8=a4+a5 D.a1+a8與a4+a5大小不確定

答案:A

解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4

=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).

∵{an}各項都大于零,∴q>0,即1+q>0.

又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.

課堂小結

1.教師與學生共同完成本節課的小結,從實數的基本性質的回顧,到兩個實數大小的比較方法;從例題的活動探究點評,到緊跟著的變式訓練,讓學生去繁就簡,聯系舊知,將本節課所學納入已有的知識體系中.

2.教師畫龍點睛,點撥利用實數的基本性質對兩個實數大小比較時易錯的地方.鼓勵學有余力的學生對節末的思考與討論在課后作進一步的探究.

作業

習題3—1A組3;習題3—1B組2.

設計感想

1.本節設計關注了教學方法 的優化.經驗告訴我們:課堂上應根據具體情況,選擇、設計最能體現教學規律的教學 過程,不宜長期使用一種固定的教學方法,或原封不動地照搬一種實驗模式.各種教學方法中,沒有一種能很好地適應一切教學活動.也就是說,世上沒有萬能的教學方法.針對個性,靈活變化,因材施教才是成功的施教靈藥.

2.本節設計注重了難度控制.不等式內容應用面廣,可以說與其他所有內容都有交匯,歷 來是高考的重點與熱點.作為本章開始,可以適當開闊一些,算作拋磚引玉,讓學生有個自由探究聯想的平臺,但不宜過多向外拓展,以免對學生產生負面影響.

3.本節設計關注了學生思維能力的訓練.訓練學生的思維能力,提升思維的品質,是數學教師直面的重要課題,也是中學數學教育的主線.采用一題多解有助于思維的發散性及靈活性,克服思維的僵化.變式訓練教學又可以拓展學生思維視野的廣度,解題后的點撥反思有助于學生思維批判性品質的提升.

高考數學第一輪復習教案篇3

一、教學目標

(一)知識與技能

1、進一步熟練掌握求動點軌跡方程的基本方法。

2、體會數學實驗的直觀性、有效性,提高幾何畫板的操作能力。

(二)過程與方法

1、培養學生觀察能力、抽象概括能力及創新能力。

2、體會感性到理性、形象到抽象的思維過程。

3、強化類比、聯想的方法,領會方程、數形結合等思想。

(三)情感態度價值觀

1、感受動點軌跡的動態美、和諧美、對稱美

2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發提出問題和解決問題的勇氣

二、教學重點與難點

教學重點:運用類比、聯想的方法探究不同條件下的軌跡

教學難點:圖形、文字、符號三種語言之間的過渡

三、、教學方法和手段

【教學方法】觀察發現、啟發引導、合作探究相結合的教學方法。啟發引導學生積極思考并對學生的思維進行調控,幫助學生優化思維過程,在此基礎上,提供給學生交流的機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數學思維。

【教學手段】利用網絡教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現知識產生的過程,通過多媒體動態演示,突破學生在舊知和新知形成過程中的障礙(靜態到動態);另一方面:節省了時間,提高了課堂教學的效率,激發了學生學習的興趣。

【教學模式】重點中學實施素質教育的課堂模式"創設情境、激發情感、主動發現、主動發展"。

四、教學過程

1、創設情景,引入課題

生活中我們四處可見軌跡曲線的影子

【演示】這是美麗的城市夜景圖

【演示】許多人認為天體運行的軌跡都是圓錐曲線,

研究表明,天體數目越多,軌跡種類也越多

【演示】建筑中也有許多美麗的軌跡曲線

設計意圖:讓學生感受數學就在我們身邊,感受軌跡

曲線的動態美、和諧美、對稱美,激發學習興趣。

2、激發情感,引導探索

靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優美的曲線飛出去呢?我們把這個問題轉化為數學問題就是新教材高二上冊88頁20題,也就是這里的例題1;

例1、線段長為,兩個端點和分別在軸和軸上滑動,求線段的中點的軌跡方程。

第一步:讓學生借助畫板動手驗證軌跡

第二步:要求學生求出軌跡方程

法一:設,則

由得,

化簡得

法二:設,由得

化簡得

法三:設, 由點到定點的距離等于定長,

根據圓的定義得;

第三步:復習求軌跡方程的一般步驟

(1)建立適當的坐標系

(2)設動點的坐標M(x,y)

(3)列出動點相關的約束條件p(M)

(4)將其坐標化并化簡,f(x,y)=0

(5)證明

其中,最關鍵的一步是根據題意尋求等量關系,并把等量關系坐標化

設計意圖:在這里我借助幾何畫板的動畫功能,先讓學生直觀地、形象地、動態地感受動點的軌跡是圓,接著要求學生求出軌跡方程,最后師生共同回顧求軌跡方程的一般步驟,達到熟練掌握直譯法、定義法,體會從感性到理性、從形象到抽象的思維過程。

3、主動發現、主動發展

由上述例1可知,如果人站在梯子中間,則他會劃了一段優美的圓弧飛出去。學生很自然就會想,如果人不是站在中間,而是隨意站,結果會怎樣呢?讓學生動手探究M不是中點時的軌跡。

第一步:利用網絡平臺展示學生得到的軌跡(教師有意識的整合在一起)

設計意圖:借助數學實驗,把原本屬于教師行為的設疑激趣還原于學生,讓學生自己在實踐過程中發現疑問,更容易激發學生學習的熱情,促使他們主動學習。

第二步:分解動作,向學生提出3個問題:

問題1:當M位置不同時,線段BM與MA的大小關系如何?

問題2、體現BM與MA大小關系還有什么常見的形式?

問題3、你能類比例1把這種數量關系表達出來嗎?

第三步:展示學生歸納、概括出來的數學問題

1、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。

2、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。

3、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。(說明是什么軌跡)

第四步:課堂完成學生歸納出來的問題1,問題2和3課后完成

4、合作探究、實現創新

改變A、點的運動方式,同樣考慮中點的軌跡,教師進行適當的指導(這里固定A點,運動B點)

學生主要列出了以下幾種運動方式:圓、橢圓、雙曲線、拋物線,并且得出了一些相應的軌跡。

5、布置作業、實現拓展

1、把上述同學們探究得到的軌跡圖形用文字、符號描述出來,(仿造例1),并求出軌跡方程。

2、已知A(4,0),點B是圓上一動點,AB中垂線與直線OB相交于點P,求點P的軌跡方程。

3、已知A(2,0),點B是圓上一動點,AB中垂線與直線OB相交于點P,求點P的軌跡方程。

4若把上述問題中垂線改為一般的垂線與直線OB相交于點P,請同學們利用畫板驗證點P 的軌跡。

以下是學生課后探究得到的一些軌跡圖形

課后有學生問,如果X軸和Y軸不垂直會有什么結果?定長的線段在上面滑動怎么做出來?

可以說,學生的這些問題我之前并沒有想過,給了我很大的觸動,同時也促使我更進一步去研究幾何畫板,提高自己的能力。在這里,我體會到了教師不再只是一根根蠟燭,更像是一盞盞明燈,在照亮別人的同時也照亮自己。

以下是X軸和Y軸不垂直時的軌跡圖形

五、教學設計說明:

(一)、教材

《平面動點的軌跡》是高二一節探究課,軌跡問題具有深厚的生活背景,求平面動點的軌跡方程涉及集合、方程、三角、平面幾何等基礎知識,其中滲透著運動與變化、方程的思想、數形結合的思想等,是中學數學的重要內容,也是歷年高考數學考查的重點之一。

(二)、校情、學情

校情:我校是一所省一級達標校,省級示范性高中,學校的硬件設施比較完善,每間教室都具備多媒體教學的功能,另外有兩間網絡教室和一個學生電子閱室,并且能隨時上網。

學情:大部分學生家里都有電腦,而且能隨時上網。對學生進行了幾何畫板基本操作的培訓,學生能較快的畫出圓、橢圓、雙曲線、拋物線等基本的圓錐曲線。學生對求軌跡方程的基本方法有了一定的掌握,但是對文字、圖形、符號三種語言之間的轉換還存在很大的差異,在合作交流意識方面,發展不均衡,有待加強。

(三)學法

觀察、實驗、交流、合作、類比、聯想、歸納、總結

(四)、教學過程

1、創設情景,引入課題

2、激發情感,引導探索

由梯子滑落問題抽象、概括出數學問題

第一步:讓學生借助畫板動手驗證軌跡

第二步:要求學生求出軌跡方程

第三步:復習求軌跡方程的一般步驟

3、主動發現、主動發展

探究M不是中點時的軌跡

第一步:利用網絡平臺展示學生得到的軌跡

第二步:分解動作,向學生提出3個問題:

第三步:展示學生歸納、概括出來的數學問題

4、合作探究、實現創新

改變A、點的運動方式,同樣考慮中點的軌跡,教師進行適當的指導(這里固定A點,運動B點)

學生主要列出了以下幾種運動方式:圓、橢圓、雙曲線、拋物線,并且得出了一些相應的軌跡。

5、布置作業、實現拓展

(五)、教學特色:

借助網絡、多媒體教學平臺,讓學生自己動手實驗,發現問題并解決問題,同時把學生的學習情況及時的展現出來,做到大家一起學習,一起評價的效果。同時節省了時間,提高了課堂效率。

整個教學過程,體現了四個統一:既學習書本知識與投身實踐的統一、書本學習與現代信息技術學習的統一、書本知識與資源拓展的統一、課堂學習與課外實踐的統一。

本節課學生精神飽滿、興趣濃厚、合作積極,與我保持良好的互動,還不時產生一些爭執,給我提出了一些新的問題,折射出我不足的方面,促進了我的進步與提高,師生間的教與學就像一面鏡子,互相折射,共同進步。

高考數學第一輪復習教案篇4

一、教學過程

1.復習

反函數的概念、反函數求法、互為反函數的函數定義域值域的關系。

求出函數y=x3的反函數。

2.新課

先讓學生用幾何畫板畫出y=x3的圖象,學生紛紛動手,很快畫出了函數的圖象。有部分學生發出了“咦”的一聲,因為他們得到了如下的圖象:

教師在畫出上述圖象的學生中選定生1,將他的屏幕內容通過教學系統放到其他同學的屏幕上,很快有學生作出反應。

生2:這是y=x3的反函數y=的圖象。

師:對,但是怎么會得到這個圖象,請大家討論。

(學生展開討論,但找不出原因。)

師:我們請生1再給大家演示一下,大家幫他找找原因。

(生1將他的制作過程重新重復了一次。)

生3:問題出在他選擇的次序不對。

師:哪個次序?

生3:作點B前,選擇xA和xA3為B的坐標時,他先選擇xA3,后選擇xA,作出來的點的坐標為(xA3,xA),而不是(xA,xA3)。

師:是這樣嗎?我們請生1再做一次。

(這次生1在做的過程當中,按xA、xA3的次序選擇,果然得到函數y=x3的圖象。)

師:看來問題確實是出在這個地方,那么請同學再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數y=的圖象呢?

(學生再次陷入思考,一會兒有學生舉手。)

師:我們請生4來告訴大家。

生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標x與縱坐標y交換,而y=x3的反函數也正好是將x與y交換。

師:完全正確。下面我們進一步研究y=x3的圖象及其反函數y=的圖象的關系,同學們能不能看出這兩個函數的圖象有什么樣的關系?

(多數學生回答可由y=x3的圖象得到y=的圖象,于是教師進一步追問。)

師:怎么由y=x3的圖象得到y=的圖象?

生5:將y=x3的圖象上點的橫坐標與縱坐標交換,可得到y=的圖象。

師:將橫坐標與縱坐標互換?怎么換?

(學生一時未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進一步明確。)

師:我其實是想問大家這兩個函數的圖象有沒有對稱關系,有的話,是什么樣的對稱關系?

(學生重新開始觀察這兩個函數的圖象,一會兒有學生舉手。)

生6:我發現這兩個圖象應是關于某條直線對稱。

師:能說說是關于哪條直線對稱嗎?

生6:我還沒找出來。

(接下來,教師引導學生利用幾何畫板找出兩函數圖象的對稱軸,畫出如下圖形,如圖2所示:)

學生通過移動點A(點B、C隨之移動)后發現,BC的中點M在同一條直線上,這條直線就是兩函數圖象的對稱軸,在追蹤M點后,發現中點的軌跡是直線y=x。

生7:y=x3的圖象及其反函數y=的圖象關于直線y=x對稱。

師:這個結論有一般性嗎?其他函數及其反函數的圖象,也有這種對稱關系嗎?請同學們用其他函數來試一試。

(學生紛紛畫出其他函數與其反函數的圖象進行驗證,最后大家一致得出結論:函數及其反函數的圖象關于直線y=x對稱。)

教師巡視全班時已經發現這個問題,將這個圖象傳給全班學生后,幾乎所有人都看出了問題所在:圖中函數y=x2(x∈R)沒有反函數,②也不是函數的圖象。

最后教師與學生一起總結:

點(x,y)與點(y,x)關于直線y=x對稱;

函數及其反函數的圖象關于直線y=x對稱。

二、反思與點評

1.在開學初,我就教學幾何畫板4。0的用法,在教函數圖象畫法的過程當中,發現學生根據選定坐標作點時,不太注意選擇橫坐標與縱坐標的順序,本課設計起源于此。雖然幾何畫板4。04中,能直接根據函數解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質,所以本節課教學中,我有意選擇了幾何畫板4。0進行教學。

2.荷蘭數學教育家弗賴登塔爾認為,數學學習過程當中,可借助于生動直觀的形象來引導人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學生正確理解比較抽象的概念。

計算機作為一種現代信息技術工具,在直觀化方面有很強的表現能力,如在函數的圖象、圖形變換等方面,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,但不能達到更好地理解抽象概念,促進學生思維的目的的話,這樣的教學中,計算機最多只是一種普通的直觀工具而已。

在本節課的教學中,計算機更多的是作為學生探索發現的工具,學生不但發現了函數與其反函數圖象間的對稱關系,而且在更深層次上理解了反函數的概念,對反函數的存在性、反函數的求法等方面也有了更深刻的理解。

當前計算機用于中學數學的主要形式還是以輔助為主,更多的是把計算機作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發展方向應是:將計算機作為學生的認知工具,讓學生通過計算機發現探索,甚至利用計算機來做數學,在此過程當中更好地理解數學概念,促進數學思維,發展數學創新能力。

3.在引出兩個函數圖象對稱關系的時候,問題設計不甚妥當,本來是想要學生回答兩個函數圖象對稱的關系,但學生誤以為是問如何由y=x3的圖象得到y=的圖象,以致將學生引入歧途。這樣的問題在今后的教學中是必須力求避免的。

高考數學第一輪復習教案篇5

一、教材

《直線與圓的位置關系》是高中人教版必修2第四章第二節的內容,直線和圓的位置關系是本章的重點內容之一。從知識體系上看,它既是點與圓的位置關系的延續與提高,又是學習切線的判定定理、圓與圓的位置關系的基礎。從數學思想方法層面上看它運用運動變化的觀點揭示了知識的發生過程以及相關知識間的內在聯系,滲透了數形結合、分類討論、類比、化歸等數學思想方法,有助于提高學生的思維品質。

二、學情

學生初中已經接觸過直線與圓相交、相切、相離的定義和判定;且在上節的學習過程中掌握了點的坐標、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標法研究點與圓的位置關系的基礎;具有一定的數形結合解題思想的基礎。

三、教學目標

(一)知識與技能目標

能夠準確用圖形表示出直線與圓的三種位置關系;可以利用聯立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關系。

(二)過程與方法目標

經歷操作、觀察、探索、總結直線與圓的位置關系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。

(三)情感態度價值觀目標

激發求知欲和學習興趣,鍛煉積極探索、發現新知識、總結規律的能力,解題時養成歸納總結的良好習慣。

四、教學重難點

(一)重點

用解析法研究直線與圓的位置關系。

(二)難點

體會用解析法解決問題的數學思想。

五、教學方法

根據本節課教材內容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術工具,以幾何畫板為平臺,通過圖形的動態演示,變抽象為直觀,為學生的數學探究與數學思維提供支持.在教學中采用小組合作學習的方式,這樣可以為不同認知基礎的學生提供學習機會,同時有利于發揮各層次學生的作用,教師始終堅持啟發式教學原則,設計一系列問題串,以引導學生的數學思維活動。

六、教學過程

(一)導入新課

教師借助多媒體創設泰坦尼克號的情景,并從中抽象出數學模型:已知冰山的分布是一個半徑為r的圓形區域,圓心位于輪船正西的l處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?

教師引導學生回顧初中已經學習的直線與圓的位置關系,將所想到的航行路線轉化成數學簡圖,即相交、相切、相離。

設計意圖:在已有的知識基礎上,提出新的問題,有利于保持學生知識結構的連續性,同時開闊視野,激發學生的學習興趣。

(二)新課教學——探究新知

教師提問如何判斷直線與圓的位置關系,學生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學所想到的思路。在整個交流討論中,教師既要有對正確認識的贊賞,又要有對錯誤見解的分析及對該學生的鼓勵。

判斷方法:

(1)定義法:看直線與圓公共點個數

即研究方程組解的個數,具體做法是聯立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關系。

(2)比較法:圓心到直線的距離d與圓的半徑r做比較,

(三)合作探究——深化新知

教師進一步拋出疑問,對比兩種方法,由學生觀察實踐發現,兩種方法本質相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎的題目,學生解答,總結思路。

已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關系?

讓學生自主探索,討論交流,并闡述自己的解題思路。

當已知了直線與圓的方程之后,圓心坐標和半徑r易得到,問題的關鍵是如何得到圓心到直線的距離d,他的本質是點到直線的'距離,便可以直接利用點到直線的距離公式求d。類比前面所學利用直線方程求兩直線交點的方法,聯立直線與圓的方程,組成方程組,通過方程組解得個數確定直線與圓的交點個數,進一步確定他們的位置關系。最后明確解題步驟。

(四)歸納總結——鞏固新知

為了將結論由特殊推廣到一般引導學生思考:

可由方程組的解的不同情況來判斷:

當方程組有兩組實數解時,直線l與圓C相交;

當方程組有一組實數解時,直線l與圓C相切;

當方程組沒有實數解時,直線l與圓C相離。

活動:我將抽取兩位同學在黑板上扮演,并在巡視過程中對部分學生加以指導。最后對黑板上的兩名學生的解題過程加以分析完善。通過對基礎題的練習,鞏固兩種判斷直線與圓的位置關系判斷方法,并使每一個學生獲得后續學習的信心。

(五)小結作業

在小結環節,我會以口頭提問的方式:

(1)這節課學習的主要內容是什么?

(2)在數學問題的解決過程中運用了哪些數學思想?

設計意圖:啟發式的課堂小結方式能讓學生主動回顧本節課所學的知識點。也促使學生對知識網絡進行主動建構。

作業:在學生回顧本堂學習內容明確兩種解題思路后,教師讓學生對比兩種解法,那種更簡捷,明確本節課主要用比較d與r的關系來解決這類問題,對用方程組解的個數的判斷方法,要求學生課外做進一步的探究,下一節課匯報。

七、板書設計

我的板書本著簡介、直觀、清晰的原則,這就是我的板書設計。

高考數學第一輪復習教案篇6

教學目標

(1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題.

(2)理解曲線的方程、方程的曲線的概念,能根據曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念.

(3)通過曲線方程概念的教學,培養學生數與形相互聯系、對立統一的辯證唯物主義觀點.

(4)通過求曲線方程的教學,培養學生的轉化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法.

(5)進一步理解數形結合的思想方法.

教學建議

教材分析

(1)知識結構

曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質.曲線方程的概念和求曲線方程的問題又有內在的邏輯順序.前者回答什么是曲線方程,后者解決如何求出曲線方程.至于用曲線方程研究曲線性質則更在其后,本節不予研究.因此,本節涉及曲線方程概念和求曲線方程兩大基本問題.

(2)重點、難點分析

①本節內容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領悟坐標法和解析幾何的思想.

②本節的難點是曲線方程的概念和求曲線方程的方法.

教法建議

(1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關系,說明曲線與方程的對應關系.曲線與方程對應關系的基礎是點與坐標的對應關系.注意強調曲線方程的完備性和純粹性.

(2)可以結合已經學過的直線方程的知識幫助學生領會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備.

(3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則.

(4)從集合與對應的觀點可以看得更清楚:

設 表示曲線 上適合某種條件的點 的集合;

表示二元方程的解對應的點的坐標的集合.

可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即

(5)在學習求曲線方程的方法時,應從具體實例出發,引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數方程(曲線的方程),這個過渡是一個從幾何向代數不斷轉化的過程,在這個過程中提醒學生注意轉化是否為等價的,這將決定第五步如何做.同時教師不要生硬地給出或總結出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得.教學中對課本例2的解法分析很重要.

這五個步驟的實質是將產生曲線的幾何條件逐步轉化為代數方程,即

文字語言中的幾何條件 數學符號語言中的等式 數學符號語言中含動點坐標 , 的代數方程 簡化了的 , 的代數方程

由此可見,曲線方程就是產生曲線的幾何條件的一種表現形式,這個形式的特點是“含動點坐標的代數方程.”

(6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”.

高考數學第一輪復習教案篇7

一、教材分析

1.教材所處的地位和作用

在學習了隨機事件、頻率、概率的意義和性質及用概率解決實際問題和古典概型的概念后,進一步體會用頻率估計概率思想。它是對古典概型問題的一種模擬,也是對古典概型知識的深化,同時它也是為了更廣泛、高效地解決一些實際問題、體現信息技術的優越性而新增的內容。

2.教學的重點和難點

重點:正確理解隨機數的概念,并能應用計算器或計算機產生隨機數。

難點:建立概率模型,應用計算器或計算機來模擬試驗的方法近似計算概率,解決一些較簡單的現實問題。

二、教學目標分析

1、知識與技能:

(1)了解隨機數的概念;

(2)利用計算機產生隨機數,并能直接統計出頻數與頻率。

2、過程與方法:

(1)通過對現實生活中具體的概率問題的探究,感知應用數學解決問題的方法,體會數學知識與現實世界的聯系,培養邏輯推理能力;

(2)通過模擬試驗,感知應用數字解決問題的方法,自覺養成動手、動腦的良好習慣

3、情感態度與價值觀:

通過數學與探究活動,體會理論來源于實踐并應用于實踐的辯證唯物主義觀點.

三、教學方法與手段分析

1、教學方法:本節課我主要采用啟發探究式的教學模式。

2、教學手段:利用多媒體技術優化課堂教學

四、教學過程分析

㈠創設情境、引入新課

情境1:假設你作為一名食品衛生工作人員,要對某超市內的80袋小包裝餅干中抽取10袋進行衛生達標檢驗,你打算如何操作?

預設學生回答:

⑴采用簡單隨機抽樣方法(抽簽法)

⑵采用簡單隨機抽樣方法(隨機數表法)

教師總結得出:隨機數就是在一定范圍內隨機產生的數,并且得到這個范圍內每一數的機會一樣。(引入課題)

「設計意圖」(1)回憶統計知識中利用隨機抽樣方法如抽簽法、隨機數表法等進行抽樣的步驟和特征;(2)從具體試驗中了解隨機數的含義。

情境2:在拋硬幣和擲骰子的試驗中,是用頻率估計概率。假如現在要作10000次試驗,你打算怎么辦?大家可能覺得這樣做試驗花費時間太多了,有沒有其他方法可以代替試驗呢?

「設計意圖」當需要隨機數的量很大時,用手工試驗產生隨機數速度太慢,從而說明利用現代信息技術的重要性,體現利用計算器或計算機產生隨機數的必要性。

㈡操作實踐、了解新知

教師:向學生介紹計算器的操作,讓他們了解隨機函數的原理??墒孪染幹茙讉€小問題,在課堂上帶著學生用計算器(科學計算器或圖形計算器)操作一遍,讓學生熟悉如何用計算器產生隨機數。

「設計意圖」通過操作熟悉計算器操作流程,在明白原理后,通過讓學生自己按照規則操作,熟悉計算器產生隨機數的操作流程,了解隨機數。

問題1:拋一枚質地均勻的硬幣出現正面向上的概率是50,你能設計一種利用計算器模擬擲硬幣的試驗來驗證這個結論嗎?

思考:隨著模擬次數的不同,結果是否有區別,為什么?

「設計意圖」⑴設計概率模型是解決概率問題的難點,也是能解決概率問題的關鍵,是數學建模的第一步。⑵拋硬幣是最熟悉、最簡單的問題,很自然會想到把正面向上、反面向上這兩個基本事件用兩個隨機數來代替。(題目讓學生通過熟悉50想到用隨機數0,1來模擬,為后面問題4每天下雨的概率為40的概率建模作第一次小鋪墊。)⑶熟悉利用計算器模擬試驗的操作流程,為解決后面例題模擬下雨作好鋪墊。

問題2:(1)剛才我們利用了計算器來產生隨機數,我們知道計算機有許多軟件有統計功能,你知道哪些軟件具有隨機函數這個功能?

(2)你會利用統計軟件Excel來產生隨機數0,1嗎?你能設計一種利用計算機模擬擲硬幣的試驗嗎?

「設計意圖」⑴了解有許多統計軟件都有隨機函數這個功能,并與前面第一章所學的用程序語言編寫程序相聯系;⑵Excel是學生比較熟悉的統計軟件,也可讓學生回顧初中用Excel畫統計圖的一些功能和知識,其次讓學生掌握多種隨機模擬試驗方法。

問題3:(1)你能在Excel軟件中畫試驗次數從1到100次的頻率分布折線圖嗎?

(2)當試驗次數為1000,1500時,你能說說出現正面向上的頻率有些什么變化?

「設計意圖」⑴應用隨機模擬方法估計古典概型中隨機事件的概率值;

⑵體會頻率的隨機性與相對穩定性,經歷用計算機產生數據,整理數據,分析數據,畫統計圖的全過程,使學生相信統計結果的真實性、隨機性及規律性。

㈢講練結合、鞏固新知

問題4:天氣預報說,在今后的三天中,每一天下雨的概率均為40,這三天中恰有兩天下雨的概率是多少?

問1:能用古典概型的計算公式求解嗎?

你能說明一下這為什么不是古典概型嗎?

問2:你如何模擬每一天下雨的概率為40?

「設計意圖」⑴問題分層提出,降低本題難度。如何模擬每一天下雨的概率40是解決這道題的關鍵,是隨機模擬方法應用的重點,也是難點之一。

⑵鞏固用隨機模擬方法估計未知量的基本思想,明確利用隨機模擬方法也可解決不是古典概型而比較復雜的概率應用題。

歸納步驟:第一步,設計概率模型;

第二步,進行模擬試驗;

方法一:(隨機模擬方法--計算器模擬)利用計算器隨機函數;

方法二:(隨機模擬方法--計算機模擬)

第三步,統計試驗的結果。

課堂檢測將一枚質地均勻的硬幣連擲三次,出現"2個正面朝上、1個反面朝上"和"1個正面朝上、2個反面朝上"的概率各是多少?并用隨機模擬的方法做100次試驗,計算各自的頻數。

「設計意圖」通過練習,進一步鞏固學生對本節課知識的掌握。

㈣歸納小結

(1)你能歸納利用隨機模擬方法估計概率的步驟嗎?

(2)你能體會到隨機模擬的優勢嗎?請舉例說說。

「設計意圖」⑴通過問題的思考和解決,使學生理解模擬方法的優點,并充分利用信息技術的優勢;⑵是對知識的進一步理解與思考,又是對本節內容的回顧與總結。

㈤布置練習:

課本練習3、4

「設計意圖」課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度,并促使學生進一步鞏固和掌握所學內容。

[內容結束]

46759 主站蜘蛛池模板: 淘气堡_室内儿童乐园_户外无动力儿童游乐设备-高乐迪(北京) | 气象监测系统_气象传感器_微型气象仪_气象环境监测仪-山东风途物联网 | 天津次氯酸钠酸钙溶液-天津氢氧化钠厂家-天津市辅仁化工有限公司 | 首页|专注深圳注册公司,代理记账报税,注册商标代理,工商变更,企业400电话等企业一站式服务-慧用心 | 恒温振荡混匀器-微孔板振荡器厂家-多管涡旋混匀器厂家-合肥艾本森(www.17world.net) | 浙江建筑资质代办_二级房建_市政_电力_安许_劳务资质办理公司 | 东莞压铸厂_精密压铸_锌合金压铸_铝合金压铸_压铸件加工_东莞祥宇金属制品 | 综合管廊模具_生态,阶梯护坡模具_检查井模具制造-致宏模具厂家 | 阳光1号桔柚_无核沃柑_柑橘新品种枝条苗木批发 - 苧金网 | 涂层测厚仪_漆膜仪_光学透过率仪_十大创新厂家-果欧电子科技公司 | 酵素生产厂家_酵素OEM_酵素加盟_酵素ODM_酵素原料厂家_厦门益力康 | 衬氟止回阀_衬氟闸阀_衬氟三通球阀_衬四氟阀门_衬氟阀门厂-浙江利尔多阀门有限公司 | 郑州爱婴幼师学校_专业幼师培训_托育师培训_幼儿教育培训学校 | 柔软云母板-硬质-水位计云母片组件-首页-武汉长丰云母绝缘材料有限公司 | 成都珞石机械 - 模温机、油温机、油加热器生产厂家 | 全国国际化学校_国际高中招生_一站式升学择校服务-国际学校网 | 云南丰泰挖掘机修理厂-挖掘机维修,翻新,再制造的大型企业-云南丰泰工程机械维修有限公司 | 上海乾拓贸易有限公司-日本SMC电磁阀_德国FESTO电磁阀_德国FESTO气缸 | 珠海白蚁防治_珠海灭鼠_珠海杀虫灭鼠_珠海灭蟑螂_珠海酒店消杀_珠海工厂杀虫灭鼠_立净虫控防治服务有限公司 | 短信通106短信接口验证码接口群发平台_国际短信接口验证码接口群发平台-速度网络有限公司 | 企典软件一站式企业管理平台,可私有、本地化部署!在线CRM客户关系管理系统|移动办公OA管理系统|HR人事管理系统|人力 | 液晶拼接屏厂家_拼接屏品牌_拼接屏价格_监控大屏—北京维康 | 浙江美尔凯特智能厨卫股份有限公司 | 金属回收_废铜废铁回收_边角料回收_废不锈钢回收_废旧电缆线回收-广东益夫金属回收公司 | 脱硝喷枪-氨水喷枪-尿素喷枪-河北思凯淋环保科技有限公司 | 纸张环压仪-纸张平滑度仪-杭州纸邦自动化技术有限公司 | 双能x射线骨密度检测仪_dxa骨密度仪_双能x线骨密度仪_品牌厂家【品源医疗】 | 岩棉切条机厂家_玻璃棉裁条机_水泥基保温板设备-廊坊鹏恒机械 | 山东聚盛新型材料有限公司-纳米防腐隔热彩铝板和纳米防腐隔热板以及钛锡板、PVDF氟膜板供应商 | 太原装修公司_山西整装家装设计_太原室内装潢软装_肖邦家居 | 安徽成考网-安徽成人高考网 | 新材料分散-高速均质搅拌机-超声波分散混合-上海化烁智能设备有限公司 | 车间除尘设备,VOCs废气处理,工业涂装流水线,伸缩式喷漆房,自动喷砂房,沸石转轮浓缩吸附,机器人喷粉线-山东创杰智慧 | 印刷人才网 印刷、包装、造纸,中国80%的印刷企业人才招聘选印刷人才网! | 【德信自动化】点胶机_全自动点胶机_自动点胶机厂家_塑料热压机_自动螺丝机-深圳市德信自动化设备有限公司 | 金属软管_不锈钢金属软管_巩义市润达管道设备制造有限公司 | 对照品_中药对照品_标准品_对照药材_「格利普」高纯中药标准品厂家-成都格利普生物科技有限公司 澳门精准正版免费大全,2025新澳门全年免费,新澳天天开奖免费资料大全最新,新澳2025今晚开奖资料,新澳马今天最快最新图库 | 防水套管|柔性防水套管|伸缩器|伸缩接头|传力接头-河南伟创管道 防水套管_柔性防水套管_刚性防水套管-巩义市润达管道设备制造有限公司 | SDG吸附剂,SDG酸气吸附剂,干式酸性气体吸收剂生产厂家,超过20年生产使用经验。 - 富莱尔环保设备公司(原名天津市武清县环保设备厂) | NMRV减速机|铝合金减速机|蜗轮蜗杆减速机|NMRV减速机厂家-东莞市台机减速机有限公司 | 长春网站建设,五合一网站设计制作,免费优化推广-长春网站建设 |