小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數學教案 >

高考數學教案集合

時間: 新華 數學教案

教案可以幫助教師及時了解學生的學習情況和學習成果,有針對性地調整教學策略,更好地促進學生的學習。什么樣的高考數學教案集合才算是優秀的呢?這里整理一些高考數學教案集合,方便大家學習。

高考數學教案集合篇1

【學習目標】

一、過程目標

1通過師生之間、學生與學生之間的互相交流,培養學生的數學交流能力和與人合作的精神。

2通過對對數函數的學習,樹立相互聯系、相互轉化的觀點,滲透數形結合的數學思想。

3通過對對數函數有關性質的研究,培養學生觀察、分析、歸納的思維能力。

二、識技能目標

1理解對數函數的概念,能正確描繪對數函數的圖象,感受研究對數函數的意義。

2掌握對數函數的性質,并能初步應用對數的性質解決簡單問題。

三、情感目標

1通過學習對數函數的概念、圖象和性質,使學生體會知識之間的有機聯系,激發學生的學習興趣。

2在教學過程中,通過對數函數有關性質的研究,培養觀察、分析、歸納的思維能力以及數學交流能力,增強學習的積極性,同時培養學生傾聽、接受別人意見的優良品質。

教學重點難點:

1對數函數的定義、圖象和性質。

2對數函數性質的初步應用。

教學工具:多媒體

【學前準備】對照指數函數試研究對數函數的定義、圖象和性質。

高考數學教案集合篇2

教學目標

(1)了解算法的含義,體會算法思想。

(2)會用自然語言和數學語言描述簡單具體問題的算法;

(3)學習有條理地、清晰地表達解決問題的步驟,培養邏輯思維能力與表達能力。

教學重難點

重點:算法的含義、解二元一次方程組的算法設計。

難點:把自然語言轉化為算法語言。

情境導入

電影《神槍手》中描述的凌靖是一個天生的狙擊手,他百發百中,最難打的位置對他來說也是輕而易舉,是香港警察狙擊手隊伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務,一般要按步驟完成以下幾步:

第一步:觀察、等待目標出現(用望遠鏡或瞄準鏡);

第二步:瞄準目標;

第三步:計算(或估測)風速、距離、空氣濕度、空氣密度;

第四步:根據第三步的結果修正彈著點;

第五步:開槍;

第六步:迅速轉移(或隱蔽)

以上這種完成狙擊任務的方法、步驟在數學上我們叫算法。

課堂探究

預習提升

1、定義:算法可以理解為由基本運算及規定的運算順序所構成的完整的解題步驟,或者看成按照要求設計好的有限的確切的計算序列,并且這樣的步驟或序列能夠解決一類問題。

2、描述方式

自然語言、數學語言、形式語言(算法語言)、框圖。

3、算法的要求

(1)寫出的算法,必須能解決一類問題,且能重復使用;

(2)算法過程要能一步一步執行,每一步執行的操作,必須確切,不能含混不清,而且經過有限步后能得出結果。

4、算法的特征

(1)有限性:一個算法應包括有限的操作步驟,能在執行有窮的操作步驟之后結束。

(2)確定性:算法的計算規則及相應的計算步驟必須是唯一確定的。

(3)可行性:算法中的每一個步驟都是可以在有限的時間內完成的基本操作,并能得到確定的結果。

(4)順序性:算法從初始步驟開始,分為若干個明確的步驟,前一步是后一步的前提,后一步是前一步的后續,且除了最后一步外,每一個步驟只有一個確定的后續。

(5)不唯一性:解決同一問題的算法可以是不唯一的

課堂典例講練

命題方向1對算法意義的理解

例1、下列敘述中,

①植樹需要運苗、挖坑、栽苗、澆水這些步驟;

②按順序進行下列運算:1+1=2,2+1=3,3+1=4,…99+1=100;

③從青島乘動車到濟南,再從濟南乘飛機到倫敦觀看奧運會開幕式;

④3x>x+1;

⑤求所有能被3整除的正數,即3,6,9,12。

能稱為算法的個數為()

A、2

B、3

C、4

D、5

【解析】根據算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個明確的步驟,不符合明確性;⑤的步驟是無窮的,與算法的有限性矛盾。

【答案】B

[規律總結]

1、正確理解算法的概念及其特點是解決問題的關鍵、

2、針對判斷語句是否是算法的問題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內解決這一問題、

【變式訓練】下列對算法的理解不正確的是________

①一個算法應包含有限的步驟,而不能是無限的

②算法可以理解為由基本運算及規定的運算順序構成的完整的解題步驟

③算法中的每一步都應當有效地執行,并得到確定的結果

④一個問題只能設計出一個算法

【解析】由算法的有限性指包含的步驟是有限的故①正確;

由算法的明確性是指每一步都是確定的故②正確;

由算法的每一步都是確定的,且每一步都應有確定的結果故③正確;

由對于同一個問題可以有不同的算法故④不正確。

【答案】④

命題方向2解方程(組)的算法

例2、給出求解方程組的一個算法。

[思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒有本質的差別,為了適用于解一般的線性方程組,以便于在計算機上實現,我們用高斯消元法(即先將方程組化為一個三角形方程組,再通過回代方程求出方程組的解)解線性方程組、

[規范解答]方法一:算法如下:

第一步,①×(-2)+②,得(-2+5)y=-14+11

即方程組可化為

第二步,解方程③,可得y=-1,④

第三步,將④代入①,可得2x-1=7,x=4

第四步,輸出4,-1

方法二:算法如下:

第一步,由①式可以得到y=7-2x,⑤

第二步,把y=7-2x代入②,得x=4

第三步,把x=4代入⑤,得y=-1

第四步,輸出4,-1

[規律總結]1、本題用了2種方法求解,對于問題的求解過程,我們既要強調對“通法、通解”的理解,又要強調對所學知識的靈活運用。

2、設計算法時,經常遇到解方程(組)的問題,一般是按照數學上解方程(組)的方法進行設計,但應注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時有幾個解,然后根據求解步驟設計算法步驟。

【變式訓練】

【解】算法如下:S1,①+2×②得5x=1;③

S2,解③得x=;

S3,②-①×2得5y=3;④

S4,解④得y=;

命題方向3篩選問題的算法設計

例3、設計一個算法,對任意3個整數a、b、c,求出其中的最小值、

[思路分析]比較a,b比較m與c―→最小數

[規范解答]算法步驟如下:

1、比較a與b的大小,若a

2、比較m與c的大小,若m

[規律總結]求最小(大)數就是從中篩選出最小(大)的一個,篩選過程中的每一步都是比較兩個數的大小,保證了篩選的可行性,這種方法可以推廣到從多個不同數中篩選出滿足要求的一個。

【變式訓練】在下列數字序列中,寫出搜索89的算法:

21,3,0,9,15,72,89,91,93

[解析]1、先找到序列中的第一個數m,m=21;

2、將m與89比較,是否相等,如果相等,則搜索到89;

3、如果m與89不相等,則往下執行;

4、繼續將序列中的其他數賦給m,重復第2步,直到搜索到89。

命題方向4非數值性問題的算法

例4、一個人帶三只狼和三只羚羊過河,只有一條船,同船可以容一個人和兩只動物,沒有人在的時候,如果狼的數量不少于羚羊的數量,狼就會吃掉羚羊。

(1)設計安全渡河的算法;

(2)思考每一步算法所遵循的共同原則是什么?

高考數學教案集合篇3

一、教材分析

1、本節教材的地位和作用

“基本不等式”是必修5的重點內容,在課本封面上就體現出來了(展示課本和參考書封面)。它是在學完“不等式的性質”、“不等式的解法”及“線性規劃”的基礎上對不等式的進一步研究.在不等式的證明和求最值過程中有著廣泛的應用。求最值又是高考的熱點。同時本節知識又滲透了數形結合、化歸等重要數學思想,有利于培養學生良好的思維品質。

2、教學目標

(1)知識目標:探索基本不等式的證明過程;會用基本不等式解決最值問題。

(2)能力目標:培養學生觀察、試驗、歸納、判斷、猜想等思維能力。?

(3)情感目標:培養學生嚴謹求實的科學態度,體會數與形的和諧統一,領略數學的應用價值,激發學生的學習興趣和勇于探索的精神。

3、教學重點、難點

根據課程標準制定如下的教學重點、難點

重點:應用數形結合的思想理解不等式,并從不同角度探索基本不等式。

難點:基本不等式的內涵及幾何意義的挖掘,用基本不等式求最值。

二、教法說明

本節課借助幾何畫板,使用多媒體輔助進行直觀演示.采用啟發式教學法創設問題情景,激發學生開始嘗試活動.運用生活中的實際例子,讓學生享受解決實際問題的樂趣.課堂上主要采取對比分析;讓學生邊議、邊評;組織學生學、思、練。通過師生和諧對話,使情感共鳴,讓學生的潛能、創造性最大限度發揮,使認知效益最大。讓學生愛學、樂學、會學、學會。

三、學法指導

為更好的貫徹課改精神,合理的對學生進行素質教育,在教學中,始終以學生主體,教師為主導.因此我在教學中讓學生從不同角度去觀察、分析,指導學生解決問題,感受知識的形成過程,培養學生數形結合的意識和能力,讓學生學會學習。

四、教學設計

◆運用2002年國際數學家大會會標引入

◆運用分析法證明基本不等式

◆不等式的幾何解釋

◆基本不等式的應用

1、運用2002年國際數學家大會會標引入

如圖,這是在北京召開的第24屆國際數學家大會會標.會標根據中國古代數學家趙爽的弦圖設計的,顏色的明暗使它看上去象一個風車,代表中國人民熱情好客。(展示風車)

正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,設AE=a,BE=b,則正方形的面積為S=__,Rt△ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等三角形,它們的面積之和是S’=_

從圖形中易得,s≥s’,即

問題1:它們有相等的情況嗎?何時相等?

問題2:當a,b為任意實數時,上式還成立嗎?(學生積極思考,通過幾何畫板幫助學生理解)

一般地,對于任意實數a、b,我們有

當且僅當(重點強調)a=b時,等號成立(合情推理)

問題3:你能給出它的證明嗎?(讓學生獨立證明)

設計意圖

(1)運用2002年國際數學家大會會標引入,能讓學生進一步體會中國數學的歷史悠久,感受數學與生活的聯系。

(2)運用此圖標能較容易的觀察出面積之間的關系,引入基本不等式很直觀。

(3)三個思考題為學生創造情景,逐層深入,強化理解.

2、運用分析法證明基本不等式

如果a>0,b>0,

用和分別代替a,b。可以得到

也可寫成

(強調基本不等式成立的前提條件“正”)(演繹推理)

問題4:你能用不等式的性質直接推導嗎?

要證=1GB3①

只要證=2GB3②

要證②,只要證=3GB3③

要證=3GB3③,只要證=4GB3④

顯然,④是成立的.當且僅當a=b時,不等式中的等號成立.

(強調基本不等式取等的條件“等”)

設計意圖

(1)證明過程課本上是以填空形式出現的,學生能夠獨立完成,這也能進一步培養學生的自學能力,符合課改精神;

(2)證明過程印證了不等式的正確性,并能加深學生對基本不等式的理解;

(3)此種證明方法是“分析法”,在選修教材的《推理與證明》一章中會重點講解,此處有必要讓學生初步了解。

3、不等式的幾何解釋

如圖,AB是圓的直徑,C是AB上任一點,AC=a,CB=b,過點C作垂直于AB的弦DE,連AD,BD,則CD=,半徑為

問題5:你能用這個圖得出基本不等式的幾何解釋嗎?(學生積極思考,通過幾何畫板幫助學生理解)

設計意圖

幾何直觀能啟迪思路,幫助理解,因此,借助幾何直觀學習和理解數學,是數學學習中的重要方面。只有做到了直觀上的理解,才是真正的理解。

4、基本不等式的應用

例1.證明

(學生自己證明)

設計意圖

(1)這道例題很簡單,多數學生都會仿照課本上的分析思路重新證明,能夠練習“分析法”證明不等式的過程;

(2)學生能夠加深對基本不等式的理解,a和b不僅僅是一個字母,而是一個符號,它們可以是a、b,也可以是x、y,也可以是一個多項式;

(3)此例不是課本例題,比課本例題簡單,這樣,循序漸進,有利于學生理解不等式的內涵。

例2:(1)把36寫成兩個正數的積,當兩個正數取什么值時,它們的和最小?

(2)把18寫成兩個正數的和,當兩個正數取什么值時,它們的積最大?

(讓學生分組合作、探究完成)

高考數學教案集合篇4

排列

教學目標

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數的意義,能根據具體的問題,寫出符合要求的排列;

(3)掌握排列數公式,并能根據具體的問題,寫出符合要求的排列數;

(4)會分析與數字有關的排列問題,培養學生的抽象能力和邏輯思維能力;

(5)通過對排列應用問題的學習,讓學生通過對具體事例的觀察、歸納中找出規律,得出結論,以培養學生嚴謹的學習態度。

教學建議

一、知識結構

二、重點難點分析

本小節的重點是排列的定義、排列數及排列數的公式,并運用這個公式去解決有關排列數的應用問題.難點是導出排列數的公式和解有關排列的應用題.突破重點、難點的關鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應用問題當中.

從n個不同元素中任取m(m≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取m個元素的一個排列.因此,兩個相同排列,當且僅當他們的元素完全相同,并且元素的排列順序也完全相同.排列數是指從n個不同元素中任取m(m≤n)個元素的所有不同排列的種數,只要弄清相同排列、不同排列,才有可能計算相應的排列數.排列與排列數是兩個概念,前者是具有m個元素的排列,后者是這種排列的不同種數.從集合的角度看,從n個元素的有限集中取出m個組成的有序集,相當于一個排列,而這種有序集的個數,就是相應的排列數.

公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解.要重點分析好的推導.

排列的應用題是本節教材的難點,通過本節例題的分析,應注意培養學生解決應用問題的能力.

在分析應用題的解法時,教材上先畫出框圖,然后分析逐次填入時的種數,這樣解釋比較直觀,教學上要充分利用,要求學生作題時也應盡量采用.

在教學排列應用題時,開始應要求學生寫解法要有簡要的文字說明,防止單純的只寫一個排列數,這樣可以培養學生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求.

三、教法建議

①在講解排列數的概念時,要注意區分“排列數”與“一個排列”這兩個概念.一個排列是指“從n個不同元素中,任取出m個元素,按照一定的順序擺成一排”,它不是一個數,而是具體的一件事;排列數是指“從n個不同元素中取出m個元素的所有排列的個數”,它是一個數.例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:

ab,ac,ba,bc,ca,cb,

其中每一種都叫一個排列,共有6種,而數字6就是排列數,符號表示排列數.

②排列的定義中包含兩個基本內容,一是“取出元素”,二是“按一定順序排列”.

從定義知,只有當元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列.

在定義中“一定順序”就是說與位置有關,在實際問題中,要由具體問題的性質和條件來決定,這一點要特別注意,這也是與后面學習的組合的根本區別.

在排列的定義中,如果有的書上叫選排列,如果,此時叫全排列.

要特別注意,不加特殊說明,本章不研究重復排列問題.

③關于排列數公式的推導的教學.公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解.課本上用的是不完全歸納法,先推導,,…,再推廣到,這樣由特殊到一般,由具體到抽象的講法,學生是不難理解的.

導出公式后要分析這個公式的構成特點,以便幫助學生正確地記憶公式,防止學生在“n”、“m”比較復雜的時候把公式寫錯.這個公式的特點可見課本第229頁的一段話:“其中,公式右邊第一個因數是n,后面每個因數都比它前面一個因數少1,最后一個因數是,共m個因數相乘.”這實際是講三個特點:第一個因數是什么?最后一個因數是什么?一共有多少個連續的自然數相乘.

公式是在引出全排列數公式后,將排列數公式變形后得到的公式.對這個公式指出兩點:(1)在一般情況下,要計算具體的排列數的值,常用前一個公式,而要對含有字母的排列數的式子進行變形或作有關的論證,要用到這個公式,教材中第230頁例2就是用這個公式證明的問題;(2)為使這個公式在時也能成立,規定,如同時一樣,是一種規定,因此,不能按階乘數的原意作解釋.

④建議應充分利用樹形圖對問題進行分析,這樣比較直觀,便于理解.

⑤學生在開始做排列應用題的作業時,應要求他們寫出解法的簡要說明,而不能只列出算式、得出答數,這樣有利于學生得更加扎實.隨著學生解題熟練程度的提高,可以逐步降低這種要求.

教學設計示例

排列

教學目標

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數的意義,能根據具體的問題,寫出符合要求的排列;

(3)會分析與數字有關的排列問題,培養學生的抽象能力和邏輯思維能力;

教學重點難點

重點是排列的定義、排列數并運用這個公式去解決有關排列數的應用問題。

難點是解有關排列的應用題。

教學過程設計

一、復習引入

上節課我們學習了兩個基本原理,請大家完成以下兩題的練習(用投影儀出示):

1.書架上層放著50本不同的社會科學書,下層放著40本不同的自然科學的書.

(1)從中任取1本,有多少種取法?

(2)從中任取社會科學書與自然科學書各1本,有多少種不同的取法?

2.某農場為了考察三個外地優良品種A,B,C,計劃在甲、乙、丙、丁、戊共五種類型的土地上分別進行引種試驗,問共需安排多少個試驗小區?

找一同學談解答并說明怎樣思考的的過程

第1(1)小題從書架上任取1本書,有兩類辦法,第一類辦法是從上層取社會科學書,可以從50本中任取1本,有50種方法;第二類辦法是從下層取自然科學書,可以從40本中任取1本,有40種方法.根據加法原理,得到不同的取法種數是50+40=90.第(2)小題從書架上取社會科學、自然科學書各1本(共取出2本),可以分兩個步驟完成:第一步取一本社會科學書,第二步取一本自然科學書,根據乘法原理,得到不同的取法種數是:50×40=2000.

第2題說,共有A,B,C三個優良品種,而每個品種在甲類型土地上實驗有三個小區,在乙類型的土地上有三個小區……所以共需3×5=15個實驗小區.

二、講授新課

學習了兩個基本原理之后,現在我們繼續學習排列問題,這是我們本節討論的重點.先從實例入手:

1.北京、上海、廣州三個民航站之間的直達航線,需要準備多少種不同飛機票?

由學生設計好方案并回答.

(1)用加法原理設計方案.

首先確定起點站,如果北京是起點站,終點站是上海或廣州,需要制2種飛機票,若起點站是上海,終點站是北京或廣州,又需制2種飛機票;若起點站是廣州,終點站是北京或上海,又需要2種飛機票,共需要2+2+2=6種飛機票.

(2)用乘法原理設計方案.

首先確定起點站,在三個站中,任選一個站為起點站,有3種方法.即北京、上海、廣泛任意一個城市為起點站,當選定起點站后,再確定終點站,由于已經選了起點站,終點站只能在其余兩個站去選.那么,根據乘法原理,在三個民航站中,每次取兩個,按起點站在前、終點站在后的順序排列不同方法共有3×2=6種.

根據以上分析由學生(板演)寫出所有種飛機票

再看一個實例.

在航海中,船艦常以“旗語”相互聯系,即利用不同顏色的旗子發送出各種不同的信號.如有紅、黃、綠三面不同顏色的旗子,按一定順序同時升起表示一定的信號,問這樣總共可以表示出多少種不同的信號?

找學生談自己對這個問題的想法.

事實上,紅、黃、綠三面旗子按一定順序的一個排法表示一種信號,所以不同顏色的同時升起可以表示出來的信號種數,也就是紅、黃、綠這三面旗子的所有不同順序的排法總數.

首先,先確定位置的旗子,在紅、黃、綠這三面旗子中任取一個,有3種方法;

其次,確定中間位置的旗子,當位置確定之后,中間位置的旗子只能從余下的兩面旗中去取,有2種方法.剩下那面旗子,放在最低位置.

根據乘法原理,用紅、黃、綠這三面旗子同時升起表示出所有信號種數是:3×2×1=6(種).

根據學生的分析,由另外的同學(板演)寫出三面旗子同時升起表示信號的所有情況.(包括每個位置情況)

第三個實例,讓全體學生都參加設計,把所有情況(包括每個位置情況)寫出來.

由數字1,2,3,4可以組成多少個沒有重復數字的三位數?寫出這些所有的三位數.

根據乘法原理,從四個不同的數字中,每次取出三個排成三位數的方法共有4×3×2=24(個).

請板演的學生談談怎樣想的?

第一步,先確定百位上的數字.在1,2,3,4這四個數字中任取一個,有4種取法.

第二步,確定十位上的數字.當百位上的數字確定以后,十位上的數字只能從余下的三個數字去取,有3種方法.

第三步,確定個位上的數字.當百位、十位上的數字都確定以后,個位上的數字只能從余下的兩個數字中去取,有2種方法.

根據乘法原理,所以共有4×3×2=24種.

下面由教師提問,學生回答下列問題

(1)以上我們討論了三個實例,這三個問題有什么共同的地方?

都是從一些研究的對象之中取出某些研究的對象.

(2)取出的這些研究對象又做些什么?

實質上按著順序排成一排,交換不同的位置就是不同的情況.

(3)請大家看書,第×頁、第×行.我們把被取的對象叫做雙元素,如上面問題中的民航站、旗子、數字都是元素.

上面第一個問題就是從3個不同的元素中,任取2個,然后按一定順序排成一列,求一共有多少種不同的排法,后來又寫出所有排法.

第二個問題,就是從3個不同元素中,取出3個,然后按一定順序排成一列,求一共有多少排法和寫出所有排法.

第三個問題呢?

從4個不同的元素中,任取3個,然后按一定的順序排成一列,求一共有多少種不同的排法,并寫出所有的排法.

給出排列定義

請看課本,第×頁,第×行.一般地說,從n個不同的元素中,任取m(m≤n)個元素(本章只研究被取出的元素各不相同的情況),按著一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.

下面由教師提問,學生回答下列問題

(1)按著這個定義,結合上面的問題,請同學們談談什么是相同的排列?什么是不同的排列?

從排列的定義知道,如果兩個排列相同,不僅這兩個排列的元素必須完全相同,而且排列的順序(即元素所在的位置)也必須相同.兩個條件中,只要有一個條件不符合,就是不同的排列.

如第一個問題中,北京—廣州,上海—廣州是兩個排列,第三個問題中,213與423也是兩個排列.

再如第一個問題中,北京—廣州,廣州—北京;第二個問題中,紅黃綠與紅綠黃;第三個問題中231和213雖然元素完全相同,但排列順序不同,也是兩個排列.

(2)還需要搞清楚一個問題,“一個排列”是不是一個數?

生:“一個排列”不應當是一個數,而應當指一件具體的事.如飛機票“北京—廣州”是一個排列,“紅黃綠”是一種信號,也是一個排列.如果問飛機票有多少種?能表示出多少種信號.只問種數,不用把所有情況羅列出來,才是一個數.前面提到的第三個問題,實質上也是這樣的.

三、課堂練習

大家思考,下面的排列問題怎樣解?

有四張卡片,每張分別寫著數碼1,2,3,4.有四個空箱,分別寫著號碼1,2,3,4.把卡片放到空箱內,每箱必須并且只能放一張,而且卡片數碼與箱子號碼必須不一致,問有多少種放法?(用投影儀示出)

分析:這是從四張卡片中取出4張,分別放在四個位置上,只要交換卡片位置,就是不同的放法,是個附有條件的排列問題.

解法是:第一步把數碼卡片四張中2,3,4三張任選一個放在第1空箱.

第二步從余下的三張卡片中任選符合條件的一張放在第2空箱.

第三步從余下的兩張卡片中任選符合條件的一張放在第3空箱.

第四步把最后符合條件的一張放在第四空箱.具體排法,用下面圖表表示:

所以,共有9種放法.

四、作業

課本:P232練習1,2,3,4,5,6,7.

高考數學教案集合篇5

一、說課分析

1.《指數函數》在教材中的地位、作用和特點

《指數函數》是人教版高中數學(必修)第一冊第二章“函數”的第六節內容,是在學習了《指數》一節內容之后編排的。通過本節課的學習,既可以對指數和函數的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數、對數函數尤其是利用互為反函數的圖象間的關系來研究對數函數的性質打下堅實的概念和圖象基礎,又因為《指數函數》是進入高中以后學生遇到的第一個系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學習基礎,所以《指數函數》不僅是本章《函數》的重點內容,也是高中學段的主要研究內容之一,有著不可替代的重要作用。

此外,《指數函數》的知識與我們的日常生產、生活和科學研究有著緊密的聯系,尤其體現在細胞、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現實意義。本節內容的特點之一是概念性強,特點之二是凸顯了數學圖形在研究函數性質時的重要作用。

2.教學目標、重點和難點

通過初中學段的學習和高中對集合、函數等知識的系統學習,學生對函數和圖象的關系已經構建了一定的認知結構,主要體現在三個方面:

知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡單的函數概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數初步轉化到從集合與對應的觀點來認識函數。

技能維度:學生對采用“描點法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質做好準備。

素質維度:由觀察到抽象的數學活動過程已有一定的體會,已初步了解了數形結合的思想。

鑒于對學生已有的知識基礎和認知能力的分析,根據《教學大綱》的要求,我確定本節課的教學目標、教學重點和難點如下:

(1)知識目標:①掌握指數函數的概念;②掌握指數函數的圖象和性質;③能初步利用指數函數的概念解決實際問題;

(2)技能目標:①滲透數形結合的基本數學思想方法②培養學生觀察、聯想、類比、猜測、歸納的能力;

(3)情感目標:①體驗從特殊到一般的學習規律,認識事物之間的普遍聯系與相互轉化,培養學生用聯系的觀點看問題②通過教學互動促進師生情感,激發學生的學習興趣,提高學生抽象、概括、分析、綜合的能力③領會數學科學的應用價值。

(4)教學重點:指數函數的圖象和性質。

(5)教學難點:指數函數的圖象性質與底數a的關系。

突破難點的關鍵:尋找新知生長點,建立新舊知識的聯系,在理解概念的基礎上充分結合圖象,利用數形結合來掃清障礙。

二、說課設計

由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過這一節課的教學達到不僅使學生初步理解并能簡單應用指數函數的知識,更期望能引領學生掌握研究初等函數圖象性質的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學生學習能力的目的,我根據自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:

1.創設問題情景.按照指數函數的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。

2.強化“指數函數”概念.引導學生結合指數的有關概念來歸納出指數函數的定義,并向學生指出指數函數的形式特點,請學生思考對于底數a是否需要限制,如不限制會有什么問題出現,這樣避免了學生對于底數a范圍分類的不清楚,也為研究指數函數的圖象做了“分類討論”的鋪墊。

3.突出圖象的作用.在數學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數學家曾經說過“數離形時少直觀,形離數時難入微”,而在研究指數函數的性質時,更是直接由圖象觀察得出性質,因此圖象發揮了主要的作用。

4.注意數學與生活和實踐的聯系.數學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關的生活問題,力圖使學生了解到數學的基礎學科作用,培養學生的數學應用意識。

三、學法指導

本節課是在學習完“指數”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:

1.再現原有認知結構。在引入兩個生活實例后,請學生回憶有關指數的概念,幫助學生再現原有認知結構,為理解指數函數的概念做好準備。

2.領會常見數學思想方法。在借助圖象研究指數函數的性質時會遇到分類討論、數形結合等基本數學思想方法,這些方法將會貫穿整個高中的數學學習。

3.在互相交流和自主探究中獲得發展。在生活實例的課堂導入、指數函數的性質研究、例題與訓練、課內小節等教學環節中都安排了學生的討論、分組、交流等活動,讓學生變被動的接受和記憶知識為在合作學習的樂趣中主動地建構新知識的框架和體系,從而完成知識的內化過程。

4.注意學習過程的循序漸進。在概念、圖象、性質、應用、拓展的過程中按照先易后難的順序層層遞進,讓學生感到有挑戰、有收獲,跳一跳,夠得著,不同難度的題目設計將盡可能照顧到課堂學生的個體差異。

四、程序設計

在設計本節課的教學過程中,本著遵循學生的認知規律、讓學生去經歷知識的形成與發展過程的原則,我設計了如下的教學程序,啟發學生逐步發現和認識指數函數的圖象和性質。

1.創設情景、導入新課

教師活動:①用電腦展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞的例子,②將學生按奇數列、偶數列分組。

學生活動:①分別寫出計算機價格y與經過月份x的關系式和細胞個數y與次數x的關系式,并互相交流;②回憶指數的概念;③歸納指數函數的概念;④分析出對指數函數底數討論的必要性以及分類的方法。

設計意圖:通過生活實例激發學生的學習動機,,掃清由概念不清而造成的知識障礙,培養學生思維的主動性,為突破難點做好準備;

2.啟發誘導、探求新知

教師活動:①給出兩個簡單的指數函數并要求學生畫它們的圖象②在準備好的小黑板上規范地畫出這兩個指數函數的圖象③板書指數函數的性質。

學生活動:①畫出兩個簡單的指數函數圖象②交流、討論③歸納出研究函數性質涉及的方面④總結出指數函數的性質。

設計意圖:讓學生動手作簡單的指數函數的圖象對深刻理解本節課的內容有著一定的促進作用,在學生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進一步規范學生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情況,學生就會很自然的通過觀察圖象總結出指數函數的性質,同時對于底數的討論也就變得順理成章。

3.鞏固新知、反饋回授

教師活動:①板書例1②板書例2第一問③介紹有關考古的拓展知識。

高考數學教案集合篇6

1、教材(教學內容)

本課時主要研究任意角三角函數的定義。三角函數是一類重要的基本初等函數,是描述周期性現象的重要數學模型,本課時的內容具有承前啟后的重要作用:承前是因為可以用函數的定義來抽象和規范三角函數的定義,同時也可以類比研究函數的模式和方法來研究三角函數;啟后是指定義了三角函數之后,就可以進一步研究三角函數的性質及圖象特征,并體會三角函數在解決具有周期性變化規律問題中的作用,從而更深入地領會數學在其它領域中的重要應用、

2、設計理念

本堂課采用“問題解決”教學模式,在課堂上既充分發揮學生的主體作用,又體現了教師的引導作用。整堂課先通過問題引導學生梳理已有的知識結構,展開合理的聯想,提出整堂課要解決的中心問題:圓周運動等具周期性規律運動可以建立函數模型來刻畫嗎?從而引導學生帶著問題閱讀和鉆研教材,引發認知沖突,再通過問題引導學生改造或重構已有的認知結構,并運用類比方法,形成“任意角三角函數的定義”這一新的概念,最后通過例題與練習,將任意角三角函數的定義,內化為學生新的認識結構,從而達成教學目標、

3、教學目標

知識與技能目標:形成并掌握任意角三角函數的定義,并學會運用這一定義,解決相關問題、

過程與方法目標:體會數學建模思想、類比思想和化歸思想在數學新概念形成中的重要作用、

情感態度與價值觀目標:引導學生學會閱讀數學教材,學會發現和欣賞數學的理性之美、

4、重點難點

重點:任意角三角函數的定義、

難點:任意角三角函數這一概念的理解(函數模型的建立)、類比與化歸思想的滲透、

5、學情分析

學生已有的認知結構:函數的概念、平面直角坐標系的概念、任意角和弧度制的相關概念、以直角三角形為載體的銳角三角函數的概念、在教學過程中,需要先將學生的以直角三角形為載體的銳角三角函數的概念改造為以象限角為載體的銳角三角函數,并形成以角的終邊與單位園的交點的坐標來表示的銳角三角函數的概念,再拓展到任意角的三角函數的定義,從而使學生形成新的認知結構、

6、教法分析

“問題解決”教學法,是以問題為主線,引導和驅動學生的思維和學習活動,并通過問題,引導學生的質疑和討論,充分展示學生的思維過程,最后在解決問題的過程中形成新的認知結構、這種教學模式能較好地體現課堂上老師的主導作用,也能充分發揮課堂上學生的主體作用、

7、學法分析

本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數的定義”,最后引導學生運用類比學習法,來研究三角函數一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標。

高考數學教案集合篇7

一、基本知識概要:

1.直線與圓錐曲線的位置關系:相交、相切、相離。

從代數的角度看是直線方程和圓錐曲線的方程組成的方程組,無解時必相離;有兩組解必相交;一組解時,若化為x或y的方程二次項系數非零,判別式⊿=0時必相切,若二次項系數為零,有一組解仍是相交。

2.弦:直線被圓錐曲線截得的線段稱為圓錐曲線的弦。

焦點弦:若弦過圓錐曲線的焦點叫焦點弦;

通徑:若焦點弦垂直于焦點所在的圓錐曲線的對稱軸,此時焦點弦也叫通徑。

3.①當直線的斜率存在時,弦長公式:

=或當存在且不為零時

,(其中(),()是交點坐標)。

②拋物線的焦點弦長公式AB=,其中α為過焦點的直線的傾斜角。

4.重點難點:直線與圓錐曲線相交、相切條件下某些關系的確立及其一些字母范圍的確定。

5.思維方式:方程思想、數形結合的思想、設而不求與整體代入的技巧。

6.特別注意:直線與圓錐曲線當只有一個交點時要除去兩種情況,些直線才是曲線的切線。一是直線與拋物線的對稱軸平行;二是直線與雙曲線的漸近線平行。

二、例題:

【例1】直線y=x+3與曲線()

A。沒有交點B。只有一個交點C。有兩個交點D。有三個交點

〖解〗:當x>0時,雙曲線的漸近線為:,而直線y=x+3的斜率為1,1<3y="x+3過橢圓的頂點,k=1">0因此直線與橢圓左半部分有一交點,共計3個交點,選D

由此強調:公差可以是正數、負數,也可以是0

2、第二個重點部分為等差數列的通項公式

(1)若一等差數列{an}的首項是,公差是d,則據其定義可得:

a2-a1=d即:a2=a1+d

a3-a2=d即:a3=a2+d

……

猜想:

a40=a1+39d

進而歸納出等差數列的通項公式:an=a1+(n-1)d

設計思路:在歸納等差數列通項公式中,我采用討論式的教學方法。給出等差數列的首項,公差d,由學生研究分組討論的通項公式。通過總結的通項公式由學生猜想的通項公式,進而歸納的通項公式。整個過程由學生完成,通過互相討論的方式既培養了學生的協作意識,又化解了教學難點。

(2)此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學生嚴謹的學習態度,在這里向學生介紹另外一種求數列通項公式的辦法——迭加法:

a2-a1=d

a3=a2+d

……

an-an-1=d將這n-1個等式左右兩邊分別相加,就可以得到an–a1=(n-1)d即an=a1+(n-1)d,當n=1時,此式也成立,所以對一切n∈N﹡,上面的公式都成立,因此它就是等差數列{an}的通項公式。

在迭加法的證明過程中,我采用啟發式教學方法。利用等差數列概念啟發學生寫出n-1個等式。將n-1個等式相加,證出通項公式。在這里通過該知識點引入迭加法這一數學思想,逐步達到“注重方法,凸現思想”的教學要求。

(三)鞏固新知應用例解

例1(1)求等差數列8,5,2,…的第20項;第30項;第40項

(2)-401是不是等差數列-5,-9,-13,…的項?如果是,是第幾項?

例2在等差數列{an}中,已知a5=10,a20=31,求首項與公差d。

這一環節是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數列通項公式中的a1、d、n、an這4個量之間的關系。當其中的三個量已知時,可根據該公式求出第四個量。

例3梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數列。計算中間各級的寬度。

設置此題的目的:1.加強同學們對應用題的綜合分析能力,2.通過數學實際問題引出等差數列問題,激發了學生的興趣;3.再者通過數學實例展示了“從實際問題出發經抽象概括建立數學模型,最后還原說明實際問題的“數學建模”的數學思想方法。

(四)反饋練習

1、課后的練習中的第1題和第2題(要求學生在規定時間內完成)。

目的:使學生熟悉通項公式,對學生進行基本技能訓練。

2、課后習題第3題和第4題。

目的:對學生加強建模思想訓練。

(五)歸納小結、深化目標

1.等差數列的概念及數學表達式an-an-1=d(n≥1)。

強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數。

2.等差數列的通項公式會知三求一。

3.用“數學建模”思想方法解決實際問題。

(六)布置作業

必做題:課本習題第2,6題

選做題:已知等差數列{an}的首項=-24,從第10項開始為正數,求公差d的取值范圍。(目的:通過分層作業,提高同學們的求知欲和滿足不同層次的學生需求)

高考數學教案集合篇8

教學目標:1.進一步理解線性規劃的概念;會解簡單的線性規劃問題;

2.在運用建模和數形結合等數學思想方法分析、解決問題的過程中;提高解決問題的能力;

3.進一步提高學生的合作意識和探究意識。

教學重點:線性規劃的概念及其解法

教學難點:

代數問題幾何化的過程

教學方法:啟發探究式

教學手段:運用多媒體技術

教學過程:1.實際問題引入。

問題一:小王和小李合租了一輛小轎車外出旅游.小王駕車平均速度為每小時70公里,平均耗油量為每小時6公升;小李駕車平均速度為每小時50公里,平均耗油量為每小時4公升.現知道油箱內油量為60公升,兩人駕車時間累計不能超過12小時.問小王和小李分別駕車多少時間時,行駛路程最遠?

2.探究和討論下列問題。

(1)實際問題轉化為一個怎樣的數學問題?

(2)滿足不等式組①的條件的點構成的區域如何表示?

(3)關于x、y的一個表達式z=70x+50y的幾何意義是什么?

(4)z的幾何意義是什么?

(5)z的最大值如何確定?

讓學生達成以下共識:小王駕車時間x和小李駕車時間y受到時間(12小時)和油量(60公升)的限制,即

x+y≤12

6x+4y≤60①

x≥0

y≥0

行駛路程可以表示成關于x、y的一個表達式:z=70x+50y由數形結合可知:經過點B(6,6)的直線所對應的z最大.

則zmax=6×70+6×50=720

結論:小王和小李分別駕車6小時時,行駛路程最遠為720公里.

解題反思:

問題解決過程中體現了那些重要的數學思想?

3.線性規劃的有關概念。

什么是“線性規劃問題”?涉及約束條件、線性約束條件、目標函數、線性目標函數、可行解、可行域和最優解等概念.

4.進一步探究線性規劃問題的解。

問題二:若小王和小李駕車平均速度為每小時60公里和40公里,其它條件不變,問小王和小李分別駕車多少時間時,行駛路程最遠?

要求:請你寫出約束條件、目標函數,作出可行域,求出最優解。

問題三:如果把不等式組①中的兩個“≤”改為“≥”,是否存在最優解?

5.小結。

(1)數學知識;(2)數學思想。

6.作業。

(1)閱讀教材:P.60-63;

(2)課后練習:教材P.65-2,3;

(3)在自己生活中尋找一個簡單的線性規劃問題,寫出約束條件,確定目標函數,作出可行域,并求出最優解。

《一個數列的研究》教學設計

教學目標:

1.進一步理解和掌握數列的有關概念和性質;

2.在對一個數列的探究過程中,提高提出問題、分析問題和解決問題的能力;

3.進一步提高問題探究意識、知識應用意識和同伴合作意識。

教學重點:

問題的提出與解決

教學難點:

如何進行問題的探究

教學方法:

啟發探究式

教學過程:

問題:已知{an}是首項為1,公比為的無窮等比數列。對于數列{an},提出你的問題,并進行研究,你能得到一些什么樣的結論?

研究方向提示:

1.數列{an}是一個等比數列,可以從等比數列角度來進行研究;

2.研究所給數列的項之間的關系;

3.研究所給數列的子數列;

4.研究所給數列能構造的新數列;

5.數列是一種特殊的函數,可以從函數性質角度來進行研究;

6.研究所給數列與其它知識的聯系(組合數、復數、圖形、實際意義等)。

針對學生的研究情況,對所提問題進行歸類,選擇部分類型問題共同進行研究、分析與解決。

課堂小結:

1.研究一個數列可以從哪些方面提出問題并進行研究?

2.你最喜歡哪位同學的研究?為什么?

課后思考題:1.將{an}推廣為一般的無窮等比數列:1,q,q2,…,qn-1,…,上述一些研究結論會有什么變化?

2.若將{an}改為等差數列:1,1+d,2+d,…,1+(n-1)d,…,是否可以進行類比研究?

開展研究性學習,培養問題解決能力

一、對“研究性學習”和“問題解決”的認識研究性學習是一種與接受性學習相對應的學習方式,泛指學生主動探究問題的學習。研究性學習也可以說是一種學習活動:學生在教師指導下,在自己的學習生活和社會生活中選擇課題,以類似科學研究的方式去主動地獲取知識、應用知識、解決問題。

“問題解決”(problemsolving)是美國數學教育界在二十世紀八十年代的主要口號,即認為應當以“問題解決”作為學校數學教育的中心。

問題解決能力是一種重要的數學能力,其核心是“創新精神”與“實踐能力”。在數學教學活動中開展研究性學習是培養問題解決能力的主要途徑。

二、“問題解決”課堂教學模式的建構與實踐以研究性學習活動為載體,以培養問題解決能力為核心的課堂教學模式(以下簡稱為“問題解決”課堂教學模式)試圖通過問題情境創設,激發學生的求知欲,以獨立思考和交流討論的形式,發現、分析并解決問題,培養處理信息、獲取新知、應用知識的能力,提高合作意識、探究意識和創新意識。

(一)關于“問題解決”課堂教學模式

通過實施“問題解決”課堂教學模式,希望能夠達到以下的功能目標:學習發現問題的方法,開掘創造性思維潛力,培養主動參與、團結協作精神,增進師生、同伴之間的情感交流,形成自覺運用數學基礎知識、基本技能和數學思想方法分析問題、解決問題的能力和意識。

(二)數學學科中的問題解決能力的培養目標

數學問題解決能力培養的目標可以有不同層次的要求:會審題,會建模,會轉化,會歸類,會反思,會編題。

(三)“問題解決”課堂教學模式的教學流程

(四)“問題解決”課堂教學評價標準

1.教學目標的確定;

2.教學方法的選擇;

3.問題的選擇;

4.師生主體意識的體現;

5.教學策略的運用。

(五)了解學生的數學問題解決能力的途徑

(六)開展研究性學習活動對教師的能力要求

高考數學教案集合篇9

教材分析

本節課是在系統的學習了不等關系和不等式性質,掌握了不等式性質的基礎上展開的,作為重要的基本不等式之一,為后續的學習奠定基礎。要進一步了解不等式的性質及運用,研究最值問題,此時基本不等式是必不可缺的。基本不等式在知識體系中起了承上啟下的作用,同時在生活及生產實際中有著廣泛的應用,因此它也是對學生進行情感價值觀教育的好素材,所以基本不等式應重點研究。

教學中注意用新課程理念處理教材,學生的數學學習活動不僅要接受、記憶、模仿和練習,而且要自主探索、動手實踐、合作交流、閱讀自學,師生互動,教師發揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質、經歷過程。通過本節學習體會數學來源于生活,提高學習數學的樂趣。

課程目標分析

依據《新課程標準》對《不等式》學段的目標要求和學生的實際情況,特確定如下目標:

1、知識與能力目標:理解掌握基本不等式,并能運用基本不等式解決一些簡單的求最值問題;理解算數平均數與幾何平均數的概念,學會構造條件使用基本不等式;培養學生探究能力以及分析問題解決問題的能力。

2、過程與方法目標:按照創設情景,提出問題→剖析歸納證明→幾何解釋→應用(最值的求法、實際問題的解決)的過程呈現。啟動觀察、分析、歸納、總結、抽象概括等思維活動,培養學生的思維能力,體會數學概念的學習方法,通過運用多媒體的教學手段,引領學生主動探索基本不等式性質,體會學習數學規律的方法,體驗成功的樂趣。

3、情感與態度目標:通過問題情境的設置,使學生認識到數學是從實際中來,培養學生用數學的眼光看世界,通過數學思維認知世界,從而培養學生善于思考、勤于動手的良好品質。

教學重、難點分析

重點:應用數形結合的思想理解基本不等式,并從不同角度探索基本不等式的證明過程及應用。

難點:1、基本不等式成立時的三個限制條件(簡稱一正、二定、三相等);

2、利用基本不等式求解實際問題中的最大值和最小值。

教法分析

本節課采用觀察——感知——抽象——歸納——探究;啟發誘導、講練結合的教學方法,以學生為主體,以基本不等式為主線,從實際問題出發,放手讓學生探究思索。以現代信息技術多媒體課件作為教學輔助手段,加深學生對基本不等式的理解。

教學準備

多媒體課件、板書

教學過程

教學過程設計以問題為中心,以探究解決問題的方法為主線展開。這種安排強調過程,符合學生的認知規律,使數學教學過程成為學生對知識的再創造、再發現的過程,從而培養學生的創新意識。

具體過程安排如下:

創設情景,提出問題;

設計意圖:數學教育必須基于學生的“數學現實”,現實情境問題是數學教學的平臺,數學教師的任務之一就是幫助學生構造數學現實,并在此基礎上發展他們的數學現實.基于此,設置如下情境:

上圖是在北京召開的第24屆國際數學家大會的會標,會標是根據中國古代數學家趙爽的弦圖設計的,顏色的明暗使它看上去像一個風車,代表中國人民熱情好客。

[問]你能在這個圖中找出一些相等關系或不等關系嗎?

本背景意圖在于利用圖中相關面積間存在的數量關系,抽象出不等式。在此基礎上,引導學生認識基本不等式。

二、抽象歸納:

一般地,對于任意實數a,b,有,當且僅當a=b時,等號成立。

[問]你能給出它的證明嗎?

學生在黑板上板書。

特別地,當a>0,b>0時,在不等式中,以、分別代替a、b,得到什么?

設計依據:類比是學習數學的一種重要方法,此環節不僅讓學生理解了基本不等式不等式的來源,突破了重點和難點,而且感受了其中的函數思想,為今后學習奠定基礎.

答案:。

【歸納總結】

如果a,b都是正數,那么,當且僅當a=b時,等號成立。

我們稱此不等式為基本不等式。其中稱為a,b的算術平均數,稱為a,b的幾何平均數。

三、理解升華:

1、文字語言敘述:

兩個正數的算術平均數不小于它們的幾何平均數。

2、聯想數列的知識理解基本不等式

已知a,b是正數,A是a,b的等差中項,G是a,b的正的等比中項,A與G有無確定的大小關系?

兩個正數的等差中項不小于它們正的等比中項。

3、符號語言敘述:

若,則有,當且僅當a=b時,。

[問]怎樣理解“當且僅當”?(學生小組討論,交流看法,師生總結)

“當且僅當a=b時,等號成立”的含義是:

高考數學教案集合篇10

1.幽默風趣的你,平時在班里話語不多,也不張揚,但是,你在無意中的表現仍然贏得了很好的人際關系,學習上你認真刻苦,也能及時的完成作業,但是我覺得你總是沒把全部的心思用在學習上,不然以你的聰明,應該保持在前三名才對啊,加油吧,也許關注學習成績對你才是更有意義的事!

2.身為紀律委員的你,認真負責,以身作則,生活上的你平易近人,與同學關系融洽,學習上你勤奮刻苦,尤其在英語的學習上,顯示出了你的語言天賦,我覺得,假如你能把這份自信和興趣用到其他的學科學習中,也一定會收獲很多的!加油吧!

3.你能嚴格遵守校規,上課認真聽講,作業完成認真,樂于助人,愿意幫助同學,大掃除時你不怕苦,不怕累,但是英語方面還不夠給力,所以,如果再投入一點,定會取得更好的結果,而且你還是一個愿意動腦筋的好學生,如果繼續保持下去定會取得驕人的成績!

4.你是個懂禮貌明事理的孩子,你能嚴格遵守班級紀律,熱愛集體,對待學習態度端正,上課能夠專心聽講,課下能夠認真完成作業。你的學習方法有待改進,若能做到學習時心無旁騖就好了,掌握知識也不夠牢固,思維能力要進一步培養和提高,平時善于多動筆認真作好筆記,多開動腦筋,相信你一定能在下學期更得更大的進步!你學習認真刻苦,也能善于思考,更十分活潑,并能嚴格遵守班級和宿舍紀律,上課你能認真聽講,做作業時你十分專注,常常愿意花功夫鉆研難題,與同學相處也十分融洽,但若能在認真做作業的同時,將速度提上去,我相信你會做得更好。要多講究學習方法,不能靠熬夜來完成學習任務,提高學習效率,老師相信你一定能通過自己的努力取得更好的成績!

5.雖然你個頭小,但每次你領讀時的那股認真勁兒,令老師暗暗稱贊。你尊敬老師,和同學能和睦相處。甜美可愛的你,經過不斷的努力,你會更出色的!

6.你是個活潑可愛的孩子,課堂上,你非常投入地學習著,朗讀課文時數你最有感情。中午你還主動給老師捶背,真是個會關心人的孩子,老師謝謝你。你十分喜愛讀課外書,不過課上可不能偷看啊!愿書成為你的好朋友。

7.學習中你能嚴格要求自己,這是你永不落敗的秘訣。老師希望你能借助良好的學習方法,抓緊一切時間,笑在最后的一定是你!

8.許麗君——你思想上進,踏實穩重,誠實謙虛,尊敬老師。黑板報中有你傾注的心血,集體榮譽簿里有你的功勞。但學習的主動精神不夠,競爭意識不強,也很少看到你向老師請教,成績進步不明顯。請相信:世上沒有比腳更長的路,也沒有比心更高的山!望今后大膽進取,多思多問,發揮你的聰明才智,進一步激發活力,提高學習效率,持之以恒,美好的明天屬于你!

9.每天你都背著書包高高興興地來上學,學到了不少的知識,可惜只能記住很少的一部分。希望你改進學習方法,提高學習效率,在下學期有更大的進步!

10.你言語不多,但待人誠懇、禮貌,作風踏實,品學兼優,熱愛班級,關愛同學,勤奮好學,思維敏捷,成績優秀。愿你扎實各科基礎,堅持不懈,!一定能考上重點!優秀的男生肯定是逗人喜歡的,老師希望你能一如既往的優秀,把這種優秀保持在你人生的每一階段中。你的人生就是輝煌如意的!

高考數學教案集合篇11

難點:集合的基本概念:

⒈定義:一般地,我們把研究對象統稱為元素,一些元素組成的總體叫集合,也簡稱集。

集合的組成和名稱:集合包括元素,以及使元素組成集合的規定的性質,通常我們用小寫拉丁字母a,b,c…表示元素;而通常用大括號{}或大寫的拉丁字母A,B,C…表示集合,這里{}表示符合規定性質的一切元素都被這個集合所包含了;而大寫字母A,B,C表示集合的名稱,讀作集合A,集合B,集合C,當然,你也可以用NB這樣的來表示,或者也可以使用能描述集合性質的文字來命名,例如“1,2,3,4,5……”就可以用“自然數集”或“N”來命名。

常用的數集及記法:

非負整數集(或自然數集),記作N;

正整數集,記作N或N+;N內排除0的集.

整數集,記作Z;有理數集,記作Q;實數集,記作R;

作業復習預習學習管理師家長或學生閱讀簽字關于集合的元素的特征

1.確定性:給定一個集合,那么任何一個元素在不在這個集合中就確定了。

如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。“中國古代四大發明”(造紙,印刷,火藥,指南針)可以構成集合,其元素具有確定性;而“比較大的數”,“平面點P周圍的點”一般不構成集合,因為組成它的元素是不確定的.

2.互異性:一個集合中的元素是互不相同的,即集合中的元素是不重復出現的。如:方程(x-2)(x-1)2=0的解集表示為1,-2,而不是1,1,-2

3.無序性:即集合中的元素無順序,可以任意排列、調換。

4.集合相等:構成兩個集合的元素完全一樣。例如{1,1,1}和{1,1,1}就是兩個相等的集合。

練習:判斷以下元素的全體是否組成集合,并說明理由:

⑴大于3小于11的偶數;⑵我國的小河流;

⑶非負奇數;⑷方程x2+1=0的解;

⑸某校2011級新生;⑹血壓很高的人;

⑺著名的數學家;⑻平面直角坐標系內所有第三象限的點

元素同集合的關系:元素同集合的關系有有“屬于”及“不屬于兩種)

1若a是集合A中的元素,則稱a屬于集合A,記作aA;

2若a不是集合A的元素,則稱a不屬于集合A,記作aA。

例如我們開頭的例子當中,前面三個圖形就屬于{正方形}

例.用“∈”或“”符號填空:

(1)8N;(2)0N;

(3)-3Z;(4)Q;

(5)設A為所有亞洲國家組成的集合,則中國A,美國A,印度A,英國A。

集合的表示方法

⒈列舉法:把集合中的元素一一列舉出來,并用花括號“”括起來表示集合的方法叫列舉法。如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;

說明:⑴書寫時,元素與元素之間用逗號分開;

⑵一般不必考慮元素之間的順序;

⑶在表示數列之類的特殊集合時,通常仍按慣用的次序;

⑷集合中的元素可以為數,點,代數式等;

⑸列舉法可表示有限集,也可以表示無限集。當元素個數比較少時用列舉法比較簡單;若集合中的元素較多或無限,但出現一定的規律性,在不發生誤解的情況下,也可以用列舉法表示。

⑹對于含有較多元素的集合,用列舉法表示時,必須把元素間的規律顯示清楚后方能用省略號,象自然數集N用列舉法表示為

例1.用列舉法表示下列集合:

小于5的正奇數組成的集合;

能被3整除而且大于4小于15的自然數組成的集合;

從51到100的所有整數的集合;

小于10的所有自然數組成的集合;

方程的所有實數根組成的集合;

⒉描述法(課本P4的思考題)得出描述法的定義:用集合所含元素的共同特征表示集合的方法,稱為描述法。

方法:在花括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

一般格式:

如:{--3>2},{(x,y)y=x2+1},{x直角三角形},…;

說明:描述法表示集合應注意集合的代表元素,如{(x,y)y=x2+3x+2}與{yy=x2+3x+2}是不同的兩個集合,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。

辨析:這里的{}已包含“所有”的意思,所以不必寫{全體整數}。寫法{實數集},{R}也是錯誤的。

用符號描述法表示集合時應注意:

1、弄清元素所具有的形式(即代表元素是什么)是數還是點、還是集合、還是其他形式?

2、元素具有怎么的屬性?當題目中用了其他字母來描述元素所具有的屬性時,要去偽存真,而不能被表面的字母形式所迷惑。

例2.用描述法表示下列集合:

由適合x2-x-2>0的所有解組成的集合;

到定點距離等于定長的點的集合;

方程的所有實數根組成的集合

由大于10小于20的所有整數組成的集合。

說明:列舉法與描述法各有優點,應該根據具體問題確定采用哪種表示法,要注意,

一般集合中元素較多或有無限個元素時,不宜采用列舉法。

三、文氏圖

集合的表示除了上述兩種方法以外,還有文氏圖法,即

畫一條封閉的曲線,用它的內部來表示一個集合,如下圖所示:

集合的分類

觀察下列三個集合的元素個數

1.{4.8,7.3,3.1,-9};

2.{xR∣0

3.{xR∣x2+1=0}

由此可以得到

集合的分類

2.用描述法表示

(1)被5除余數是1的整數的集合

奇數集

大于4小于1000的全體整數構成的集合

x軸上的點構成的集合

1.1.2集合間的基本關系

比較下面幾個例子,試發現兩個集合之間的關系:

(1),;

(2),;

(3),

觀察可得:

⒈子集:對于兩個集合A,B,如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含關系,稱集合A是集合B的子集(subset)。

記作:讀作:A包含于B,或B包含A

當集合A不包含于集合B時,記作A?B(或B?A)

用Venn圖表示兩個集合間的“包含”關系:

⒉集合相等定義:如果A是集合B的子集,且集合B是集合A的子集,則集合A與集合B

中的元素是一樣的,因此集合A與集合B相等,即若,則。

如:A={x=2m+1,mZ},B={x=2n-1,nZ},此時有A=B。

⒊真子集定義:若集合,但存在元素,則稱集合A是集合B的真子集。

記作:AB(或BA)讀作:A真包含于B(或B真包含A)

4.空集定義:不含有任何元素的集合稱為空集。記作:

用適當的符號填空:

;0;{};{}

5.幾個重要的結論:

(1)空集是任何集合的子集;對于任意一個集合A都有A。

空集是任何非空集合的真子集;

(3)任何一個集合是它本身的子集;

(4)對于集合A,B,C,如果,且,那么。

說明:

⑴注意集合與元素是“屬于”“不屬于”的關系,集合與集合是“包含于”“不包含于”的關系;

在分析有關集合問題時,要注意空集的地位。

例題:寫出{1,2,3},,{}所有的子集和真子集

結論:一般地,一個集合元素若為n個,則其子集數為2n個,其真子集數為2n-1個,子集包括該集合本身,而真子集不包括。

特別地,空集的子集個數為1,真子集個數為0。

這里還要注意的是{}不是空集,因為它里面有元素。

1.1.3集合間的基本運算

考察下列集合,說出集合C與集合A,B之間的關系:

(1),;

(2),;

1.并集:一般地,由所有屬于集合A或屬于集合B的元素組成的集合,稱為集合A與集合B

的并集,即A與B的所有部分,

記作A∪B,讀作:A并B即A∪B={x∈A或x∈B}。

Venn圖表示:

說明:定義中要注意“所有”和“或”這兩個條件。

討論:A∪B與集合A、B有什么特殊的關系?

A∪A=,A∪Ф=,A∪BB∪A

A∪B=A,A∪B=B.

鞏固練習(口答):

①.A={3,5,6,8},B={4,5,7,8},則A∪B=;

②.設A={銳角三角形},B={鈍角三角形},則A∪B=;

③.A={->3},B={-<6},則A∪B=。

交集定義:一般地,由屬于集合A且屬于集合B的所有元素組成的集合,叫作集合A、B的交集(intersectionset),

記作:A∩B讀作:A交B即:A∩B={-∈A,且x∈B}

Venn圖表示:

常見的五種交集的情況:

說明:當兩個集合沒有公共元素時,兩個集合的交集是空集,而不能說兩個

集合沒有交集

討論:A∩B與A、B、B∩A的關系?

A∩A=A∩=A∩BB∩A

A∩B=AA∩B=B

鞏固練習(口答):

①.A={3,5,6,8},B={4,5,7,8},則A∩B=;

②.A={等腰三角形},B={直角三角形},則A∩B=;

③.A={->3},B={-<6},則A∩B=。

3.一些特殊結論

若A,則A∩B=A;⑵若B,則AB=A;

若A,B兩集合中,B=,,則A∩=,A=A。

【題型一】并集與交集的運算

【例1】設A={x-1

【例2】設A={->-2},B={-<3},求A∩B。

【例3】已知集合A={yy=x2-2x-3,x∈R},B={yy=-x2+2x+13,x∈R}求A∩B、A∪B

【題型二】并集、交集的應用

例:設集合A={∣a+1∣,3,5},B={2a+1,a2+2a,a2+2a-1},當A∩B={2,3}時,求A∪B

解:

練:.已知{3,4,m2-3m-1}∩{2m,-3}={-3},則m=。

集合的基本運算㈡

思考1.U={全班同學}、A={全班參加足球隊的同學}、

B={全班沒有參加足球隊的同學},則U、A、B有何關系?

集合B是集合U中除去集合A之后余下來的集合。

高考數學教案集合篇12

教學目標:

1.理解流程圖的選擇結構這種基本邏輯結構.

2.能識別和理解簡單的框圖的功能.

3.能運用三種基本邏輯結構設計流程圖以解決簡單的問題.

教學方法:

1.通過模仿、操作、探索,經歷設計流程圖表達求解問題的過程,加深對流程圖的感知.

2.在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結構.

教學過程:

一、問題情境

1.情境:

某鐵路客運部門規定甲、乙兩地之間旅客托運行李的費用為

其中(單位:)為行李的重量.

試給出計算費用(單位:元)的一個算法,并畫出流程圖.

二、學生活動

學生討論,教師引導學生進行表達.

解算法為:

輸入行李的重量;

如果,那么,

否則;

輸出行李的重量和運費.

上述算法可以用流程圖表示為:

教師邊講解邊畫出第10頁圖1-2-6.

在上述計費過程中,第二步進行了判斷.

三、建構數學

1.選擇結構的概念:

先根據條件作出判斷,再決定執行哪一種

操作的結構稱為選擇結構.

如圖:虛線框內是一個選擇結構,它包含一個判斷框,當條件成立(或稱條件為“真”)時執行,否則執行.

2.說明:(1)有些問題需要按給定的條件進行分析、比較和判斷,并按判

斷的不同情況進行不同的操作,這類問題的實現就要用到選擇結構的設計;

(2)選擇結構也稱為分支結構或選取結構,它要先根據指定的條件進行判斷,再由判斷的結果決定執行兩條分支路徑中的某一條;

(3)在上圖的選擇結構中,只能執行和之一,不可能既執行,又執

行,但或兩個框中可以有一個是空的,即不執行任何操作;

(4)流程圖圖框的形狀要規范,判斷框必須畫成菱形,它有一個進入點和

兩個退出點.

3.思考:教材第7頁圖所示的算法中,哪一步進行了判斷?

高考數學教案集合篇13

一、設計理念

注重發展學生的創新意識。學生的數學學習活動不應只限于接受、記憶、模仿和練習,倡導學生積極主動探索、動手實踐與相互合作交流的數學學習方式。這種方式有助于發揮學生學習主動性,使學生的學習過程成為在教師引導下的“再創造”過程。我們應積極創設條件,讓學生體驗數學發現和創造的歷程,發展他們的創新意識。

注重提高學生數學思維能力。課堂教學是促進學生數學思維能力發展的主陣地。問題解決是培養學生思維能力的主要途徑。所設計的問題應有利于學生主動地進行觀察、實驗、猜測、驗證、推理與交流等教學活動。內容的呈現應采用不同的表達方式,以滿足多樣化的學習需求。伴隨新的問題發現和問題解決后成功感的滿足,由此刺激學生非認知深層系統的良性運行,使其產生“樂學”的余味,學生學習的積極性與主動性在教學中便自發生成。本節主要安排應用類比法進行探討,加深學生對類比法的體會與應用。

注重學生多層次的發展。在問題解決的探究過程中應體現“以人為本”,充分體現“人人學有價值的數學,人人都能獲得必需的數學”,“不同的人在數學上得到不同的發展”的教學理念。有意義的數學學習必須建立在學生的主觀愿望和知識經驗基礎之上,而學生的基礎知識和學習能力是多層次的,所以設計的問題也應有層次性,使各層次學生都得到發展。

注重信息技術與數學課程的整合。高中數學課程應盡量使用科學型計算器,各種數學教育技術平臺,加強數學教學與信息技術的結合,鼓勵學生運用計算機、計算器等進行探索和發現。

另外,在數學教學中,強調數學本質的同時,也讓學生通過適度的形式化,較好的理解和使用數學概念、性質。

二、教材分析

1.在教材中的地位與作用

冪函數在老教材中出現過,后來又刪,現在又重新出現,當然兩次在教材中的地位不一樣,這次分量較輕,只要一課時,所以控制難度是值得注意的地方。冪函數選自必修1第2章第4節,是基本初等函數之一,是在學生系統學習了函數概念與函數性質之后,進入高中以來遇到的第三種特殊函數,是對函數概念及性質的應用,能進一步培養利用函數的性質(定義域、值域、圖像、奇偶性、單調性)研究一個函數的意識。因而本節課更是一個對學生研究函數的方法和能力的綜合提升。從概念到圖象(),利用這五個函數的圖象探究其定義域、值域、奇偶性、單調性、公共點,概括、歸納冪函數的性質,培養學生從特殊到一般再到特殊的一般認知規律。從教材的整體安排看,學習了解冪函數是為了讓學生進一步獲得比較系統的函數知識和研究函數的方法,以便能將該方法遷移到對其他函數的研究。

2.教材編排與課時安排

冪函數的教學按照《教參》要求一個課時完成。通過這一課時學習冪函數的定義,圖像及性質,從而進一步深化學生對函數概念的理解與認識,使學生得到較系統的函數知識和研究函數的方法,并且為后面學習其他函數作好準備。

三、學習目標與任務

依據課程標準,結合學生的認知發展水平和心理特征,確定本節課的教學目標如下:

【知識目標】

1了解冪函數的定義;

2會畫常見冪函數的圖象,掌握冪函數的圖象和性質;

3初步學會運用冪函數解決問題,進一步體會數形結合的思想。

【技能目標】

1通過引入、剖析、定義冪函數的過程,啟動觀察、分析、抽象概括等思維活動,培養學生的思維能力,體會數學概念的學習方法;

2通過運用多媒體的教學手段,引領學生主動探索冪函數性質,體會學習數學規律的方法,體驗成功的樂趣;

3對冪函數的性質歸納、總結時培養學生抽象概括和識圖能力;

4運用性質解決問題時,進一步強化數形結合思想。

【情感目標】

1通過生活實例引出冪函數概念,體會生活中處處有數學,激發學生的學習興趣;

2通過本節課的學習,進一步加深研究函數的規律和方法;提高學習能力;

3養成積極主動,勇于探索,不斷創新的學習習慣和品質;

4樹立學科學,愛科學,用科學的精神。

四、學習重點、難點

重點:冪函數的定義、圖像、性質及運用

難點:冪函數圖象和性質的發現過程

五、學習者特征分析

從學生思維特點來和認知結構看,前面學生已經學習指數函數與對數函數,對新函數的學習已經有了一定的經驗。一方面可以把本節課與前面的指數函數與對數函數進行類比學習,但另一方面本節課分類情況多,性質歸納困難,尤其是三個函數放在一起可能產生混淆。對進入高中半個學期的學生來說,雖然具備一定的分析和解決問題的能力,邏輯思維也初步形成,但缺乏冷靜、深刻,思維具有片面性、不嚴謹的特點,對問題解決的一般性思維過程認識比較模糊。

六、教法分析

學生思維活躍,求知欲強,但在思維習慣上還有待教師引導從學生原有的知識和能力出發,在教師的帶領下創設疑問,通過合作交流,共同探索,逐步解決問題。采用引導發現式的教學方法,充分利用多媒體輔助教學。通過教師點撥,啟發學生主動觀察、主動思考、動手操作、自主探究來達到對知識的發現和接受。

七、學習環境選擇與學習資源設計

【學習環境選擇】

1Web教室;2校園網;3Internet。

【學習資源類型】

1課件;2專題學習網站;3案例庫;4題庫

【學習資源內容簡要說明】

這堂課的學習資源主要是《冪函數》專題學習網站,網站的內容有:學習主題、學習目標、學法指導、準備知識、重點難點、學習資源、練習測試、展示討論、學習拓展。

八、學習情境創設

【學習情境類型】

1真實情境;2問題性情境;3虛擬情境;4其他

【學習情境設計】

課堂上創設了學生熟悉的生活情景:購買水果、騎車等生活情境圖;計算正方體的面積與體積的問題情境圖;還有發揮互聯網的交互功能,向學生提供交流、展示作品的空間;通過相關學習資源的鏈接,讓學生在豐富的互聯網的資源中學習、探究、應用“冪函數”。

九、學習活動組織形式選擇

【自主學習設計】

1拋錨式

(1)準備知識:

寫出下列y關于x的函數解析式:

①正方形邊長x、面積y

②正方體棱長x、體積y

③正方形面積x、邊長y

④某人騎車x秒內勻速前進了1km,騎車速度為y

⑤一物體位移y與位移時間x,速度1m/s

(2)使用資源:

網頁上的“準備知識”;網絡圖像:網絡練習

(3)學生活動

自主進入網站課件瀏覽準備知識,小組討論復習所學知識。采用網絡作為評價的手段。

(4)教師活動

巡視課堂,參與學生的討論。

2支架式

(1)相應內容

了解本節課的“學習主題”、“學習目標”、提供“學法指導”。

(2)使用資源

網頁上的“學習主題”、“學習目標”、“學法指導”和“重點難點”。

(3)學生活動

自主進入網站瀏覽,根據網頁上的例子歸納出冪函數的一般形式,小組合作學習,互幫互助,采取網絡評價。

(4)教師活動

巡視課堂,指導學生根據例子總結出冪函數的定義及其一般形式,引導學生應該注意的一些地方,并出題練習,鞏固定義。

3隨機進入式

(1)相應內容

瀏覽學習資源、測試

(2)使用資源

網頁上的“學習資源”:包括本地資源和遠程鏈接、搜索引擎、實驗工具,其中本地資源有:“學習課件”、“課外閱讀、應用例談”等欄目。還有網絡練習。

(3)學生活動

自由選擇喜歡的、重要的內容瀏覽,獨立練習,然后小組交流,采取網絡評價。

(4)教師活動

巡視指導,小結,評價。

【協作學習設計】

1伙伴

(1)內容:根據幾個問題情境,總結出冪函數的一般形式。

(2)使用資源:網頁上的“重點難點”以及網絡課件。

(3)分組情況:六人一小組。

(4)學生活動:根據網頁上的例子總結出冪函數的一般形式;小組合作學習,互相幫組;網絡評價。

(5)教師活動;巡視課堂,指導學生根據例子總結出冪函數的一般形式。

2協同

(1)內容:根據冪函數的圖像,總結出冪函數的性質,幫助識記這些性質。

(2)使用資源;網路課件。

(3)分組情況:六人一小組。

(4)學生活動:根據冪函數的圖像找出冪函數的特有性質;小組合作學習,互幫互助。

(5)教師活動;巡視課堂,指導學生根據函數圖像發現冪函數的性質。

3辯論

(1)內容:冪函數的一般形式以及冪函數的性質

(2)使用資源:網絡課件。

(3)分組情況:六人一小組。

(4)學生活動:根據討論總結出冪函數的一般形式以及其性質;互相發表意見,也可辯論,說出自己的想法。

(5)教師活動;組織學生匯報討論的結果。

【教學結流程設計】SHAPEMERGEFORMAT

SHAPEMERGEFORMAT

【圖符說明】

SHAPEMERGEFORMAT

十、教學過程

1課前活動

(1)教師活動:同學們,上課前我們先來看兩個實際問題:

①如果張紅購買了每千克1元的蔬菜w千克,那么她需要付的錢數p是多少?

高考數學教案集合篇14

【課題名稱】

《等差數列》的導入

【授課年級】

高中二年級

【教學重點】

理解等差數列的概念,能夠運用等差數列的定義判斷一個數列是否為等差數列。

【教學難點】

等差數列的性質、等差數列“等差”特點的理解,

【教具準備】多媒體課件、投影儀

【三維目標】

㈠知識目標:

了解公差的概念,明確一個等差數列的限定條件,能根據定義判斷一個等差數列是否是一個等差數列;

㈡能力目標:

通過尋找等差數列的共同特征,培養學生的觀察力以及歸納推理的能力;

㈢情感目標:

通過對等差數列概念的歸納概括,培養學生的觀察、分析資料的能力。

【教學過程】

導入新課

師:上兩節課我們已經學習了數列的定義以及給出表示數列的幾種方法—列舉法、通項法,遞推公式、圖像法。這些方法分別從不同的角度反映了數列的特點。下面我們觀察以下的幾個數列的例子:

(1)我們經常這樣數數,從0開始,每個5個數可以得到數列:0,5,10,15,20,()

(2)2000年,在澳大利亞悉尼舉行的奧運會上,女子舉重被正式列為比賽項目,該項目工設置了7個級別,其中較輕的4個級別體重組成的數列(單位:kg)為48,53,58,63,()試問第五個級別體重多少?

(3)為了保證優質魚類有良好的生活環境,水庫管理員定期放水清庫以清除水庫中的雜魚。如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一個數列:18,15.5,13,10.5,8,(),則第六個數應為多少?

(4)10072,10144,10216,(),10360

請同學們回答以上的四個問題

生:第一個數列的第6項為25,第二個數列的第5個數為68,第三個數列的第6個數為5.5,第四個數列的第4個數為10288。

師:我來問一下,你是依據什么得到了這幾個數的呢?請以第二個數列為例說明一下。

生:第二個數列的后一項總比前一項多5,依據這個規律我就得到了這個數列的第5個數為68.

師:說的很好!同學們再仔細地觀察一下以上的四個數列,看看以上的四個數列是否有什么共同特征?請注意,是共同特征。

生1:相鄰的兩項的差都等于同一個常數。

師:很好!那作差是否有順序?是否可以顛倒?

生2:作差的順序是后項減去前項,不能顛倒!

師:正如生1的總結,這四個數列有共同的特征:從第二項起,每一項與它的前一項的差都等于同一個常數(即等差)。我們叫這樣的數列為等差數列。這就是我們這節課要研究的內容。

推進新課

等差數列的定義:一般地,如果一個數列從第2項起,每一項與它的前一項的差都等于同一個常數,那么這個數列就叫做等差數列,這個常數就叫做等差數列的公差,公差常用字母d表示。從剛才的分析,同學們應該注意公差d一定是由后項減前項。

師:有哪個同學知道定義中的關鍵字是什么?

生2:“從第二項起”和“同一個常數”

高考數學教案集合篇15

教學準備

教學目標

掌握等差數列與等比數列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題.

教學重難點

掌握等差數列與等比數列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題.__

教學過程

等比數列性質請同學們類比得出.

【方法規律】

1、通項公式與前n項和公式聯系著五個基本量,“知三求二”是一類最基本的運算題.方程觀點是解決這類問題的基本數學思想和方法.

2、判斷一個數列是等差數列或等比數列,常用的方法使用定義.特別地,在判斷三個實數

a,b,c成等差(比)數列時,常用(注:若為等比數列,則a,b,c均不為0)

3、在求等差數列前n項和的(小)值時,常用函數的思想和方法加以解決.

【示范舉例】

例1:(1)設等差數列的前n項和為30,前2n項和為100,則前3n項和為.

(2)一個等比數列的前三項之和為26,前六項之和為728,則a1=,q=.

例2:四數中前三個數成等比數列,后三個數成等差數列,首末兩項之和為21,中間兩項之和為18,求此四個數.

例3:項數為奇數的等差數列,奇數項之和為44,偶數項之和為33,求該數列的中間項.

高考數學教案集合篇16

一、教學內容分析

向量作為工具在數學、物理以及實際生活中都有著廣泛的應用。

本小節的重點是結合向量知識證明數學中直線的平行、垂直問題,以及不等式、三角公式的證明、物理學中的應用。

二、教學目標設計

1、通過利用向量知識解決不等式、三角及物理問題,感悟向量作為一種工具有著廣泛的應用,體會從不同角度去看待一些數學問題,使一些數學知識有機聯系,拓寬解決問題的思路。

2、了解構造法在解題中的運用。

三、教學重點及難點

重點:平面向量知識在各個領域中應用。

難點:向量的構造。

四、教學流程設計

五、教學過程設計

(一)、復習與回顧

1、提問:下列哪些量是向量?

(1)力(2)功(3)位移(4)力矩

2、上述四個量中,(1)(3)(4)是向量,而(2)不是,那它是什么?

[說明]復習數量積的有關知識。

(二)、學習新課

例1(書中例5)

向量作為一種工具,不僅在物理學科中有廣泛的應用,同時它在數學學科中也有許多妙用!請看

例2(書中例3)

證法(一)原不等式等價于,由基本不等式知(1)式成立,故原不等式成立。

證法(二)向量法

[說明]本例關鍵引導學生觀察不等式結構特點,構造向量,并發現(等號成立的充要條件是)

例3(書中例4)

[說明]本例的關鍵在于構造單位圓,利用向量數量積的兩個公式得到證明。

(三)、鞏固練習

1、如圖,某人在靜水中游泳,速度為km/h。

(1)如果他徑直游向河對岸,水的流速為4km/h,他實際沿什么方向前進?速度大小為多少?

答案:沿北偏東方向前進,實際速度大小是8km/h。

(2)他必須朝哪個方向游才能沿與水流垂直的方向前進?實際前進的速度大小為多少?

答案:朝北偏西方向前進,實際速度大小為km/h。

(四)、課堂小結

1、向量在物理、數學中有著廣泛的應用。

2、要學會從不同的角度去看一個數學問題,是數學知識有機聯系。

(五)、作業布置

1、書面作業:課本P73,練習8.44

高考數學教案集合篇17

1、教材分析

本節課位于數學必修一第一章第一節-----集合的第一課時,主要學習集合的基本概念與表示方法,在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握和使用數學語言的基礎。例如,下一章講函數的概念與性質,;在代數中用到的有數集、解集等;在幾何中用到的有點集,都離不開集合。至于邏輯,可以說,從開始學習數學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具。這些可以幫助學生認識學習本章的意義,也是本章學習的基礎。

2、教學目標

知識與技能目標

①通過實例了解集合的含義;

②知道常用數集及其專用記號;

③了解集合中元素的確定性、互異性、無序性;

④會用集合語言表示有關數學對象。

⑤能選擇自然語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。

過程與方法目標

①通過實例抽象概括集合的共同特征,從而引出集合的概念是本節課的重要任務之一。因此教學時不僅要關注集合的基本知識的學習,同時還要關注學生抽象概括能力的培養。

②教學過程中應努力創造培養學生的思維能力,提高學生理解掌握概念的能力,訓練學生分析問題和處理問題的能力

情感態度與價值觀目標

培養數學的特有文化——簡潔精煉,體會從感性到理性的思維過程。

3、教學重難點

重點:集合的基本概念與表示方法。

難點:運用集合的三種常用表示方法正確表示一些簡單的集合

4、教學方法:實例歸納、學生的自主探究、主動參與與教師的引導相結合,充分體現學生在課堂中的主體作用和教師的主導作用。

5、教學手段:多媒體輔助教學——主要是利用多媒體展示圖片來增加學生的學習興趣和對集合知識的直觀理解。

6、教學思路:創設情境,從具體實例引入新課

師生共同分析實例,得出集合含義,明確有關規定

師生共同分析例子,學習元素與集合的關系及記號

自主學習常用數集及其記號

自主學習集合的兩種表示方法

課堂練習,小結與課后作業

7、教學過程

7.1創設情境,引入課題

【活動】多媒體展示:1、草原一群大象在緩步走來。

2、藍藍的天空中,一群鳥在飛翔

3、一群學生在一起玩。

引導學生舉出一些類似的例子問題

在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是一群大象、一群鳥、一群學生)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合,即是一些研究對象的總體。

【設計意圖】通過多媒體展示,極大地調動起了學生的積極性,吸引學生的注意力,設置輕松的學習氣氛。

7.2步步探索,形成概念

【活動1】觀察下列對象:

①1~20以內的所有質數;

②我國從1991—2003年的13年內所發射的所有人造衛星

③金星汽車廠2003年生產的所有汽車;

④2004年1月1日之前與我國建立外交關系的所有國家;

⑤所有的正方形;

⑥到直線l的距離等于定長d的所有的點;

⑦方程x2+3x—2=0的所有實數根;

⑧新華中學2004年9月入學的所有的高一學生。

師生共同概括8個例子的特征,得出結論,給出集合的含義:把研究對象統稱為元素,常用小寫字母啊a,b,c….表示,把一些元素組成的總體叫做集合,常用大寫字母A,B,C….來表示。

【設計意圖】使學生自己明確集合的含義,培養學生的概括能力。

【活動2】要求每個學生舉出一些集合的例子,選出具有代表性的幾個問題,比如:

1)A={1,3},3、5哪個是A的元素?

2)B={身材較高的人},能否表示成集合?

3)C={1,1,3}表示是否準確?

4)D={中國的直轄市},E={北京,上海,天津,重慶}是否表示同一集合?

5)F={a,b,c}與G={c,b,a}這兩個集合是否一樣?

【分析】1)1,3是A的元素,5不是

2)我們不能準確的規定多少高算是身材較高,即不能確定集合的元素,所以B不能表示集合

3)C中有二個1,因此表達不準確

4)我們知道E中各元素都是屬于中國的直轄市,但中國的直轄市并不

只有這幾個,因此不相等。

5)F和G的元素相同,只不過順序不同,但還是表示同一個集合

通過上述分析引導學生自由討論、探究概括出集合中各種元素的特點,并讓學生再舉出一些能夠構成集合的例子以及不能構成集合的例子,要求說明理由。師生一起得出集合的特征:

1)確定性:某一個具體對象,它或者是一個給定的集合的元素,或者不是該集合的元素,兩種情況必有一種且只有一種成立.

2)互異性:同一集合中不應重復出現同一元素.

3)無序性:集合中的元素沒有順序

4)集合相等:構成兩個集合的元素完全一樣

【設計意圖】引導學生自主探究得出集合的特征:確定性、互異性、無序性,集合相等,培養學生的抽象概括能力,同時使學生能更好的了解集合。

7.3集合與元素的關系

【問題】高一(4)班里所有學生組成集合A,a是高一(4)班里的同學,b是高一(5)班的同學,a、b與A分別有什么關系?

高考數學教案集合篇18

本節課是《普通高中課程標準實驗教科書·數學5》(北師大版)第一章數列第二節等差數列第一課時.數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用.等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣.同時等差數列也為今后學習等比數列提供了“聯想”、“類比”的思想方法.

【教學目標】

1.知識與技能

(1)理解等差數列的定義,會應用定義判斷一個數列是否是等差數列:

(2)賬務等差數列的通項公式及其推導過程:

(3)會應用等差數列通項公式解決簡單問題。

2.過程與方法

在定義的理解和通項公式的推導、應用過程中,培養學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規律,提高熟悉猜想和歸納的能力,滲透函數與方程的思想。

3.情感、態度與價值觀

通過教師指導下學生的自主學習、相互交流和探索活動,培養學生主動探索、用于發現的求知精神,激發學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養成細心觀察、認真分析、善于總結的良好習慣。

【教學重點】

①等差數列的概念;②等差數列的通項公式

【教學難點】

①理解等差數列“等差”的特點及通項公式的含義;②等差數列的通項公式的推導過程.

【學情分析】

我所教學的學生是我校高一(7)班的學生(平行班學生),經過一年的高中數學學習,大部分學生知識經驗已較為豐富,他們的智力發展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發,注重引導、啟發、研究和探討以符合這類學生的心理發展特點,從而促進思維能力的進一步發展.

【設計思路】

1.教法

①啟發引導法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調動學生的主動性和積極性,發揮其創造性.

②分組討論法:有利于學生進行交流,及時發現問題,解決問題,調動學生的積極性.

③講練結合法:可以及時鞏固所學內容,抓住重點,突破難點.

2.學法

引導學生首先從三個現實問題(數數問題、水庫水位問題、儲蓄問題)概括出數組特點并抽象出等差數列的概念;接著就等差數列概念的特點,推導出等差數列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法.

【教學過程】

一:創設情境,引入新課

1.從0開始,將5的倍數按從小到大的順序排列,得到的數列是什么?

2.水庫管理人員為了保證優質魚類有良好的生活環境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數列?

3.我國現行儲蓄制度規定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內各年末的本利和(單位:元)組成一個什么數列?

教師:以上三個問題中的數蘊涵著三列數.

學生:

1:0,5,10,15,20,25,….

2:18,15.5,13,10.5,8,5.5.

3:10072,10144,10216,10288,10360.

(設置意圖:從實例引入,實質是給出了等差數列的現實背景,目的是讓學生感受到等差數列是現實生活中大量存在的數學模型.通過分析,由特殊到一般,激發學生學習探究知識的自主性,培養學生的歸納能力.

二:觀察歸納,形成定義

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述數列有什么共同特點?

思考2根據上數列的共同特點,你能給出等差數列的一般定義嗎?

思考3你能將上述的文字語言轉換成數學符號語言嗎?

教師:引導學生思考這三列數具有的共同特征,然后讓學生抓住數列的特征,歸納得出等差數列概念.

學生:分組討論,可能會有不同的答案:前數和后數的差符合一定規律;這些數都是按照一定順序排列的…只要合理教師就要給予肯定.

教師引導歸納出:等差數列的定義;另外,教師引導學生從數學符號角度理解等差數列的定義.

(設計意圖:通過對一定數量感性材料的觀察、分析,提煉出感性材料的本質屬性;使學生體會到等差數列的規律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數”,落實對等差數列概念的準確表達.)

三:舉一反三,鞏固定義

1.判定下列數列是否為等差數列?若是,指出公差d.

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教師出示題目,學生思考回答.教師訂正并強調求公差應注意的問題.

注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數與減數弄顛倒,而且公差可以是正數,負數,也可以為0.

(設計意圖:強化學生對等差數列“等差”特征的理解和應用).

2思考4:設數列{an}的通項公式為an=3n+1,該數列是等差數列嗎?為什么?

(設計意圖:強化等差數列的證明定義法)

四:利用定義,導出通項

1.已知等差數列:8,5,2,…,求第200項?

2.已知一個等差數列{an}的首項是a1,公差是d,如何求出它的任意項an呢?

教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示.根據學生在課堂上的具體情況進行具體評價、引導,總結推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數列問題的常用方法.

(設計意圖:引導學生觀察、歸納、猜想,培養學生合理的推理能力.學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創新的品質,激發學生的創造意識.鼓勵學生自主解答,培養學生運算能力)

五:應用通項,解決問題

1判斷100是不是等差數列2,9,16,…的項?如果是,是第幾項?

2在等差數列{an}中,已知a5=10,a12=31,求a1,d和an.

3求等差數列3,7,11,…的第4項和第10項

教師:給出問題,讓學生自己操練,教師巡視學生答題情況.

學生:教師叫學生代表總結此類題型的解題思路,教師補充:已知等差數列的首項和公差就可以求出其通項公式

(設計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯系.初步認識“基本量法”求解等差數列問題.)

六:反饋練習:教材13頁練習1

七:歸納總結:

1.一個定義:

等差數列的定義及定義表達式

2.一個公式:

等差數列的通項公式

3.二個應用:

定義和通項公式的應用

教師:讓學生思考整理,找幾個代表發言,最后教師給出補充

(設計意圖:引導學生去聯想本節課所涉及到的各個方面,溝通它們之間的聯系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)

【設計反思】

本設計從生活中的數列模型導入,有助于發揮學生學習的主動性,增強學生學習數列的興趣.在探索的過程中,學生通過分析、觀察,歸納出等差數列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學生分析問題和解決問題的能力.本節課教學采用啟發方法,以教師提出問題、學生探討解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課堂教學效率.

69712 主站蜘蛛池模板: 京港视通报道-质量走进大江南北-京港视通传媒[北京]有限公司 | 智慧旅游_智慧景区_微景通-智慧旅游景区解决方案提供商 | 细石混凝土泵_厂家_价格-烟台九达机械有限公司 | 快干水泥|桥梁伸缩缝止水胶|伸缩缝装置生产厂家-广东广航交通科技有限公司 | 山东彩钢板房,山东彩钢活动房,临沂彩钢房-临沂市贵通钢结构工程有限公司 | 洁净棚-洁净工作棚-无菌室-净化工程公司_北京卫护科技有限公司 | 扒渣机,铁水扒渣机,钢水扒渣机,铁水捞渣机,钢水捞渣机-烟台盛利达工程技术有限公司 | 管理会计网-PCMA初级管理会计,中级管理会计考试网站 | crm客户关系管理系统,销售管理系统,crm系统,在线crm,移动crm系统 - 爱客crm | 精准猎取科技资讯,高效阅读科技新闻_科技猎 | 铜镍-康铜-锰铜-电阻合金-NC003 - 杭州兴宇合金有限公司 | 一氧化氮泄露报警器,二甲苯浓度超标报警器-郑州汇瑞埔电子技术有限公司 | 余姚生活网_余姚论坛_余姚市综合门户网站 | 单柱拉力机-橡胶冲片机-哑铃裁刀-江都轩宇试验机械厂 | 水性绝缘漆_凡立水_绝缘漆树脂_环保绝缘漆-深圳维特利环保材料有限公司 | 电子厂招聘_工厂招聘_普工招聘_小时工招聘信息平台-众立方招工网 | 经济师考试_2025中级经济师报名时间_报名入口_考试时间_华课网校经济师培训网站 | 合肥防火门窗/隔断_合肥防火卷帘门厂家_安徽耐火窗_良万消防设备有限公司 | 低温等离子清洗机(双气路进口)-嘉润万丰 | 振动传感器,检波器-威海广达勘探仪器有限公司 | 活性氧化铝球|氧化铝干燥剂|分子筛干燥剂|氢氧化铝粉-淄博同心材料有限公司 | 骨密度仪-骨密度测定仪-超声骨密度仪-骨龄测定仪-天津开发区圣鸿医疗器械有限公司 | 高温热泵烘干机,高温烘干热泵,热水设备机组_正旭热泵 | 不锈钢钢格栅板_热浸锌钢格板_镀锌钢格栅板_钢格栅盖板-格美瑞 | 章丘丰源机械有限公司 - 三叶罗茨风机,罗茨鼓风机,罗茨风机 | 东莞工作服_东莞工作服定制_工衣订做_东莞厂服 | 联系我们-腾龙公司上分客服微信19116098882| 称重传感器,测力传感器,拉压力传感器,压力变送器,扭矩传感器,南京凯基特电气有限公司 | 谷歌关键词优化-外贸网站优化-Google SEO小语种推广-思亿欧外贸快车 | 青岛空压机,青岛空压机维修/保养,青岛空压机销售/出租公司,青岛空压机厂家电话 | 厚壁钢管-厚壁无缝钢管-小口径厚壁钢管-大口径厚壁钢管 - 聊城宽达钢管有限公司 | 渣土车电机,太阳能跟踪器电机,蜗轮蜗杆减速电机厂家-淄博传强电机 | 精密机械零件加工_CNC加工_精密加工_数控车床加工_精密机械加工_机械零部件加工厂 | 北京康百特科技有限公司-分子蒸馏-短程分子蒸馏设备-实验室分子蒸馏设备 | 潍坊大集网-潍坊信息港-潍坊信息网| 南京PVC快速门厂家南京快速卷帘门_南京pvc快速门_世界500强企业国内供应商_南京美高门业 | 水厂污泥地磅|污泥处理地磅厂家|地磅无人值守称重系统升级改造|地磅自动称重系统维修-河南成辉电子科技有限公司 | 锂电池生产厂家-电动自行车航模无人机锂电池定制-世豹新能源 | 胀套-锁紧盘-风电锁紧盘-蛇形联轴器「厂家」-瑞安市宝德隆机械配件有限公司 | 东莞市踏板石餐饮管理有限公司_正宗桂林米粉_正宗桂林米粉加盟_桂林米粉加盟费-东莞市棒子桂林米粉 | 微波消解仪器_智能微波消解仪报价_高压微波消解仪厂家_那艾 |