小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數(shù)學(xué)教案 >

高考數(shù)學(xué)教科書教案大全

時(shí)間: 沐欽 數(shù)學(xué)教案

高考數(shù)學(xué)教科書教案都有哪些?數(shù)學(xué)語言對于初學(xué)者來說也比較難。如何讓這些詞有一個(gè)比日常用語更準(zhǔn)確的含義,也困擾著初學(xué)者。下面是小編為大家?guī)淼母呖紨?shù)學(xué)教科書教案七篇,希望大家能夠喜歡!

高考數(shù)學(xué)教科書教案大全

高考數(shù)學(xué)教科書教案精選篇1

一、教學(xué)目標(biāo)

【知識與技能】

掌握三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。

【過程與方法】

經(jīng)歷三角函數(shù)的單調(diào)性的探索過程,提升邏輯推理能力。

【情感態(tài)度價(jià)值觀】

在猜想計(jì)算的過程中,提高學(xué)習(xí)數(shù)學(xué)的興趣。

二、教學(xué)重難點(diǎn)

【教學(xué)重點(diǎn)】

三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。

【教學(xué)難點(diǎn)】

探究三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍過程。

三、教學(xué)過程

(一)引入新課

提出問題:如何研究三角函數(shù)的單調(diào)性

(四)小結(jié)作業(yè)

提問:今天學(xué)習(xí)了什么?

引導(dǎo)學(xué)生回顧:基本不等式以及推導(dǎo)證明過程。

課后作業(yè):

思考如何用三角函數(shù)單調(diào)性比較三角函數(shù)值的大小。

高考數(shù)學(xué)教科書教案精選篇2

一、教學(xué)目標(biāo)

知識與技能:

理解任意角的概念(包括正角、負(fù)角、零角)與區(qū)間角的概念。

過程與方法:

會建立直角坐標(biāo)系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。

情感態(tài)度與價(jià)值觀:

1、提高學(xué)生的推理能力;

2、培養(yǎng)學(xué)生應(yīng)用意識。

二、教學(xué)重點(diǎn)、難點(diǎn):

教學(xué)重點(diǎn):

任意角概念的理解;區(qū)間角的集合的書寫。

教學(xué)難點(diǎn):

終邊相同角的集合的表示;區(qū)間角的集合的書寫。

三、教學(xué)過程

(一)導(dǎo)入新課

1、回顧角的定義

①角的第一種定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角。

②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。

(二)教學(xué)新課

1、角的有關(guān)概念:

①角的定義:

角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。

②角的名稱:

注意:

⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡化成“α ”;

⑵零角的終邊與始邊重合,如果α是零角α =0°;

⑶角的概念經(jīng)過推廣后,已包括正角、負(fù)角和零角。

⑤練習(xí):請說出角α、β、γ各是多少度?

2、象限角的概念:

①定義:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說這個(gè)角是第幾象限角。

例1、如圖⑴⑵中的角分別屬于第幾象限角?

高考數(shù)學(xué)教科書教案精選篇3

教學(xué)目標(biāo)

(1)了解用坐標(biāo)法研究幾何問題的方法,了解解析幾何的基本問題。

(2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點(diǎn)的概念。

(3)通過曲線方程概念的教學(xué),培養(yǎng)學(xué)生數(shù)與形相互聯(lián)系、對立統(tǒng)一的辯證唯物主義觀點(diǎn)。

(4)通過求曲線方程的教學(xué),培養(yǎng)學(xué)生的轉(zhuǎn)化能力和全面分析問題的能力,幫助學(xué)生理解解析幾何的思想方法。

(5)進(jìn)一步理解數(shù)形結(jié)合的思想方法。

教學(xué)建議

教材分析

(1)知識結(jié)構(gòu)

曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標(biāo)法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì)。曲線方程的概念和求曲線方程的問題又有內(nèi)在的邏輯順序。前者回答什么是曲線方程,后者解決如何求出曲線方程。至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究。因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題。

(2)重點(diǎn)、難點(diǎn)分析

①本節(jié)內(nèi)容教學(xué)的重點(diǎn)是使學(xué)生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標(biāo)法和解析幾何的思想。

②本節(jié)的難點(diǎn)是曲線方程的概念和求曲線方程的方法。

教法建議

(1)曲線方程的概念是解析幾何的核心概念,也是基礎(chǔ)概念,教學(xué)中應(yīng)從直線方程概念和軌跡概念入手,通過簡單的實(shí)例引出曲線的點(diǎn)集與方程的解集之間的對應(yīng)關(guān)系,說明曲線與方程的對應(yīng)關(guān)系。曲線與方程對應(yīng)關(guān)系的基礎(chǔ)是點(diǎn)與坐標(biāo)的對應(yīng)關(guān)系。注意強(qiáng)調(diào)曲線方程的完備性和純粹性。

(2)可以結(jié)合已經(jīng)學(xué)過的直線方程的知識幫助學(xué)生領(lǐng)會坐標(biāo)法和解析幾何的思想,學(xué)習(xí)解析幾何的意義和要解決的問題,為學(xué)習(xí)求曲線的方程做好邏輯上的和心理上的準(zhǔn)備。

(3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準(zhǔn)則。

(4)從集合與對應(yīng)的觀點(diǎn)可以看得更清楚:

設(shè) 表示曲線 上適合某種條件的點(diǎn) 的集合;

表示二元方程的解對應(yīng)的點(diǎn)的坐標(biāo)的集合。

可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即

(5)在學(xué)習(xí)求曲線方程的方法時(shí),應(yīng)從具體實(shí)例出發(fā),引導(dǎo)學(xué)生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個(gè)過渡是一個(gè)從幾何向代數(shù)不斷轉(zhuǎn)化的過程,在這個(gè)過程中提醒學(xué)生注意轉(zhuǎn)化是否為等價(jià)的,這將決定第五步如何做。同時(shí)教師不要生硬地給出或總結(jié)出求解步驟,應(yīng)在充分分析實(shí)例的基礎(chǔ)上讓學(xué)生自然地獲得。教學(xué)中對課本例2的解法分析很重要。

這五個(gè)步驟的實(shí)質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即

文字語言中的幾何條件 數(shù)學(xué)符號語言中的等式 數(shù)學(xué)符號語言中含動點(diǎn)坐標(biāo) , 的代數(shù)方程 簡化了的 , 的代數(shù)方程

由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個(gè)形式的特點(diǎn)是“含動點(diǎn)坐標(biāo)的代數(shù)方程。”

(6)求曲線方程的問題是解析幾何中一個(gè)基本的問題和長期的任務(wù),不是一下子就徹底解決的,求解的方法是在不斷的學(xué)習(xí)中掌握的,教學(xué)中要把握好“度”。

高考數(shù)學(xué)教科書教案精選篇4

各位評委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級中學(xué)教科書(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。

下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)、效果評價(jià)六方面進(jìn)行說課。

一、教材分析

(一)教材的地位和作用

“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。

(二)教學(xué)內(nèi)容

本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。

二、教學(xué)目標(biāo)分析

根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

知識目標(biāo)——理解“三個(gè)二次”的'關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

情感目標(biāo)——?jiǎng)?chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識及主體作用。

三、重難點(diǎn)分析

一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。

要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。

四、教法與學(xué)法分析

(一)學(xué)法指導(dǎo)

教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

(二)教法分析

本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。

建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。

五、課堂設(shè)計(jì)

本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。

(一)創(chuàng)設(shè)情景,引出“三個(gè)一次”的關(guān)系

本節(jié)課開始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。

為此,我設(shè)計(jì)了以下幾個(gè)問題:

1、請同學(xué)們解以下方程和不等式:

①2x-7=0;②2x-70;③2x-70

學(xué)生回答,我板書。

2、我指出:2x-70和2x-70的解實(shí)際上只需利用不等式基本性質(zhì)就容易得到。

3、接著我提出:我們能否利用不等式的基本性質(zhì)來解一元二次不等式呢?學(xué)生可能感到很困惑。

4、為此,我引入一次函數(shù)y=2x-7,借助動畫從圖象上直觀認(rèn)識方程和不等式的解,得出以下三組重要關(guān)系:

①2x-7=0的解恰是函數(shù)y=2x-7的圖象與x軸

交點(diǎn)的橫坐標(biāo)。

②2x-70的解集正是函數(shù)y=2x-7的圖象

在x軸的上方的點(diǎn)的橫坐標(biāo)的集合。

③2x-70的解集正是函數(shù)y=2x-7的圖象

在x軸的下方的點(diǎn)的橫坐標(biāo)的集合。

三組關(guān)系的得出,實(shí)際上讓學(xué)生找到了利用“一次函數(shù)的圖象”來解一元一次方程和一元一次不等式的方法。讓學(xué)生看到了解決一元二次不等式的希望,大大激發(fā)了學(xué)生解決新問題的興趣。此時(shí),學(xué)生很自然聯(lián)想到利用函數(shù)y=x2-x-6的圖象來求不等式x2-x-60的解集。

(二)比舊悟新,引出“三個(gè)二次”的關(guān)系

為此我引導(dǎo)學(xué)生作出函數(shù)y=x2-x-6的圖象,按照“看一看 說一說 問一問”的思路進(jìn)行探究。

看函數(shù)y=x2-x-6的圖象并說出:

①方程x2-x-6=0的解是

x=-2或x=3 ;

②不等式x2-x-60的解集是

{x|x-2,或x3};

③不等式x2-x-60的解集是

{x|-23}。

此時(shí),學(xué)生已經(jīng)沖出了困惑,找到了利用二次函數(shù)的圖象來解一元二次不等式的方法。

學(xué)生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數(shù)y=x2-x-6變?yōu)閥=ax2+bx+c(a0),那么圖象與x軸的位置關(guān)系又怎樣呢?(學(xué)生回答:△0時(shí),圖象與x軸有兩個(gè)交點(diǎn);△=0時(shí),圖象與x軸只有一個(gè)交點(diǎn);△0時(shí),圖象與x輛沒有交點(diǎn)。)請同學(xué)們討論:ax2+bx+c0與ax2+bx+c0的解集與函數(shù)y=ax2+bx+c的圖象有怎樣的關(guān)系?

(三)歸納提煉,得出“三個(gè)二次”的關(guān)系

1、引導(dǎo)學(xué)生根據(jù)圖象與x軸的相對位置關(guān)系,寫出相關(guān)不等式的解集。

2、此時(shí)提出:若a0時(shí),怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經(jīng)討論之后,有的學(xué)生得出:將二次項(xiàng)系數(shù)由負(fù)化正,轉(zhuǎn)化為上述模式求解,教師應(yīng)予以強(qiáng)調(diào);也有的學(xué)生提出畫出相應(yīng)的二次函數(shù)圖象,根據(jù)圖象寫出解集,教師應(yīng)給予肯定。)

(四)應(yīng)用新知,熟練掌握一元二次不等式的解集

借助二次函數(shù)的圖象,得到一元二次不等式的解集,學(xué)生形成了感性認(rèn)識,為鞏固所學(xué)知識,我們一起來完成以下例題:

例1、解不等式2x2-3x-20

解:因?yàn)棣?,方程2x2-3x-2=0的解是

x1= ,x2=2

所以,不等式的解集是

{ x| x ,或x2}

例1的解決達(dá)到了兩個(gè)目的:一是鞏固了一元二次不等式解集的應(yīng)用;二是規(guī)范了一元二次不等式的解題格式。

下面我們接著學(xué)習(xí)課本例2。

例2 解不等式-3x2+6x2

課本例2的出現(xiàn)恰當(dāng)好處,一方面突出了“對于二次項(xiàng)系數(shù)是負(fù)數(shù)(即a0)的一元二次不等式,可以先把二次項(xiàng)系數(shù)化為正數(shù),再求解”;另一方面,學(xué)生對此例的解答極易出現(xiàn)寫錯(cuò)解集(如出現(xiàn)“或”與“且”的錯(cuò)誤)。

通過例1、例2的解決,學(xué)生與我一起總結(jié)了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。

例3 解不等式4x2-4x+10

例4 解不等式-x2+2x-30

分別突出了“△=0”、“△0”對不等式解集的影響。這兩例由學(xué)生練習(xí),教師巡視、指導(dǎo),講評學(xué)生完成情況,尋找學(xué)生中的閃光點(diǎn),給予熱情表揚(yáng)。

4道例題,具有典型性、層次性和學(xué)生的可接受性。為了避免學(xué)生學(xué)后“一團(tuán)亂麻”、“一盤散沙”的局面,我和學(xué)生一起總結(jié)。

(五)總結(jié)

解一元二次不等式的“四部曲”:

(1)把二次項(xiàng)的系數(shù)化為正數(shù)

(2)計(jì)算判別式Δ

(3)解對應(yīng)的一元二次方程

(4)根據(jù)一元二次方程的根,結(jié)合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算Δ→三求根→四寫解集

(六)作業(yè)布置

為了使所有學(xué)生鞏固所學(xué)知識,我布置了“必做題”;又為學(xué)有余力者留有自由發(fā)展的空間,我布置了“探究題”。

(1)必做題:習(xí)題1.5的1、3題

(2)探究題:①若a、b不同時(shí)為零,記ax2+bx+c=0的解集為P,ax2+bx+c0的解集為M,ax2+bx+c0的解集為N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求實(shí)數(shù)k的取值范圍。

(七)板書設(shè)計(jì)

一元二次不等式解法(1)

五、教學(xué)效果評價(jià)

本節(jié)課立足課本,著力挖掘,設(shè)計(jì)合理,層次分明。以“三個(gè)一次關(guān)系→三個(gè)二次關(guān)系→一元二次不等式解法”為主線,以“從形到數(shù),從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點(diǎn),突破難點(diǎn)。在教學(xué)思想上既注重知識形成過程的教學(xué),還特別突出學(xué)生學(xué)習(xí)方法的指導(dǎo),探究能力的訓(xùn)練,創(chuàng)新精神的培養(yǎng),引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)的美,體驗(yàn)求知的樂趣。

高考數(shù)學(xué)教科書教案精選篇5

教材分析:

三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教B版)數(shù)學(xué)必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時(shí),教學(xué)內(nèi)容是公式(三)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法。

教案背景:

通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.

教學(xué)方法:

以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式。

教學(xué)目標(biāo):

借助單位圓探究誘導(dǎo)公式。

能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角三角函數(shù)。

教學(xué)重點(diǎn):

誘導(dǎo)公式(三)的推導(dǎo)及應(yīng)用。

教學(xué)難點(diǎn):

誘導(dǎo)公式的應(yīng)用。

教學(xué)手段:

多媒體。

教學(xué)情景設(shè)計(jì):

一.復(fù)習(xí)回顧:

1. 誘導(dǎo)公式(一)(二)。

2. 角 (終邊在一條直線上)

3. 思考:下列一組角有什么特征?( )能否用式子來表示?

二.新課:

已知 由

可知

而 (課件演示,學(xué)生發(fā)現(xiàn))

所以

于是可得: (三)

設(shè)計(jì)意圖:結(jié)合幾何畫板的演示利用同一點(diǎn)的坐標(biāo)變換,導(dǎo)出公式。

由公式(一)(三)可以看出,角 角 相等。即:

.

公式(一)(二)(三)都叫誘導(dǎo)公式。利用誘導(dǎo)公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。

設(shè)計(jì)意圖:結(jié)合學(xué)過的公式(一)(二),發(fā)現(xiàn)特點(diǎn),總結(jié)公式。

1. 練習(xí)

(1)

設(shè)計(jì)意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。

(學(xué)生板演,老師點(diǎn)評,用彩色粉筆強(qiáng)調(diào)重點(diǎn),引導(dǎo)學(xué)生總結(jié)公式。)

三.例題

例3:求下列各三角函數(shù)值:

(1)

(2)

(3)

(4)

例4:化簡

設(shè)計(jì)意圖:利用公式解決問題。

練習(xí):

(1)

(2) (學(xué)生板演,師生點(diǎn)評)

設(shè)計(jì)意圖:觀察公式特點(diǎn),選擇公式解決問題。

四.課堂小結(jié):將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結(jié)合思想的應(yīng)用,培養(yǎng)了學(xué)生分析問題、解決問題的能力,熟練應(yīng)用解決問題。

五.課后作業(yè):課后練習(xí)A、B組

六.課后反思與交流

很榮幸大家來聽我的課,通過這課,我學(xué)習(xí)到如下的東西:

1.要認(rèn)真的研讀新課標(biāo),對教學(xué)的目標(biāo),重難點(diǎn)把握要到位

2.注意板書設(shè)計(jì),注重細(xì)節(jié)的東西,語速需要改正

3.進(jìn)一步的學(xué)習(xí)網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學(xué)生更容易操作

4.盡可能讓你的學(xué)生自主提出問題,自主的思考,能夠化被動學(xué)習(xí)為主動學(xué)習(xí),充分享受學(xué)習(xí)數(shù)學(xué)的樂趣

5.上課的生動化,形象化需要加強(qiáng)

聽課者評價(jià):

1.評議者:網(wǎng)絡(luò)輔助教學(xué),起到了很好的效果;教態(tài)大方,作為新教師,開設(shè)校際課,勇氣可嘉!建議:感覺到老師有點(diǎn)緊張,其實(shí)可以放開點(diǎn)的,相信效果會更好的!重點(diǎn)不夠清晰,有引導(dǎo)數(shù)學(xué)時(shí),最好值有個(gè)側(cè)重點(diǎn);網(wǎng)絡(luò)設(shè)計(jì)上,網(wǎng)頁上公開的推導(dǎo)公式為上,留有更大的空間讓學(xué)生來思考。

2.評議者:網(wǎng)絡(luò)教學(xué)效果良好,給學(xué)生自主思考,學(xué)習(xí)的空間發(fā)揮,教學(xué)設(shè)計(jì)得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚(yáng)頓挫應(yīng)注意課堂例題練習(xí)可以多兩題。

3.評議者:學(xué)科網(wǎng)絡(luò)平臺的使用;建議:應(yīng)重視引導(dǎo)學(xué)生將一些唾手可得的有用結(jié)論總結(jié)出來,并形成自我的經(jīng)驗(yàn)。

4.評議者:引導(dǎo)學(xué)生通過網(wǎng)絡(luò)進(jìn)行探究。

建議:課件制作在線測評部分,建議不能重復(fù)選擇,應(yīng)全部做完后,顯示結(jié)果,再重復(fù)測試;多提問學(xué)生。

( 1)給學(xué)生思考的時(shí)間較長,語調(diào)相對平緩,總結(jié)時(shí),給學(xué)生一些激勵(lì)的語言更好

( 2)這樣子的教學(xué)可以提高上課效率,讓學(xué)生更多的時(shí)間思考

( 3)網(wǎng)絡(luò)平臺的使用,使得學(xué)生的參與度明顯提高,存在問題:1.公式對稱性的誘導(dǎo),點(diǎn)與點(diǎn)的對稱的誘導(dǎo),終邊的關(guān)系的誘導(dǎo),要進(jìn)一步的修正;2.公式的概括要注意引導(dǎo)學(xué)生怎么用,學(xué)習(xí)這個(gè)誘導(dǎo)公式的作用

( 4)給學(xué)生答案,這個(gè)網(wǎng)頁要進(jìn)一步的修正,答案能否不要一點(diǎn)就出來

( 5)1.板書設(shè)計(jì)要進(jìn)一步的加強(qiáng),2.語速相對是比較快的3.練習(xí)量比較少

( 6)讓學(xué)生多探究,課堂會更熱鬧

( 7)注意引入的過程要帶有目的,帶著問題來教學(xué),學(xué)生帶著問題來學(xué)習(xí)

( 8)教學(xué)模式相對簡單重復(fù)

( 9)思路較為清晰,規(guī)范化的推理

高考數(shù)學(xué)教科書教案精選篇6

一、教學(xué)目標(biāo)

【知識與技能】

在掌握圓的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。

【過程與方法】

通過對方程x+y+Dx+Ey+F=0表示圓的的條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問題的實(shí)際能力得到提高。

【情感態(tài)度與價(jià)值觀】

滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵(lì)學(xué)生創(chuàng)新,勇于探索。

二、教學(xué)重難點(diǎn)

【重點(diǎn)】

掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。

【難點(diǎn)】

二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的關(guān)系。

三、教學(xué)過程

(一)復(fù)習(xí)舊知,引出課題

1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。

2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?

高考數(shù)學(xué)教科書教案精選篇7

教學(xué)目標(biāo):

1.了解復(fù)數(shù)的幾何意義,會用復(fù)平面內(nèi)的點(diǎn)和向量來表示復(fù)數(shù);了解復(fù)數(shù)代數(shù)形式的加、減運(yùn)算的幾何意義.

2.通過建立復(fù)平面上的點(diǎn)與復(fù)數(shù)的一一對應(yīng)關(guān)系,自主探索復(fù)數(shù)加減法的幾何意義.

教學(xué)重點(diǎn):

復(fù)數(shù)的幾何意義,復(fù)數(shù)加減法的幾何意義.

教學(xué)難點(diǎn):

復(fù)數(shù)加減法的幾何意義.

教學(xué)過程:

一 、問題情境

我們知道,實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對應(yīng)的,實(shí)數(shù)可以用數(shù)軸上的點(diǎn)來表示.那么,復(fù)數(shù)是否也能用點(diǎn)來表示呢?

二、學(xué)生活動

問題1 任何一個(gè)復(fù)數(shù)a+bi都可以由一個(gè)有序?qū)崝?shù)對(a,b)惟一確定,而有序?qū)崝?shù)對(a,b)與平面直角坐標(biāo)系中的點(diǎn)是一一對應(yīng)的,那么我們怎樣用平面上的點(diǎn)來表示復(fù)數(shù)呢?

問題2 平面直角坐標(biāo)系中的點(diǎn)A與以原點(diǎn)O為起點(diǎn),A為終點(diǎn)的向量是一一對應(yīng)的,那么復(fù)數(shù)能用平面向量表示嗎?

問題3 任何一個(gè)實(shí)數(shù)都有絕對值,它表示數(shù)軸上與這個(gè)實(shí)數(shù)對應(yīng)的點(diǎn)到原點(diǎn)的距離.任何一個(gè)向量都有模,它表示向量的長度,那么相應(yīng)的,我們可以給出復(fù)數(shù)的模(絕對值)的概念嗎?它又有什么幾何意義呢?

問題4 復(fù)數(shù)可以用復(fù)平面的向量來表示,那么,復(fù)數(shù)的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個(gè)復(fù)數(shù)差的模有什么幾何意義?

三、建構(gòu)數(shù)學(xué)

1.復(fù)數(shù)的幾何意義:在平面直角坐標(biāo)系中,以復(fù)數(shù)a+bi的實(shí)部a為橫坐標(biāo),虛部b為縱坐標(biāo)就確定了點(diǎn)Z(a,b),我們可以用點(diǎn)Z(a,b)來表示復(fù)數(shù)a+bi,這就是復(fù)數(shù)的幾何意義.

2.復(fù)平面:建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面.其中x軸為實(shí)軸,y軸為虛軸.實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù).

3.因?yàn)閺?fù)平面上的點(diǎn)Z(a,b)與以原點(diǎn)O為起點(diǎn)、Z為終點(diǎn)的向量一一對應(yīng),所以我們也可以用向量來表示復(fù)數(shù)z=a+bi,這也是復(fù)數(shù)的幾何意義.

6.復(fù)數(shù)加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個(gè)復(fù)數(shù)差的模就是復(fù)平面內(nèi)與這兩個(gè)復(fù)數(shù)對應(yīng)的兩點(diǎn)間的距離.同時(shí),復(fù)數(shù)加減法的法則與平面向量加減法的坐標(biāo)形式也是完全一致的.

四、數(shù)學(xué)應(yīng)用

例1 在復(fù)平面內(nèi),分別用點(diǎn)和向量表示下列復(fù)數(shù)4,2+i,-i,-1+3i,3-2i.

練習(xí) 課本P123練習(xí)第3,4題(口答).

思考

1.復(fù)平面內(nèi),表示一對共軛虛數(shù)的兩個(gè)點(diǎn)具有怎樣的位置關(guān)系?

2.如果復(fù)平面內(nèi)表示兩個(gè)虛數(shù)的點(diǎn)關(guān)于原點(diǎn)對稱,那么它們的實(shí)部和虛部分別滿足什么關(guān)系?

3.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)是純虛數(shù)”的__________條件.

4.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)所對應(yīng)的點(diǎn)在虛軸上”的_____條件.

例2 已知復(fù)數(shù)z=(m2+m-6)+(m2+m-2)i在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)位于第二象限,求實(shí)數(shù)m允許的取值范圍.

例3 已知復(fù)數(shù)z1=3+4i,z2=-1+5i,試比較它們模的大小.

思考 任意兩個(gè)復(fù)數(shù)都可以比較大小嗎?

例4 設(shè)z∈C,滿足下列條件的點(diǎn)Z的集合是什么圖形?

(1)│z│=2;(2)2<│z│<3.

變式:課本P124習(xí)題3.3第6題.

五、要點(diǎn)歸納與方法小結(jié)

本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1.復(fù)數(shù)的幾何意義.

2.復(fù)數(shù)加減法的幾何意義.

3.?dāng)?shù)形結(jié)合的思想方法.

34970 主站蜘蛛池模板: 袋式过滤器,自清洗过滤器,保安过滤器,篮式过滤器,气体过滤器,全自动过滤器,反冲洗过滤器,管道过滤器,无锡驰业环保科技有限公司 | 河南膏药贴牌-膏药代加工-膏药oem厂家-洛阳今世康医药科技有限公司 | 电销卡_稳定企业大语音卡-归属地可选-世纪通信 | 扬尘监测_扬尘监测系统_带证扬尘监测设备 - 郑州港迪科技有限公司 | 吸污车_吸粪车_抽粪车_电动三轮吸粪车_真空吸污车_高压清洗吸污车-远大汽车制造有限公司 | 物流公司电话|附近物流公司电话上门取货| 西子馋火锅鸡加盟-太原市龙城酉鼎餐饮管理有限公司 | crm客户关系管理系统,销售管理系统,crm系统,在线crm,移动crm系统 - 爱客crm | 南京展台搭建-南京展会设计-南京展览设计公司-南京展厅展示设计-南京汇雅展览工程有限公司 | 免费个人pos机申请办理-移动pos机刷卡-聚合收款码办理 | 欧美日韩国产一区二区三区不_久久久久国产精品无码不卡_亚洲欧洲美洲无码精品AV_精品一区美女视频_日韩黄色性爱一级视频_日本五十路人妻斩_国产99视频免费精品是看4_亚洲中文字幕无码一二三四区_国产小萍萍挤奶喷奶水_亚洲另类精品无码在线一区 | 宿松新闻网 宿松网|宿松在线|宿松门户|安徽宿松(直管县)|宿松新闻综合网站|宿松官方新闻发布 | 电竞馆加盟,沈阳网吧加盟费用选择嘉棋电竞_售后服务一体化 | 西安耀程造价培训机构_工程预算实训_广联达实作实操培训 | 轻型地埋电缆故障测试仪,频响法绕组变形测试仪,静荷式卧式拉力试验机-扬州苏电 | 艺术涂料_进口艺术涂料_艺术涂料加盟_艺术涂料十大品牌 -英国蒙太奇艺术涂料 | 洗石机-移动滚筒式,振动,螺旋,洗矿机-青州冠诚重工机械有限公司 | 耐火浇注料-喷涂料-浇注料生产厂家_郑州市元领耐火材料有限公司 耐力板-PC阳光板-PC板-PC耐力板 - 嘉兴赢创实业有限公司 | 制氮设备-变压吸附制氮设备-制氧设备-杭州聚贤气体设备制造有限公司 | 电车线(用于供电给电车的输电线路)-百科 | TTCMS自助建站_网站建设_自助建站_免费网站_免费建站_天天向上旗下品牌 | 石磨面粉机|石磨面粉机械|石磨面粉机组|石磨面粉成套设备-河南成立粮油机械有限公司 | 温室大棚建设|水肥一体化|物联网系统 | 塑料薄膜_PP薄膜_聚乙烯薄膜-常州市鑫美新材料包装厂 | 成都顶呱呱信息技术有限公司-贷款_个人贷款_银行贷款在线申请 - 成都贷款公司 | 东莞市踏板石餐饮管理有限公司_正宗桂林米粉_正宗桂林米粉加盟_桂林米粉加盟费-东莞市棒子桂林米粉 | 武汉森源蓝天环境科技工程有限公司-为环境污染治理提供协同解决方案 | LZ-373测厚仪-华瑞VOC气体检测仪-个人有毒气体检测仪-厂家-深圳市深博瑞仪器仪表有限公司 | 北京网站建设公司_北京网站制作公司_北京网站设计公司-北京爱品特网站建站公司 | YT保温材料_YT无机保温砂浆_外墙保温材料_南阳银通节能建材高新技术开发有限公司 | 诸城网站建设-网络推广-网站优化-阿里巴巴托管-诸城恒泰互联 | 分子精馏/精馏设备生产厂家-分子蒸馏工艺实验-新诺舜尧(天津)化工设备有限公司 | 水厂污泥地磅|污泥处理地磅厂家|地磅无人值守称重系统升级改造|地磅自动称重系统维修-河南成辉电子科技有限公司 | 承插管件_不锈钢承插管件_锻钢高压管件-温州科正阀门管件有限公司 | 烘箱-工业烘箱-工业电炉-实验室干燥箱 - 苏州华洁烘箱制造有限公司 | 裹包机|裹膜机|缠膜机|绕膜机-上海晏陵智能设备有限公司 | 黑龙江京科脑康医院-哈尔滨精神病医院哪家好_哈尔滨精神科医院排名_黑龙江精神心理病专科医院 | 双吸泵,双吸泵厂家,OS双吸泵-山东博二泵业有限公司 | CE认证_FCC认证_CCC认证_MFI认证_UN38.3认证-微测检测 CNAS实验室 | 谷梁科技| 高柔性拖链电缆-聚氨酯卷筒电缆-柔性屏蔽电缆厂家-玖泰电缆 |