小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數(shù)學(xué)教案 >

高三數(shù)學(xué)教案反思

時間: 新華 數(shù)學(xué)教案

教案可以幫助教師了解學(xué)生的學(xué)習(xí)情況和需求,從而更好地指導(dǎo)教師進行教學(xué),提高教學(xué)效果和學(xué)生的學(xué)習(xí)效果。怎么寫出優(yōu)秀的高三數(shù)學(xué)教案反思?這里給大家分享高三數(shù)學(xué)教案反思,方便大家學(xué)習(xí)。

高三數(shù)學(xué)教案反思篇1

一、內(nèi)容和內(nèi)容解析

本節(jié)課是北師大版高中數(shù)學(xué)必修5中第三章第4節(jié)的內(nèi)容。主要是二元均值不等式。它是在系統(tǒng)地學(xué)習(xí)了不等關(guān)系和不等式性質(zhì),掌握了不等式性質(zhì)的基礎(chǔ)上展開的,作為重要的基本不等式之一,為后續(xù)的學(xué)習(xí)奠定基礎(chǔ)。要進一步了解不等式的性質(zhì)及運用,研究最值問題,此時基本不等式是必不可缺的。基本不等式在知識體系中起了承上啟下的作用,同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,因此它也是對學(xué)生進行情感價值觀教育的優(yōu)良素材,所以基本不等式應(yīng)重點研究。

教學(xué)中注意用新課程理念處理教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不僅要接受、記憶、模仿和練習(xí),而且要自主探究、動手實踐、合作交流、閱讀自學(xué),師生互動,教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程。

就知識的應(yīng)用價值上來看,基本不等式是從大量數(shù)學(xué)問題和現(xiàn)實問題中抽象出來的一個模型,在公式推導(dǎo)中所蘊涵的`數(shù)學(xué)思想方法如數(shù)形結(jié)合、抽象歸納、演繹推理、分析法證明等在各種不等式的研究中均有著廣泛的應(yīng)用;另外,在解決函數(shù)最值問題中,基本不等式也起著重要的作用。

就內(nèi)容的人文價值上來看,基本不等式的探究與推導(dǎo)需要學(xué)生觀察、分析、歸納,有助于培養(yǎng)學(xué)生創(chuàng)新思維和探索精神,是培養(yǎng)學(xué)生數(shù)形結(jié)合意識和提高數(shù)學(xué)能力的良好載體。

二、教學(xué)目標(biāo)和目標(biāo)解析

教學(xué)目標(biāo):了解基本不等式的幾何背景,能在教師的引導(dǎo)下探究基本不等式的證明過程,理解基本不等式的幾何解釋,并能解決簡單的最值問題;借助于信息技術(shù)強化數(shù)形結(jié)合的思想方法。

在教師的逐步引導(dǎo)下,能從較為熟悉的幾何圖形中抽象出基本不等式,實現(xiàn)對基本不等式幾何背景的初步了解。

學(xué)生已經(jīng)學(xué)習(xí)了不等式的基本性質(zhì),可以運用作差法給出基本不等式的證明,同時,介紹并滲透分析法證明的思想方法,從而完成基本不等式的代數(shù)證明。

進一步通過探究幾何圖形,給出基本不等式的幾何解釋,加強學(xué)生數(shù)形結(jié)合的意識。

通過應(yīng)用問題的解決,明確解決應(yīng)用題的一般過程。這是一個過程性目標(biāo)。借助例1,引導(dǎo)學(xué)生嘗試用基本不等式解決簡單的最值問題,體會和與積的相互轉(zhuǎn)化,進一步通過例2,引導(dǎo)學(xué)生領(lǐng)會運用基本不等式的三個限制條件(一正二定三相等)在解決最值問題中的作用,并用幾何畫板展示函數(shù)圖形,進一步深化數(shù)形結(jié)合的思想。結(jié)合變式訓(xùn)練完善對基本不等式結(jié)構(gòu)的理解,提升解決問題的能力,體會方法與策略。

三、教學(xué)問題診斷

在認知上,學(xué)生已經(jīng)掌握了不等式的基本性質(zhì),并能夠根據(jù)不等式的性質(zhì)進行數(shù)、式的大小比較,也具備了一定的平面幾何的基本知識。但是,倘若教師不加以引導(dǎo),學(xué)生并不能自覺地通過已有的知識、記憶去發(fā)展和構(gòu)建幾何圖形中的相等或不等關(guān)系,這就需要教師逐步地引導(dǎo),并選用合理的手段去激活學(xué)生的思維,增強數(shù)形結(jié)合的思想意識。

另外,盡可能引領(lǐng)學(xué)生充分理解兩個基本不等式等號成立的條件,為利用基本不等式解決簡單的最值問題做好鋪墊。在用基本不等式解決最值時,學(xué)生往往容易忽視基本不等式,使用的前提條件a,b>0同時又要注意區(qū)別基本不等式的使用條件為,因此,在教學(xué)過程中,借助例題落實學(xué)生領(lǐng)會基本不等式成立的三個限制條件(一正二定三相等)在解決最值問題中的作用。而對于“一正二定三相等”的進一步強化和應(yīng)用,將放于下一個課時的內(nèi)容。

四、教學(xué)支持條件分析

為了能很好地展示幾何圖形,體會基本不等式的幾何背景,教學(xué)中需要有具體的圖形來幫助學(xué)生理解基本不等式的生成,感受數(shù)形結(jié)合的數(shù)學(xué)思想,所以,借助于幾何畫板軟件來加強幾何直觀十分必要,同時演示動畫幫助學(xué)生驗證基本不等式等號取到的情況,并用電腦3D技術(shù)展示基本不等式的又一幾何背景,加深對基本不等式的理解,增強教學(xué)效果。

五、教學(xué)設(shè)計流程圖

教學(xué)過程的設(shè)計從實際的問題情境出發(fā),以基本不等式的幾何背景為著手點,以探究活動為主線,探求基本不等式的結(jié)構(gòu)形式,并進一步給出幾何解釋,深化對基本不等式的理解。通過典型例題的講解,明確利用基本不等式解決簡單最值問題的應(yīng)用價值。數(shù)形結(jié)合的思想貫穿于整個教學(xué)過程,并時刻體現(xiàn)在教學(xué)活動之中。

六、教法和預(yù)期效果分析

本節(jié)課通過6個教學(xué)環(huán)節(jié),強調(diào)過程教學(xué),在教師的引導(dǎo)下,啟動觀察、分析、感知、歸納、探究等思維活動,從各個層面認識基本不等式,并理解其幾何背景。課堂教學(xué)以學(xué)生為主體,基本不等式為主線,在學(xué)生原有的認知基本上,充分展示基本不等式這一知識的發(fā)生、發(fā)展及再創(chuàng)造的過程。

同時,以多媒體課件作為教學(xué)輔助手段,賦予學(xué)生直觀感受,便于觀察,從而把一個生疏的、內(nèi)在的知識,變成一個可認知的、可交流的對象,提高了課堂效率。

通過這節(jié)課的學(xué)習(xí),引領(lǐng)學(xué)生多角度、多方位地認識基本不等式,并了解它的幾何意義充分滲透數(shù)形結(jié)合的思想;能在教師的引導(dǎo)下,主動探索并了解基本不等式的證明過程,強化證明的各類方法;

會用基本不等式解決簡單的(小)值問題并注意等號取到的條件。在教學(xué)過程中始終圍繞教學(xué)目標(biāo)進行評價,師生互動,在教學(xué)過程的不同環(huán)節(jié)中及時獲取教學(xué)反饋信息,以學(xué)生為主體,及時調(diào)節(jié)教學(xué)措施,完成教學(xué)目標(biāo),從而達到較為理想的教學(xué)效果。

高三數(shù)學(xué)教案反思篇2

本文題目:高三數(shù)學(xué)教案:三角函數(shù)的周期性

一、學(xué)習(xí)目標(biāo)與自我評估

1掌握利用單位圓的幾何方法作函數(shù)的圖象

2結(jié)合的圖象及函數(shù)周期性的定義了解三角函數(shù)的周期性,及最小正周期

3會用代數(shù)方法求等函數(shù)的周期

4理解周期性的幾何意義

二、學(xué)習(xí)重點與難點

周期函數(shù)的概念,周期的求解。

三、學(xué)法指導(dǎo)

1、是周期函數(shù)是指對定義域中所有都有

,即應(yīng)是恒等式。

2、周期函數(shù)一定會有周期,但不一定存在最小正周期。

四、學(xué)習(xí)活動與意義建構(gòu)

五、重點與難點探究

例1、若鐘擺的高度與時間之間的函數(shù)關(guān)系如圖所示

(1)求該函數(shù)的周期;

(2)求時鐘擺的高度。

例2、求下列函數(shù)的周期。

(1)(2)

總結(jié):(1)函數(shù)(其中均為常數(shù),且

的周期T=。

(2)函數(shù)(其中均為常數(shù),且

的周期T=。

例3、求證:的周期為。

例4、(1)研究和函數(shù)的圖象,分析其周期性。

(2)求證:的周期為(其中均為常數(shù),

總結(jié):函數(shù)(其中均為常數(shù),且

的周期T=。

例5、(1)求的周期。

(2)已知滿足,求證:是周期函數(shù)

課后思考:能否利用單位圓作函數(shù)的圖象。

六、作業(yè):

七、自主體驗與運用

1、函數(shù)的周期為()

A、B、C、D、

2、函數(shù)的最小正周期是()

A、B、C、D、

3、函數(shù)的最小正周期是()

A、B、C、D、

4、函數(shù)的周期是()

A、B、C、D、

5、設(shè)是定義域為R,最小正周期為的函數(shù),

若,則的值等于()

A、1B、C、0D、

6、函數(shù)的最小正周期是,則

7、已知函數(shù)的最小正周期不大于2,則正整數(shù)

的最小值是

8、求函數(shù)的最小正周期為T,且,則正整數(shù)

的最大值是

9、已知函數(shù)是周期為6的奇函數(shù),且則

10、若函數(shù),則

11、用周期的定義分析的周期。

12、已知函數(shù),如果使的周期在內(nèi),求

正整數(shù)的值

13、一機械振動中,某質(zhì)子離開平衡位置的位移與時間之間的

函數(shù)關(guān)系如圖所示:

(1)求該函數(shù)的周期;

(2)求時,該質(zhì)點離開平衡位置的位移。

14、已知是定義在R上的函數(shù),且對任意有

成立,

(1)證明:是周期函數(shù);

(2)若求的值。

高三數(shù)學(xué)教案反思篇3

教學(xué)目的:

(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法

(2)使學(xué)生初步了解“屬于”關(guān)系的意義

(3)使學(xué)生初步了解有限集、無限集、空集的意義

教學(xué)重點:集合的基本概念及表示方法

教學(xué)難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示

一些簡單的集合

授課類型:新授課

課時安排:1課時

教具:多媒體、實物投影儀

內(nèi)容分析:

集合是中學(xué)數(shù)學(xué)的一個重要的基本概念在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進一步應(yīng)用集合的語言表述一些問題例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學(xué)習(xí)、工作中,也是認識問題、研究問題不可缺少的工具這些可以幫助學(xué)生認識學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)

把集合的初步知識與簡易邏輯知識安排在高中數(shù)學(xué)的最開始,是因為在高中數(shù)學(xué)中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ)例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯

本節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子

這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認識學(xué)習(xí)本章的意義本節(jié)課的教學(xué)重點是集合的基本概念

集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集”這句話,只是對集合概念的描述性說明

教學(xué)過程:

一、復(fù)習(xí)引入:

1.簡介數(shù)集的發(fā)展,復(fù)習(xí)公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

2.教材中的章頭引言;

3.集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家)(見附錄);

4.“物以類聚”,“人以群分”;

5.教材中例子(P4)

二、講解新課:

閱讀教材第一部分,問題如下:

(1)有那些概念?是如何定義的?

(2)有那些符號?是如何表示的?

(3)集合中元素的特性是什么?

集合的有關(guān)概念:

由一些數(shù)、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.

定義:一般地,某些指定的對象集在一起就成為一個集合.

1、集合的概念

(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)

(2)元素:集合中每個對象叫做這個集合的元素

2、常用數(shù)集及記法

(1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合記作N,

(2)正整數(shù)集:非負整數(shù)集內(nèi)排除0的集記作N或N+

(3)整數(shù)集:全體整數(shù)的集合記作Z,

(4)有理數(shù)集:全體有理數(shù)的集合記作Q,

(5)實數(shù)集:全體實數(shù)的集合記作R

注:(1)自然數(shù)集與非負整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0

(2)非負整數(shù)集內(nèi)排除0的集記作N或N+Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z

高三數(shù)學(xué)教案反思篇4

1.導(dǎo)數(shù)概念及其幾何意義

(1)了解導(dǎo)數(shù)概念的實際背景;

(2)理解導(dǎo)數(shù)的幾何意義.

2.導(dǎo)數(shù)的運算

(1)能根據(jù)導(dǎo)數(shù)定義,求函數(shù)y=c(c為常數(shù)),y=x,y=x2,y=x3,y=,y=的導(dǎo)數(shù);

(2)能利用基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運算法則求簡單函數(shù)的導(dǎo)數(shù),能求簡單的復(fù)合函數(shù)(僅限于形如f(ax+b)的復(fù)合函數(shù))的導(dǎo)數(shù).

3.導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用

(1)了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系,能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間(其中多項式函數(shù)一般不超過三次);

(2)了解函數(shù)在某點取得極值的必要條件和充分條件;會用導(dǎo)數(shù)求函數(shù)的極大值、極小值(其中多項式函數(shù)一般不超過三次);會求閉區(qū)間上函數(shù)的最大值、最小值(其中多項式函數(shù)一般不超過三次).

4.生活中的優(yōu)化問題

會利用導(dǎo)數(shù)解決某些實際問題.

5.定積分與微積分基本定理

(1)了解定積分的實際背景,了解定積分的基本思想,了解定積分的概念;

(2)了解微積分基本定理的含義.本章重點:

1.導(dǎo)數(shù)的概念;

2.利用導(dǎo)數(shù)求切線的斜率;

3.利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性或求單調(diào)區(qū)間;

4.利用導(dǎo)數(shù)求極值或最值;

5.利用導(dǎo)數(shù)求實際問題最優(yōu)解.

本章難點:導(dǎo)數(shù)的綜合應(yīng)用.導(dǎo)數(shù)與定積分是微積分的核心概念之一,也是中學(xué)選學(xué)內(nèi)容中較為重要的知識之一.由于其應(yīng)用的廣泛性,為我們解決有關(guān)函數(shù)、數(shù)列問題提供了更一般、更有效的方法.因此,本章知識在高考題中常在函數(shù)、數(shù)列等有關(guān)最值不等式問題中有所體現(xiàn),既考查數(shù)形結(jié)合思想,分類討論思想,也考查學(xué)生靈活運用所學(xué)知識和方法的能力.考題可能以選擇題或填空題的形式來考查導(dǎo)數(shù)與定積分的基本運算與簡單的幾何意義,而以解答題的形式來綜合考查學(xué)生的分析問題和解決問題的能力.

知識網(wǎng)絡(luò)

3.1導(dǎo)數(shù)的概念與運算

典例精析

題型一導(dǎo)數(shù)的概念

【例1】已知函數(shù)f(x)=2ln3x+8x,

求f(1-2Δx)-f(1)Δx的值.

【解析】由導(dǎo)數(shù)的定義知:

f(1-2Δx)-f(1)Δx=-2f(1-2Δx)-f(1)-2Δx=-2f′(1)=-20.

【點撥】導(dǎo)數(shù)的實質(zhì)是求函數(shù)值相對于自變量的變化率,即求當(dāng)Δx→0時,平均變化率ΔyΔx的極限.

【變式訓(xùn)練1】某市在一次降雨過程中,降雨量y(mm)與時間t(min)的函數(shù)關(guān)系可以近似地表示為f(t)=t2100,則在時刻t=10min的降雨強度為()

A.15mm/minB.14mm/min

C.12mm/minD.1mm/min

【解析】選A.

題型二求導(dǎo)函數(shù)

【例2】求下列函數(shù)的導(dǎo)數(shù).

(1)y=ln(x+1+x2);

(2)y=(x2-2x+3)e2x;

(3)y=3x1-x.

【解析】運用求導(dǎo)數(shù)公式及復(fù)合函數(shù)求導(dǎo)數(shù)法則.

(1)y′=1x+1+x2(x+1+x2)′

=1x+1+x2(1+x1+x2)=11+x2.

(2)y′=(2x-2)e2x+2(x2-2x+3)e2x

=2(x2-x+2)e2x.

(3)y′=13(x1-x1-x+x(1-x)2

=13(x1-x1(1-x)2

=13x(1-x)

【變式訓(xùn)練2】如下圖,函數(shù)f(x)的圖象是折線段ABC,其中A、B、C的坐標(biāo)分別為(0,4),(2,0),(6,4),則f(f(0))=;f(1+Δx)-f(1)Δx=(用數(shù)字作答).

【解析】f(0)=4,f(f(0))=f(4)=2,

由導(dǎo)數(shù)定義f(1+Δx)-f(1)Δx=f′(1).

當(dāng)0≤x≤2時,f(x)=4-2x,f′(x)=-2,f′(1)=-2.

題型三利用導(dǎo)數(shù)求切線的斜率

【例3】已知曲線C:y=x3-3x2+2x,直線l:y=kx,且l與C切于點P(x0,y0)(x0≠0),求直線l的方程及切點坐標(biāo).

【解析】由l過原點,知k=y0x0(x0≠0),又點P(x0,y0)在曲線C上,y0=x30-3x20+2x0,

所以y0x0=x20-3x0+2.

而y′=3x2-6x+2,k=3x20-6x0+2.

又k=y0x0,

所以3x20-6x0+2=x20-3x0+2,其中x0≠0,

解得x0=32.

所以y0=-38,所以k=y0x0=-14,

所以直線l的方程為y=-14x,切點坐標(biāo)為(32,-38).

【點撥】利用切點在曲線上,又曲線在切點處的切線的斜率為曲線在該點處的導(dǎo)數(shù)來列方程,即可求得切點的坐標(biāo).

【變式訓(xùn)練3】若函數(shù)y=x3-3x+4的切線經(jīng)過點(-2,2),求此切線方程.

【解析】設(shè)切點為P(x0,y0),則由

y′=3x2-3得切線的斜率為k=3x20-3.

所以函數(shù)y=x3-3x+4在P(x0,y0)處的切線方程為

y-y0=(3x20-3)(x-x0).

又切線經(jīng)過點(-2,2),得

2-y0=(3x20-3)(-2-x0),①

而切點在曲線上,得y0=x30-3x0+4,②

由①②解得x0=1或x0=-2.

則切線方程為y=2或9x-y+20=0.

總結(jié)提高

1.函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)通常有以下兩種求法:

(1)導(dǎo)數(shù)的定義,即求ΔyΔx=f(x0+Δx)-f(x0)Δx的值;

(2)先求導(dǎo)函數(shù)f′(x),再將x=x0的值代入,即得f′(x0)的值.

2.求y=f(x)的導(dǎo)函數(shù)的幾種方法:

(1)利用常見函數(shù)的導(dǎo)數(shù)公式;

(2)利用四則運算的導(dǎo)數(shù)公式;

(3)利用復(fù)合函數(shù)的求導(dǎo)方法.

3.導(dǎo)數(shù)的幾何意義:函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)f′(x0),就是函數(shù)y=f(x)的曲線在點P(x0,y0)處的切線的斜率.

高三數(shù)學(xué)教案反思篇5

各位老師:

大家好!我叫______,來自____。我說課的題目是《概率的基本性質(zhì)》,內(nèi)容選自于高中教材新課程人教A版必修3第三章第一節(jié),課時安排為三個課時,本節(jié)課內(nèi)容為第三課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教法分析、教學(xué)過程分析四大方面來闡述我對這節(jié)課的分析和設(shè)計:

一、教材分析

1、教材所處的地位和作用

本節(jié)課主要包含了兩部分內(nèi)容:一是事件的關(guān)系與運算,二是概率的基本性質(zhì),多以基本概念和性質(zhì)為主。它是本冊第二章統(tǒng)計的延伸,又是后面"古典概型"及"幾何概型"的基礎(chǔ)。在整個教學(xué)中起到承上啟下的作用。同時也是新課改以來考查的熱點之一。

2、教學(xué)的重點和難點

重點:概率的加法公式及其應(yīng)用;事件的關(guān)系與運算。

難點:互斥事件與對立事件的區(qū)別與聯(lián)系

二、教學(xué)目標(biāo)分析

1.知識與技能目標(biāo)

⑴了解隨機事件間的基本關(guān)系與運算;

⑵掌握概率的幾個基本性質(zhì),并會用其解決簡單的概率問題。

2、過程與方法:

⑴通過觀察、類比、歸納培養(yǎng)學(xué)生運用數(shù)學(xué)知識的綜合能力;

⑵通過學(xué)生自主探究,合作探究培養(yǎng)學(xué)生的動手探索的能力。

3、情感態(tài)度與價值觀:

通過數(shù)學(xué)活動,了解教學(xué)與實際生活的密切聯(lián)系,感受數(shù)學(xué)知識應(yīng)用于現(xiàn)實世界的具體情境,從而激發(fā)學(xué)習(xí)數(shù)學(xué)的情趣。

三、教法分析

采用實驗觀察、質(zhì)疑啟發(fā)、類比聯(lián)想、探究歸納的教學(xué)方法。

高三數(shù)學(xué)教案反思篇6

一、抓好基礎(chǔ)。

數(shù)學(xué)習(xí)題無非就是數(shù)學(xué)概念和數(shù)學(xué)思想的組合應(yīng)用,弄清數(shù)學(xué)基本概念、基本定理、基本方法是判斷題目類型、知識范圍的前提,是正確把握解題方法的依據(jù)。只有概念清楚,方法全面,遇到題目時,就能很快的得到解題方法,或者面對一個新的習(xí)題,就能聯(lián)想到我們平時做過的習(xí)題的方法,達到迅速解答。弄清基本定理是正確、快速解答習(xí)題的前提條件,特別是在立體幾何等章節(jié)的復(fù)習(xí)中,對基本定理熟悉和靈活掌握能使習(xí)題解答條理清楚、邏輯推理嚴密。反之,會使解題速度慢,邏輯混亂、敘述不清。

那么如何抓基礎(chǔ)呢?

1、看課本;

2、在做練習(xí)時遇到概念題是要對概念的內(nèi)涵和外延再認識,注意從不同的側(cè)面去認識、理解概念。

3、理解定理的條件對結(jié)論的約束作用,反問:如果沒有該條件會使定理的結(jié)論發(fā)生什么變化?

4、歸納全面的解題方法。要積累一定的典型習(xí)題以保證解題方法的完整性。

5、認真做好我們網(wǎng)校同步課堂里面的每期的練習(xí)題,采用循環(huán)交替、螺旋式推進的方法,克服對基本知識基本方法的遺忘現(xiàn)象。

二、制定好計劃和奮斗目標(biāo)。

復(fù)習(xí)數(shù)學(xué)時,要制定好計劃,不但要有本學(xué)期大的規(guī)劃,還要有每月、每周、每天的小計劃,計劃要與老師的復(fù)習(xí)計劃吻合,不能相互沖突,如按照老師的復(fù)習(xí)進度,今天復(fù)習(xí)到什么知識點,就應(yīng)該在今天之內(nèi)掌握該知識點,加深對該知識點的理解,研究該知識點考查的不同側(cè)面、不同角度。在每天的復(fù)習(xí)計劃里,要留有一定的時間看課本,看筆記,回顧過去知識點,思考老師當(dāng)天講了什么知識,歸納當(dāng)天所學(xué)的知識。可以說,每天的習(xí)題可以少做,但這些歸納、反思、回顧是必不可少的。望你在制定計劃時注意。

三、嚴防題海戰(zhàn)術(shù),克服盲目做題而不注重歸納的現(xiàn)象。

做習(xí)題是為了鞏固知識、提高應(yīng)變能力、思維能力、計算能力。學(xué)數(shù)學(xué)要做一定量的習(xí)題,但學(xué)數(shù)學(xué)并不等于做題,在各種考試題中,有相當(dāng)?shù)牧?xí)題是靠簡單的知識點的堆積,利用公理化知識體系的演繹而就能解決的,這些習(xí)題是要通過做一定量的習(xí)題達到對解題方法的展移而實現(xiàn)的,但,隨著高考的改革,高考已把考查的重點放在創(chuàng)造型、能力型的考查上。因此要精做習(xí)題,注意知識的理解和靈活應(yīng)用,當(dāng)你做完一道習(xí)題后不訪自問:本題考查了什么知識點?什么方法?我們從中得到了解題的什么方法?這一類習(xí)題中有什么解題的通性?實現(xiàn)問題的完全解決我應(yīng)用了怎樣的解題策略?只有這樣才會培養(yǎng)自己的悟性與創(chuàng)造性,開發(fā)其創(chuàng)造力。也將在遇到即將來臨的期末考試和未來的高考題目中那些綜合性強的題目時可以有一個科學(xué)的方法解決它。

數(shù)學(xué)是高考科目之一,故從初一開始就要認真地學(xué)習(xí)數(shù)學(xué)。進入高中以后,往往有不少同學(xué)不能適應(yīng)數(shù)學(xué)學(xué)習(xí),進而影響到學(xué)習(xí)的積極性,甚至成績一落千丈。出現(xiàn)這樣的情況,原因很多。但主要是由于同學(xué)們不了解高中數(shù)學(xué)教學(xué)內(nèi)容特點與自身學(xué)習(xí)方法有問題等因素所造成的。有不少同學(xué)把提高數(shù)學(xué)成績的希望寄托在大量做題上。我認為這是不妥當(dāng)?shù)模艺J為,“不要以做題多少論英雄”,重要的不在做題多,而在于做題的效益要高。做題的目的在于檢查你學(xué)的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那么多做題的結(jié)果,反而鞏固了你的缺欠,因此,要在準確地把握住基本知識和方法的基礎(chǔ)上做一定量的練習(xí)是必要的。

其次要掌握正確的學(xué)習(xí)方法。鍛煉自己學(xué)數(shù)學(xué)的能力,轉(zhuǎn)變學(xué)習(xí)方式,要改變單純接受的學(xué)習(xí)方式,要學(xué)會采用接受學(xué)習(xí)與探究學(xué)習(xí)、合作學(xué)習(xí)、體驗學(xué)習(xí)等多樣化的方式進行學(xué)習(xí),要在教師的指導(dǎo)下逐步學(xué)會“提出問題—實驗探究—開展討論—形成新知—應(yīng)用反思”的學(xué)習(xí)方法。這樣,通過學(xué)習(xí)方式由單一到多樣的轉(zhuǎn)變,我們在學(xué)習(xí)活動中的自主性、探索性、合作性就能夠得到加強,成為學(xué)習(xí)的主人。

高三數(shù)學(xué)教案反思篇7

【教材分析】

1、本節(jié)教材的地位與作用

本節(jié)主要研究閉區(qū)間上的連續(xù)函數(shù)值和最小值的求法和實際應(yīng)用,分兩課時,這里是第一課時,它是在學(xué)生已經(jīng)會求某些函數(shù)的最值,并且已經(jīng)掌握了性質(zhì):“如果f(x)是閉區(qū)間[a,b]上的連續(xù)函數(shù),那么f(x)在閉區(qū)間[a,b]上有值和最小值”,以及會求可導(dǎo)函數(shù)的極值之后進行學(xué)習(xí)的,學(xué)好這一節(jié),學(xué)生將會求更多的函數(shù)的最值,運用本節(jié)知識可以解決科技、經(jīng)濟、社會中的一些如何使成本最低、產(chǎn)量、效益等實際問題。這節(jié)課集中體現(xiàn)了數(shù)形結(jié)合、理論聯(lián)系實際等重要的數(shù)學(xué)思想方法,學(xué)好本節(jié),對于進一步完善學(xué)生的知識結(jié)構(gòu),培養(yǎng)學(xué)生用數(shù)學(xué)的意識都具有極為重要的意義。

2、教學(xué)重點

會求閉區(qū)間上連續(xù)開區(qū)間上可導(dǎo)的函數(shù)的最值。

3、教學(xué)難點

高三年級學(xué)生雖然已經(jīng)具有一定的知識基礎(chǔ),但由于對求函數(shù)極值還不熟練,特別是對優(yōu)化解題過程依據(jù)的理解會有較大的困難,所以這節(jié)課的難點是理解確定函數(shù)最值的方法。

4、教學(xué)關(guān)鍵

本節(jié)課突破難點的關(guān)鍵是:理解方程f′(x)=0的解,包含有指定區(qū)間內(nèi)全部可能的極值點。

【教學(xué)目標(biāo)】

根據(jù)本節(jié)教材在高中數(shù)學(xué)知識體系中的地位和作用,結(jié)合學(xué)生已有的認知水平,制定本節(jié)如下的教學(xué)目標(biāo):

1、知識和技能目標(biāo)

(1)理解函數(shù)的最值與極值的區(qū)別和聯(lián)系。

(2)進一步明確閉區(qū)間[a,b]上的連續(xù)函數(shù)f(x),在[a,b]上必有、最小值。

(3)掌握用導(dǎo)數(shù)法求上述函數(shù)的值與最小值的方法和步驟。

2、過程和方法目標(biāo)

(1)了解開區(qū)間內(nèi)的連續(xù)函數(shù)或閉區(qū)間上的不連續(xù)函數(shù)不一定有、最小值。

(2)理解閉區(qū)間上的連續(xù)函數(shù)最值存在的可能位置:極值點處或區(qū)間端點處。

(3)會求閉區(qū)間上連續(xù),開區(qū)間內(nèi)可導(dǎo)的函數(shù)的、最小值。

3、情感和價值目標(biāo)

(1)認識事物之間的的區(qū)別和聯(lián)系。

(2)培養(yǎng)學(xué)生觀察事物的能力,能夠自己發(fā)現(xiàn)問題,分析問題并最終解決問題。

(3)提高學(xué)生的數(shù)學(xué)能力,培養(yǎng)學(xué)生的創(chuàng)新精神、實踐能力和理性精神。

【教法選擇】

根據(jù)皮亞杰的建構(gòu)主義認識論,知識是個體在與環(huán)境相互作用的過程中逐漸建構(gòu)的結(jié)果,而認識則是起源于主客體之間的相互作用。

本節(jié)課在幫助學(xué)生回顧肯定了閉區(qū)間上的連續(xù)函數(shù)一定存在值和最小值之后,引導(dǎo)學(xué)生通過觀察閉區(qū)間內(nèi)的連續(xù)函數(shù)的幾個圖象,自己歸納、總結(jié)出函數(shù)值、最小值存在的可能位置,進而探索出函數(shù)值、最小值求解的方法與步驟,并優(yōu)化解題過程,讓學(xué)生主動地獲得知識,老師只是進行適當(dāng)?shù)囊龑?dǎo),而不進行全部的灌輸。為突出重點,突破難點,這節(jié)課主要選擇以合作探究式教學(xué)法組織教學(xué)。

【學(xué)法指導(dǎo)】

對于求函數(shù)的最值,高三學(xué)生已經(jīng)具備了良好的知識基礎(chǔ),剩下的問題就是有沒有一種更一般的方法,能運用于更多更復(fù)雜函數(shù)的求最值問題?教學(xué)設(shè)計中注意激發(fā)起學(xué)生強烈的求知__,使得他們能積極主動地觀察、分析、歸納,以形成認識,參與到課堂活動中,充分發(fā)揮他們作為認知主體的作用。

【教學(xué)過程】

本節(jié)課的教學(xué),大致按照“創(chuàng)設(shè)情境,鋪墊導(dǎo)入——合作學(xué)習(xí),探索新知——指導(dǎo)應(yīng)用,鼓勵創(chuàng)新——歸納小結(jié),反饋回授”四個環(huán)節(jié)進行組織。

高三數(shù)學(xué)教案反思篇8

【教學(xué)目標(biāo)】:

(1)知識目標(biāo):

通過實例,了解邏輯聯(lián)結(jié)詞“且”、“或”的含義;

(2)過程與方法目標(biāo):

了解含有邏輯聯(lián)結(jié)詞“且”、“或”復(fù)合命題的構(gòu)成形式,以及會對新命題作出真假的判斷;

(3)情感與能力目標(biāo):

在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能。

【教學(xué)重點】:

通過數(shù)學(xué)實例,了解邏輯聯(lián)結(jié)詞“或”、“且”的含義,使學(xué)生能正確地表述相關(guān)數(shù)學(xué)內(nèi)容。

【教學(xué)難點】:

簡潔、準確地表述“或”命題、“且”等命題,以及對新命題真假的判斷。

【教學(xué)過程設(shè)計】:

教學(xué)環(huán)節(jié)教學(xué)活動設(shè)計意圖

情境引入問題:

下列三個命題間有什么關(guān)系?

(1)12能被3整除;

(2)12能被4整除;

(3)12能被3整除且能被4整除;通過數(shù)學(xué)實例,認識用用邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)兩個命題可以得到一個新命題;

知識建構(gòu)歸納總結(jié):

一般地,用邏輯聯(lián)結(jié)詞“且”把命題p和命題q聯(lián)結(jié)起來,就得到一個新命題,

記作,讀作“p且q”。

引導(dǎo)學(xué)生通過通過一些數(shù)學(xué)實例分析,概括出一般特征。

1、引導(dǎo)學(xué)生閱讀教科書上的例1中每組命題p,q,讓學(xué)生嘗試寫出命題,判斷真假,糾正可能出現(xiàn)的邏輯錯誤。學(xué)習(xí)使用邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)兩個命題,根據(jù)“且”的含義判斷邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)成的新命題的真假。

2、引導(dǎo)學(xué)生閱讀教科書上的例2中每個命題,讓學(xué)生嘗試改寫命題,判斷真假,糾正可能出現(xiàn)的邏輯錯誤。

歸納總結(jié):

當(dāng)p,q都是真命題時,是真命題,當(dāng)p,q兩個命題中有一個是假命題時,是假命題,

學(xué)習(xí)使用邏輯聯(lián)結(jié)詞“且”改寫一些命題,根據(jù)“且”的含義判斷原先命題的真假。

引導(dǎo)學(xué)生通過通過一些數(shù)學(xué)實例分析命題p和命題q以及命題的真假性,概括出這三個命題的真假性之間的一般規(guī)律。

高三數(shù)學(xué)教案反思篇9

集合的含義與表示

一.教材分析:集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),

一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合

論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。

二.目標(biāo)分析:

教學(xué)重點.難點

重點:集合的含義與表示方法.難點:表示法的恰當(dāng)選擇.

教學(xué)目標(biāo)

l.知識與技能

(1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系;

(2)知道常用數(shù)集及其專用記號;(3)了解集合中元素的確定性.互異性.無序性;

(4)會用集合語言表示有關(guān)數(shù)學(xué)對象;

2.過程與方法

(1)讓學(xué)生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.

(2)讓學(xué)生歸納整理本節(jié)所學(xué)知識.

3.情感.態(tài)度與價值觀

使學(xué)生感受到學(xué)習(xí)集合的必要性,增強學(xué)習(xí)的積極性.

三.教法分析

1.教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí).思考.交流.討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo).2.教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué).

四.過程分析

(一)創(chuàng)設(shè)情景,揭示課題

1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學(xué)校、現(xiàn)在的班級。

(2)問題:像“家庭”、“學(xué)校”、“班級”等,有什么共同特征?

引導(dǎo)學(xué)生互相交流.與此同時,教師對學(xué)生的活動給予評價.

2.活動:(1)列舉生活中的集合的例子;(2)分析、概括各實例的共同特征

由此引出這節(jié)要學(xué)的內(nèi)容。

設(shè)計意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊

(二)研探新知,建構(gòu)概念

1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個實例:

(1)1—20以內(nèi)的所有質(zhì)數(shù);(2)我國古代的四大發(fā)明;

(3)所有的安理會常任理事國;(4)所有的正方形;

(5)海南省在20__年9月之前建成的所有立交橋;

(6)到一個角的兩邊距離相等的所有的點;

(7)國興中學(xué)20__年9月入學(xué)的高一學(xué)生的全體.

2.教師組織學(xué)生分組討論:這7個實例的共同特征是什么?

3.每個小組選出——位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.

4.教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母a,b,c,d?表示.

設(shè)計意圖:通過實例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神

(三)質(zhì)疑答辯,發(fā)展思維

1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導(dǎo),解答學(xué)生疑難.使學(xué)生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等.

2.教師組織引導(dǎo)學(xué)生思考以下問題:

判斷以下元素的全體是否組成集合,并說明理由:

(1)大于3小于11的偶數(shù);(2)我國的小河流.讓學(xué)生充分發(fā)表自己的建解.

3.讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由.教師對學(xué)生的學(xué)習(xí)活動給予及時的評價.

4.教師提出問題,讓學(xué)生思考

b是(1)如果用A表示高—(3)班全體學(xué)生組成的集合,用a表示高一(3)班的一位同學(xué),

高一(4)班的一位同學(xué),那么a,b與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于.

如果a是集合A的元素,就說a屬于集合A,記作a?A.

如果a不是集合A的元素,就說a不屬于集合A,記作a?A.

(2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合A的關(guān)系分別是什么?請用數(shù)學(xué)符號分別表示.

(3)讓學(xué)生完成教材第6頁練習(xí)第1題.

5.教師引導(dǎo)學(xué)生回憶數(shù)集擴充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號.并讓學(xué)生完成習(xí)題1.1A組第1題.

6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考.討論下列問題:

(1)要表示一個集合共有幾種方式?

(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?

(3)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉?

使學(xué)生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。

設(shè)計意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。

(四)鞏固深化,反饋矯正

教師投影學(xué)習(xí):

(1)用自然語言描述集合{1,3,5,7,9};(2)用例舉法表示集合A?{x?N1?x?8}

(3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習(xí)第2題.

設(shè)計意圖:使學(xué)生及時鞏固所學(xué)新知,體會三種表示方式存在的必要性和適用對象

(五)歸納小結(jié),布置作業(yè)

小結(jié):在師生互動中,讓學(xué)生了解或體會下例問題:

1.本節(jié)課我們學(xué)習(xí)了哪些知識內(nèi)容?2.你認為學(xué)習(xí)集合有什么意義?

3.選擇集合的表示法時應(yīng)注意些什么?

設(shè)計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。

作業(yè):1.課后書面作業(yè):第13頁習(xí)題1.1A組第4題.

2.元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種

呢?如何表示?請同學(xué)們通過預(yù)習(xí)教材.

五.板書分析

高三數(shù)學(xué)教案反思篇10

教學(xué)目標(biāo)

(1)掌握向量的有關(guān)概念:向量及其表示法、向量的模、向量的相等、零向量;

(2)理解并掌握復(fù)數(shù)集、復(fù)平面內(nèi)的點的集合、復(fù)平面內(nèi)以原點為起點的向量集合之間的一一對應(yīng)關(guān)系;

(3)掌握復(fù)數(shù)的模的定義及其幾何意義;

(4)通過學(xué)習(xí),培養(yǎng)學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想;

(5)通過本節(jié)內(nèi)容的學(xué)習(xí),培養(yǎng)學(xué)生的觀察能力、分析能力,幫助學(xué)生逐步形成科學(xué)的思維習(xí)慣和方法

教學(xué)建議

一、知識結(jié)構(gòu)

本節(jié)內(nèi)容首先從物理中所遇到的一些矢量出發(fā)引出向量的概念,介紹了向量及其表示法、向量的模、向量的相等、零向量的概念,接著介紹了復(fù)數(shù)集與復(fù)平面內(nèi)以原點為起點的向量集合之間的一一對應(yīng)關(guān)系,指出了復(fù)數(shù)的模的定義及其計算公式

二、重點、難點分析

本節(jié)的重點是復(fù)數(shù)與復(fù)平面的向量的一一對應(yīng)關(guān)系的理解;難點是復(fù)數(shù)模的概念復(fù)數(shù)可以用向量表示,二者的對應(yīng)關(guān)系為什么只能說復(fù)數(shù)集與以原點為起點的向量的集合一一對應(yīng)關(guān)系,而不能說與復(fù)平面內(nèi)的向量一一對應(yīng),對這一點的理解要加以重視在復(fù)數(shù)向量的表示中,從復(fù)數(shù)集與復(fù)平面內(nèi)的點以及以原點為起點的向量之間的一一對應(yīng)關(guān)系是本節(jié)教學(xué)的難點復(fù)數(shù)模的概念是一個難點,首先要理解復(fù)數(shù)的絕對值與實數(shù)絕對值定義的一致性質(zhì),其次要理解它的幾何意義是表示向量的長度,也就是復(fù)平面上的點到原點的距離

三、教學(xué)建議

1在學(xué)習(xí)新課之前一定要復(fù)習(xí)舊知識,包括實數(shù)的絕對值及幾何意義,復(fù)數(shù)的有關(guān)概念、現(xiàn)行高中物理課本中的有關(guān)矢量知識等,特別是對于基礎(chǔ)較差的學(xué)生,這一環(huán)節(jié)不可忽視

2理解并掌握復(fù)數(shù)集、復(fù)平面內(nèi)的點集、復(fù)平面內(nèi)以原點為起點的向量集合三者之間的關(guān)系

如圖所示,建立復(fù)平面以后,復(fù)數(shù) 與復(fù)平面內(nèi)的點形成—一對應(yīng)關(guān)系,而點又與復(fù)平面的向量構(gòu)成—一對應(yīng)關(guān)系因此,復(fù)數(shù)集與復(fù)平面的以為起點,以為終點的向量集 形成—一對應(yīng)關(guān)系因此,我們常把復(fù)數(shù)說成點Z或說成向量點、向量是復(fù)數(shù)的另外兩種表示形式,它們都是復(fù)數(shù)的幾何表示

相等的向量對應(yīng)的是同一個復(fù)數(shù),復(fù)平面內(nèi)與向量 相等的向量有無窮多個,所以復(fù)數(shù)集不能與復(fù)平面上所有的向量相成—一對應(yīng)關(guān)系復(fù)數(shù)集只能與復(fù)平面上以原點為起點的向量集合構(gòu)成—一對應(yīng)關(guān)系

2

這種對應(yīng)關(guān)系的建立,為我們用解析幾何方法解決復(fù)數(shù)問題,或用復(fù)數(shù)方法解決幾何問題創(chuàng)造了條件

3向量的模,又叫向量的絕對值,也就是其有向線段的長度它的計算公式是 ,當(dāng)實部為零時,根據(jù)上面復(fù)數(shù)的模的公式與以前關(guān)于實數(shù)絕對值及算術(shù)平方根的規(guī)定一致這些內(nèi)容必須使學(xué)生在理解的基礎(chǔ)上牢固地掌握

4講解教材第182頁上例2的第(1)小題建議在講解教材第182頁上例2的第(1)小題時如果結(jié)合提問 的圖形,可以幫助學(xué)生正確理解教材中的“圓”是指曲線而不是指圓面(曲線所包圍的平面部分)對于倒2的第(2)小題的圖形,畫圖時周界(兩個同心圓)都應(yīng)畫成虛線

高三數(shù)學(xué)教案反思篇11

高中數(shù)學(xué)菱形教案

一、教學(xué)目標(biāo)

1.把握菱形的判定.

2.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.

3.通過教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)愛好.

4.根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想.

二、教法設(shè)計

觀察分析討論相結(jié)合的方法

三、重點·難點·疑點及解決辦法

1.教學(xué)重點:菱形的判定方法.

2.教學(xué)難點:菱形判定方法的綜合應(yīng)用.

四、課時安排

1課時

五、教具學(xué)具預(yù)備

教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具

六、師生互動活動設(shè)計

教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時點撥

七、教學(xué)步驟

復(fù)習(xí)提問

1.敘述菱形的定義與性質(zhì).

2.菱形兩鄰角的比為1:2,較長對角線為 ,則對角線交點到一邊距離為________.

引入新課

師問:要判定一個四邊形是不是菱形最基本的判定方法是什么方法?

生答:定義法.

此外還有別的兩種判定方法,下面就來學(xué)習(xí)這兩種方法.

講解新課

菱形判定定理1:四邊都相等的四邊形是菱形.

菱形判定定理2:對角錢互相垂直的'平行四邊形是菱形.圖1

分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.

分析判定2:

師問:本定理有幾個條件?

生答:兩個.

師問:哪兩個?

生答:(1)是平行四邊形(2)兩條對角線互相垂直.

師問:再需要什么條件可證該平行四邊形是菱形?

生答:再證兩鄰邊相等.

(由學(xué)生口述證實)

證實時讓學(xué)生注重線段垂直平分線在這里的應(yīng)用,

師問:對角線互相垂直的四邊形是菱形嗎?為什么?

可畫出圖,顯然對角線 ,但都不是菱形.

菱形常用的判定方法歸納為(學(xué)生討論歸納后,由教師板書):

注重:(2)與(4)的題設(shè)也是從四邊形出發(fā),和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件.

例4 已知: 的對角錢 的垂直平分線與邊 、 分別交于 、 ,如圖.

求證:四邊形 是菱形(按教材講解).

總結(jié)、擴展

1.小結(jié):

(1)歸納判定菱形的四種常用方法.

(2)說明矩形、菱形之間的區(qū)別與聯(lián)系.

2.思考題:已知:如圖4△ 中, , 平分 , , , 交 于 .

求證:四邊形 為菱形.

八、布置作業(yè)

教材P159中9、10、11、13(2)

九、板書設(shè)計

十、隨堂練習(xí)

教材P153中1、2、3

高三數(shù)學(xué)教案反思篇12

一、教材分析

1、教材內(nèi)容

本節(jié)課是蘇教版第二章《函數(shù)概念和基本初等函數(shù)Ⅰ》2、1、3函數(shù)簡單性質(zhì)的第一課時,該課時主要學(xué)習(xí)增函數(shù)、減函數(shù)的定義,以及應(yīng)用__解決一些簡單問題、

2、教材所處地位、作用

函數(shù)的性質(zhì)是研究函數(shù)的基石,函數(shù)的單調(diào)性是首先研究的一個性質(zhì)、通過對本節(jié)課的學(xué)習(xí),讓學(xué)生領(lǐng)會函數(shù)單調(diào)性的概念、掌握證明函數(shù)單調(diào)性的步驟,并能運用單調(diào)性知識解決一些簡單的實際問題、通過上述活動,加深對函數(shù)本質(zhì)的認識、函數(shù)的單調(diào)性既是學(xué)生學(xué)過的函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性的基礎(chǔ)、此外在比較數(shù)的大小、函數(shù)的定性分析以及相關(guān)的數(shù)學(xué)綜合問題中也有廣泛的應(yīng)用,它是整個高中數(shù)學(xué)中起著承上啟下作用的核心知識之一、從方法__的角度分析,本節(jié)教學(xué)過程中還滲透了探索發(fā)現(xiàn)、數(shù)形結(jié)合、歸納轉(zhuǎn)化等數(shù)學(xué)思想方法、

3、教學(xué)目標(biāo)

(1)知識與技能:使學(xué)生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性的方法;

(2)過程與方法:從實際生活問題出發(fā),引導(dǎo)學(xué)生自主探索函數(shù)單調(diào)性的概念,應(yīng)用圖象和單調(diào)性的__解決函數(shù)單調(diào)性問題,讓學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力

(3)情感態(tài)度價值觀:讓學(xué)生體驗數(shù)學(xué)的科學(xué)功能、符號功能和工具功能,培養(yǎng)學(xué)生直覺觀察、探索發(fā)現(xiàn)、科學(xué)論證的良好的數(shù)學(xué)思維品質(zhì)

4、重點與難點

教學(xué)重點:

(1)函數(shù)單調(diào)性的概念;

(2)運用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性

教學(xué)難點:

(1)函數(shù)單調(diào)性的知識形成;

(2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性

二、教法分析與學(xué)法指導(dǎo)

本節(jié)課是一節(jié)較為抽象的數(shù)學(xué)概念課,因此,教法上要注意:

1、通過學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)了學(xué)生求知欲,調(diào)動了學(xué)生主體參與的積極性

2、在運用__解題的過程中,緊扣定義中的關(guān)鍵語句,通過學(xué)生的主體參與,逐個完成對各個難點的突破,以獲得各類問題的解決

3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用、具體體現(xiàn)在設(shè)問、講評和規(guī)范書寫等方面,要教會學(xué)生清晰的思維、嚴謹?shù)耐评恚⒊晒Φ赝瓿蓵姹磉_

4、采用投影儀、多媒體等現(xiàn)代教學(xué)手段,增大教學(xué)容量和直觀性

在學(xué)法上:

1、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力

2、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認識到理性思維的一個飛躍

高三數(shù)學(xué)教案反思篇13

教學(xué)目標(biāo)

掌握等差數(shù)列與等比數(shù)列的性質(zhì),并能靈活應(yīng)用等差(比)數(shù)列的性質(zhì)解決有關(guān)等差(比)數(shù)列的綜合性問題.

教學(xué)重難點

掌握等差數(shù)列與等比數(shù)列的性質(zhì),并能靈活應(yīng)用等差(比)數(shù)列的性質(zhì)解決有關(guān)等差(比)數(shù)列的綜合性問題.

教學(xué)過程

【示范舉例】

例1:數(shù)列是首項為23,公差為整數(shù),

且前6項為正,從第7項開始為負的等差數(shù)列

(1)求此數(shù)列的公差d;

(2)設(shè)前n項和為Sn,求Sn的值;

(3)當(dāng)Sn為正數(shù)時,求n的值.

高三數(shù)學(xué)教案反思篇14

高中數(shù)學(xué)必修教案

一、教學(xué)過程

1.復(fù)習(xí)。

反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關(guān)系。

求出函數(shù)y=x3的反函數(shù)。

2.新課。

先讓學(xué)生用幾何畫板畫出y=x3的圖象,學(xué)生紛紛動手,很快畫出了函數(shù)的圖象。有部分學(xué)生發(fā)出了“咦”的一聲,因為他們得到了如下的圖象(圖1):

教師在畫出上述圖象的學(xué)生中選定生1,將他的屏幕內(nèi)容通過教學(xué)系統(tǒng)放到其他同學(xué)的屏幕上,很快有學(xué)生作出反應(yīng)。

生2:這是y=x3的反函數(shù)y=的圖象。

師:對,但是怎么會得到這個圖象,請大家討論。

(學(xué)生展開討論,但找不出原因。)

師:我們請生1再給大家演示一下,大家?guī)退艺以颉?/p>

(生1將他的制作過程重新重復(fù)了一次。)

生3:問題出在他選擇的次序不對。

師:哪個次序?

生3:作點B前,選擇xA和xA3為B的坐標(biāo)時,他先選擇xA3,后選擇xA,作出來的點的坐標(biāo)為(xA3,xA),而不是(xA,xA3)。

師:是這樣嗎?我們請生1再做一次。

(這次生1在做的過程當(dāng)中,按xA、xA3的次序選擇,果然得到函數(shù)y=x3的圖象。)

師:看來問題確實是出在這個地方,那么請同學(xué)再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?

(學(xué)生再次陷入思考,一會兒有學(xué)生舉手。)

師:我們請生4來告訴大家。

生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標(biāo)x與縱坐標(biāo)y交換,而y=x3的反函數(shù)也正好是將x與y交換。

師:完全正確。下面我們進一步研究y=x3的圖象及其反函數(shù)y=的圖象的.關(guān)系,同學(xué)們能不能看出這兩個函數(shù)的圖象有什么樣的關(guān)系?

(多數(shù)學(xué)生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進一步追問。)

師:怎么由y=x3的圖象得到y(tǒng)=的圖象?

生5:將y=x3的圖象上點的橫坐標(biāo)與縱坐標(biāo)交換,可得到y(tǒng)=的圖象。

師:將橫坐標(biāo)與縱坐標(biāo)互換?怎么換?

(學(xué)生一時未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進一步明確。)

師:我其實是想問大家這兩個函數(shù)的圖象有沒有對稱關(guān)系,有的話,是什么樣的對稱關(guān)系?

(學(xué)生重新開始觀察這兩個函數(shù)的圖象,一會兒有學(xué)生舉手。)

生6:我發(fā)現(xiàn)這兩個圖象應(yīng)是關(guān)于某條直線對稱。

師:能說說是關(guān)于哪條直線對稱嗎?

生6:我還沒找出來。

(接下來,教師引導(dǎo)學(xué)生利用幾何畫板找出兩函數(shù)圖象的對稱軸,畫出如下圖形,如圖2所示:)

學(xué)生通過移動點A(點B、C隨之移動)后發(fā)現(xiàn),BC的中點M在同一條直線上,這條直線就是兩函數(shù)圖象的對稱軸,在追蹤M點后,發(fā)現(xiàn)中點的軌跡是直線y=x。

生7:y=x3的圖象及其反函數(shù)y=的圖象關(guān)于直線y=x對稱。

師:這個結(jié)論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對稱關(guān)系嗎?請同學(xué)們用其他函數(shù)來試一試。

(學(xué)生紛紛畫出其他函數(shù)與其反函數(shù)的圖象進行驗證,最后大家一致得出結(jié)論:函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱。)

還是有部分學(xué)生舉手,因為他們畫出了如下圖象(圖3):

教師巡視全班時已經(jīng)發(fā)現(xiàn)這個問題,將這個圖象傳給全班學(xué)生后,幾乎所有人都看出了問題所在:圖中函數(shù)y=x2(x∈R)沒有反函數(shù),②也不是函數(shù)的圖象。

最后教師與學(xué)生一起總結(jié):

點(x,y)與點(y,x)關(guān)于直線y=x對稱;

函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱。

二、反思與點評

1.在開學(xué)初,我就教學(xué)幾何畫板4。0的用法,在教函數(shù)圖象畫法的過程當(dāng)中,發(fā)現(xiàn)學(xué)生根據(jù)選定坐標(biāo)作點時,不太注意選擇橫坐標(biāo)與縱坐標(biāo)的順序,本課設(shè)計起源于此。雖然幾何畫板4。04中,能直接根據(jù)函數(shù)解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質(zhì),所以本節(jié)課教學(xué)中,我有意選擇了幾何畫板4。0進行教學(xué)。

2.荷蘭數(shù)學(xué)教育家弗賴登塔爾認為,數(shù)學(xué)學(xué)習(xí)過程當(dāng)中,可借助于生動直觀的形象來引導(dǎo)人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學(xué)生正確理解比較抽象的概念。

計算機作為一種現(xiàn)代信息技術(shù)工具,在直觀化方面有很強的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,但不能達到更好地理解抽象概念,促進學(xué)生思維的目的的話,這樣的教學(xué)中,計算機最多只是一種普通的直觀工具而已。

在本節(jié)課的教學(xué)中,計算機更多的是作為學(xué)生探索發(fā)現(xiàn)的工具,學(xué)生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對稱關(guān)系,而且在更深層次上理解了反函數(shù)的概念,對反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。

當(dāng)前計算機用于中學(xué)數(shù)學(xué)的主要形式還是以輔助為主,更多的是把計算機作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發(fā)展方向應(yīng)是:將計算機作為學(xué)生的認知工具,讓學(xué)生通過計算機發(fā)現(xiàn)探索,甚至利用計算機來做數(shù)學(xué),在此過程當(dāng)中更好地理解數(shù)學(xué)概念,促進數(shù)學(xué)思維,發(fā)展數(shù)學(xué)創(chuàng)新能力。

3.在引出兩個函數(shù)圖象對稱關(guān)系的時候,問題設(shè)計不甚妥當(dāng),本來是想要學(xué)生回答兩個函數(shù)圖象對稱的關(guān)系,但學(xué)生誤以為是問如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學(xué)生引入歧途。這樣的問題在今后的教學(xué)中是必須力求避免的。

高三數(shù)學(xué)教案反思篇15

【教學(xué)目標(biāo)】:

(1)知識目標(biāo):

通過實例,了解聯(lián)結(jié)詞“且”、“或”的含義;

(2)過程與方法目標(biāo):

了解含有邏輯聯(lián)結(jié)詞“且”、“或”復(fù)合命題的構(gòu)成形式,以及會對新命題作出真假的判斷;

(3)情感與能力目標(biāo):

在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.

【教學(xué)重點】:

通過數(shù)學(xué)實例,了解邏輯聯(lián)結(jié)詞“或”、“且”的含義,使學(xué)生能正確地表述相關(guān)數(shù)學(xué)內(nèi)容.

【教學(xué)難點】:

簡潔、準確地表述“或”命題、“且”等命題,以及對新命題真假的判斷.

【教學(xué)過程設(shè)計】:

教學(xué)環(huán)節(jié)教學(xué)活動設(shè)計意圖

情境引入問題:

下列三個命題間有什么關(guān)系?

(1)12能被3整除;

(2)12能被4整除;

(3)12能被3整除且能被4整除;通過數(shù)學(xué)實例,認識用用邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)兩個命題可以得到一個新命題;

知識建構(gòu)歸納總結(jié):

一般地,用邏輯聯(lián)結(jié)詞“且”把命題p和命題q聯(lián)結(jié)起來,就得到一個新命題,

記作,讀作“p且q”.

引導(dǎo)學(xué)生通過通過一些數(shù)學(xué)實例分析,概括出一般特征。

1、引導(dǎo)學(xué)生閱讀教科書上的例1中每組命題p,q,讓學(xué)生嘗試寫出命題,判斷真假,糾正可能出現(xiàn)的邏輯錯誤。學(xué)習(xí)使用邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)兩個命題,根據(jù)“且”的含義判斷邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)成的新命題的真假。

2、引導(dǎo)學(xué)生閱讀教科書上的例2中每個命題,讓學(xué)生嘗試改寫命題,判斷真假,糾正可能出現(xiàn)的邏輯錯誤。

歸納總結(jié):

當(dāng)p,q都是真命題時,是真命題,當(dāng)p,q兩個命題中有一個是假命題時,是假命題,

學(xué)習(xí)使用邏輯聯(lián)結(jié)詞“且”改寫一些命題,根據(jù)“且”的含義判斷原先命題的真假。

引導(dǎo)學(xué)生通過通過一些數(shù)學(xué)實例分析命題p和命題q以及命題的真假性,概括出這三個命題的真假性之間的一般規(guī)律。

高三數(shù)學(xué)教案反思篇16

教學(xué)目標(biāo):

1、知識與技能:

1)了解導(dǎo)數(shù)概念的實際背景;

2)理解導(dǎo)數(shù)的概念、掌握簡單函數(shù)導(dǎo)數(shù)符號表示和基本導(dǎo)數(shù)求解方法;

3)理解導(dǎo)數(shù)的幾何意義;

4)能進行簡單的導(dǎo)數(shù)四則運算。

2、過程與方法:

先理解導(dǎo)數(shù)概念背景,培養(yǎng)觀察問題的能力;再掌握定義和幾何意義,培養(yǎng)轉(zhuǎn)化問題的能力;最后求切線方程及運算,培養(yǎng)解決問題的能力。

3、情態(tài)及價值觀;

讓學(xué)生感受數(shù)學(xué)與生活之間的聯(lián)系,體會數(shù)學(xué)的美,激發(fā)學(xué)生學(xué)習(xí)興趣與主動性。

教學(xué)重點:

1、導(dǎo)數(shù)的求解方法和過程;

2、導(dǎo)數(shù)公式及運算法則的熟練運用。

教學(xué)難點:

1、導(dǎo)數(shù)概念及其幾何意義的理解;

2、數(shù)形結(jié)合思想的靈活運用。

教學(xué)課型:復(fù)習(xí)課(高三一輪)

教學(xué)課時:約1課時

高三數(shù)學(xué)教案反思篇17

一、 知識梳理

1.三種抽樣方法的聯(lián)系與區(qū)別:

類別 共同點不同點相互聯(lián)系適用范圍

簡單隨機抽樣 都是等概率抽樣從總體中逐個抽取總體中個體比較少

系統(tǒng)抽樣 將總體均勻分成若干部分;按事先確定的規(guī)則在各部分抽取在起始部分采用簡單隨機抽樣總體中個體比較多

分層抽樣 將總體分成若干層,按個體個數(shù)的比例抽取在各層抽樣時采用簡單隨機抽樣或系統(tǒng)抽樣總體中個體有明顯差異

(1)從含有N個個體的總體中抽取n個個體的樣本,每個個體被抽到的概率為

(2)系統(tǒng)抽樣的步驟: ①將總體中的個體隨機編號;②將編號分段;③在第1段中用簡單隨機抽樣確定起始的個體編號;④按照事先研究的規(guī)則抽取樣本.

(3)分層抽樣的步驟:①分層;②按比例確定每層抽取個體的個數(shù);③各層抽樣;④匯合成樣本.

(4) 要懂得從圖表中提取有用信息

如:在頻率分布直方圖中①小矩形的面積=組距 =頻率②眾數(shù)是矩形的中點的橫坐標(biāo)③中位數(shù)的左邊與右邊的直方圖的面積相等,可以由此估計中位數(shù)的值

2.方差和標(biāo)準差都是刻畫數(shù)據(jù)波動大小的數(shù)字特征,一般地,設(shè)一組樣本數(shù)據(jù) ,,…,,其平均數(shù)為則方差,標(biāo)準差

3.古典概型的概率公式:如果一次試驗中可能出現(xiàn)的結(jié)果有 個,而且所有結(jié)果都是等可能的,如果事件包含個結(jié)果,那么事件的概率P=

特別提醒:古典概型的兩個共同特點:

○1 ,即試中有可能出現(xiàn)的基本事件只有有限個,即樣本空間Ω中的元素個數(shù)是有限的;

○2 ,即每個基本事件出現(xiàn)的可能性相等。

4. 幾何概型的概率公式:P(A)=

特別提醒:幾何概型的特點:試驗的結(jié)果是無限不可數(shù)的;○2每個結(jié)果出現(xiàn)的可能性相等。

二、夯實基礎(chǔ)

(1)某單位有職工160名,其中業(yè)務(wù)人員120名,管理人員16名,后勤人員24名.為了解職工的某種情況,要從中抽取一個容量為20的樣本.若用分層抽樣的方法,抽取的業(yè)務(wù)人員、管理人員、后勤人員的人數(shù)應(yīng)分別為____________.

(2)某賽季,甲、乙兩名籃球運動員都參加了

11場比賽,他們所有比賽得分的情況用如圖2所示的莖葉圖表示,

則甲、乙兩名運動員得分的中位數(shù)分別為( )

A.19、13 B.13、19C.20、18D.18、20

(3)統(tǒng)計某校1000名學(xué)生的數(shù)學(xué)會考成績,

得到樣本頻率分布直方圖如右圖示,規(guī)定不低于60分為

及格,不低于80分為優(yōu)秀,則及格人數(shù)是 ;

優(yōu)秀率為 。

(4)在一次歌手大獎賽上,七位評委為歌手打出的分數(shù)如下:

9.4 8.49.49.99.69.49.7

去掉一個分和一個最低分后,所剩數(shù)據(jù)的平均值

和方差分別為( )

A.9.4, 0.484B.9.4,0.016C.9.5,0.04D.9.5,0.016

(5)將一顆骰子先后拋擲2次,觀察向上的點數(shù),則以第一次向上點數(shù)為橫坐標(biāo)x,第二次向上的點數(shù)為縱坐標(biāo)y的點(x,y)在圓x2+y2=27的內(nèi)部的概率________.

(6)在長為12cm的線段AB上任取一點M,并且以線段AM為邊的正方形,則這正方形的面積介于36cm2與81cm2之間的概率為( )

三、高考鏈接

07、某班50名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與19秒之間,將測試結(jié)果按如下方式分成六組:第一組,成績大于等于13秒且小于14秒;第二組,成績大于等于14秒且小于15秒

; 第六組,成績大于等于18秒且小于等于19秒.右圖

是按上述分組方法得到的頻率分布直方圖.設(shè)成績小于17秒

的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比為 ,成績大于等于15秒

且小于17秒的學(xué)生人數(shù)為 ,則從頻率分布直方圖中可分析

出 和分別為()

08、從某項綜合能力測試中抽取100人的成績,統(tǒng)計如表,則這100人成績的標(biāo)準差為( )

分數(shù) 54321

人數(shù) 2010303010

09、在區(qū)間 上隨機取一個數(shù)x,的值介于0到之間的概率為().

08、現(xiàn)有8名奧運會志愿者,其中志愿者 通曉日語,通曉俄語,通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.

(Ⅰ)求 被選中的概率;(Ⅱ)求和不全被選中的概率.

高三數(shù)學(xué)教案反思篇18

一、教學(xué)目標(biāo)

1、理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關(guān)系。

2、能根據(jù)所給條件寫出簡單的一次函數(shù)表達式。

二、能力目標(biāo)

1、經(jīng)歷一般規(guī)律的探索過程、發(fā)展學(xué)生的抽象思維能力。

2、通過由已知信息寫一次函數(shù)表達式的過程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。

三、情感目標(biāo)1、通過函數(shù)與變量之間的關(guān)系的聯(lián)系,一次函數(shù)與一次方程的聯(lián)系,發(fā)展學(xué)生的數(shù)學(xué)思維。

2、經(jīng)歷利用一次函數(shù)解決實際問題的過程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。

四、教學(xué)重難點1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。2、會根據(jù)已知信息寫出一次函數(shù)的表達式。

五、教學(xué)過程

1、新課導(dǎo)入有關(guān)函數(shù)問題在我們?nèi)粘I钪须S處可見,如彈簧秤有自然長度,在彈性限度內(nèi),隨著所掛物體的重量的&39;增加,彈簧的長度相應(yīng)的會拉長,那么所掛物體的重量與彈簧的長度之間就存在某種關(guān)系,究竟是什么樣的關(guān)系,請看:某彈簧的自然長度為3厘米,在彈性限度內(nèi),所掛物體的質(zhì)量x每增加1千克、彈簧長度y增加0.5厘米。

(1)計算所掛物體的質(zhì)量分別為1千克、2千克、3千克、4千克、5千克時彈簧的長度,

(2)你能寫出x與y之間的關(guān)系式嗎?

分析:當(dāng)不掛物體時,彈簧長度為3厘米,當(dāng)掛1千克物體時,增加0.5厘米,總長度為3.5厘米,當(dāng)增加1千克物體,即所掛物體為2千克時,彈簧又增加0.5厘米,總共增加1厘米,由此可見,所掛物體每增加1千克,彈簧就伸長0.5厘米,所掛物體為x千克,彈簧就伸長0.5x厘米,則彈簧總長為原長加伸長的長度,即y=3+0.5x。

2、做一做某輛汽車油箱中原有汽油100升,汽車每行駛50千克耗油9升。你能寫出x與y之間的關(guān)系嗎?(y=1000.18x或y=100x)接著看下面這些函數(shù),你能說出這些函數(shù)有什么共同的特點嗎?上面的幾個函數(shù)關(guān)系式,都是左邊是因變量,右邊是含自變量的代數(shù)式,并且自變量和因變量的指數(shù)都是一次。

3、一次函數(shù),正比例函數(shù)的概念若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的&39;一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時,稱y是x的正比例函數(shù)。

4、例題講解例1:下列函數(shù)中,y是x的一次函數(shù)的是()①y=x6;②y=;③y=;④y=7xA、①②③B、①③④C、①②③④D、②③④分析:這道題考查的是一次函數(shù)的概念,特別要強調(diào)一次函數(shù)自變量與因變量的指數(shù)都是1,因而②不是一次函數(shù),答案為B

67713 主站蜘蛛池模板: 消泡剂_水处理消泡剂_切削液消泡剂_涂料消泡剂_有机硅消泡剂_广州中万新材料生产厂家 | 环保袋,无纺布袋,无纺布打孔袋,保温袋,环保袋定制,环保袋厂家,环雅包装-十七年环保袋定制厂家 | 多功能干燥机,过滤洗涤干燥三合一设备-无锡市张华医药设备有限公司 | 全国国际学校排名_国际学校招生入学及学费-学校大全网 | 喷码机,激光喷码打码机,鸡蛋打码机,手持打码机,自动喷码机,一物一码防伪溯源-恒欣瑞达有限公司 | 护栏打桩机-打桩机厂家-恒新重工 | 电机修理_二手电机专家-河北豫通机电设备有限公司(原石家庄冀华高压电机维修中心) | 真空搅拌机-行星搅拌机-双行星动力混合机-广州市番禺区源创化工设备厂 | 一航网络-软件测评官网| 刚性-柔性防水套管-橡胶伸缩接头-波纹管补偿器-启腾供水材料有限公司 | 苏州西朗门业-欧盟CE|莱茵UL双认证的快速卷帘门品牌厂家 | 风淋室生产厂家报价_传递窗|送风口|臭氧机|FFU-山东盛之源净化设备 | 氧化锆陶瓷_氧化锆陶瓷加工_氧化锆陶瓷生产厂家-康柏工业陶瓷有限公司 | 湖南自考_湖南自学考试 | 苏商学院官网 - 江苏地区唯一一家企业家自办的前瞻型、实操型商学院 | 衬氟旋塞阀-卡套旋塞阀-中升阀门首页 | 过滤器_自清洗过滤器_气体过滤器_苏州华凯过滤技术有限公司 | 济南铝方通-济南铝方通价格-济南方通厂家-山东鲁方通建材有限公司 | 钢骨架轻型板_膨石轻型板_钢骨架轻型板价格_恒道新材料 | 快速门厂家批发_PVC快速卷帘门_高速门_高速卷帘门-广州万盛门业 快干水泥|桥梁伸缩缝止水胶|伸缩缝装置生产厂家-广东广航交通科技有限公司 | 提升海外网站流量,增加国外网站访客UV,定制海外IP-访客王 | 亿诺千企网-企业核心产品贸易| 震动筛选机|震动分筛机|筛粉机|振筛机|振荡筛-振动筛分设备专业生产厂家高服机械 | 热处理温控箱,热处理控制箱厂家-吴江市兴达电热设备厂 | 贝朗斯动力商城(BRCPOWER.COM) - 买叉车蓄电池上贝朗斯商城,价格更超值,品质有保障! | 沥青车辙成型机-车托式混凝土取芯机-混凝土塑料试模|鑫高仪器 | 至顶网 | 防弹玻璃厂家_防爆炸玻璃_电磁屏蔽玻璃-四川大硅特玻科技有限公司 | 岩棉板|岩棉复合板|聚氨酯夹芯板|岩棉夹芯板|彩钢夹芯板-江苏恒海钢结构 | 今日娱乐圈——影视剧集_八卦娱乐_明星八卦_最新娱乐八卦新闻 | 【ph计】|在线ph计|工业ph计|ph计厂家|ph计价格|酸度计生产厂家_武汉吉尔德科技有限公司 | 聚丙烯酰胺_厂家_价格-河南唐达净水材料有限公司 | 冷油器,取样冷却器,热力除氧器-连云港振辉机械设备有限公司 | 岩棉板|岩棉复合板|聚氨酯夹芯板|岩棉夹芯板|彩钢夹芯板-江苏恒海钢结构 | 首页 - 军军小站|张军博客| 洛阳网站建设_洛阳网站优化_网站建设平台_洛阳香河网络科技有限公司 | 瑞典Blueair空气净化器租赁服务中心-专注新装修办公室除醛去异味服务! | 深圳成考网-深圳成人高考报名网 深圳工程师职称评定条件及流程_深圳职称评审_职称评审-职称网 | 青州开防盗门锁-配汽车芯片钥匙-保险箱钥匙-吉祥修锁店 | 拉力机-拉力试验机-万能试验机-电子拉力机-拉伸试验机-剥离强度试验机-苏州皖仪实验仪器有限公司 | 密集架|电动密集架|移动密集架|黑龙江档案密集架-大量现货厂家销售 |