高二數(shù)學(xué)教案免費(fèi)下載
教案包括教材簡(jiǎn)析和學(xué)生分析、教學(xué)目的、重難點(diǎn)、教學(xué)準(zhǔn)備、教學(xué)過(guò)程及練習(xí)設(shè)計(jì)等。高二數(shù)學(xué)教案免費(fèi)下載怎么才能寫(xiě)好?這里分享一些高二數(shù)學(xué)教案免費(fèi)下載,方便大家學(xué)習(xí)。
高二數(shù)學(xué)教案免費(fèi)下載篇1
一、問(wèn)題情境
我們知道,實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,實(shí)數(shù)可以用數(shù)軸上的點(diǎn)來(lái)表示.那么,復(fù)數(shù)是否也能用點(diǎn)來(lái)表示呢?
二、學(xué)生活動(dòng)
問(wèn)題1:任何一個(gè)復(fù)數(shù)a+bi都可以由一個(gè)有序?qū)崝?shù)對(duì)(a,b)惟一確定,而有序?qū)崝?shù)對(duì)(a,b)與平面直角坐標(biāo)系中的點(diǎn)是一一對(duì)應(yīng)的,那么我們?cè)鯓佑闷矫嫔系狞c(diǎn)來(lái)表示復(fù)數(shù)呢?
問(wèn)題2:平面直角坐標(biāo)系中的點(diǎn)A與以原點(diǎn)O為起點(diǎn),A為終點(diǎn)的向量是一一對(duì)應(yīng)的,那么復(fù)數(shù)能用平面向量表示嗎?
問(wèn)題3:任何一個(gè)實(shí)數(shù)都有絕對(duì)值,它表示數(shù)軸上與這個(gè)實(shí)數(shù)對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離.任何一個(gè)向量都有模,它表示向量的長(zhǎng)度,那么相應(yīng)的,我們可以給出復(fù)數(shù)的模(絕對(duì)值)的概念嗎?它又有什么幾何意義呢?
問(wèn)題4:復(fù)數(shù)可以用復(fù)平面的向量來(lái)表示,那么,復(fù)數(shù)的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎??jī)蓚€(gè)復(fù)數(shù)差的模有什么幾何意義?
三、建構(gòu)數(shù)學(xué)
1.復(fù)數(shù)的幾何意義:在平面直角坐標(biāo)系中,以復(fù)數(shù)a+bi的實(shí)部a為橫坐標(biāo),虛部b為縱坐標(biāo)就確定了點(diǎn)Z(a,b),我們可以用點(diǎn)Z(a,b)來(lái)表示復(fù)數(shù)a+bi,這就是復(fù)數(shù)的幾何意義.
2.復(fù)平面:建立了直角坐標(biāo)系來(lái)表示復(fù)數(shù)的平面.其中x軸為實(shí)軸,y軸為虛軸.實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù).
3.因?yàn)閺?fù)平面上的點(diǎn)Z(a,b)與以原點(diǎn)O為起點(diǎn)、Z為終點(diǎn)的向量一一對(duì)應(yīng),所以我們也可以用向量來(lái)表示復(fù)數(shù)z=a+bi,這也是復(fù)數(shù)的幾何意義.
4.復(fù)數(shù)加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個(gè)復(fù)數(shù)差的模就是復(fù)平面內(nèi)與這兩個(gè)復(fù)數(shù)對(duì)應(yīng)的兩點(diǎn)間的距離.同時(shí),復(fù)數(shù)加減法的法則與平面向量加減法的坐標(biāo)形式也是完全一致的.
高二數(shù)學(xué)教案免費(fèi)下載篇2
一、教學(xué)內(nèi)容分析
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無(wú)數(shù)次實(shí)踐后的高度抽象.恰當(dāng)?shù)乩胈_解題,許多時(shí)候能以簡(jiǎn)馭繁。因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來(lái)熟練的解題”。
二、學(xué)生學(xué)習(xí)情況分析
我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語(yǔ)言的表達(dá)能力也略顯不足。
三、設(shè)計(jì)思想
由于這部分知識(shí)較為抽象,如果離開(kāi)感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情.在教學(xué)時(shí),借助多媒體動(dòng)畫(huà),引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率.
四、教學(xué)目標(biāo)
1.深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用__解決問(wèn)題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。
2.通過(guò)對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對(duì)問(wèn)題的不斷引申,精心設(shè)問(wèn),引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。
3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.
五、教學(xué)重點(diǎn)與難點(diǎn):
教學(xué)重點(diǎn)
1.對(duì)圓錐曲線定義的理解
2.利用圓錐曲線的定義求“最值”
3.“定義法”求軌跡方程
教學(xué)難點(diǎn):
巧用圓錐曲線__解題
六、教學(xué)過(guò)程設(shè)計(jì)
【設(shè)計(jì)思路】
開(kāi)門(mén)見(jiàn)山,提出問(wèn)題
例題:
(1)已知a(-2,0),b(2,0)動(dòng)點(diǎn)m滿足ma+mb=2,則點(diǎn)m的軌跡是()。
(a)橢圓(b)雙曲線(c)線段(d)不存在
(2)已知?jiǎng)狱c(diǎn)m(_,y)滿足(_1)2(y2)23_4y,則點(diǎn)m的軌跡是()。
(a)橢圓(b)雙曲線(c)拋物線(d)兩條相交直線
【設(shè)計(jì)意圖】
定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問(wèn)題。
為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。
【學(xué)情預(yù)設(shè)】
估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說(shuō)出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對(duì)于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來(lái)說(shuō),并不是什么難事。但問(wèn)題(2)就可能讓學(xué)生們費(fèi)一番周折——如果有學(xué)生提出:可以利用變形來(lái)解決問(wèn)題,那么我就可以循著他的思路,先對(duì)原等式做變形:(_1)2(y2)2這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子3_4y入手,考慮通過(guò)適當(dāng)?shù)淖冃危D(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。
在對(duì)學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線的中心坐標(biāo)是,實(shí)軸長(zhǎng)為,焦距為。以深化對(duì)概念的理解。
高二數(shù)學(xué)教案免費(fèi)下載篇3
活動(dòng)1、提出問(wèn)題
一個(gè)運(yùn)動(dòng)場(chǎng)要修兩塊長(zhǎng)方形草坪,第一塊草坪的長(zhǎng)是10米,寬是米,第二塊草坪的長(zhǎng)是20米,寬也是米。你能告訴運(yùn)動(dòng)場(chǎng)的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?
問(wèn)題:10+20是什么運(yùn)算?
活動(dòng)2、探究活動(dòng)
下列3個(gè)小題怎樣計(jì)算?
問(wèn)題:1)-還能繼續(xù)往下合并嗎?
2)看來(lái)二次根式有的能合并,有的不能合并,通過(guò)對(duì)以上幾個(gè)題的觀察,你能說(shuō)說(shuō)什么樣的二次根式能合并,什么樣的不能合并嗎?
二次根式加減時(shí),先將二次根式化簡(jiǎn)成最簡(jiǎn)二次根式后,再將被開(kāi)方數(shù)相同的進(jìn)行合并。
活動(dòng)3
練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))
創(chuàng)設(shè)問(wèn)題情景,引起學(xué)生思考。
學(xué)生回答:這個(gè)運(yùn)動(dòng)場(chǎng)要準(zhǔn)備(10+20)平方米的草皮。
教師提問(wèn):學(xué)生思考并回答教師出示課題并說(shuō)明今天我們就共同來(lái)研究該如何進(jìn)行二次根式的加減法運(yùn)算。
我們可以利用已學(xué)知識(shí)或已有經(jīng)驗(yàn)來(lái)分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。
教師引導(dǎo)驗(yàn)證:
①設(shè)=,類比合并同類項(xiàng)或面積法;
②學(xué)生思考,得出先化簡(jiǎn),再合并的解題思路
③先化簡(jiǎn),再合并
學(xué)生觀察并歸納:二次根式化為最簡(jiǎn)二次根式后,被開(kāi)方數(shù)相同的能合并。
教師巡視、指導(dǎo),學(xué)生完成、交流,師生評(píng)價(jià)。
提醒學(xué)生注意先化簡(jiǎn)成最簡(jiǎn)二次根式后再判斷。
高二數(shù)學(xué)教案免費(fèi)下載篇4
一、指導(dǎo)思想:
以發(fā)展教育的理念為指引,以學(xué)校教務(wù)處、教研組、年級(jí)組工作計(jì)劃為指南,加強(qiáng)備課組教師的教育教學(xué)理論學(xué)習(xí),更新教學(xué)觀念,落實(shí)教學(xué)常規(guī),全面提高學(xué)生的數(shù)學(xué)能力,尤其是提高創(chuàng)新意識(shí)和實(shí)踐能力,為社會(huì)培養(yǎng)創(chuàng)造型人才
二、學(xué)情分析及相關(guān)措施:
教學(xué)中要從學(xué)生的認(rèn)識(shí)水平和實(shí)際能力出發(fā),及時(shí)糾正不合理學(xué)習(xí)方法,研究學(xué)生的心理特征,做好高二第一學(xué)期與第二學(xué)期的銜接工作。注重培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣。具體措施如下:
(1)注意研究學(xué)生,做好高二第一學(xué)期與第二學(xué)期的銜接工作。
(2)集中精力打好基礎(chǔ),分項(xiàng)突破難點(diǎn)。所列基礎(chǔ)知識(shí)依據(jù)新課程標(biāo)準(zhǔn)設(shè)計(jì),著眼于基礎(chǔ)知識(shí)與重點(diǎn)內(nèi)容,要充分重視基礎(chǔ)知識(shí)、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅(jiān)實(shí)的基礎(chǔ),切勿忙于過(guò)早的拔高,講難題。同時(shí)應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識(shí)要求,能力要求及新趨勢(shì),這樣才能統(tǒng)籌安排,循序漸進(jìn)。
(3)培養(yǎng)學(xué)生解答考題的能力,通過(guò)例題,從形式和內(nèi)容兩方面對(duì)所學(xué)知識(shí)進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。
(4)讓學(xué)生通過(guò)單元考試,檢測(cè)自己的實(shí)際應(yīng)用能力,從而及時(shí)總結(jié)經(jīng)驗(yàn),找出不足,做好充分的準(zhǔn)備
(5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作。
(6)注意運(yùn)用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運(yùn)用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。
高二數(shù)學(xué)教案免費(fèi)下載篇5
教學(xué)目標(biāo)
1、知識(shí)與技能
(1)理解并掌握正弦函數(shù)的定義域、值域、周期性、(小)值、單調(diào)性、奇偶性;
(2)能熟練運(yùn)用正弦函數(shù)的性質(zhì)解題。
2、過(guò)程與方法
通過(guò)正弦函數(shù)在R上的圖像,讓學(xué)生探索出正弦函數(shù)的性質(zhì);講解例題,總結(jié)方法,鞏固練習(xí)。
3、情感態(tài)度與價(jià)值觀
通過(guò)本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生創(chuàng)新能力、探索歸納能力;讓學(xué)生體驗(yàn)自身探索成功的喜悅感,培養(yǎng)學(xué)生的自信心;使學(xué)生認(rèn)識(shí)到轉(zhuǎn)化“矛盾”是解決問(wèn)題的有效途經(jīng);培養(yǎng)學(xué)生形成實(shí)事求是的科學(xué)態(tài)度和鍥而不舍的鉆研精神。
教學(xué)重難點(diǎn)
重點(diǎn):正弦函數(shù)的性質(zhì)。
難點(diǎn):正弦函數(shù)的性質(zhì)應(yīng)用。
教學(xué)工具
投影儀
教學(xué)過(guò)程
【創(chuàng)設(shè)情境,揭示課題】
同學(xué)們,我們?cè)跀?shù)學(xué)一中已經(jīng)學(xué)過(guò)函數(shù),并掌握了討論一個(gè)函數(shù)性質(zhì)的幾個(gè)角度,你還記得有哪些嗎?在上一次課中,我們已經(jīng)學(xué)習(xí)了正弦函數(shù)的y=sinx在R上圖像,下面請(qǐng)同學(xué)們根據(jù)圖像一起討論一下它具有哪些性質(zhì)?
【探究新知】
讓學(xué)生一邊看投影,一邊仔細(xì)觀察正弦曲線的圖像,并思考以下幾個(gè)問(wèn)題:
(1)正弦函數(shù)的定義域是什么?
(2)正弦函數(shù)的值域是什么?
(3)它的最值情況如何?
(4)它的正負(fù)值區(qū)間如何分?
(5)?(x)=0的解集是多少?
師生一起歸納得出:
1.定義域:y=sinx的定義域?yàn)镽
2.值域:引導(dǎo)回憶單位圓中的正弦函數(shù)線,結(jié)論:|sinx|≤1(有界性)
再看正弦函數(shù)線(圖象)驗(yàn)證上述結(jié)論,所以y=sinx的值域?yàn)閇-1,1]
課后小結(jié)
歸納整理,整體認(rèn)識(shí)
(1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過(guò)的知識(shí)內(nèi)容有哪些?所涉及的主要數(shù)學(xué)思想方法有哪些?
(2)在本節(jié)課的學(xué)習(xí)過(guò)程中,還有那些不太明白的地方,請(qǐng)向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?
課后習(xí)題
作業(yè):習(xí)題1—4第3、4、5、6、7題.
高二數(shù)學(xué)教案免費(fèi)下載篇6
教學(xué)目的:
掌握?qǐng)A的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問(wèn)題
教學(xué)重點(diǎn):
圓的標(biāo)準(zhǔn)方程及有關(guān)運(yùn)用
教學(xué)難點(diǎn):
標(biāo)準(zhǔn)方程的靈活運(yùn)用
教學(xué)過(guò)程:
一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程
二、掌握知識(shí),鞏固練習(xí)
練習(xí):
說(shuō)出下列圓的方程
⑴圓心(3,-2)半徑為5
⑵圓心(0,3)半徑為3
指出下列圓的圓心和半徑
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
判斷3x-4y-10=0和x2+y2=4的位置關(guān)系
圓心為(1,3),并與3x-4y-7=0相切,求這個(gè)圓的方程
三、引伸提高,講解例題
例1、圓心在y=-2x上,過(guò)p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)
練習(xí):
1、某圓過(guò)(-2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過(guò)A(-10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長(zhǎng)度。
例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過(guò)M的圓的切線方程(一題多解,訓(xùn)練思維)
四、小結(jié)練習(xí)P771,2,3,4
五、作業(yè)P811,2,3,4
高二數(shù)學(xué)教案免費(fèi)下載篇7
教學(xué)目標(biāo)
熟練掌握三角函數(shù)式的求值
教學(xué)重難點(diǎn)
熟練掌握三角函數(shù)式的求值
教學(xué)過(guò)程
【知識(shí)點(diǎn)精講】
三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形
三角函數(shù)式的求值的類型一般可分為:
(1)“給角求值”:給出非特殊角求式子的值。仔細(xì)觀察非特殊角的特點(diǎn),找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角
(2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解
(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
(4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進(jìn)行化簡(jiǎn),再求之
三角函數(shù)式常用化簡(jiǎn)方法:切割化弦、高次化低次
注意點(diǎn):靈活角的變形和公式的變形
重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論
【課堂小結(jié)】
三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形
三角函數(shù)式的求值的類型一般可分為:
(1)“給角求值”:給出非特殊角求式子的值。仔細(xì)觀察非特殊角的特點(diǎn),找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角
(2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解
(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
(4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進(jìn)行化簡(jiǎn),再求之
三角函數(shù)式常用化簡(jiǎn)方法:切割化弦、高次化低次
注意點(diǎn):靈活角的變形和公式的變形
重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論
高二數(shù)學(xué)教案免費(fèi)下載篇8
【教學(xué)目標(biāo)】
知識(shí)目標(biāo):了解中心對(duì)稱的概念,了解平行四邊形是中心對(duì)稱圖形,掌握中心對(duì)稱的性質(zhì)。
能力目標(biāo):靈活運(yùn)用中心對(duì)稱的性質(zhì),會(huì)作關(guān)于已知點(diǎn)對(duì)稱的中心對(duì)稱圖形。
情感目標(biāo):通過(guò)提問(wèn)、討論、動(dòng)手操作等多種教學(xué)活動(dòng),樹(shù)立自信,自強(qiáng),自主感,由此激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,增強(qiáng)學(xué)好數(shù)學(xué)的信心。
【教學(xué)重點(diǎn)、難點(diǎn)】
重點(diǎn):中心對(duì)稱圖形的概念和性質(zhì)。
難點(diǎn):范例中既有新概念,分析又要仔細(xì)、透徹,是教學(xué)的難點(diǎn)。
關(guān)鍵:已知點(diǎn)A和點(diǎn)O,會(huì)作點(diǎn)Aˊ,使點(diǎn)Aˊ與點(diǎn)A關(guān)于點(diǎn)O成中心對(duì)稱。
【課前準(zhǔn)備】
叫一位剪紙愛(ài)好的學(xué)生,剪一幅類似書(shū)本第108頁(yè)哪樣的圖案。
【教學(xué)過(guò)程】
一.復(fù)習(xí)
回顧七下學(xué)過(guò)的軸對(duì)稱變換、平移變換、旋轉(zhuǎn)變換、相似變換。
二.創(chuàng)設(shè)情境
用剪好的圖案,讓學(xué)生欣賞。師:這剪紙有哪些變換?生:軸對(duì)稱變換。師:指出對(duì)稱軸。生:(能結(jié)合圖案講)。生:還有旋轉(zhuǎn)變換。師:指出旋轉(zhuǎn)中心、旋轉(zhuǎn)的角度?生:90°、180°、270°。
三、合作學(xué)習(xí)
1、把圖1、圖2發(fā)給每個(gè)學(xué)生,先探索圖1:同桌的兩位同學(xué),把兩個(gè)正三角形重合,然后把上面的正三角形繞點(diǎn)O旋轉(zhuǎn)180°,觀察旋轉(zhuǎn)180°前后原圖形和像的位置情況,請(qǐng)學(xué)生說(shuō)出發(fā)現(xiàn)什么?生(討論后):等邊三角形旋轉(zhuǎn)180°后所得的像與原圖形不重合。
探索圖形2:把兩個(gè)平形四邊形重合,然后把上面一個(gè)平形四邊形繞點(diǎn)O旋轉(zhuǎn)180°,學(xué)生動(dòng)手后發(fā)現(xiàn):平行四邊形ABCD旋轉(zhuǎn)180°后所得的像與原圖形重合。師:為什么重合?師:作適當(dāng)解釋或?qū)W生自己發(fā)現(xiàn):∵OA=OC,∴點(diǎn)A繞點(diǎn)O旋轉(zhuǎn)180°與點(diǎn)C重合。同理可得,點(diǎn)C繞點(diǎn)O旋轉(zhuǎn)180°與點(diǎn)A重合。點(diǎn)B繞點(diǎn)O旋轉(zhuǎn)180°與點(diǎn)D重合。點(diǎn)D繞點(diǎn)O旋轉(zhuǎn)180°與點(diǎn)B重合。
2、中心對(duì)稱圖形的概念:如果一個(gè)圖形繞一個(gè)點(diǎn)旋轉(zhuǎn)180°后,所得到的圖形能夠和原來(lái)的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱(pointsymmetry)圖形,這個(gè)點(diǎn)叫對(duì)稱中心。
師:等邊三角形是中心對(duì)稱圖形嗎?生:不是。
3、想一想:等邊三角形是軸對(duì)稱圖形嗎?答:是軸對(duì)稱圖形。
平形四邊形是軸對(duì)稱圖形嗎?答:不是軸對(duì)稱圖形。
4、兩個(gè)圖形關(guān)于點(diǎn)O成中心對(duì)稱的概念:如果一個(gè)圖形繞著一個(gè)點(diǎn)O旋轉(zhuǎn)180°后,能夠和另外一個(gè)圖形互相重合,我們就稱這兩個(gè)圖形關(guān)于點(diǎn)O成中心對(duì)稱。
中心對(duì)稱圖形與兩個(gè)圖形成中心對(duì)稱的不同點(diǎn):前者是一個(gè)圖形,后者是兩個(gè)圖形。
相同點(diǎn):都有旋轉(zhuǎn)中心,旋轉(zhuǎn)180°后都會(huì)重合。
做一做:P109
5、根據(jù)中心對(duì)稱圖形的定義,得出中心對(duì)稱圖形的性質(zhì):
對(duì)稱中心平分連結(jié)兩個(gè)對(duì)稱點(diǎn)的線段
通過(guò)中心對(duì)稱的概念,得到P109性質(zhì)后,主要是理解與應(yīng)用。如右圖,若A、B關(guān)于點(diǎn)O的成中心對(duì)稱,∴點(diǎn)O是A、B的對(duì)稱中心。
反之,已知點(diǎn)A、點(diǎn)O,作點(diǎn)B,使點(diǎn)A、B關(guān)于以O(shè)為對(duì)稱中心的對(duì)稱點(diǎn)。讓學(xué)生練習(xí),多數(shù)學(xué)生會(huì)做,若不會(huì)做,教師作適當(dāng)?shù)膯l(fā)。
做P106例2,讓學(xué)生思考1~2分鐘,然后師生共同解答。
(P106)例2解:∵平行四邊形是中心對(duì)稱圖形,O是對(duì)稱中心,
EF經(jīng)過(guò)點(diǎn)O,分別交AB、CD于E、F。
∴點(diǎn)E、F是關(guān)于點(diǎn)O的對(duì)稱點(diǎn)。
∴OE=OF。
四、應(yīng)用新知,拓展提高
例如圖,已知△ABC和點(diǎn)O,作△A′B′C′,使△A′B′C′與△ABC關(guān)于點(diǎn)O成中心對(duì)稱。
分析:先讓學(xué)生作點(diǎn)A關(guān)于以點(diǎn)O為對(duì)稱中心的對(duì)稱點(diǎn)Aˊ,
同理:作點(diǎn)B關(guān)于以點(diǎn)O為對(duì)稱中心的對(duì)稱點(diǎn)Bˊ,
作點(diǎn)C關(guān)于以點(diǎn)O為對(duì)稱中心的對(duì)稱點(diǎn)Cˊ。
∴△AˊBˊCˊ與△ABC關(guān)于點(diǎn)O成中心對(duì)稱也會(huì)作。解:略。
課內(nèi)練習(xí)P110
小結(jié)
今天我們學(xué)習(xí)了些什么?
1、中心對(duì)稱圖形的概念,兩個(gè)圖形成中心對(duì)稱的概念,知道它們的相同點(diǎn)與不同點(diǎn)。
2、會(huì)作中心對(duì)稱圖形,關(guān)鍵是會(huì)作點(diǎn)A關(guān)于以O(shè)為對(duì)稱中心的對(duì)稱點(diǎn)Aˊ。
3、我們已學(xué)過(guò)的中心對(duì)稱圖形有哪些?
作業(yè)
P110A組1、2、3、4,B組5、6必做C組7選做。
高二數(shù)學(xué)教案免費(fèi)下載篇9
一、學(xué)習(xí)目標(biāo)
1)理解對(duì)數(shù)的概念;
2)能熟練地進(jìn)行對(duì)數(shù)式與指數(shù)式的轉(zhuǎn)化.
二、教學(xué)重點(diǎn)和教學(xué)難點(diǎn)
重點(diǎn):對(duì)數(shù)的概念
難點(diǎn):對(duì)對(duì)數(shù)概念的理解
三、知識(shí)鏈接
1.指數(shù)函數(shù):(),,0
2.運(yùn)算性質(zhì):
四.學(xué)習(xí)過(guò)程:
閱讀課本,解答下面問(wèn)題:
1、對(duì)數(shù)的定義:一般地,如果()的b次冪等于N,即,那么
數(shù)叫做以為底的對(duì)數(shù),記作:.
其中叫做對(duì)數(shù)的,叫做.
2、把下列指數(shù)式寫(xiě)成對(duì)數(shù)式
①、②、③、
3、把下列對(duì)數(shù)式寫(xiě)成指數(shù)式
①、;②;③;
閱讀課本,解答下面問(wèn)題:
4、特殊對(duì)數(shù)
通常以為底的對(duì)數(shù)叫常用對(duì)數(shù),并把簡(jiǎn)記作
在科學(xué)技術(shù)中常使用以無(wú)理數(shù)為底的對(duì)數(shù),以為底的對(duì)數(shù)稱為自然對(duì)數(shù),并把簡(jiǎn)記作.
如:;.
5、根據(jù)對(duì)數(shù)式與指數(shù)式的關(guān)系,填寫(xiě)下表中空白處的名稱.
式子名稱
指數(shù)式
對(duì)數(shù)式
6、思考交流
高二數(shù)學(xué)教案免費(fèi)下載篇10
一、教學(xué)過(guò)程
1.復(fù)習(xí)。
反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關(guān)系。
求出函數(shù)y=x3的反函數(shù)。
2.新課。
先讓學(xué)生用幾何畫(huà)板畫(huà)出y=x3的圖象,學(xué)生紛紛動(dòng)手,很快畫(huà)出了函數(shù)的圖象。有部分學(xué)生發(fā)出了“咦”的一聲,因?yàn)樗麄兊玫搅巳缦碌膱D象(圖1):
教師在畫(huà)出上述圖象的學(xué)生中選定生1,將他的屏幕內(nèi)容通過(guò)教學(xué)系統(tǒng)放到其他同學(xué)的屏幕上,很快有學(xué)生作出反應(yīng)。
生2:這是y=x3的反函數(shù)y=的圖象。
師:對(duì),但是怎么會(huì)得到這個(gè)圖象,請(qǐng)大家討論。
師:我們請(qǐng)生1再給大家演示一下,大家?guī)退艺以颉?/p>
生3:?jiǎn)栴}出在他選擇的次序不對(duì)。
師:哪個(gè)次序?
生3:作點(diǎn)B前,選擇xA和xA3為B的坐標(biāo)時(shí),他先選擇xA3,后選擇xA,作出來(lái)的點(diǎn)的坐標(biāo)為(xA3,xA),而不是(xA,xA3)。
師:是這樣嗎?我們請(qǐng)生1再做一次。
(這次生1在做的過(guò)程當(dāng)中,按xA、xA3的次序選擇,果然得到函數(shù)y=x3的圖象。)
師:看來(lái)問(wèn)題確實(shí)是出在這個(gè)地方,那么請(qǐng)同學(xué)再想想,為什么他采用了錯(cuò)誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?
師:我們請(qǐng)生4來(lái)告訴大家。
生4:因?yàn)樗@樣做,正好是將y=x3上的點(diǎn)B(x,y)的橫坐標(biāo)x與縱坐標(biāo)y交換,而y=x3的反函數(shù)也正好是將x與y交換。
師:完全正確。下面我們進(jìn)一步研究y=x3的圖象及其反函數(shù)y=的圖象的.關(guān)系,同學(xué)們能不能看出這兩個(gè)函數(shù)的圖象有什么樣的關(guān)系?
(多數(shù)學(xué)生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進(jìn)一步追問(wèn)。)
師:怎么由y=x3的圖象得到y(tǒng)=的圖象?
生5:將y=x3的圖象上點(diǎn)的橫坐標(biāo)與縱坐標(biāo)交換,可得到y(tǒng)=的圖象。
師:將橫坐標(biāo)與縱坐標(biāo)互換?怎么換?
師:我其實(shí)是想問(wèn)大家這兩個(gè)函數(shù)的圖象有沒(méi)有對(duì)稱關(guān)系,有的話,是什么樣的對(duì)稱關(guān)系?
生6:我發(fā)現(xiàn)這兩個(gè)圖象應(yīng)是關(guān)于某條直線對(duì)稱。
師:能說(shuō)說(shuō)是關(guān)于哪條直線對(duì)稱嗎?
生6:我還沒(méi)找出來(lái)。
學(xué)生通過(guò)移動(dòng)點(diǎn)A(點(diǎn)B、C隨之移動(dòng))后發(fā)現(xiàn),BC的中點(diǎn)M在同一條直線上,這條直線就是兩函數(shù)圖象的對(duì)稱軸,在追蹤M點(diǎn)后,發(fā)現(xiàn)中點(diǎn)的軌跡是直線y=x。
生7:y=x3的圖象及其反函數(shù)y=的圖象關(guān)于直線y=x對(duì)稱。
師:這個(gè)結(jié)論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對(duì)稱關(guān)系嗎?請(qǐng)同學(xué)們用其他函數(shù)來(lái)試一試。
(學(xué)生紛紛畫(huà)出其他函數(shù)與其反函數(shù)的圖象進(jìn)行驗(yàn)證,最后大家一致得出結(jié)論:函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對(duì)稱。)
教師巡視全班時(shí)已經(jīng)發(fā)現(xiàn)這個(gè)問(wèn)題,將這個(gè)圖象傳給全班學(xué)生后,幾乎所有人都看出了問(wèn)題所在:圖中函數(shù)y=x2(x∈R)沒(méi)有反函數(shù),也不是函數(shù)的圖象。
最后教師與學(xué)生一起總結(jié):
點(diǎn)(x,y)與點(diǎn)(y,x)關(guān)于直線y=x對(duì)稱;
函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對(duì)稱。
二、反思與點(diǎn)評(píng)
1.在開(kāi)學(xué)初,我就教學(xué)幾何畫(huà)板4。0的用法,在教函數(shù)圖象畫(huà)法的過(guò)程當(dāng)中,發(fā)現(xiàn)學(xué)生根據(jù)選定坐標(biāo)作點(diǎn)時(shí),不太注意選擇橫坐標(biāo)與縱坐標(biāo)的順序,本課設(shè)計(jì)起源于此。雖然幾何畫(huà)板4。04中,能直接根據(jù)函數(shù)解析式畫(huà)出圖象,但這樣反而不能揭示圖象對(duì)稱的本質(zhì),所以本節(jié)課教學(xué)中,我有意選擇了幾何畫(huà)板4。0進(jìn)行教學(xué)。
2.荷蘭數(shù)學(xué)教育家弗賴登塔爾認(rèn)為,數(shù)學(xué)學(xué)習(xí)過(guò)程當(dāng)中,可借助于生動(dòng)直觀的形象來(lái)引導(dǎo)人們的思想過(guò)程,但常常由于圖形或想象的錯(cuò)誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過(guò)于直觀的例子常常會(huì)影響學(xué)生正確理解比較抽象的概念。
計(jì)算機(jī)作為一種現(xiàn)代信息技術(shù)工具,在直觀化方面有很強(qiáng)的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計(jì)算機(jī)都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計(jì)算機(jī),但不能達(dá)到更好地理解抽象概念,促進(jìn)學(xué)生思維的目的的話,這樣的教學(xué)中,計(jì)算機(jī)最多只是一種普通的直觀工具而已。
在本節(jié)課的教學(xué)中,計(jì)算機(jī)更多的是作為學(xué)生探索發(fā)現(xiàn)的工具,學(xué)生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對(duì)稱關(guān)系,而且在更深層次上理解了反函數(shù)的概念,對(duì)反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。
當(dāng)前計(jì)算機(jī)用于中學(xué)數(shù)學(xué)的主要形式還是以輔助為主,更多的是把計(jì)算機(jī)作為一種直觀工具,有時(shí)甚至只是作為電子黑板使用,今后的發(fā)展方向應(yīng)是:將計(jì)算機(jī)作為學(xué)生的認(rèn)知工具,讓學(xué)生通過(guò)計(jì)算機(jī)發(fā)現(xiàn)探索,甚至利用計(jì)算機(jī)來(lái)做數(shù)學(xué),在此過(guò)程當(dāng)中更好地理解數(shù)學(xué)概念,促進(jìn)數(shù)學(xué)思維,發(fā)展數(shù)學(xué)創(chuàng)新能力。
3.在引出兩個(gè)函數(shù)圖象對(duì)稱關(guān)系的時(shí)候,問(wèn)題設(shè)計(jì)不甚妥當(dāng),本來(lái)是想要學(xué)生回答兩個(gè)函數(shù)圖象對(duì)稱的關(guān)系,但學(xué)生誤以為是問(wèn)如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學(xué)生引入歧途。這樣的問(wèn)題在今后的教學(xué)中是必須力求避免的。
高二數(shù)學(xué)教案免費(fèi)下載篇11
1.本節(jié)課的重點(diǎn)是了解程序框圖的含義,理解程序框圖的作用,掌握各種程序框和流程線的畫(huà)法與功能,理解程序框圖中的順序結(jié)構(gòu),會(huì)用順序結(jié)構(gòu)表示算法.難點(diǎn)是理解程序框圖的作用及用順序結(jié)構(gòu)表示算法.
2.本節(jié)課要重點(diǎn)掌握的規(guī)律方法
(1)掌握畫(huà)程序框圖的幾點(diǎn)注意事項(xiàng),見(jiàn)講1;
(2)掌握應(yīng)用順序結(jié)構(gòu)表示算法的步驟,見(jiàn)講2.
3.本節(jié)課的易錯(cuò)點(diǎn)
對(duì)程序框圖的理解有誤致錯(cuò),如講1.
課下能力提升(二)
[學(xué)業(yè)水平達(dá)標(biāo)練]
題組1程序框圖
1.在程序框圖中,一個(gè)算法步驟到另一個(gè)算法步驟的連接用()
A.連接點(diǎn)B.判斷框C.流程線D.處理框
解析:選C流程線的意義是流程進(jìn)行的方向,一個(gè)算法步驟到另一個(gè)算法步驟表示的是流程進(jìn)行的方向,而連接點(diǎn)是當(dāng)一個(gè)框圖需要分開(kāi)來(lái)畫(huà)時(shí),在斷開(kāi)處畫(huà)上連接點(diǎn).判斷框是根據(jù)給定條件進(jìn)行判斷,處理框是賦值、計(jì)算、數(shù)據(jù)處理、結(jié)果傳送,所以A,B,D都不對(duì).故選C.
2.a表示“處理框”,b表示“輸入、輸出框”,c表示“起止框”,d表示“判斷框”,以下四個(gè)圖形依次為()
A.abcdB.dcabC.bacdD.cbad
答案:D
3.如果輸入n=2,那么執(zhí)行如下算法的結(jié)果是()
第一步,輸入n.
第二步,n=n+1.
第三步,n=n+2.
第四步,輸出n.
A.輸出3B.輸出4
C.輸出5D.程序出錯(cuò)
答案:C
題組2順序結(jié)構(gòu)
4.如圖所示的程序框圖表示的算法意義是()
A.邊長(zhǎng)為3,4,5的直角三角形面積
B.邊長(zhǎng)為3,4,5的直角三角形內(nèi)切圓面積
C.邊長(zhǎng)為3,4,5的直角三角形外接圓面積
D.以3,4,5為弦的圓面積
解析:選B由直角三角形內(nèi)切圓半徑r=a+b-c2,知選B.
第4題圖第5題圖
5.(2016?東營(yíng)高一檢測(cè))給出如圖所示的程序框圖:
若輸出的結(jié)果為2,則①處的執(zhí)行框內(nèi)應(yīng)填的是()
A.x=2B.b=2
C.x=1D.a=5
解析:選C∵b=2,∴2=a-3,即a=5.∴2x+3=5時(shí),得x=1.
6.寫(xiě)出如圖所示程序框圖的運(yùn)行結(jié)果:S=________.
解析:S=log24+42=18.
答案:18
7.已知半徑為r的圓的周長(zhǎng)公式為C=2πr,當(dāng)r=10時(shí),寫(xiě)出計(jì)算圓的周長(zhǎng)的一個(gè)算法,并畫(huà)出程序框圖.
解:算法如下:第一步,令r=10.第二步,計(jì)算C=2πr.第三步,輸出C.
程序框圖如圖:
8.已知函數(shù)f(x)=x2-3x-2,求f(3)+f(-5)的值,設(shè)計(jì)一個(gè)算法并畫(huà)出算法的程序框圖.
解:自然語(yǔ)言算法如下:
第一步,求f(3)的值.
第二步,求f(-5)的值.
第三步,將前兩步的結(jié)果相加,存入y.
第四步,輸出y.
程序框圖:
[能力提升綜合練]
1.程序框圖符號(hào)“”可用于()
A.輸出a=10B.賦值a=10
C.判斷a=10D.輸入a=1
解析:選B圖形符號(hào)“”是處理框,它的功能是賦值、計(jì)算,不是輸出、判斷和輸入,故選B.
2.(2016?廣州高一檢測(cè))如圖程序框圖的運(yùn)行結(jié)果是()
A.52B.32
C.-32D.-1
解析:選C因?yàn)閍=2,b=4,所以S=ab-ba=24-42=-32,故選C.
3.(2016?廣州高一檢測(cè))如圖是一個(gè)算法的程序框圖,已知a1=3,輸出的b=7,則a2等于()
A.9B.10
C.11D.12
解析:選C由題意知該算法是計(jì)算a1+a22的值.
∴3+a22=7,得a2=11,故選C.
4.(2016?佛山高一檢測(cè))閱讀如圖所示的程序框圖,若輸出的結(jié)果為6,則①處執(zhí)行框應(yīng)填的是()
A.x=1B.x=2
C.b=1D.b=2
解析:選B若b=6,則a=7,∴x3-1=7,∴x=2.
5.根據(jù)如圖所示的程序框圖所表示的算法,輸出的結(jié)果是________.
解析:該算法的第1步分別將1,2,3賦值給X,Y,Z,第2步使X取Y的值,即X取值變成2,第3步使Y取X的值,即Y的值也是2,第4步讓Z取Y的值,即Z取值也是2,從而第5步輸出時(shí),Z的值是2.
答案:2
6.計(jì)算圖甲中空白部分面積的一個(gè)程序框圖如圖乙,則①中應(yīng)填________.
圖甲圖乙
解析:圖甲空白部分的面積為a2-π16a2,故圖乙①中應(yīng)填S=a2-π16a2.
答案:S=a2-π16a2
7.在如圖所示的程序框圖中,當(dāng)輸入的x的值為0和4時(shí),輸出的值相等,根據(jù)該圖和各小題的條件回答問(wèn)題.
(1)該程序框圖解決的是一個(gè)什么問(wèn)題?
(2)當(dāng)輸入的x的值為3時(shí),求輸出的f(x)的值.
(3)要想使輸出的值,求輸入的x的值.
解:(1)該程序框圖解決的是求二次函數(shù)f(x)=-x2+mx的函數(shù)值的問(wèn)題.
(2)當(dāng)輸入的x的值為0和4時(shí),輸出的值相等,即f(0)=f(4).
因?yàn)閒(0)=0,f(4)=-16+4m,
所以-16+4m=0,
所以m=4.
所以f(x)=-x2+4x.
則f(3)=-32+4×3=3,
所以當(dāng)輸入的x的值為3時(shí),輸出的f(x)的值為3.
(3)因?yàn)閒(x)=-x2+4x=-(x-2)2+4,
所以當(dāng)x=2時(shí),f(x)max=4,
所以要想使輸出的值,輸入的x的值應(yīng)為2.
8.如圖是為解決某個(gè)問(wèn)題而繪制的程序框圖,仔細(xì)分析各框內(nèi)的內(nèi)容及圖框之間的關(guān)系,回答下面的問(wèn)題:
(1)圖框①中x=2的含義是什么?
(2)圖框②中y1=ax+b的含義是什么?
(3)圖框④中y2=ax+b的含義是什么?
(4)該程序框圖解決的是怎樣的問(wèn)題?
(5)當(dāng)最終輸出的結(jié)果是y1=3,y2=-2時(shí),求y=f(x)的解析式.
解:(1)圖框①中x=2表示把2賦值給變量x.
(2)圖框②中y1=ax+b的含義是:該圖框在執(zhí)行①的前提下,即當(dāng)x=2時(shí),計(jì)算ax+b的值,并把這個(gè)值賦給y1.
(3)圖框④中y2=ax+b的含義是:該圖框在執(zhí)行③的前提下,即當(dāng)x=-3時(shí),計(jì)算ax+b的值,并把這個(gè)值賦給y2.
(4)該程序框圖解決的是求函數(shù)y=ax+b的函數(shù)值的問(wèn)題,其中輸入的是自變量x的值,輸出的是對(duì)應(yīng)x的函數(shù)值.
(5)y1=3,即2a+b=3.⑤
y2=-2,即-3a+b=-2.⑥
由⑤⑥,得a=1,b=1,
所以f(x)=x+1.
高二數(shù)學(xué)教案免費(fèi)下載篇12
教學(xué)目的:掌握?qǐng)A的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的.問(wèn)題
教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程及有關(guān)運(yùn)用
教學(xué)難點(diǎn):標(biāo)準(zhǔn)方程的靈活運(yùn)用
教學(xué)過(guò)程:
一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程
二、掌握知識(shí),鞏固練習(xí)
練習(xí):⒈說(shuō)出下列圓的方程
⑴圓心(3,-2)半徑為5⑵圓心(0,3)半徑為3
⒉指出下列圓的圓心和半徑
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
⒊判斷3x-4y-10=0和x2+y2=4的位置關(guān)系
⒋圓心為(1,3),并與3x-4y-7=0相切,求這個(gè)圓的方程
三、引伸提高,講解例題
例1、圓心在y=-2x上,過(guò)p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)
練習(xí):
1、某圓過(guò)(-2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過(guò)A(-10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長(zhǎng)度。
例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過(guò)M的圓的切線方程(一題多解,訓(xùn)練思維)
四、小結(jié)練習(xí)P771,2,3,4
五、作業(yè)P811,2,3,4
高二數(shù)學(xué)教案免費(fèi)下載篇13
教學(xué)目標(biāo):
使學(xué)生理解函數(shù)的概念,明確決定函數(shù)的三個(gè)要素,學(xué)會(huì)求某些函數(shù)的定義域,掌握判定兩個(gè)函數(shù)是否相同的方法;使學(xué)生理解靜與動(dòng)的辯證關(guān)系.
教學(xué)重點(diǎn):
函數(shù)的概念,函數(shù)定義域的求法.
教學(xué)難點(diǎn):
函數(shù)概念的理解.
教學(xué)過(guò)程:
Ⅰ.課題導(dǎo)入
[師]在初中,我們已經(jīng)學(xué)習(xí)了函數(shù)的概念,請(qǐng)同學(xué)們回憶一下,它是怎樣表述的?
(幾位學(xué)生試著表述,之后,教師將學(xué)生的回答梳理,再表述或者啟示學(xué)生將表述補(bǔ)充完整再條理表述).
設(shè)在一個(gè)變化的過(guò)程中有兩個(gè)變量x和y,如果對(duì)于x的每一個(gè)值,y都有惟一的值與它對(duì)應(yīng),那么就說(shuō)y是x的函數(shù),x叫做自變量.
[師]我們學(xué)習(xí)了函數(shù)的概念,并且具體研究了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù),請(qǐng)同學(xué)們思考下面兩個(gè)問(wèn)題:
問(wèn)題一:y=1(x∈R)是函數(shù)嗎?
問(wèn)題二:y=x與y=x2x是同一個(gè)函數(shù)嗎?
(學(xué)生思考,很難回答)
[師]顯然,僅用上述函數(shù)概念很難回答這些問(wèn)題,因此,需要從新的高度來(lái)認(rèn)識(shí)函數(shù)概念(板書(shū)課題).
Ⅱ.講授新課
[師]下面我們先看兩個(gè)非空集合A、B的元素之間的一些對(duì)應(yīng)關(guān)系的例子.
在(1)中,對(duì)應(yīng)關(guān)系是“乘2”,即對(duì)于集合A中的每一個(gè)數(shù)n,集合B中都有一個(gè)數(shù)2n和它對(duì)應(yīng).
在(2)中,對(duì)應(yīng)關(guān)系是“求平方”,即對(duì)于集合A中的每一個(gè)數(shù)m,集合B中都有一個(gè)平方數(shù)m2和它對(duì)應(yīng).
在(3)中,對(duì)應(yīng)關(guān)系是“求倒數(shù)”,即對(duì)于集合A中的每一個(gè)數(shù)x,集合B中都有一個(gè)數(shù)1x和它對(duì)應(yīng).
請(qǐng)同學(xué)們觀察3個(gè)對(duì)應(yīng),它們分別是怎樣形式的對(duì)應(yīng)呢?
[生]一對(duì)一、二對(duì)一、一對(duì)一.
[師]這3個(gè)對(duì)應(yīng)的共同特點(diǎn)是什么呢?
[生甲]對(duì)于集合A中的任意一個(gè)數(shù),按照某種對(duì)應(yīng)關(guān)系,集合B中都有惟一的數(shù)和它對(duì)應(yīng).
[師]生甲回答的很好,不但找到了3個(gè)對(duì)應(yīng)的共同特點(diǎn),還特別強(qiáng)調(diào)了對(duì)應(yīng)關(guān)系,事實(shí)上,一個(gè)集合中的數(shù)與另一集合中的數(shù)的對(duì)應(yīng)是按照一定的關(guān)系對(duì)應(yīng)的,這是不能忽略的.實(shí)際上,函數(shù)就是從自變量x的集合到函數(shù)值y的集合的一種對(duì)應(yīng)關(guān)系.
現(xiàn)在我們把函數(shù)的概念進(jìn)一步敘述如下:(板書(shū))
設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有惟一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f︰A→B為從集合A到集合B的一個(gè)函數(shù).
記作:y=f(x),x∈A
其中x叫自變量,x的取值范圍A叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{yy=f(x),x∈A}叫函數(shù)的值域.
一次函數(shù)f(x)=ax+b(a≠0)的定義域是R,值域也是R.對(duì)于R中的任意一個(gè)數(shù)x,在R中都有一個(gè)數(shù)f(x)=ax+b(a≠0)和它對(duì)應(yīng).
反比例函數(shù)f(x)=kx(k≠0)的定義域是A={--≠0},值域是B={f(x)f(x)≠0},對(duì)于A中的任意一個(gè)實(shí)數(shù)x,在B中都有一個(gè)實(shí)數(shù)f(x)=kx(k≠0)和它對(duì)應(yīng).
二次函數(shù)f(x)=ax2+bx+c(a≠0)的定義域是R,值域是當(dāng)a>0時(shí)B={f(x)f(x)≥4ac-b24a};當(dāng)a<0時(shí),B={f(x)f(x)≤4ac-b24a},它使得R中的任意一個(gè)數(shù)x與B中的數(shù)f(x)=ax2+bx+c(a≠0)對(duì)應(yīng).
函數(shù)概念用集合、對(duì)應(yīng)的語(yǔ)言敘述后,我們就很容易回答前面所提出的兩個(gè)問(wèn)題.
y=1(x∈R)是函數(shù),因?yàn)閷?duì)于實(shí)數(shù)集R中的任何一個(gè)數(shù)x,按照對(duì)應(yīng)關(guān)系“函數(shù)值是1”,在R中y都有惟一確定的值1與它對(duì)應(yīng),所以說(shuō)y是x的函數(shù).
Y=x與y=x2x不是同一個(gè)函數(shù),因?yàn)楸M管它們的對(duì)應(yīng)關(guān)系一樣,但y=x的定義域是R,而y=x2x的定義域是{--≠0}.所以y=x與y=x2x不是同一個(gè)函數(shù).
[師]理解函數(shù)的定義,我們應(yīng)該注意些什么呢?(教師提出問(wèn)題,啟發(fā)、引導(dǎo)學(xué)生思考、討論,并和學(xué)生一起歸納、總結(jié))
注意:①函數(shù)是非空數(shù)集到非空數(shù)集上的一種對(duì)應(yīng).
②符號(hào)“f:A→B”表示A到B的一個(gè)函數(shù),它有三個(gè)要素;定義域、值域、對(duì)應(yīng)關(guān)系,三者缺一不可.
③集合A中數(shù)的任意性,集合B中數(shù)的惟一性.
④f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中,f的具體含義不一樣.
⑤f(x)是一個(gè)符號(hào),絕對(duì)不能理解為f與x的乘積.
[師]在研究函數(shù)時(shí),除用符號(hào)f(x)表示函數(shù)外,還常用g(x)、F(x)、G(x)等符號(hào)來(lái)表示
Ⅲ.例題分析
[例1]求下列函數(shù)的定義域.
(1)f(x)=1x-2(2)f(x)=3x+2(3)f(x)=x+1+12-x
分析:函數(shù)的定義域通常由問(wèn)題的實(shí)際背景確定.如果只給出解析式y(tǒng)=f(x),而沒(méi)有指明它的定義域.那么函數(shù)的定義域就是指能使這個(gè)式子有意義的實(shí)數(shù)x的集合.
解:(1)x-2≠0,即x≠2時(shí),1x-2有意義
∴這個(gè)函數(shù)的定義域是{--≠2}
(2)3x+2≥0,即x≥-23時(shí)3x+2有意義
∴函數(shù)y=3x+2的定義域是[-23,+∞)
(3)x+1≥02-x≠0x≥-1x≠2
∴這個(gè)函數(shù)的定義域是{--≥-1}∩{--≠2}=[-1,2)∪(2,+∞).
注意:函數(shù)的定義域可用三種方法表示:不等式、集合、區(qū)間.
從上例可以看出,當(dāng)確定用解析式y(tǒng)=f(x)表示的函數(shù)的定義域時(shí),常有以下幾種情況:
(1)如果f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R;
(2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實(shí)數(shù)的集合;
(3)如果f(x)是偶次根式,那么函數(shù)的定義域是使根號(hào)內(nèi)的式子不小于零的實(shí)數(shù)的集合;
(4)如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)的集合(即使每個(gè)部分有意義的實(shí)數(shù)的集合的交集);
(5)如果f(x)是由實(shí)際問(wèn)題列出的,那么函數(shù)的定義域是使解析式本身有意義且符合實(shí)際意義的實(shí)數(shù)的集合.
例如:一矩形的寬為xm,長(zhǎng)是寬的2倍,其面積為y=2x2,此函數(shù)定義域?yàn)閤>0而不是全體實(shí)數(shù).
由以上分析可知:函數(shù)的定義域由數(shù)學(xué)式子本身的意義和問(wèn)題的實(shí)際意義決定.
[師]自變量x在定義域中任取一個(gè)確定的值a時(shí),對(duì)應(yīng)的函數(shù)值用符號(hào)f(a)來(lái)表示.例如,函數(shù)f(x)=x2+3x+1,當(dāng)x=2時(shí)的函數(shù)值是f(2)=22+3?2+1=11
注意:f(a)是常量,f(x)是變量,f(a)是函數(shù)f(x)中當(dāng)自變量x=a時(shí)的函數(shù)值.
下面我們來(lái)看求函數(shù)式的值應(yīng)該怎樣進(jìn)行呢?
[生甲]求函數(shù)式的值,嚴(yán)格地說(shuō)是求函數(shù)式中自變量x為某一確定的值時(shí)函數(shù)式的值,因此,求函數(shù)式的值,只要把函數(shù)式中的x換為相應(yīng)確定的數(shù)(或字母,或式子)進(jìn)行計(jì)算即可.
[師]回答正確,不過(guò)要準(zhǔn)確地求出函數(shù)式的值,計(jì)算時(shí)萬(wàn)萬(wàn)不可粗心大意噢!
[生乙]判定兩個(gè)函數(shù)是否相同,就看其定義域或?qū)?yīng)關(guān)系是否完全一致,完全一致時(shí),這兩個(gè)函數(shù)就相同;不完全一致時(shí),這兩個(gè)函數(shù)就不同.
[師]生乙的回答完整嗎?
[生]完整!(課本上就是如生乙所述那樣寫(xiě)的).
[師]大家說(shuō),判定兩個(gè)函數(shù)是否相同的依據(jù)是什么?
[生]函數(shù)的定義.
[師]函數(shù)的定義有三個(gè)要素:定義域、值域、對(duì)應(yīng)關(guān)系,我們判定兩個(gè)函數(shù)是否相同為什么只看兩個(gè)要素:定義域和對(duì)應(yīng)關(guān)系,而不看值域呢?
(學(xué)生竊竊私語(yǔ):是啊,函數(shù)的三個(gè)要素不是缺一不可嗎?怎不看值域呢?)
(無(wú)人回答)
[師]同學(xué)們預(yù)習(xí)時(shí)還是欠仔細(xì),欠思考!我們做事情,看問(wèn)題都要多問(wèn)幾個(gè)為什么!函數(shù)的值域是由什么決定的,不就是由函數(shù)的定義域與對(duì)應(yīng)關(guān)系決定的嗎!關(guān)注了函數(shù)的定義域與對(duì)應(yīng)關(guān)系,三者就全看了!
(生恍然大悟,我們?cè)趺淳蜎](méi)想到呢?)
[例2]求下列函數(shù)的值域
(1)y=1-2x(x∈R)(2)y=x-1x∈{-2,-1,0,1,2}
(3)y=x2+4x+3(-3≤x≤1)
分析:求函數(shù)的值域應(yīng)確定相應(yīng)的定義域后再根據(jù)函數(shù)的具體形式及運(yùn)算確定其值域.
對(duì)于(1)(2)可用“直接法”根據(jù)它們的定義域及對(duì)應(yīng)法則得到(1)(2)的值域.
對(duì)于(3)可借助數(shù)形結(jié)合思想利用它們的圖象得到值域,即“圖象法”.
解:(1)y∈R
(2)y∈{1,0,-1}
(3)畫(huà)出y=x2+4x+3(-3≤x≤1)的圖象,如圖所示,
當(dāng)x∈[-3,1]時(shí),得y∈[-1,8]
Ⅳ.課堂練習(xí)
課本P24練習(xí)1—7.
Ⅴ.課時(shí)小結(jié)
本節(jié)課我們學(xué)習(xí)了函數(shù)的定義(包括定義域、值域的概念)、區(qū)間的概念及求函數(shù)定義域的方法.學(xué)習(xí)函數(shù)定義應(yīng)注意的問(wèn)題及求定義域時(shí)的各種情形應(yīng)該予以重視.(本小結(jié)的內(nèi)容可由學(xué)生自己來(lái)歸納)
Ⅵ.課后作業(yè)
課本P28,習(xí)題1、2.
高二數(shù)學(xué)教案免費(fèi)下載篇14
[核心必知]
1.預(yù)習(xí)教材,問(wèn)題導(dǎo)入
根據(jù)以下提綱,預(yù)習(xí)教材P6~P9,回答下列問(wèn)題.
(1)常見(jiàn)的程序框有哪些?
提示:終端框(起止框),輸入、輸出框,處理框,判斷框.
(2)算法的基本邏輯結(jié)構(gòu)有哪些?
提示:順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu).
2.歸納總結(jié),核心必記
(1)程序框圖
程序框圖又稱流程圖,是一種用程序框、流程線及文字說(shuō)明來(lái)表示算法的圖形.
在程序框圖中,一個(gè)或幾個(gè)程序框的組合表示算法中的一個(gè)步驟;帶有方向箭頭的流程線將程序框連接起來(lái),表示算法步驟的執(zhí)行順序.
(2)常見(jiàn)的程序框、流程線及各自表示的功能
圖形符號(hào)名稱功能
終端框(起止框)表示一個(gè)算法的起始和結(jié)束
輸入、輸出框表示一個(gè)算法輸入和輸出的信息
處理框(執(zhí)行框)賦值、計(jì)算
判斷框判斷某一條件是否成立,成立時(shí)在出口處標(biāo)明“是”或“Y”;不成立時(shí)標(biāo)明“否”或“N”
流程線連接程序框
○連接點(diǎn)連接程序框圖的兩部分
(3)算法的基本邏輯結(jié)構(gòu)
①算法的三種基本邏輯結(jié)構(gòu)
算法的三種基本邏輯結(jié)構(gòu)為順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu),盡管算法千差萬(wàn)別,但都是由這三種基本邏輯結(jié)構(gòu)構(gòu)成的.
②順序結(jié)構(gòu)
順序結(jié)構(gòu)是由若干個(gè)依次執(zhí)行的步驟組成的.這是任何一個(gè)算法都離不開(kāi)的基本結(jié)構(gòu),用程序框圖表示為:
[問(wèn)題思考]
(1)一個(gè)完整的程序框圖一定是以起止框開(kāi)始,同時(shí)又以起止框表示結(jié)束嗎?
提示:由程序框圖的概念可知一個(gè)完整的程序框圖一定是以起止框開(kāi)始,同時(shí)又以起止框表示結(jié)束.
(2)順序結(jié)構(gòu)是任何算法都離不開(kāi)的基本結(jié)構(gòu)嗎?
提示:根據(jù)算法基本邏輯結(jié)構(gòu)可知順序結(jié)構(gòu)是任何算法都離不開(kāi)的基本結(jié)構(gòu).
[課前反思]
通過(guò)以上預(yù)習(xí),必須掌握的幾個(gè)知識(shí)點(diǎn):
(1)程序框圖的概念:;
(2)常見(jiàn)的程序框、流程線及各自表示的功能:;
(3)算法的三種基本邏輯結(jié)構(gòu):;
(4)順序結(jié)構(gòu)的概念及其程序框圖的表示:.
問(wèn)題背景:計(jì)算1×2+3×4+5×6+…+99×100.
[思考1]能否設(shè)計(jì)一個(gè)算法,計(jì)算這個(gè)式子的值.
提示:能.
[思考2]能否采用更簡(jiǎn)潔的方式表述上述算法過(guò)程.
提示:能,利用程序框圖.
[思考3]畫(huà)程序框圖時(shí)應(yīng)遵循怎樣的規(guī)則?
名師指津:(1)使用標(biāo)準(zhǔn)的框圖符號(hào).
(2)框圖一般按從上到下、從左到右的方向畫(huà).
(3)除判斷框外,其他程序框圖的符號(hào)只有一個(gè)進(jìn)入點(diǎn)和一個(gè)退出點(diǎn),判斷框是一個(gè)具有超過(guò)一個(gè)退出點(diǎn)的程序框.
(4)在圖形符號(hào)內(nèi)描述的語(yǔ)言要非常簡(jiǎn)練清楚.
(5)流程線不要忘記畫(huà)箭頭,因?yàn)樗欠从沉鞒虉?zhí)行先后次序的,如果不畫(huà)出箭頭就難以判斷各框的執(zhí)行順序.
講一講
1.下列關(guān)于程序框圖中圖形符號(hào)的理解正確的有()
①任何一個(gè)流程圖必須有起止框;②輸入框只能放在開(kāi)始框后,輸出框只能放在結(jié)束框前;③判斷框是的具有超過(guò)一個(gè)退出點(diǎn)的圖形符號(hào);④對(duì)于一個(gè)程序框圖來(lái)說(shuō),判斷框內(nèi)的條件是的.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
[嘗試解答]任何一個(gè)程序必須有開(kāi)始和結(jié)束,從而流程圖必須有起止框,①正確.輸入、輸出框可以用在算法中任何需要輸入、輸出的位置,②錯(cuò)誤.③正確.判斷框內(nèi)的條件不是的,④錯(cuò)誤.故選B.
答案:B
畫(huà)程序框圖時(shí)應(yīng)注意的問(wèn)題
(1)畫(huà)流程線不要忘記畫(huà)箭頭;
(2)由于判斷框的退出點(diǎn)在任何情況下都是根據(jù)條件去執(zhí)行其中的一種結(jié)果,而另一個(gè)則不會(huì)被執(zhí)行,故判斷框后的流程線應(yīng)根據(jù)情況注明“是”或“否”.
練一練
1.下列關(guān)于程序框圖的說(shuō)法中正確的個(gè)數(shù)是()
①用程序框圖表示算法直觀、形象、容易理解;②程序框圖能夠清楚地展現(xiàn)算法的邏輯結(jié)構(gòu),也就是通常所說(shuō)的“一圖勝萬(wàn)言”;③在程序框圖中,起止框是任何程序框圖中不可少的;④輸入和輸出框可以在算法中任何需要輸入、輸出的位置.
A.1B.2C.3D.4
解析:選D由程序框圖的定義知,①②③④均正確,故選D.
觀察如圖所示的內(nèi)容:
[思考1]順序結(jié)構(gòu)有哪些結(jié)構(gòu)特征?
名師指津:順序結(jié)構(gòu)的結(jié)構(gòu)特征:
(1)順序結(jié)構(gòu)的語(yǔ)句與語(yǔ)句之間、框與框之間按從上到下的順序執(zhí)行,不會(huì)引起程序步驟的跳轉(zhuǎn).
(2)順序結(jié)構(gòu)是最簡(jiǎn)單的算法結(jié)構(gòu).
(3)順序結(jié)構(gòu)只能解決一些簡(jiǎn)單的問(wèn)題.
[思考2]順序結(jié)構(gòu)程序框圖的基本特征是什么?
名師指津:順序結(jié)構(gòu)程序框圖的基本特征:
(1)必須有兩個(gè)起止框,穿插輸入、輸出框和處理框,沒(méi)有判斷框.
(2)各程序框用流程線依次連接.
(3)處理框按計(jì)算機(jī)執(zhí)行順序沿流程線依次排列.
講一講
2.已知P0(x0,y0)和直線l:Ax+By+C=0,寫(xiě)出求點(diǎn)P0到直線l的距離d的算法,并用程序框圖來(lái)描述.
[嘗試解答]第一步,輸入x0,y0,A,B,C;
第二步,計(jì)算m=Ax0+By0+C;
第三步,計(jì)算n=A2+B2;
第四步,計(jì)算d=mn;
第五步,輸出d.
程序框圖如圖所示.
應(yīng)用順序結(jié)構(gòu)表示算法的步驟:
(1)仔細(xì)審題,理清題意,找到解決問(wèn)題的方法.
(2)梳理解題步驟.
(3)用數(shù)學(xué)語(yǔ)言描述算法,明確輸入量,計(jì)算過(guò)程,輸出量.
(4)用程序框圖表示算法過(guò)程.
練一練
2.寫(xiě)出解不等式2x+1>0的一個(gè)算法,并畫(huà)出程序框圖.
解:第一步,將1移到不等式的右邊;
第二步,不等式的兩端同乘12;
第三步,得到x>-12并輸出.
程序框圖如圖所示:
高二數(shù)學(xué)教案免費(fèi)下載篇15
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
1.掌握平面向量的數(shù)量積及其幾何意義;
2.掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;
3.了解用平面向量的數(shù)量積可以處理垂直的問(wèn)題;
4.掌握向量垂直的條件.
教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):平面向量的數(shù)量積定義
教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用
教學(xué)過(guò)程
1.平面向量數(shù)量積(內(nèi)積)的定義:已知兩個(gè)非零向量a與b,它們的夾角是θ,
則數(shù)量abcosq叫a與b的數(shù)量積,記作a×b,即有a×b=abcosq,(0≤θ≤π).
并規(guī)定0向量與任何向量的數(shù)量積為0.
×探究:1、向量數(shù)量積是一個(gè)向量還是一個(gè)數(shù)量?它的符號(hào)什么時(shí)候?yàn)檎?什么時(shí)候?yàn)樨?fù)?
2、兩個(gè)向量的數(shù)量積與實(shí)數(shù)乘向量的積有什么區(qū)別?
(1)兩個(gè)向量的數(shù)量積是一個(gè)實(shí)數(shù),不是向量,符號(hào)由cosq的符號(hào)所決定.
(2)兩個(gè)向量的數(shù)量積稱為內(nèi)積,寫(xiě)成a×b;今后要學(xué)到兩個(gè)向量的外積a×b,而a×b是兩個(gè)向量的數(shù)量的積,書(shū)寫(xiě)時(shí)要嚴(yán)格區(qū)分.符號(hào)“·”在向量運(yùn)算中不是乘號(hào),既不能省略,也不能用“×”代替.
(3)在實(shí)數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0.因?yàn)槠渲衏osq有可能為0
高二數(shù)學(xué)教案免費(fèi)下載篇16
1.預(yù)習(xí)教材,問(wèn)題導(dǎo)入
根據(jù)以下提綱,預(yù)習(xí)教材P54~P57,回答下列問(wèn)題.
(1)在教材P55的“探究”中,怎樣獲得樣本?
提示:將這批小包裝餅干放入一個(gè)不透明的袋子中,攪拌均勻,然后不放回地摸取.
(2)最常用的簡(jiǎn)單隨機(jī)抽樣方法有哪些?
提示:抽簽法和隨機(jī)數(shù)法.
(3)你認(rèn)為抽簽法有什么優(yōu)點(diǎn)和缺點(diǎn)?
提示:抽簽法的優(yōu)點(diǎn)是簡(jiǎn)單易行,當(dāng)總體中個(gè)體數(shù)不多時(shí)較為方便,缺點(diǎn)是當(dāng)總體中個(gè)體數(shù)較多時(shí)不宜采用.
(4)用隨機(jī)數(shù)法讀數(shù)時(shí)可沿哪個(gè)方向讀取?
提示:可以沿向左、向右、向上、向下等方向讀數(shù).
2.歸納總結(jié),核心必記
(1)簡(jiǎn)單隨機(jī)抽樣:一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機(jī)抽樣.
(2)最常用的簡(jiǎn)單隨機(jī)抽樣方法有兩種——抽簽法和隨機(jī)數(shù)法.
(3)一般地,抽簽法就是把總體中的N個(gè)個(gè)體分段,把號(hào)碼寫(xiě)在號(hào)簽上,將號(hào)簽放在一個(gè)容器中,攪拌均勻后,每次從中抽取一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本.
(4)隨機(jī)數(shù)法就是利用隨機(jī)數(shù)表、隨機(jī)數(shù)骰子或計(jì)算機(jī)產(chǎn)生的隨機(jī)數(shù)進(jìn)行抽樣.
(5)簡(jiǎn)單隨機(jī)抽樣有操作簡(jiǎn)便易行的優(yōu)點(diǎn),在總體個(gè)數(shù)不多的情況下是行之有效的.
[問(wèn)題思考]
(1)在簡(jiǎn)單隨機(jī)抽樣中,某一個(gè)個(gè)體被抽到的可能性與第幾次被抽到有關(guān)嗎?
提示:在簡(jiǎn)單隨機(jī)抽樣中,總體中的每個(gè)個(gè)體在每次抽取時(shí)被抽到的可能性相同,與第幾次被抽到無(wú)關(guān).
(2)抽簽法與隨機(jī)數(shù)法有什么異同點(diǎn)?
提示:
相同點(diǎn)①都屬于簡(jiǎn)單隨機(jī)抽樣,并且要求被抽取樣本的
總體的個(gè)體數(shù)有限;
②都是從總體中逐個(gè)不放回地進(jìn)行抽取
不同點(diǎn)①抽簽法比隨機(jī)數(shù)法操作簡(jiǎn)單;
②隨機(jī)數(shù)法更適用于總體中個(gè)體數(shù)較多的時(shí)候,而抽簽法適用于總體中個(gè)體數(shù)較少的情況,所以當(dāng)總體中的個(gè)體數(shù)較多時(shí),應(yīng)當(dāng)選用隨機(jī)數(shù)法,可以節(jié)約大量的人力和制作號(hào)簽的成本
高二數(shù)學(xué)教案免費(fèi)下載篇17
教學(xué)目標(biāo):使學(xué)生初步理解集合的基本概念,了解“屬于”關(guān)系的意義、常用數(shù)集的記法和集合中元素的特性.了解有限集、無(wú)限集、空集概念,
教學(xué)重點(diǎn):集合概念、性質(zhì);“∈”,“?”的使用
教學(xué)難點(diǎn):集合概念的理解;
課型:新授課
教學(xué)手段:
教學(xué)過(guò)程:
一、引入課題
軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年級(jí)在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問(wèn)這個(gè)通知的對(duì)象是全體的高一學(xué)生還是個(gè)別學(xué)生?
在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問(wèn)題中某些特定(是高一而不是高二)對(duì)象的總體,而不是個(gè)別的對(duì)象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合(宣布課題),即是一些研究對(duì)象的總體。
研究集合的數(shù)學(xué)理論在現(xiàn)代數(shù)學(xué)中稱為集合論,它不僅是數(shù)學(xué)的一個(gè)基本分支,在數(shù)學(xué)中占據(jù)一個(gè)極其獨(dú)特的地位,如果把數(shù)學(xué)比作一座宏偉大廈,那么集合論就是這座宏偉大廈的基石。集合理論是由德國(guó)數(shù)學(xué)家康托爾,他創(chuàng)造的集合論是近代許多數(shù)學(xué)分支的基礎(chǔ)。(參看閱教材中讀材料P17)。
下面幾節(jié)課中,我們共同學(xué)習(xí)有關(guān)集合的一些基礎(chǔ)知識(shí),為以后數(shù)學(xué)的學(xué)習(xí)打下基礎(chǔ)。
二、新課教學(xué)
“物以類聚,人以群分”數(shù)學(xué)中也有類似的分類。
如:自然數(shù)的集合0,1,2,3,……
如:2x-1>3,即x>2所有大于2的實(shí)數(shù)組成的集合稱為這個(gè)不等式的解集。
如:幾何中,圓是到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合。
1、一般地,指定的某些對(duì)象的全體稱為集合,標(biāo)記:A,B,C,D,…
集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素,標(biāo)記:a,b,c,d,…
2、元素與集合的關(guān)系
a是集合A的元素,就說(shuō)a屬于集合A,記作a∈A,
a不是集合A的元素,就說(shuō)a不屬于集合A,記作a?A
思考1:列舉一些集合例子和不能構(gòu)成集合的例子,對(duì)學(xué)生的例子予以討論、點(diǎn)評(píng),進(jìn)而講解下面的問(wèn)題。
例1:判斷下列一組對(duì)象是否屬于一個(gè)集合呢?
(1)小于10的質(zhì)數(shù)(2)數(shù)學(xué)家(3)中國(guó)的直轄市(4)maths中的字母
(5)book中的字母(6)所有的偶數(shù)(7)所有直角三角形(8)滿足3x-2>x+3的全體實(shí)數(shù)
(9)方程的實(shí)數(shù)解
評(píng)注:判斷集合要注意有三點(diǎn):范圍是否確定;元素是否明確;能不能指出它的屬性。
3、集合的中元素的三個(gè)特性:
1.元素的確定性:對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。
2.元素的互異性:任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。比如:book中的字母構(gòu)成的集合
3.元素的無(wú)序性:集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
集合元素的三個(gè)特性使集合本身具有了確定性和整體性。
4、數(shù)的集簡(jiǎn)稱數(shù)集,下面是一些常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N有理數(shù)集Q
正整數(shù)集N_或N+實(shí)數(shù)集R
整數(shù)集Z注:實(shí)數(shù)的分類
5、集合的分類原則:集合中所含元素的多少
①有限集含有限個(gè)元素,如A={-2,3}
②無(wú)限集含無(wú)限個(gè)元素,如自然數(shù)集N,有理數(shù)
③空集不含任何元素,如方程x2+1=0實(shí)數(shù)解集。專用標(biāo)記:Φ
三、課堂練習(xí)
1、用符合“∈”或“?”填空:課本P15練習(xí)慣1
2、判斷下面說(shuō)法是否正確、正確的在()內(nèi)填“√”,錯(cuò)誤的填“×”
(1)所有在N中的元素都在N_中()
(2)所有在N中的元素都在Z中()
(3)所有不在N_中的數(shù)都不在Z中()
(4)所有不在Q中的實(shí)數(shù)都在R中()
(5)由既在R中又在N_中的數(shù)組成的集合中一定包含數(shù)0()
(6)不在N中的數(shù)不能使方程4x=8成立()
四、回顧反思
1、集合的概念
2、集合元素的三個(gè)特征
其中“集合中的元素必須是確定的”應(yīng)理解為:對(duì)于一個(gè)給定的集合,它的元素的意義是明確的.
“集合中的元素必須是互異的”應(yīng)理解為:對(duì)于給定的集合,它的任何兩個(gè)元素都是不同的.
3、常見(jiàn)數(shù)集的專用符號(hào).
五、作業(yè)布置
1.下列各組對(duì)象能確定一個(gè)集合嗎?
(1)所有很大的實(shí)數(shù)
(2)好心的人
(3)1,2,2,3,4,5.
2.設(shè)a,b是非零實(shí)數(shù),那么可能取的值組成集合的元素是
3.由實(shí)數(shù)x,-x,x,所組成的集合,最多含()
(A)2個(gè)元素(B)3個(gè)元素(C)4個(gè)元素(D)5個(gè)元素
4.下列結(jié)論不正確的是()
A.O∈NB.QC.OQD.-1∈Z
5.下列結(jié)論中,不正確的是()
A.若a∈N,則-aNB.若a∈Z,則a2∈Z
C.若a∈Q,則a∈QD.若a∈R,則
6.求數(shù)集{1,x,x2-x}中的元素x應(yīng)滿足的條件;
板書(shū)設(shè)計(jì)(略)
高二數(shù)學(xué)教案免費(fèi)下載篇18
學(xué)習(xí)目標(biāo)
1.回顧在平面直角坐標(biāo)系中刻畫(huà)點(diǎn)的位置的方法.
2.能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問(wèn)題.
學(xué)習(xí)過(guò)程
一、學(xué)前準(zhǔn)備
1、通過(guò)直角坐標(biāo)系,平面上的與(),曲線與建立了聯(lián)系,實(shí)現(xiàn)了。
2、閱讀P3思考得出在直角坐標(biāo)系中解決實(shí)際問(wèn)題的過(guò)程是:
二、新課導(dǎo)學(xué)
◆探究新知(預(yù)習(xí)教材P1~P4,找出疑惑之處)
問(wèn)題1:如何刻畫(huà)一個(gè)幾何圖形的位置?
問(wèn)題2:如何創(chuàng)建坐標(biāo)系?
問(wèn)題3:(1).如何把平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)(x,y)建立聯(lián)系?(2).平面直角坐標(biāo)系中點(diǎn)和有序?qū)崝?shù)對(duì)(x,y)是怎樣的關(guān)系?
問(wèn)題4:如何研究曲線與方程間的關(guān)系?結(jié)合課本例子說(shuō)明曲線與方程的關(guān)系?
問(wèn)題5:如何刻畫(huà)一個(gè)幾何圖形的位置?
需要設(shè)定一個(gè)參照系
(1)、數(shù)軸它使直線上任一點(diǎn)P都可以由惟一的實(shí)數(shù)x確定
(2)、平面直角坐標(biāo)系:在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)P都可以由惟一的實(shí)數(shù)對(duì)(x,y)確定
(3)、空間直角坐標(biāo)系:在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)P都可以由惟一的實(shí)數(shù)對(duì)(x,y,z)確定
(4)、抽象概括:在平面直角坐標(biāo)系中,如果某曲線C上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:A.曲線C上的點(diǎn)坐標(biāo)都是方程f(x,y)=0的解;B.以方程f(x,y)=0的解為坐標(biāo)的點(diǎn)都在曲線C上。那么,方程f(x,y)=0叫作曲線C的方程,曲線C叫作方程f(x,y)=0的曲線。
問(wèn)題6:如何建系?
根據(jù)幾何特點(diǎn)選擇適當(dāng)?shù)闹苯亲鴺?biāo)系。
(1)如果圖形有對(duì)稱中心,可以選對(duì)稱中心為坐標(biāo)原點(diǎn);
(2)如果圖形有對(duì)稱軸,可以選擇對(duì)稱軸為坐標(biāo)軸;
(3)使圖形上的特殊點(diǎn)盡可能多的在坐標(biāo)軸上。