高中數學教案通用模板范文
編寫教案可以幫助教師養成嚴謹的工作態度和認真的辦事習慣,同時可以使備課更加充分,上課有條不紊。高中數學教案通用模板范文怎樣寫才正確?接下來給大家整理高中數學教案通用模板范文,希望對大家有所幫助。
高中數學教案通用模板范文篇1
一、教學目標
1.知識與技能
(1)掌握畫三視圖的基本技能
(2)豐富學生的空間想象力
2.過程與方法
主要通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態度與價值觀
(1)提高學生空間想象力
(2)體會三視圖的作用
二、教學重點、難點
重點:畫出簡單組合體的三視圖
難點:識別三視圖所表示的空間幾何體
三、學法與教學用具
1.學法:觀察、動手實踐、討論、類比
2.教學用具:實物模型、三角板
四、教學思路
(一)創設情景,揭開課題
“橫看成嶺側看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學習空間幾何體的三視圖。
在初中,我們已經學習了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?
(二)實踐動手作圖
1.講臺上放球、長方體實物,要求學生畫出它們的三視圖,教師巡視,學生畫完后可交流結果并討論;
2.教師引導學生用類比方法畫出簡單組合體的三視圖
(1)畫出球放在長方體上的三視圖
(2)畫出礦泉水瓶(實物放在桌面上)的三視圖
學生畫完后,可把自己的作品展示并與同學交流,總結自己的作圖心得。
作三視圖之前應當細心觀察,認識了它的基本結構特征后,再動手作圖。
3.三視圖與幾何體之間的相互轉化。
(1)投影出示圖片(課本P10,圖1.2-3)
請同學們思考圖中的三視圖表示的幾何體是什么?
(2)你能畫出圓臺的三視圖嗎?
(3)三視圖對于認識空間幾何體有何作用?你有何體會?
教師巡視指導,解答學生在學習中遇到的困難,然后讓學生發表對上述問題的看法。
4.請同學們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學交流。
(三)鞏固練習
課本P12練習1、2
P18習題1.2A組1
(四)歸納整理
請學生回顧發表如何作好空間幾何體的三視圖
(五)課外練習
1.自己動手制作一個底面是正方形,側面是全等的三角形的棱錐模型,并畫出它的三視圖。
2.自己制作一個上、下底面都是相似的正三角形,側面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。
高中數學教案通用模板范文篇2
教學內容:
簡單的排列組合
教學目標:
1.使學生通過觀察、猜測、實驗、驗證等活動,找出簡單事件的排列數或組合數。
2.培養學生有序地、全面地思考問題的意識和習慣。
教學過程:
1.借助操作活動或學生易于理解的事例來幫助學生找出組合數。師生共同分析練習二十五第1題。讓學生小組討論,充分發表自己的意見。
2.利用直觀圖示幫助學生有序地、不重不漏地找出早餐搭配的組合數。
3、出示練習二十五第3題。
學生看題后,四人小組討論出有多少種求組合數的方法。
4、學生匯報。
(1)圖示表示法(兩種)。引導學生用畫簡圖的方式來表示抽象的數學知識。
(2)其他的方法,例如聰聰或明明分別可以和每一個小朋友合影(分步時,可以把確定聰聰作為第一步,也可以把確定明明作為第一步),教學時充分發揮學生的創造性。至于學生用哪種方法求出來,都沒關系。但要引導學生思考如何才能不重不漏,發展學生有序地思考問題的意識和能力。
(3)學生自己用圖示表示時,可以很開放,比如,可以用正方形表示聰聰,圓形表示明明,并分別在正方形和圓形里標上序號。實際這是發展學生用數學化的符號表示具體事件的能力的一個體現。
(4)如果學生用簡圖的方式來表示有困難,也可以讓學生回憶一下二年級上冊的例子或借助學具卡片擺一擺。
2.“做一做”
(1)練習二十五第7題。
通過活動的方式讓學生不重不漏地把所有取錢的情況寫出來。
(2)練習二十五第9題。
用兩種圖示法表示兩兩組合的方式(比較簡單的兩種方式)。在教學中也要允許有的學生把所有的情況逐一羅列出來,只要他通過自己的方法探索出所有的組合數,都是應該鼓勵的。
高中數學教案通用模板范文篇3
一、教材分析
《余弦定理》選自人教A版高中數學必修五第一章第一節第一課時。本節課的主要教學內容是余弦定理的內容及證明,以及運用余弦定理解決“兩邊一夾角”“三邊”的解三角形問題。
余弦定理的學習有充分的基礎,初中的勾股定理、必修一中的向量知識、上一課時的正弦定理都是本節課內容學習的知識基礎,同時又對本節課的學習提供了一定的方法指導。其次,余弦定理在高中解三角形問題中有著重要的地位,是解決各種解三角形問題的常用方法,余弦定理也經常運用于空間幾何中,所以余弦定理是高中數學學習的一個十分重要的內容。
二、教學目標
知識與技能:
1、理解并掌握余弦定理和余弦定理的推論。
2、掌握余弦定理的推導、證明過程。
3、能運用余弦定理及其推論解決“兩邊一夾角”“三邊”問題。過程與方法:
1、通過從實際問題中抽象出數學問題,培養學生知識的遷移能力。
2、通過直角三角形到一般三角形的過渡,培養學生歸納總結能力。
3、通過余弦定理推導證明的過程,培養學生運用所學知識解決實際問題的能力。
情感態度與價值觀:
1、在交流合作的過程中增強合作探究、團結協作精神,體驗解決問題的成功喜悅。
2、感受數學一般規律的美感,培養數學學習的興趣。
三、教學重難點
重點:余弦定理及其推論和余弦定理的運用。
難點:余弦定理的發現和推導過程以及多解情況的判斷。
四、教學用具
普通教學工具、多媒體工具(以上均為命題教學的準備)
高中數學教案通用模板范文篇4
教學目標
1.了解函數的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法.
(1)了解并區分增函數,減函數,單調性,單調區間,奇函數,偶函數等概念.
(2)能從數和形兩個角度認識單調性和奇偶性.
(3)能借助圖象判斷一些函數的單調性,能利用定義證明某些函數的單調性;能用定義判斷某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程.
2.通過函數單調性的證明,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養學生的觀察,歸納,抽象的能力,同時滲透數形結合,從特殊到一般的數學思想.
3.通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養樂于求索的精神,形成科學,嚴謹的研究態度.
教學建議
一、知識結構
(1)函數單調性的概念。包括增函數、減函數的定義,單調區間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系.
(2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像.
二、重點難點分析
(1)本節教學的重點是函數的單調性,奇偶性概念的形成與認識.教學的難點是領悟函數單調性, 奇偶性的本質,掌握單調性的證明.
(2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它.這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調性的證明是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的難點.
三、教法建議
(1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數.反比例函數圖象出發,回憶圖象的增減性,從這點感性認識出發,通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發現自變量與函數值的的變化規律,再把這種規律用數學語言表示出來.在這個過程中對一些關鍵的詞語(某個區間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來.
(2)函數單調性證明的步驟是嚴格規定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規律.
函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來.經歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數多個等式,是個恒等式.關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發現定義域的對稱性,同時還可以借助圖象(如)說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件.
高中數學教案通用模板范文篇5
一.說教材
1.本節課主要內容是線性規劃的意義以及線性約束條件、線性目標函數、可行域、可行解、最優解等概念,根據約束條件建立線性目標函數。應用線性規劃的圖解法解決一些實際問題。
2.地位作用:線性規劃是數學規劃中理論較完整、方法較成熟、應用較廣泛的一個分支,它可以解決科學研究、工程設計、經濟管理等許多方面的實際問題。簡單的線性規劃是在學習了直線方程的基礎上,介紹直線方程的一個簡單應用。通過這部分內容的學習,使學生進一步了解數學在解決實際問題中的應用,以培養學生學習數學的興趣、應用數學的意識和解決實際問題的能力。
3.教學目標
(1)知識與技能:了解線性規劃的意義以及線性約束條件、線性目標函數、可行域、可行解、最優解等概念,能根據約束條件建立線性目標函數。
了解并初步應用線性規劃的圖解法解決一些實際問題。
(2)過程與方法:提高學生數學地提出、分析和解決問題的能力,發展學生數學應用意識,力求對現實世界中蘊含的一些數學模式進行思考和作出判斷。
(3)情感、態度與價值觀:體會數形結合、等價轉化等數學思想,逐步認識數學的應用價值,提高學習數學的興趣,樹立學好數學的自信心。
4.重點與難點
重點:理解和用好圖解法
難點:如何用圖解法尋找線性規劃的最優解。
二.說教學方法
教學過程是教師和學生共同參與的過程,啟發學生自主性學習,充分調動學生的積極性、主動性;有效地滲透數學思想方法,提高學生素質。根據這樣的原則和所要完成的教學目標,并為激發學生的學習興趣,我采用如下的教學方法:
(1)啟發引導學生思考、分析、實驗、探索、歸納。這能充分調動學生的主動性和積極性。
(2)采用“從特殊到一般”、“化抽象為具體”、“化靜為動”的方法。這有利于學生對知識進行主動建構;有利于突出重點、解決難點;也有利于發揮學生的創造性。
(3)體現“等價轉化”、“數形結合”的思想方法。這樣可發揮學生的主觀能動性,有利于提高學生的各種能力。
三.說學法指導
教給學生方法比教給學生知識更重要,本節課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:觀察分析、聯想轉化、動手實驗、練習鞏固。
(1)觀察分析:通過引例讓學生觀察化舊知為新知,造成學生認知沖突。
(2)聯想轉化:學生通過分析、探索、得出解決問題的方法。
(3)動手實驗:通過作圖、實驗、從而得出一般解題步驟。
(4)練習鞏固:讓學生知道數學重在運用,從而檢驗知識的應用情況,找出未掌握的內容及其差距。
四.說教學程序
1、導入課題:由一個不等式組表示平面區域轉化為在此平面區域內一二元一次數的最值問題,造成學生認知沖突。
3、導學達標之一:創設情境、形成概念
通過引例的問題讓學生探索解決新問題的方法。
(設計意圖:利用已經學過的知識逐步分析,學以致用,使學生經歷數學知識的形成過程,從而提高學生數學的地提出、分析和解決問題的能力。)
然后老師逐步引導,動手實驗,化抽象為直觀。從而得到解決此類問題的方法,并對比引例給出相關概念:線性約束條件、目標函數、線性目標函數、線性規劃、可行解、可行域、最優解。并能根據引例提煉線性規劃問題的解法——圖解法。
(設計意圖:引導學生觀察和分析問題,激發學生的探索欲望,從而培養學生的解決問題和總結歸納的能力。)
4.導學達標之二:針對問題、舉例講解、形成技能
例一:課本61頁例3
(創設意境:,練習是使學生明白數學來源于實際又運用于實際,同時使學生進初步應用線性規劃的圖解法解決一些實際問題。)
6.鞏固目標:
練習一:學生做課堂練習P64例4
(叫學生提出解決問題的方法,并用多媒體展示,并根據問題的實際意義,考慮取值范圍。造成新的認知沖突,從而研究探索,得到整點最優解的一種求法。)
練習二:為了賺大錢,老張最近承包了一家具廠,可老張卻悶悶不樂,原來家具廠有方木料90m3,五合板600m2,老張準備加工成書桌和書廚出售,他通過調查了解到:生產每張書桌需要方木料0.1m3、五合板2m2,生產每個書櫥需要方木料0.2m3、五合板1m2,出售一張書桌可獲利潤80元,出售一個書櫥可獲利潤120元。老張卻不知如何安排?(電腦顯示問題)
(設計意圖:通過實際問題,激發學生興趣,培養學生的數學應用意識,力求學生能夠對現實生活中蘊含的一些數學模式進行思考和作出判斷。)
7.歸納與小結:
小結本課的主要學習內容是什么?(由師生共同來完成本課小結)
(創設意境:讓學生參與小結,引導學生對所學知識進行反思,有利于加強學生記憶和形成良好的數學思維習慣)
8.布置作業:
P64.2
五.說板書設計
板書設計為表格式,這樣的板書簡明清楚,重點突出,加深學生對重點知識的理解和掌握,同時便于記憶,有利于提高教學效果。
高中數學教案通用模板范文篇6
排列問題的應用題是學生學習的難點,也是高考的必考內容,筆者在教學中嘗試將排列問題歸納為三種類型來解決:
下面就每一種題型結合例題總結其特點和解法,并附以近年的高考原題供讀者參研.
一.能排不能排排列問題(即特殊元素在特殊位置上有特別要求的排列問題)
解決此類問題的關鍵是特殊元素或特殊位置優先.或使用間接法.
例1.(1)7位同學站成一排,其中甲站在中間的位置,共有多少種不同的排法?
(2)7位同學站成一排,甲、乙只能站在兩端的排法共有多少種?
(3)7位同學站成一排,甲、乙不能站在排頭和排尾的排法共有多少種?
(4)7位同學站成一排,其中甲不能在排頭、乙不能站排尾的排法共有多少種?
解析:(1)先考慮甲站在中間有1種方法,再在余下的6個位置排另外6位同學,共種方法;
(2)先考慮甲、乙站在兩端的排法有種,再在余下的5個位置排另外5位同學的排法有種,共種方法;
(3)先考慮在除兩端外的5個位置選2個安排甲、乙有種,再在余下的5個位置排另外5位同學排法有種,共種方法;本題也可考慮特殊位置優先,即兩端的排法有,中間5個位置有種,共種方法;
(4)分兩類乙站在排頭和乙不站在排頭,乙站在排頭的排法共有種,乙不站在排頭的排法總數為:先在除甲、乙外的5人中選1人安排在排頭的方法有種,中間5個位置選1個安排乙的方法有,再在余下的5個位置排另外5位同學的排法有,故共有種方法;本題也可考慮間接法,總排法為,不符合條件的甲在排頭和乙站排尾的排法均為,但這兩種情況均包含了甲在排頭和乙站排尾的情況,故共有種.
例2.某天課表共六節課,要排政治、語文、數學、物理、化學、體育共六門課程,如果第一節不排體育,最后一節不排數學,共有多少種不同的排課方法?
解法1:對特殊元素數學和體育進行分類解決
(1)數學、體育均不排在第一節和第六節,有種,其他有種,共有種;
(2)數學排在第一節、體育排在第六節有一種,其他有種,共有種;
(3)數學排在第一節、體育不在第六節有種,其他有種,共有種;
(4)數學不排在第一節、體育排在第六節有種,其他有種,共有種;
所以符合條件的排法共有種
解法2:對特殊位置第一節和第六節進行分類解決
(1)第一節和第六節均不排數學、體育有種,其他有種,共有種;
(2)第一節排數學、第六節排體育有一種,其他有種,共有種;
(3)第一節排數學、第六節不排體育有種,其他有種,共有種;
(4)第一節不排數學、第六節排體育有種,其他有種,共有種;
所以符合條件的排法共有種.
解法3:本題也可采用間接排除法解決
不考慮任何限制條件共有種排法,不符合題目要求的排法有:(1)數學排在第六節有種;(2)體育排在第一節有種;考慮到這兩種情況均包含了數學排在第六節和體育排在第一節的情況種所以符合條件的排法共有種
附:1、(20__北京卷)五個工程隊承建某項工程的五個不同的子項目,每個工程隊承建1項,其中甲工程隊不能承建1號子項目,則不同的承建方案共有()
(A)種(B)種(C)種(D)種
解析:本題在解答時將五個不同的子項目理解為5個位置,五個工程隊相當于5個不同的元素,這時問題可歸結為能排不能排排列問題(即特殊元素在特殊位置上有特別要求的排列問題),先排甲工程隊有,其它4個元素在4個位置上的排法為種,總方案為種.故選(B).
2、(20__全國卷Ⅱ)在由數字0,1,2,3,4,5所組成的沒有重復數字的四位數中,不能被5整除的數共有個.
解析:本題在解答時只須考慮個位和千位這兩個特殊位置的限制,個位為1、2、3、4中的某一個有4種方法,千位在余下的4個非0數中選擇也有4種方法,十位和百位方法數為種,故方法總數為種.
3、(20__福建卷)從6人中選出4人分別到巴黎、倫敦、悉尼、莫斯科四個城市游覽,要求每個城市有一人游覽,每人只游覽一個城市,且這6人中甲、乙兩人不去巴黎游覽,則不同的選擇方案共有()
A.300種B.240種C.144種D.96種
解析:本題在解答時只須考慮巴黎這個特殊位置的要求有4種方法,其他3個城市的排法看作標有這3個城市的3個簽在5個位置(5個人)中的排列有種,故方法總數為種.故選(B).
上述問題歸結為能排不能排排列問題,從特殊元素和特殊位置入手解決,抓住了問題的本質,使問題清晰明了,解決起來順暢自然.
二.相鄰不相鄰排列問題(即某兩或某些元素不能相鄰的排列問題)
相鄰排列問題一般采用大元素法,即將相鄰的元素捆綁作為一個元素,再與其他元素進行排列,解答時注意釋放大元素,也叫捆綁法.不相鄰排列問題(即某兩或某些元素不能相鄰的排列問題)一般采用插空法.
例3.7位同學站成一排,
(1)甲、乙和丙三同學必須相鄰的排法共有多少種?
(2)甲、乙和丙三名同學都不能相鄰的排法共有多少種?
(3)甲、乙兩同學間恰好間隔2人的排法共有多少種?
解析:(1)第一步、將甲、乙和丙三人捆綁成一個大元素與另外4人的排列為種,
第二步、釋放大元素,即甲、乙和丙在捆綁成的大元素內的排法有種,所以共種;
(2)第一步、先排除甲、乙和丙之外4人共種方法,第二步、甲、乙和丙三人排在4人排好后產生的5個空擋中的任何3個都符合要求,排法有種,所以共有種;(3)先排甲、乙,有種排法,甲、乙兩人中間插入的2人是從其余5人中選,有種排法,將已經排好的4人當作一個大元素作為新人參加下一輪4人組的排列,有種排法,所以總的排法共有種.
附:1、(20__遼寧卷)用1、2、3、4、5、6、7、8組成沒有重復數字的八位數,要求1和2相鄰,3與4相鄰,5與6相鄰,而7與8不相鄰,這樣的八位數共有個.(用數字作答)
解析:第一步、將1和2捆綁成一個大元素,3和4捆綁成一個大元素,5和6捆綁成一個大元素,第二步、排列這三個大元素,第三步、在這三個大元素排好后產生的4個空擋中的任何2個排列7和8,第四步、釋放每個大元素(即大元素內的每個小元素在捆綁成的大元素內部排列),所以共有個數.
2、(20__.重慶理)某校高三年級舉行一次演講賽共有10位同學參賽,其中一班有3位,
二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學恰
好被排在一起(指演講序號相連),而二班的2位同學沒有被排在一起的概率為()
A.B.C.D.
解析:符合要求的基本事件(排法)共有:第一步、將一班的3位同學捆綁成一個大元素,第二步、這個大元素與其它班的5位同學共6個元素的全排列,第三步、在這個大元素與其它班的5位同學共6個元素的全排列排好后產生的7個空擋中排列二班的2位同學,第四步、釋放一班的3位同學捆綁成的大元素,所以共有個;而基本事件總數為個,所以符合條件的概率為.故選(B).
3、(20__京春理)某班新年聯歡會原定的5個節目已排成節目單,開演前又增加了兩個新節目.如果將這兩個節目插入原節目單中,那么不同插法的種數為()
A.42B.30C.20D.12
解析:分兩類:增加的兩個新節目不相鄰和相鄰,兩個新節目不相鄰采用插空法,在5個節目產生的6個空擋排列共有種,將兩個新節目捆綁作為一個元素叉入5個節目產生的6個空擋中的一個位置,再釋放兩個新節目捆綁成的大元素,共有種,再將兩類方法數相加得42種方法.故選(A).
三.機會均等排列問題(即某兩或某些元素按特定的方式或順序排列的排列問題)
解決機會均等排列問題通常是先對所有元素進行全排列,再借助等可能轉化,即乘以符合要求的某兩(或某些)元素按特定的方式或順序排列的排法占它們(某兩(或某些)元素)全排列的比例,稱為等機率法或將特定順序的排列問題理解為組合問題加以解決.
例4、7位同學站成一排.
(1)甲必須站在乙的左邊?
(2)甲、乙和丙三個同學由左到右排列?
解析:(1)7位同學站成一排總的排法共種,包括甲、乙在內的7位同學排隊只有甲站在乙的左邊和甲站在乙的右邊兩類,它們的機會是均等的,故滿足要求的排法為,本題也可將特定順序的排列問題理解為組合問題加以解決,即先在7個位置中選出2個位置安排甲、乙,由于甲在乙的左邊共有種,再將其余5人在余下的5個位置排列有種,得排法數為種;
(2)參見(1)的分析得(或).
高中數學教案通用模板范文篇7
教學目標
(1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題.
(2)理解曲線的方程、方程的曲線的概念,能根據曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念.
(3)通過曲線方程概念的教學,培養學生數與形相互聯系、對立統一的辯證唯物主義觀點.
(4)通過求曲線方程的教學,培養學生的轉化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法.
(5)進一步理解數形結合的思想方法.
教學建議
教材分析
(1)知識結構
曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質.曲線方程的概念和求曲線方程的問題又有內在的邏輯順序.前者回答什么是曲線方程,后者解決如何求出曲線方程.至于用曲線方程研究曲線性質則更在其后,本節不予研究.因此,本節涉及曲線方程概念和求曲線方程兩大基本問題.
(2)重點、難點分析
①本節內容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領悟坐標法和解析幾何的思想.
②本節的難點是曲線方程的概念和求曲線方程的方法.
教法建議
(1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關系,說明曲線與方程的對應關系.曲線與方程對應關系的基礎是點與坐標的對應關系.注意強調曲線方程的完備性和純粹性.
(2)可以結合已經學過的直線方程的知識幫助學生領會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備.
(3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則.
(4)從集合與對應的觀點可以看得更清楚:
設 表示曲線 上適合某種條件的點 的集合;
表示二元方程的解對應的點的坐標的集合.
可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即
(5)在學習求曲線方程的方法時,應從具體實例出發,引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數方程(曲線的方程),這個過渡是一個從幾何向代數不斷轉化的過程,在這個過程中提醒學生注意轉化是否為等價的,這將決定第五步如何做.同時教師不要生硬地給出或總結出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得.教學中對課本例2的解法分析很重要.
這五個步驟的實質是將產生曲線的幾何條件逐步轉化為代數方程,即
文字語言中的幾何條件 數學符號語言中的等式 數學符號語言中含動點坐標 , 的代數方程 簡化了的 , 的代數方程
由此可見,曲線方程就是產生曲線的幾何條件的一種表現形式,這個形式的特點是“含動點坐標的代數方程.”
(6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”.
高中數學教案通用模板范文篇8
一、 知識梳理
1.三種抽樣方法的聯系與區別:
類別 共同點 不同點 相互聯系 適用范圍
簡單隨機抽樣 都是等概率抽樣 從總體中逐個抽取 總體中個體比較少
系統抽樣 將總體均勻分成若干部分;按事先確定的規則在各部分抽取 在起始部分采用簡單隨機抽樣 總體中個體比較多
分層抽樣 將總體分成若干層,按個體個數的比例抽取 在各層抽樣時采用簡單隨機抽樣或系統抽樣 總體中個體有明顯差異
(1)從含有N個個體的總體中抽取n個個體的樣本,每個個體被抽到的概率為
(2)系統抽樣的步驟: ①將總體中的個體隨機編號;②將編號分段;③在第1段中用簡單隨機抽樣確定起始的個體編號;④按照事先研究的規則抽取樣本.
(3)分層抽樣的步驟:①分層;②按比例確定每層抽取個體的個數;③各層抽樣;④匯合成樣本.
(4) 要懂得從圖表中提取有用信息
如:在頻率分布直方圖中①小矩形的面積=組距 =頻率②眾數是矩形的中點的橫坐標③中位數的左邊與右邊的直方圖的面積相等,可以由此估計中位數的值
2.方差和標準差都是刻畫數據波動大小的數字特征,一般地,設一組樣本數據 , ,…, ,其平均數為 則方差 ,標準差
3.古典概型的概率公式:如果一次試驗中可能出現的結果有 個,而且所有結果都是等可能的,如果事件 包含 個結果,那么事件 的概率P=
特別提醒:古典概型的兩個共同特點:
○1 ,即試中有可能出現的基本事件只有有限個,即樣本空間Ω中的元素個數是有限的;
○2 ,即每個基本事件出現的可能性相等。
4. 幾何概型的概率公式: P(A)=
特別提醒:幾何概型的特點:試驗的結果是無限不可數的;○2每個結果出現的可能性相等。
二、夯實基礎
(1)某單位有職工160名,其中業務人員120名,管理人員16名,后勤人員24名.為了解職工的某種情況,要從中抽取一個容量為20的樣本.若用分層抽樣的方法,抽取的業務人員、管理人員、后勤人員的人數應分別為____________.
(2)某賽季,甲、乙兩名籃球運動員都參加了
11場比賽,他們所有比賽得分的情況用如圖2所示的莖葉圖表示,
則甲、乙兩名運動員得分的中位數分別為( )
A.19、13 B.13、19 C.20、18 D.18、20
(3)統計某校1000名學生的數學會考成績,
得到樣本頻率分布直方圖如右圖示,規定不低于60分為
及格,不低于80分為優秀,則及格人數是 ;優秀率為 。
(4)在一次歌手大獎賽上,七位評委為歌手打出的分數如下:
9.4 8.4 9.4 9.9 9.6 9.4 9.7
去掉一個分和一個最低分后,所剩數據的平均值和方差分別為( )
A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016
(5)將一顆骰子先后拋擲2次,觀察向上的點數,則以第一次向上點數為橫坐標x,第二次向上的點數為縱坐標y的點(x,y)在圓x2+y2=27的內部的概率________.
(6)在長為12cm的線段AB上任取一點M,并且以線段AM為邊的正方形,則這正方形的面積介于36cm2與81cm2之間的概率為( )
三、高考鏈接
07、某班50名學生在一次百米測試中,成績全部介于13秒與19秒之間,將測試結果按如下方式分成六組:第一組,成績大于等于13秒且小于14秒;第二組,成績大于等于14秒且小于15秒; 第六組,成績大于等于18秒且小于等于19秒.右圖
是按上述分組方法得到的頻率分布直方圖.設成績小于17秒的學生人數占全班總人數的百分比為 ,成績大于等于15秒且小于17秒的學生人數為 ,則從頻率分布直方圖中可分析出 和 分別為( )
08、從某項綜合能力測試中抽取100人的成績,統計如表,則這100人成績的標準差為( )
分數 5 4 3 2 1
人數 20 10 30 30 10
09、在區間 上隨機取一個數x, 的值介于0到 之間的概率為( ).
08、現有8名奧運會志愿者,其中志愿者 通曉日語, 通曉俄語, 通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.
(Ⅰ)求 被選中的概率;(Ⅱ)求 和 不全被選中的概率.
高中數學教案通用模板范文篇9
如何在高二這一關鍵性的一年中與這些同學一齊共同進步縮小差距,我選取了從課堂教學、作業布置、評價方式這三個方面入手,激發學生的學習用心性,盡量向學生帶給從事數學活動的機會,幫忙他們在自主探索和合作交流的過程中真正理解和掌握基礎的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。
第一,用多變的課堂教學,充分調動學生的主動性
我認為數學教學是教師思維與學生思維相互溝通的過程。從信息論的角度看,這種溝通就是指數學信息的理解、加工、傳遞的動態過程,在這個過程中充滿了師生之間的數學交流和信息的轉換,離開了學生的參與,整個過程就難以暢通。北京師范大學曹才翰教授指出“數學學習是再創造再發現的過程,務必要主體的用心參與才能實現這個過程”;從當前全面實施素質教育的要求來看,激發學生用心參與課堂教學,就是為了提高課堂教學效率,培養學生的學習潛力和創造思維潛力,這與以培養創造型人才為目的的素質教育完全一致,因此,在數學課堂教學中提高學生的參與度,不僅僅具有提高數學教學質量的近期作用,而且具有提高學生素質的遠期功效。
若要實現這個目標,在教學引入時我常常以問題作為出發點,選取的素材密切聯系學生的現實生活,運用學生的求知欲,使學生感到數學就在他們身邊,與現實世界聯系緊密,同時問題情景的設置又具有必須的挑戰性,引發了學生的思考。
如人教版初二幾何《三角形》的《關于三角形的一些概念》在引入時我提出了以下幾個問題:你能舉出生活中一些有關三角形的實例嗎?你能一筆畫一個三角形嗎?你能用語言敘述你的畫圖過程嗎?
如人教版初二幾何《三角形》的《三角形全等的判定(一)》在引入時我提出了這樣一個問題:請你任意畫一個三角形,你能否再畫一個與其全等的三角形。畫好后請你剪下來驗證一下。學生的用心性被激發,熱烈的討論,課堂上出現了許多狀況
有的學生用的是先確定一角再確定兩邊的畫法;有的一個學生是利用尺規根據三邊關系畫的(這正是后面所要學的一個三角形全等的判定公理);有的學生是利用了垂直、平行、對頂角來省去作圖中使用量角器的麻煩,學生充分利用已有的數學知識,利用自己對數學圖形的感知,很好的解決了這個問題,透過剪一剪試一試從直觀上驗證了自己的畫法。
如《相似形》的《相似三角形的性質》在引入時我提出了這樣的問題:提到與我國并稱為世界四大禮貌古國的埃及你會想到什么?學生們說到了法老、金字塔、木乃伊等等,說到金字塔你能測量出埃及大金字塔的高度嗎?學生幾乎是異口同聲地告訴我用影長,當時我稱贊他們與我們的幾何學之父古希臘人歐幾里得的測量方法一樣,并講述了歐幾里得的故事,他等到自己在陽光下的影長與他的身高正好相等的時候,測量了金字塔的塔影的長度,這時,他宣布,“這就是大金字塔的高度。”從而激發了學生探索相似三角形的其它性質的興趣。
我在課堂教學的過程中,為了使成績較差同學減少對于數學的恐懼感,課堂上放慢教學速度,變換教學方法,如人教版初二幾何《三角形》的《關于三角形的一些概念》我是這樣處理的:1、請學生講解三角形的有關概念;2、請學生用折紙的方法講解角平分線和中線,折紙的過程中你還發現了什么?3、請學生任意作一個三角形,并做出這個三角形的一條角平分線和一條中線。三個要求層層深入了學生對于基本概念的理解,變教師講為學生講,取得了較好的效果。
我在課堂上放慢教學速度是能夠照顧到大部分學生的,但一小批優等生就會出現沒事做的狀況,這時學習小組就是他們發揮余熱的地方,在具體的教學過程中給學生建立了數學學習小組,讓學生在各自的小組中相互幫忙,讓每一個學生都能從事小組中不同的工作,并最終完成一個共同的目標。透過小組學習,使學生樹立正確的團隊觀,尊重他人、尊重自己,敢于發表自己的觀點,又不固執己見,對同學的見解,既要樂于理解合理成分,又要勇于表達自己不同的看法。在具體實施的過程中,我越發的認識到討論的重要性,我鼓勵學生質疑,質疑教師,質疑教科書,鼓勵學生爭論,有些知識點在學生的爭論中被突破,知識在爭論中被融會貫通,我發現學生之間的語言他們更容易理解,于是我開始嘗試讓學生講課,講過三角形的分類等。又如學習基本作圖時,教科書就如一本說明書,讓學生以學習小組為單位,閱讀、畫圖,互教互學,實際教學時取得了很好的效果。讓各層次的學生都能有所知,有所得。在認知效果和記憶效果方面比教師直接給出要好。
第二,布置多樣的作業,引導學生的用心性
讓學生作業的目的在于鞏固和消化所學的知識,并使知識轉化為技能技巧。正確組織好學生作業,對于培養學生的獨立學習的潛力和習慣,發展學生的智力和創造潛力有著重大好處。因此,教師應重視作業的布置,《數學課程標準》中明確指出:“義務教育階段的數學課程應突出體現基礎性、普及性和發展性,使數學教育面向全體學生,實現人人學有價值的數學,人人都能獲得必需的數學,不同的人在數學上得到不同的發展。”作業布置如何體現這一基本理念,如何調整作業在學生學習活動中的位置,也是提高課堂教學效率的關鍵。
課堂結束新課后,我透過作業的布置滲透數學學習方法如自學,這樣才能真正提高學生數學學習的水平,開始時每一天的第一樣作業是復習,最后一項作業是預習,而且把具體的頁數寫清楚提出具體的預習提綱,加強學生看書的針對性,開始時還帶有必須的強制性如讓家長簽字,從而提高學生閱讀理解的潛力。
對數學的興趣能激發學生的學習動機,富有情境的作業具有必須吸引力,能使學生充分發揮自己的智力水平去完成。趣味性要體現出題型多樣,方式新穎,資料有創造性,如課本習題、自編習題、計算類題目、表述類題目(如單元小結、學習體會、數學故事、小論文等)互相穿插,讓學生感受到作業資料和形式的豐富多采,使之情緒高昂,樂于思考,從而感受作業的樂趣。
根據上課資料所需經常讓學生動手做教具如剪鈍角三角形、銳角三角形、直角三角形,做教具說明三角形具有穩定性而四邊形沒有此特性等,這種做法不但能夠提高學生學習的興趣,而且會有一些意想不到的事情。如:學生做教具說明三角形具有穩定性而四邊形沒有此特性時,有的學生用線繩打結連接四邊,有的學生為了省事用訂書釘訂的,而訂的不同方法得到有的四邊形能動而有的不能,經過學生的討論得出關鍵在于連接處是一個點還是兩個點的問題,學生很受啟發。
高中數學教案通用模板范文篇10
一、什么是教學案例
教學案例是真實而又典型且含有問題的事件。簡單地說,一個教學案例就是一個包含有疑難問題的實際情境的描述,是一個教學實踐過程中的故事,描述的是教學過程中“意料之外,情理之中的事”。
這可以從以下幾個層次來理解:
教學案例是事件:教學案例是對教學過程中的一個實際情境的描述。它講述的是一個故事,敘述的是這個教學故事的產生、發展的歷程,它是對教學現象的動態性的把握。
教學案例是含有問題的事件:事件只是案例的基本素材,并不是所有的教學事件都可以成為案例。能夠成為案例的事件,必須包含有問題或疑難情境在內,并且也可能包含有解決問題的方法在內。正因為這一點,案例才成為一種獨特的研究成果的表現形式。
案例是真實而又典型的事件:案例必須是有典型意義的,它必須能給讀者帶來一定的啟示和體會。案例與故事之間的根本區別是:故事是可以杜撰的,而案例是不能杜撰和抄襲的,它所反映的是真是發生的事件,是教學事件的真實再現。是對“當前”課堂中真實發生的實踐情景的描述。它不能用“搖擺椅子上杜撰的事實來替代”,也不能從抽象的、概括化的理論中演繹的事實來替代。
二、如何進行教學案例研究
教學案例是教師教學行為真實、典型的記錄,也是教師教學理念和教學思想的真實體現。因此它是教育教學研究的寶貴資源,也是教師之間交流的重要媒介。進行教學案例的研究是教師不斷反思、改進自己教學的一種方法,能促使教師更為深刻地認識到自己工作中的重點和難點。這個過程就是教師自我教育和成長的過程。
那么如何進行教學案例研究呢?一般情況下,案例研究的程序基本有以下兩個環節:案例研究的準備及實施、案例研究報告的撰寫與反思。
(一)案例研究的準備與實施
1.研究主題的選擇
案例研究都要有研究的重點和主題,這個主題常與教學改革的核心理念、常見的疑難問題和困惑事件相關,一般來說可以從教學的各個方面確定研究的主題,如從教師教學行為確定主題——教學材料的選擇、教學中的提問、教學媒體的使用、教學評價語言、課堂教學調控行為等;也可以從學生的學習方式確定主題——探究性學習、問題解決學習、合作學習、實踐性活動等。另外從學科特點、教學內容等都可以確定研究的主題。
研究者要了解當前教學的大背景,教改的大方向,要熟悉相關的《課程標準》和有針對性地作一些理論準備。還要通過有關的調查,搜集詳盡的材料(如閱讀教師的教學設計,進行訪談等),同時初步確定案例研究的方向、研究任務,即初步確定案例的內容是關于教學策略、學生行為或是教學技能的研究。
一般來說,案例研究主題的確定往往需要思考下面一些問題:即研究的事件是否對于自我發現更有潛力?選擇的事件對學生是否有較大的情感影響(心靈是否受到震撼)?關鍵事件再現了前人(或自己)過去成功的行為嗎?事件呈現的是一個你不能確定怎樣解決的問題?事件需要你做出困難的選擇嗎?事件使得你必須以一種感覺不熟悉的方式或是仍在思考的方式回答嗎?事件暗示一個與道德或道義上相關的問題嗎?研究的主題如果反映以上的一些內容,那么這樣的案例研究在自我學習、內省和深層次理解方面就可能更加富有成效。
高中數學教學案例研究的主題內容主要集中在三方面:(1)學科特點的體現:如數學思想方法的教學、數學思維品質的培養、本質屬性的抽象、數學結論的推廣等;(2)學生數學學習規律的探究:如數學學習習慣、解決問題的思維方式、獨立思考與合作學習等;(3)教師專業知識的提升:如數學板書與電子屏幕的展示對學生思維的影響、數學語言的訓練對人們思維的影響、數學知識模式化教學的優劣等。
2.案例研究的基本方法
(1)課堂觀察。觀察方法是指研究者按照一定的目的和計劃,在課堂教學活動的自然狀態下,用自己的感官和輔助工具對研究對象進行觀察研究的一種方法。它可以是教師自己對教學對象——學生,在課堂活動中的片斷進行觀察,也可以由其他教師來實施觀察,這兩種觀察的目的都是為了掌握課堂教學中的第一手資料。課堂觀察方法不限于用肉眼觀察、耳聽手記,還可利用各種工具如照相、錄音、攝像等作為輔助觀察的手段,以提高觀察的效果。對觀察的資料,可以逐字逐句整理成課堂教學實錄、教學程序表、提問技巧水平檢核表、提問行為類型頻次表、課堂教學時間分配表等,以便以后繼續分析案例提供翔實的原始材料。
(2)訪談與調查。對一些課堂教學不能觀察到的師生內心活動,如教師教學的目的、教學程序的意圖、教學手段的運用以及教學達標的成效等一些需要進一步了解的問題,可以通過與執教教師的交談以及和學生的座談,以豐富和充實課堂教學觀察的材料;對學生在課堂教學活動中回答問題的心理狀態、解題思路等問題,也可以在課后做一些問卷調查;對學生達標的成度、效度,也可以作一些測試調查。從這些訪談、調查的材料中,再分析課堂教學的現象,不難發現造成各種課堂現象與教師教學行為之間的因果關系,然后再具體尋找在哪個教學環節中出現問題,從中提煉出解決問題的對策。
(3)文獻分析。文獻分析是通過查閱文獻資料,從過去和現在的有關研究成果中受到啟發,從中找到課堂教學現象的理論依據,從而增強案例分析的說服力。當然,對廣大第一線教師而言,這里所運用的文獻分析方法,并不是為了論證新教育理論,也不是去歸納教育的宏觀現象,而是通過有關教育理論文獻的查閱,去進一步解讀課堂教學的活動,挖掘案例中的教育思想。如在數學教學中,我們常常通過學生的動手操作來獲得有關的數學概念、法則與公式,那么,為什么要這樣做呢?就可以帶著問題,查閱、分析有關文獻資料,從學習中提高研究者自身的理論水平。
(二)案例研究報告的撰寫
1.常見的案例報告格式
撰寫教學案例,結構可以靈活多樣,并非要千篇一律、一個模式,而是可以有不同的表現形式,如“案例背景——案例描述——案例分析”、“案例過程——案例反思”、“課例——問題——分析”、“主題與背景——情景描述——問題討論——詮釋與研究”等。當前,國內外課堂教學案例編寫的格式有多種多樣。但不管何種編寫格式,它們都有兩個共同的特點:一是對案例的客觀描述;二是對案例中所述問題、關鍵教學事件等的分析。
下面介紹兩種常用的案例編寫的格式:
(1)“描述+分析”式
此格式的特點是將整個案例分為兩大部分,前半部分主要為描述課堂教學活動的情景,后半部分主要針對情景中的一個問題進行理論分析并獲得結論。案例的描述一般是把課堂教學活動中的.某一片斷像講故事一樣原原本本地、具體生動地描繪出來。描述的形式可以是一串問答式的課堂對話,也可以概括式地敘述,主要是提供一個或一連串課堂教學疑難的問題,并把教育理論、教育思想隱藏在描述之中。案例的分析部分是針對描述的情景發表個人或多人的感受,同時加以理論的分析與說明。分析方法可以是對描述中提出的一個問題,從幾個方面加以分析:也可以是對描述中的幾個問題,集中從一個方面加以分析。分析的目的是要從描述的情景中提煉問題的本質,講述理論的解釋,明確正確的方法,最終獲得對關鍵教學事件的正確把握。
(2)“背景+描述+問題+詮釋”式
此格式是一種要求比較高的編寫格式,而且,它在實際教學中的作用也更大。通常它將整個案例分為四個部分:
A.主題與背景
主題是關鍵教學事件中所反映的案例主要觀點,也是整篇案例的核心思想。背景主要敘述案例發生的地點、時間、人物的一些基本情況。當然,這部分的內容不宜很長,只需提綱挈領敘述清楚即可。
B.情景描述
與“描述+分析”式中的描述相同,主要突出主題所反映的課堂教學活動。
C.問題討論
這是根據主題要求與情景描述,進行的分析、歸納、總結與提煉,包括學科知識的要點、教學法和情景特點以及案例的說明與注意事項。這部分內容主要是為案例教學服務的,目的是提高教師的認識水平與學生主動學習的能力。不同的教學觀念,不同的教學手段,所提出的問題也不同。對案例中所提出的主題以及情景描述中提出的問題闡述自己的見解。
D.詮釋與研究
這部分主要是用教育理論對案例情景作多角度的解讀。它包括對課堂教學行為的技術資料、課堂教學實錄以及教學活動背后的故事等作理論上的分析。例如,在課堂教學中,我們常看到這樣的現象,課堂教學的效果高于預期的目標,反之教師期望的目標學生沒有達到或有所偏離,教學內容呈現的先后與學生理解的程度、教學方法運用與學生內在動機的激發等環節存在著矛盾,這些事件的背后,必然隱含著豐富的教育思想。所以,通過詮釋,挖掘這些事件背后的內在思想,揭示其教育規律就顯得十分的必要。
2.案例報告撰寫的關鍵
(1)掌握四個原則。要寫好教學案例,除了平時多積累素材,學習他人的案例作品以提高寫作技巧外,還應把握以下四點:
A.主題性原則:要有捕捉關鍵教學事件的意識,以此確定案例研究的主題。為此要注意了解新的課程改革的動向、把握適合時代要求的數學教育方式、明確學生數學學習的難點和重點,尋找數學教師專業發展的途徑與規律。報告圍繞主題進行情景描述和獲得解決問題的策略。這種描述不是簡單的教學活動實錄,要反映事件發生的過程,重點描述反映關鍵教學事件的變化和戲劇化的情境,猶如記敘文寫作,突出主題,詳寫重點,雕刻高潮。
案例鮮明的主題通常關系到教學的核心理念、常見問題、處理方法等等,可以說,主題就是案例的靈魂。而主題的最佳表現形式就是文題直接體現主題。因此,設計主題就要有新意、有時代感,通俗地說就是與眾不同,要有獨特見解、獨家發現。來源于實踐的教學案例并非都有同等價值,關鍵要看撰寫者對實踐的發展與理論的升華程度,包括對題目的推敲。如有的教學案例重點描述了有戲劇性的情節,用了“細節決定成敗”的題目,給人耳目一新,一下子揪住了讀者的心。再如,一些有創意的題目《“導之有方”方能“導之有效”》、《跳出數學教數學》、《在數學的疑難處悟成長》、《捕捉資源因勢利導》等等,讓人一看題目就有閱讀的欲望。實踐證明,在寫作案例時,選擇有感悟、有新意的內容,在明確主題,恰當擬題后再動筆,才能寫出高質量的案例。
B.理論性原則:解決問題的策略中應當蘊含一定的教育基本原理和教育思想。實際是將自己對教育理念以及教育基本原理的理解滲透于描述的字里行間,比如學生做了什么,參與程度,投入程度如何,教師如何引導點撥,師生心理、行為變化情況等,無不體現教師的教學思想和教育基本原理。
C.敘事性原則:案例報告的書寫方式是敘事式,它不同于論述式。敘事方式必須以課堂教學生動的事實為主要情節,可以夾敘夾議,也可以選擇情景片段,可以是一節課中的情景,也可以是圍繞一個主題的幾節課的情景片段。
D.學科性原則:數學案例報告一定要體現學科的特征,要有較深刻的理性思考,要反映數學的基本思想與方法,要符合課程標準,滿足教材內容的呈現方法,積極培養良好的思維習慣。就是撰寫者的教育思想和教育理念在教學實踐中具體體現。
(2)用好四種表述。教學案例的表述方法很多,可以歸納為以下四種方法:
A.故事式陳述法:就是教學全程或某一精彩教學片段實錄,包括教師和學生的一言一行。陳述時,根據操作程序作一點“簡評”,最后作“總評”。
B.以案說理:對教學過程進行陳述時,舍去與文題不相關或不重要的部分,并強化與主題相關的重要情節,尤其是引發高潮的關鍵行為,然后有較長篇幅的理性思考。
C.圖表展示法:用圖表進行統計的形式體現撰寫者的教育思想,給人以一目了然的感覺,幫助讀者迅速了解撰寫者的寫作意圖,是常用的一種案例撰寫方法。比如,描述學生的參與人數,投入程度,解決問題的質量等多個問題,都可以在一張或數張圖表上用百分比或個(次)數進行統計。在每一張圖表后,應有一段“分析”或“結論”,將撰寫者的教學理念進行理性闡述,亦可在圖表展示后,總的提出自己對案例的分析和建議。
D.分析討論法:在撰寫時,應汲取分析討論中最精彩的部分做深入、細致的全面記錄,最后撰寫者還必須對討論情況做一分析,或提出一些值得今后進一步思考的問題。
3.優秀案例的特征
(1)時代性:一個好的案例描述的是現實生活場景——案例的敘述要把事件置于一個時空框架之中,應該以關注今天所面臨的疑難問題為著眼點,至少應該是近年發生的事情,展示的整個事實材料應該與整個時代及教學背景相照應,這樣的案例讀者更愿意接觸。一個好的案例可以使讀者有身臨其境的感覺,并對案例所涉及的人產生移情作用。
(2)真實性:一個好的案例應該包括從案例所反映的對象那里引述的材料——案例寫作必須持一種客觀的態度,因此可引述一些口頭的或書面的、正式的或非正式的材料,如對話、筆記、信函等,以增強案例的真實感和可讀性。重要的事實性材料應注明資料來源。
(3)適用性:一個好的案例需要針對面臨的疑難問題提出解決辦法——案例不能只是提出問題,它必須提出解決問題的主要思路、具體措施,并包含著解決問題的詳細過程,這應該是案例寫作的重點。如果一個問題可以提出多種解決辦法的話,那么最為適宜的方案,就應該是與特定的背景材料相關最密切的那一個。如果有包治百病、普遍適用的解決問題的辦法,那么案例這種形式就不必要存在了。
(4)反思性:一個好的案例需要有對已經做出的解決問題的決策的評價——評價是為了給新的決策提供參考點。可在案例的開頭或結尾寫下案例作者對自己解決問題策略的評論,以點明案例的基本論點及其價值。
三、案例研究過程中需注意的問題
1.選材面過窄。從內容上看,多數案例是關于課堂教學甚至局限于一節課的研究,往往不能說明問題,或者在一節課中,也只會從簡單的對話分析問題,做不到全方位、多角度。這說明教師對教學情境的豐富性、復雜性和聯系性認識不夠。
2.缺乏典型性。有的案例對教學實踐沒有挖掘與反思,隨意摘取一些教學片段泛泛而談、人云亦云,沒有實用價值。不能夠通過對某一事件現象的分析、處理、詮釋,達到舉一反三的效果,這樣的案例對他人沒什么借鑒作用。
3.主題不明確。主要體現為:
(1)主題渙散。有的案例象記流水帳,沒有根據需要進行恰當的取舍,看不出作者要反映、探討什么問題,缺乏指導性、創新性和參考性。
(2)定題過于隨意。有的案例直接用案例研究依據的文題為題目,如《“三角函數”教學案例》、《“拋物線”教學案例》等,題目不鮮明、不形象,影響讀者的選讀和案例的傳播。
4.結構不合理。案例作為一種文體,有它自己的寫作結構,只有優化案例的結構,才能增強案例的可讀性和指導性。如寫成一般的教學設計,一般包括“備課思路、教學目標、教學重點、教學方法、課前準備、教學內容、教學過程”等內容;寫成教學實錄,把一堂課從頭到尾詳盡地記錄下來,再寫上作者的看法;重記錄輕分析,過程描述多,評析少等等。沒有創新,平淡無趣,看不出案例研究和反映的問題。
5.描述與分析脫節。有的案例描述與分析矛盾,讓人不知所云;有時反映的是一種觀點,分析闡明的是另一種觀點,雖然不矛盾,但聯系不緊密;有的分析中熱衷于抄錄教育理論的一些條條,脫離案例描述的事件而空談理論,顯得空泛無物。
高中數學教案通用模板范文篇11
●知識梳理
函數的綜合應用主要體現在以下幾方面:
1.函數內容本身的相互綜合,如函數概念、性質、圖象等方面知識的綜合.
2.函數與其他數學知識點的綜合,如方程、不等式、數列、解析幾何等方面的內容與函數的綜合.這是高考主要考查的內容.
3.函數與實際應用問題的綜合.
●點擊雙基
1.已知函數f(x)=lg(2x-b)(b為常數),若x[1,+)時,f(x)0恒成立,則
A.b1B.b1C.b1D.b=1
解析:當x[1,+)時,f(x)0,從而2x-b1,即b2x-1.而x[1,+)時,2x-1單調增加,
b2-1=1.
答案:A
2.若f(x)是R上的減函數,且f(x)的圖象經過點A(0,3)和B(3,-1),則不等式f(x+1)-12的解集是___________________.
解析:由f(x+1)-12得-2
又f(x)是R上的減函數,且f(x)的圖象過點A(0,3),B(3,-1),
f(3)
答案:(-1,2)
●典例剖析
【例1】取第一象限內的點P1(x1,y1),P2(x2,y2),使1,x1,x2,2依次成等差數列,1,y1,y2,2依次成等比數列,則點P1、P2與射線l:y=x(x0)的關系為
A.點P1、P2都在l的上方B.點P1、P2都在l上
C.點P1在l的下方,P2在l的上方D.點P1、P2都在l的下方
剖析:x1=+1=,x2=1+=,y1=1=,y2=,∵y1
P1、P2都在l的下方.
答案:D
【例2】已知f(x)是R上的偶函數,且f(2)=0,g(x)是R上的奇函數,且對于xR,都有g(x)=f(x-1),求f(20__)的值.
解:由g(x)=f(x-1),xR,得f(x)=g(x+1).又f(-x)=f(x),g(-x)=-g(x),
故有f(x)=f(-x)=g(-x+1)=-g(x-1)=-f(x-2)=-f(2-x)=-g(3-x)=
g(x-3)=f(x-4),也即f(x+4)=f(x),xR.
f(x)為周期函數,其周期T=4.
f(20__)=f(4500+2)=f(2)=0.
評述:應靈活掌握和運用函數的奇偶性、周期性等性質.
【例3】函數f(x)=(m0),x1、x2R,當x1+x2=1時,f(x1)+f(x2)=.
(1)求m的值;
(2)數列{an},已知an=f(0)+f()+f()++f()+f(1),求an.
解:(1)由f(x1)+f(x2)=,得+=,
4+4+2m=[4+m(4+4)+m2].
∵x1+x2=1,(2-m)(4+4)=(m-2)2.
4+4=2-m或2-m=0.
∵4+42=2=4,
而m0時2-m2,4+42-m.
m=2.
(2)∵an=f(0)+f()+f()++f()+f(1),an=f(1)+f()+f()++f()+f(0).
2an=[f(0)+f(1)]+[f()+f()]++[f(1)+f(0)]=+++=.
an=.
深化拓展
用函數的思想處理方程、不等式、數列等問題是一重要的思想方法.
【例4】函數f(x)的定義域為R,且對任意x、yR,有f(x+y)=f(x)+f(y),且當x0時,f(x)0,f(1)=-2.
(1)證明f(x)是奇函數;
(2)證明f(x)在R上是減函數;
(3)求f(x)在區間[-3,3]上的最大值和最小值.
(1)證明:由f(x+y)=f(x)+f(y),得f[x+(-x)]=f(x)+f(-x),f(x)+f(-x)=f(0).又f(0+0)=f(0)+f(0),f(0)=0.從而有f(x)+f(-x)=0.
f(-x)=-f(x).f(x)是奇函數.
(2)證明:任取x1、x2R,且x10.f(x2-x1)0.
-f(x2-x1)0,即f(x1)f(x2),從而f(x)在R上是減函數.
(3)解:由于f(x)在R上是減函數,故f(x)在[-3,3]上的最大值是f(-3),最小值是f(3).由f(1)=-2,得f(3)=f(1+2)=f(1)+f(2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)=3(-2)=-6,f(-3)=-f(3)=6.從而最大值是6,最小值是-6.
深化拓展
對于任意實數x、y,定義運算x__y=ax+by+cxy,其中a、b、c是常數,等式右邊的運算是通常的加法和乘法運算.現已知1__2=3,2__3=4,并且有一個非零實數m,使得對于任意實數x,都有x__m=x,試求m的值.
提示:由1__2=3,2__3=4,得
b=2+2c,a=-1-6c.
又由x__m=ax+bm+cmx=x對于任意實數x恒成立,
b=0=2+2c.
c=-1.(-1-6c)+cm=1.
-1+6-m=1.m=4.
答案:4.
●闖關訓練
夯實基礎
1.已知y=f(x)在定義域[1,3]上為單調減函數,值域為[4,7],若它存在反函數,則反函數在其定義域上
A.單調遞減且最大值為7B.單調遞增且最大值為7
C.單調遞減且最大值為3D.單調遞增且最大值為3
解析:互為反函數的兩個函數在各自定義區間上有相同的增減性,f-1(x)的值域是[1,3].
答案:C
2.關于x的方程x2-4x+3-a=0有三個不相等的實數根,則實數a的值是___________________.
解析:作函數y=x2-4x+3的圖象,如下圖.
由圖象知直線y=1與y=x2-4x+3的圖象有三個交點,即方程x2-4x+3=1也就是方程x2-4x+3-1=0有三個不相等的實數根,因此a=1.
答案:1
3.若存在常數p0,使得函數f(x)滿足f(px)=f(px-)(xR),則f(x)的一個正周期為__________.
解析:由f(px)=f(px-),
令px=u,f(u)=f(u-)=f[(u+)-],T=或的整數倍.
答案:(或的整數倍)
4.已知關于x的方程sin2x-2sinx-a=0有實數解,求a的取值范圍.
解:a=sin2x-2sinx=(sinx-1)2-1.
∵-11,0(sinx-1)24.
a的范圍是[-1,3].
5.記函數f(x)=的定義域為A,g(x)=lg[(x-a-1)(2a-x)](a1)的定義域為B.
(1)求A;
(2)若BA,求實數a的取值范圍.
解:(1)由2-0,得0,
x-1或x1,即A=(-,-1)[1,+).
(2)由(x-a-1)(2a-x)0,得(x-a-1)(x-2a)0.
∵a1,a+12a.B=(2a,a+1).
∵BA,2a1或a+1-1,即a或a-2.
而a1,1或a-2.
故當BA時,實數a的取值范圍是(-,-2][,1).
培養能力
6.(理)已知二次函數f(x)=x2+bx+c(b0,cR).
若f(x)的定義域為[-1,0]時,值域也是[-1,0],符合上述條件的函數f(x)是否存在?若存在,求出f(x)的表達式;若不存在,請說明理由.
解:設符合條件的f(x)存在,
∵函數圖象的對稱軸是x=-,
又b0,-0.
①當-0,即01時,
函數x=-有最小值-1,則
或(舍去).
②當-1-,即12時,則
(舍去)或(舍去).
③當--1,即b2時,函數在[-1,0]上單調遞增,則解得
綜上所述,符合條件的函數有兩個,
f(x)=x2-1或f(x)=x2+2x.
(文)已知二次函數f(x)=x2+(b+1)x+c(b0,cR).
若f(x)的定義域為[-1,0]時,值域也是[-1,0],符合上述條件的函數f(x)是否存在?若存在,求出f(x)的表達式;若不存在,請說明理由.
解:∵函數圖象的對稱軸是
x=-,又b0,--.
設符合條件的f(x)存在,
①當--1時,即b1時,函數f(x)在[-1,0]上單調遞增,則
②當-1-,即01時,則
(舍去).
綜上所述,符合條件的函數為f(x)=x2+2x.
7.已知函數f(x)=x+的定義域為(0,+),且f(2)=2+.設點P是函數圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問:PMPN是否為定值?若是,則求出該定值;若不是,請說明理由.
(3)設O為坐標原點,求四邊形OMPN面積的最小值.
解:(1)∵f(2)=2+=2+,a=.
(2)設點P的坐標為(x0,y0),則有y0=x0+,x00,由點到直線的距離公式可知,PM==,PN=x0,有PMPN=1,即PMPN為定值,這個值為1.
(3)由題意可設M(t,t),可知N(0,y0).
∵PM與直線y=x垂直,kPM1=-1,即=-1.解得t=(x0+y0).
又y0=x0+,t=x0+.
S△OPM=+,S△OPN=x02+.
S四邊形OMPN=S△OPM+S△OPN=(x02+)+1+.
當且僅當x0=1時,等號成立.
此時四邊形OMPN的面積有最小值1+.
探究創新
8.有一塊邊長為4的正方形鋼板,現對其進行切割、焊接成一個長方體形無蓋容器(切、焊損耗忽略不計).有人應用數學知識作了如下設計:如圖(a),在鋼板的四個角處各切去一個小正方形,剩余部分圍成一個長方體,該長方體的高為小正方形邊長,如圖(b).
(1)請你求出這種切割、焊接而成的長方體的最大容積V1;
(2)由于上述設計存在缺陷(材料有所浪費),請你重新設計切、焊方法,使材料浪費減少,而且所得長方體容器的容積V2V1.
解:(1)設切去正方形邊長為x,則焊接成的長方體的底面邊長為4-2x,高為x,
V1=(4-2x)2x=4(x3-4x2+4x)(0
V1=4(3x2-8x+4).
令V1=0,得x1=,x2=2(舍去).
而V1=12(x-)(x-2),
又當x時,V10;當
當x=時,V1取最大值.
(2)重新設計方案如下:
如圖①,在正方形的兩個角處各切下一個邊長為1的小正方形;如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;如圖③,將圖②焊成長方體容器.
新焊長方體容器底面是一長方形,長為3,寬為2,此長方體容積V2=321=6,顯然V2V1.
故第二種方案符合要求.
●思悟小結
1.函數知識可深可淺,復習時應掌握好分寸,如二次函數問題應高度重視,其他如分類討論、探索性問題屬熱點內容,應適當加強.
2.數形結合思想貫穿于函數研究的各個領域的全部過程中,掌握了這一點,將會體會到函數問題既千姿百態,又有章可循.
●教師下載中心
教學點睛
數形結合和數形轉化是解決本章問題的重要思想方法,應要求學生熟練掌握用函數的圖象及方程的曲線去處理函數、方程、不等式等問題.
拓展題例
【例1】設f(x)是定義在[-1,1]上的奇函數,且對任意a、b[-1,1],當a+b0時,都有0.
(1)若ab,比較f(a)與f(b)的大小;
(2)解不等式f(x-)
(3)記P={xy=f(x-c)},Q={xy=f(x-c2)},且PQ=,求c的取值范圍.
解:設-1x1
0.
∵x1-x20,f(x1)+f(-x2)0.
f(x1)-f(-x2).
又f(x)是奇函數,f(-x2)=-f(x2).
f(x1)
f(x)是增函數.
(1)∵ab,f(a)f(b).
(2)由f(x-)
-.
不等式的解集為{x-}.
(3)由-11,得-1+c1+c,
P={x-1+c1+c}.
由-11,得-1+c21+c2,
Q={x-1+c21+c2}.
∵PQ=,
1+c-1+c2或-1+c1+c2,
解得c2或c-1.
【例2】已知函數f(x)的圖象與函數h(x)=x++2的圖象關于點A(0,1)對稱.
(1)求f(x)的解析式;
(2)(文)若g(x)=f(x)x+ax,且g(x)在區間(0,2]上為減函數,求實數a的取值范圍.
(理)若g(x)=f(x)+,且g(x)在區間(0,2]上為減函數,求實數a的取值范圍.
解:(1)設f(x)圖象上任一點坐標為(x,y),點(x,y)關于點A(0,1)的對稱點(-x,2-y)在h(x)的圖象上.
2-y=-x++2.
y=x+,即f(x)=x+.
(2)(文)g(x)=(x+)x+ax,
即g(x)=x2+ax+1.
g(x)在(0,2]上遞減-2,
a-4.
(理)g(x)=x+.
∵g(x)=1-,g(x)在(0,2]上遞減,
1-0在x(0,2]時恒成立,
即ax2-1在x(0,2]時恒成立.
∵x(0,2]時,(x2-1)max=3,
a3.
【例3】在4月份(共30天),有一新款服裝投放某專賣店銷售,日銷售量(單位:件)f(n)關于時間n(130,nN__)的函數關系如下圖所示,其中函數f(n)圖象中的點位于斜率為5和-3的兩條直線上,兩直線的交點的橫坐標為m,且第m天日銷售量最大.
(1)求f(n)的表達式,及前m天的銷售總數;
(2)按規律,當該專賣店銷售總數超過400件時,社會上流行該服裝,而日銷售量連續下降并低于30件時,該服裝的流行會消失.試問該服裝在社會上流行的天數是否會超過10天?并說明理由.
解:(1)由圖形知,當1m且nN__時,f(n)=5n-3.
由f(m)=57,得m=12.
f(n)=
前12天的銷售總量為
5(1+2+3++12)-312=354件.
(2)第13天的銷售量為f(13)=-313+93=54件,而354+54400,
從第14天開始銷售總量超過400件,即開始流行.
設第n天的日銷售量開始低于30件(1221.
從第22天開始日銷售量低于30件,
即流行時間為14號至21號.
該服裝流行時間不超過10天.
高中數學教案通用模板范文篇12
教學內容
義務教育課程標準實驗教科書(人教版)二年級上冊第八單元第一課時
教學目標:
知識目標:
使學生通過觀察、猜測、實驗等活動,找出簡單事物的排列數和組合數。
能力目標:
培養學生有順序地、全面地思考問題的意識。
情感目標:
使學生感受到數學在現實生活中的應用價值,嘗試用數學的方法來解決實際生活中的問題。
教學重點:
經歷探索簡單事物排列與組合規律的過程。教學難點:初步理解簡單事物排列與組合的不同。教學環節
一、創設情境,導入新課
今天,我們來上一節數學活動課,大家樂意嗎?(板書課題)現在大家來看一下我們的活動目標。(課件出示活動目標)
師:老師給大家帶來了一個新朋友,課件出示圣誕老人畫面,圣誕老人過生日了,想請大家參加他的生日聚會,但是他有要求。通過圣誕老人提出本節課任務。
二、合作學習,構建模型
(一)初步感知。課件出示:
第一關:擺一擺,猜密碼。(用數字卡片
1、2能排成幾個兩位數自己動手擺一擺)讓學生自己動手擺卡片后,指名匯報。
(二)合作探究。課件出示:
第二關:擺一擺,比一比(用數字卡片1、2、3能擺成幾個不同的兩位數)比比看,哪個組找的最多。
小組探討,組長把大家的討論結果記錄在練習本上。(活動開始,教師巡視。)
以組為單位派代表匯報。
師:有的組擺出了4個不同的兩位數,有的組擺出了6個不同的兩位數,你們是怎么擺的?有什么好辦法?
(鼓勵方法的多樣化,對各組的不同方法進行肯定和表揚。)結合發言,引導學生進行評價,選出優勝組。
師生共同歸納:用數字排列組成數,要按照一定的順序確定十位上的數,然后考慮個位上有哪些數可以與其搭配。
(三)握一握。課件出示:小精靈說的話。
恭喜你們成功的度過了前兩關,現在,我們握手祝賀一下。師:每兩人握一次手,三人一共握幾次手?(小組活動,教師巡視)活動后,小組指名匯報。
師:究竟是幾次呢?請大家互相握握看吧!請一個組的同學上臺演示,其他同學一起數數。
(四)課件出示:
師:圣誕老人決定獎勵你們兩件上衣、兩條褲子,那么一共有幾種搭配方法呢?(課件出示圖片。)
學生拿出學具卡片,小組活動解決問題。匯報交流,說說自己為什么這樣設計。
三、分層練習,鞏固新知
(一)付錢問題。
課件出示:99頁做一做2題
小組討論,小組長統計本組學生答題情況,并由小組代表匯報。
(二)拍照站法。
小麗、小芳、小美在風景如畫的郊外游玩,三人想站成一排拍照留念,她們有幾種站法?
小組討論后,由一組學生上臺演示,其他學生數一數。
高中數學教案通用模板范文篇13
【摘要】鑒于大家對數學網十分關注,小編在此為大家整理了此文空間幾何體的三視圖和直觀圖高一數學教案,供大家參考!
本文題目:空間幾何體的三視圖和直觀圖高一數學教案
第一課時 1.2.1中心投影與平行投影1.2.2空間幾何體的三視圖
教學要求:能畫出簡單幾何體的三視圖;能識別三視圖所表示的空間幾何體.
教學重點:畫出三視圖、識別三視圖.
教學難點:識別三視圖所表示的空間幾何體.
教學過程:
一、新課導入:
1.討論:能否熟練畫出上節所學習的幾何體?工程師如何制作工程設計圖紙?
2.引入:從不同角度看廬山,有古詩:橫看成嶺側成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中。對于我們所學幾何體,常用三視圖和直觀圖來畫在紙上.
三視圖:觀察者從不同位置觀察同一個幾何體,畫出的空間幾何體的圖形;
直觀圖:觀察者站在某一點觀察幾何體,畫出的空間幾何體的圖形.
用途:工程建設、機械制造、日常生活.
二、講授新課:
1.教學中心投影與平行投影:
①投影法的提出:物體在光線的照射下,就會在地面或墻壁上產生影子。人們將這種自然現象加以科學的抽象,總結其中的規律,提出了投影的方法。
②中心投影:光由一點向外散射形成的投影。其投影的大小隨物體與投影中心間距離的變化而變化,所以其投影不能反映物體的實形.
③平行投影:在一束平行光線照射下形成的投影.分正投影、斜投影.
討論:點、線、三角形在平行投影后的結果.
2.教學柱、錐、臺、球的三視圖:
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖
討論:三視圖與平面圖形的關系?畫出長方體的三視圖,并討論所反應的長、寬、高
結合球、圓柱、圓錐的模型,從正面(自前而后)、側面(自左而右)、上面(自上而下)三個角度,分別觀察,畫出觀察得出的各種結果.正視圖、側視圖、俯視圖.
③試畫出:棱柱、棱錐、棱臺、圓臺的三視圖.(
④討論:三視圖,分別反應物體的哪些關系(上下、左右、前后)?哪些數量(長、寬、高)
正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;
側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。
⑤討論:根據以上的三視圖,如何逆向得到幾何體的形狀.
(試變化以上的三視圖,說出相應幾何體的擺放)
3.教學簡單組合體的三視圖:
①畫出教材P16圖(2)、(3)、(4)的三視圖.
②從教材P16思考中三視圖,說出幾何體.
4.練習:
①畫出正四棱錐的三視圖.
畫出右圖所示幾何體的三視圖.
③右圖是一個物體的正視圖、左視圖和俯視圖,試描述該物體的形狀.
5.小結:投影法;三視圖;順與逆
三、鞏固練習: 練習:教材P171、2、3、4
第二課時1.2.3空間幾何體的直觀圖
教學要求:掌握斜二測畫法;能用斜二測畫法畫空間幾何體的直觀圖.
教學重點:畫出直觀圖.
高中數學教案通用模板范文篇14
一、教材分析:
集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。
二、目標分析:
教學重點.難點
重點:集合的含義與表示方法.
難點:表示法的恰當選擇.
教學目標
l.知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關系;
(2)知道常用數集及其專用記號;
(3)了解集合中元素的確定性.互異性.無序性;
(4)會用集合語言表示有關數學對象;
2.過程與方法
(1)讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.
(2)讓學生歸納整理本節所學知識.
3.情感.態度與價值觀
使學生感受到學習集合的必要性,增強學習的積極性.
三.教法分析
1.教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節課的教學目標.2.教學手段:在教學中使用投影儀來輔助教學.
四.過程分析
(一)創設情景,揭示課題
1.教師首先提出問題:
(1)介紹自己的家庭、原來就讀的學校、現在的班級。
(2)問題:像“家庭”、“學校”、“班級”等,有什么共同特征?
引導學生互相交流.與此同時,教師對學生的活動給予評價.
2.活動:
(1)列舉生活中的集合的例子;
(2)分析、概括各實例的共同特征
由此引出這節要學的內容。
設計意圖:既激發了學生濃厚的學習興趣,又為新知作好鋪墊
(二)研探新知,建構概念
1.教師利用多媒體設備向學生投影出下面7個實例:
(1)1—20以內的所有質數;
(2)我國古代的.四大發明;
(3)所有的安理會常任理事國;
(4)所有的正方形;
(5)海南省在2004年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
(7)國興中學2004年9月入學的高一學生的全體.
2.教師組織學生分組討論:這7個實例的共同特征是什么?
3.每個小組選出——位同學發表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.
4.教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母a,b,c,d?表示.
設計意圖:通過實例讓學生感受集合的概念,激發學習的興趣,培養學生樂于求索的精神
(三)質疑答辯,發展思維
1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等.
2.教師組織引導學生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數;
(2)我國的小河流.讓學生充分發表自己的建解.
3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.
4.教師提出問題,讓學生思考
b是(1)如果用A表示高—(3)班全體學生組成的集合,用a表示高一(3)班的一位同學,
高一(4)班的一位同學,那么a,b與集合A分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于.
如果a是集合A的元素,就說a屬于集合A,記作a?A.
如果a不是集合A的元素,就說a不屬于集合A,記作a?A.
(2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合A的關系分別是什么?請用數學符號分別表示.
(3)讓學生完成教材第6頁練習第1題.
5.教師引導學生回憶數集擴充過程,然后閱讀教材中的相交內容,寫出常用數集的記號.并讓學生完成習題1.1A組第1題.
6.教師引導學生閱讀教材中的相關內容,并思考.討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
(3)如何根據問題選擇適當的集合表示法?
使學生弄清楚三種表示方式的優缺點和體會它們存在的必要性和適用對象。
設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學習:
(1)用自然語言描述集合{1,3,5,7,9};
(2)用例舉法表示集合A?{x?N1?x?8}
(3)試選擇適當的方法表示下列集合:教材第6頁練習第2題.
設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象
(五)歸納小結,布置作業
小結:在師生互動中,讓學生了解或體會下例問題:
1.本節課我們學習了哪些知識內容?2.你認為學習集合有什么意義?
3.選擇集合的表示法時應注意些什么?
設計意圖:通過回顧,對概念的發生與發展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業:1.課后書面作業:第13頁習題1.1A組第4題.
2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種
呢?如何表示?請同學們通過預習教材.
五.板書分析
略
高中數學教案通用模板范文篇15
各位老師:
大家好!
我叫______,來自____。我說課的題目是《古典概型》,內容選自于高中教材新課程人教A版必修3第三章第二節,課時安排為兩個課時,本節課內容為第一課時。下面我將從教材分析、教學目標分析、教法與學法分析、教學過程分析四大方面來闡述我對這節課的分析和設計:
一、教材分析
1.教材所處的地位和作用
古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。它承接著前面學過的隨機事件的概率及其性質,又是以后學習條件概率的基礎,起到承前啟后的作用。
2.教學的重點和難點
重點:理解古典概型及其概率計算公式。
難點:古典概型的判斷及把一些實際問題轉化成古典概型。
二、教學目標分析
1.知識與技能目標
(1)通過試驗理解基本事件的概念和特點
(2)在數學建模的過程中,抽離出古典概型的兩個基本特征,推導出古典概型下的概率的計算公式。
2、過程與方法:
經歷公式的推導過程,體驗由特殊到一般的數學思想方法。
3、情感態度與價值觀:
(1)用具有現實意義的實例,激發學生的學習興趣,培養學生勇于探索,善于發現的創新思想。
(2)讓學生掌握"理論來源于實踐,并把理論應用于實踐"的辨證思想。
三、教法與學法分析
1、教法分析:根據本節課的特點,采用引導發現和歸納概括相結合的教學方法,通過提出問題、思考問題、解決問題等教學過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發學生的學習興趣,調動學生的主體能動性,讓每一個學生充分地參與到學習活動中來。
2、學法分析:學生在教師創設的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結合,體現了學生的主體地位,培養了學生由具體到抽象,由特殊到一般的數學思維能力,形成了實事求是的科學態度。
㈠創設情景、引入新課
在課前,教師布置任務,以小組為單位,完成下面兩個模擬試驗:
試驗一:拋擲一枚質地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數,要求每個數學小組至少完成20次(最好是整十數),最后由代表匯總;
試驗二:拋擲一枚質地均勻的骰子,分別記錄"1點"、"2點"、"3點"、"4點"、"5點"和"6點"的次數,要求每個數學小組至少完成60次(最好是整十數),最后由代表匯總。
在課上,學生展示模擬試驗的操作方法和試驗結果,并與同學交流活動感受,教師最后匯總方法、結果和感受,并提出兩個問題。
1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?
不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結果是頻率,而不是概率。
2.根據以前的學習,上述兩個模擬試驗的每個結果之間都有什么特點?]
「設計意圖」通過課前的模擬實驗,讓學生感受與他人合作的重要性,培養學生運用數學語言的能力。隨著新問題的提出,激發了學生的求知欲望,通過觀察對比,培養了學生發現問題的能力。
㈡思考交流、形成概念
學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關特點加以說明,加深對新概念的理解。
[基本事件有如下的兩個特點:
(1)任何兩個基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.]
「設計意圖」讓學生從問題的相同點和不同點中找出研究對象的對立統一面,這能培養學生分析問題的能力,同時也教會學生運用對立統一的辯證唯物主義觀點來分析問題的一種方法。教師的注解可以使學生更好的把握問題的關鍵。
例1從字母a、b、c、d中任意取出兩個不同字母的試驗中,有哪些基本事件?
先讓學生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優點。
「設計意圖」將數形結合和分類討論的思想滲透到具體問題中來。由于沒有學習排列組合,因此用列舉法列舉基本事件的個數,不僅能讓學生直觀的感受到對象的總數,而且還能使學生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數這一難點
觀察對比,發現兩個模擬試驗和例1的共同特點:
讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結得到的結論,教師最后補充說明。
[經概括總結后得到:
(1)試驗中所有可能出現的基本事件只有有限個;(有限性)
(2)每個基本事件出現的可能性相等。(等可能性)
我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型。
「設計意圖」培養運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現了數學的化歸思想。啟發誘導的同時,訓練了學生觀察和概括歸納的能力。通過列出相同和不同點,能讓學生很好的理解古典概型。
㈢觀察分析、推導方程
問題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?
教師提出問題,引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結果,發現其中的聯系,最后概括總結得出古典概型計算任何事件的概率計算公式:
「設計意圖」鼓勵學生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學生感受數學化歸思想的優越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點。
提問:
(1)在例1的實驗中,出現字母"d"的概率是多少?
(2)在使用古典概型的概率公式時,應該注意什么?
「設計意圖」教師提問,學生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關鍵。
㈣例題分析、推廣應用
例2單選題是標準化考試中常用的題型,一般是從A,B,c,D四個選項中選擇一個正確答案。如果考生掌握了考差的內容,他可以選擇唯一正確的答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?
學生先思考再回答,教師對學生沒有注意到的關鍵點加以說明。
「設計意圖」讓學生明確決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。鞏固學生對已學知識的掌握。
例3同時擲兩個骰子,計算:
(1)一共有多少種不同的結果?
(2)其中向上的點數之和是5的結果有多少種?
(3)向上的點數之和是5的概率是多少?
先給出問題,再讓學生完成,然后引導學生分析問題,發現解答中存在的問題。引導學生用列表來列舉試驗中的基本事件的總數。
「設計意圖」利用列表數形結合和分類討論,既能形象直觀地列出基本事件的總數,又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養學生運用數形結合的思想,提高發現問題、分析問題、解決問題的能力,增強學生數學思維情趣,形成學習數學知識的積極態度。
㈤探究思想、鞏固深化
問題思考:為什么要把兩個骰子標上記號?如果不標記號會出現什么情況?你能解釋其中的原因嗎?
要求學生觀察對比兩種結果,找出問題產生的原因。
「設計意圖」通過觀察對比,發現兩種結果不同的根本原因是--研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現了學生的主體地位,逐漸養成自主探究能力。
㈥總結概括、加深理解
1.基本事件的特點
2.古典概型的特點
3.古典概型的概率計算公式
學生小結歸納,不足的地方老師補充說明。
「設計意圖」使學生對本節課的知識有一個系統全面的認識,并把學過的相關知識有機地串聯起來,便于記憶和應用,也進一步升華了這節課所要表達的本質思想,讓學生的認知更上一層。
㈦布置作業
課本練習1、2、3
「設計意圖」進一步讓學生掌握古典概型及其概率公式,并能夠學以致用,加深對本節課的理解。