小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 八年級教案 > 數(shù)學教案 >

初二數(shù)學教案優(yōu)秀模板

時間: 奕玲 數(shù)學教案

作為初二數(shù)學老師,大家要以課堂教學改革為重點,深入開展教學研究,不斷加強教研力度。下面是小編給大家?guī)淼某醵?shù)學教案優(yōu)秀模板【七篇】,歡迎大家閱讀轉(zhuǎn)發(fā)!

初二數(shù)學教案優(yōu)秀模板

初二數(shù)學教案優(yōu)秀模板(精選篇1)

一、教學目標

1. 掌握等腰梯形的判定方法.

2. 能夠運用等腰梯形的性質(zhì)和判定進行有關(guān)問題的論證和計算,進一步培養(yǎng)學生的分析能力和計算能力.

3. 通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉(zhuǎn)化的思想

二、教法設(shè)計

小組討論,引導發(fā)現(xiàn)、練習鞏固

三、重點、難點

1.教學重點:等腰梯形判定.

2.教學難點:解決梯形問題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運用輔助線).

四、課時安排

1課時

五、教具學具準備

多媒體,小黑板,常用畫圖工具

六、師生互動活動設(shè)計

教師復習引入,學生閱讀課本;學生在教師引導下探索等腰梯形的判定,歸納小結(jié)梯形轉(zhuǎn)化的常見的輔助線

七、教學步驟

【復習提問】

1.什么樣的四邊形叫梯形,什么樣的梯形是直角梯形、等腰梯形?

2.等腰梯形有哪些性質(zhì)?它的性質(zhì)定理是怎樣證明的?

3.在研究解決梯形問題時的基本思想和方法是什么?常用的輔助線有哪幾種?

我們已經(jīng)掌握了等腰梯形的性質(zhì),那么又如何來判定一個梯形是否是等腰梯形呢?今天我們就共同來研究這個問題.

【引人新課】

等腰梯形判定定理:在同一底上的兩個角相等的梯形是等腰梯形.

前面我們用等腰三角形的定理證明了等腰梯形的性質(zhì)定理,現(xiàn)在我們也可以用等腰三角形的判定定理來證明等腰梯形的判定定理.

例1已知:如圖,在梯形 中, , ,求證: .

分析:我們學過“如果一個三角形中有兩個角相等,那么它們所對的邊相等.”因此,我們只要能將等腰梯形同一底上的兩個角轉(zhuǎn)化為等腰三角形的兩個底角,定理就容易證明了.

(引導學生口述證明方法,然后利用投影儀出示三種證明方法)

(1)如圖,過點 作 、 ,交 于 ,得 ,所以得 .

又由 得 ,因此可得 .

(2)作高 、 ,通過證 推出 .

(3)分別延長 、 交于點 ,則 與 都是等腰三角形,所以可得 .

(證明過程略).

例3 求證:對角線相等的梯形是等腰梯形.

已知:如圖,在梯形 中, , .

求證: .

分析:證明本題的關(guān)鍵是如何利用對角線相等的條件來構(gòu)造等腰三角形.

在 和 中,已有兩邊對應相等,別人要能證 ,就可通過證 得到 .

(引導學生說出證明思路,教師板書證明過程)

證明:過點 作 ,交 延長線于 ,得 ,

∴ .

∵ , ∴

∵ , ∴

又∵ 、 ,∴

∴ .

說明:如果 、 交于點 ,那么由 可得 , ,即等腰梯形對角線相交,可以得到以交點為頂點的兩個等腰三角形,這個結(jié)論雖不能直接引用,但可以為以后解題提供思路.

例4 畫一等腰梯形,使它上、下底長分別5cm,高為4cm,并計算這個等腰梯形的周長和面積.

分析:如圖,先算出 長,可畫等腰三角形 ,然后完成 的畫圖.

畫法:①畫 ,使 .

.

②延長 到 使 .

③分別過 、 作 , , 、 交于點 .

四邊形 就是所求的等腰梯形.

解:梯形 周長 .

答:梯形周長為26cm,面積為 .

【總結(jié)、擴展】

小結(jié):(由學生總結(jié))

(l)等腰梯形的判定方法:①先判定它是梯形②再用“兩腰相等”“或同一底上的兩個角相等”來判定它是等腰梯形.

(2)梯形的畫圖:一般先畫出有關(guān)的三角形,在此基礎(chǔ)上再畫出有關(guān)的平行四邊形,最后得到所求圖形.(三角形奠基法)

八、布置作業(yè)

l.已知:如圖,梯形 中, , 、 分別為 、 中點,且 ,求證:梯形 為等腰梯形.

九、板書設(shè)計

十、隨堂練習

教材P177中l(wèi);P179中B組2

初二數(shù)學教案優(yōu)秀模板(精選篇2)

課型:

復習課

學習目標(學習重點):

1. 針對函數(shù)及其圖象一章,查漏補缺,答疑解惑;

2. 一次函數(shù)應用的復習.

補充例題:

例1.如圖,lA lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關(guān)系

(1)B出發(fā)時與A相距 千米;

(2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是 小時;

(3)B出發(fā)后 小時與A相遇;

(4)求出A行走的路程S與時間t的函數(shù)關(guān)系式;

(5)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進, 小時與A相遇,相遇點離B的出發(fā)點 千米,在圖中表示出這個相遇點C.

例2.在平面直角坐標系中,過一點分別作坐標軸的垂線,若與坐標軸圍成矩形的周長與面積相等,則這個點叫做和諧點.例如,圖中過點P分別作x軸, y的垂線,與坐標軸圍成矩形OAPB的周長與面積相等,則點P是和諧點.

(1)判斷點M(1,2),N(4,4)是否為和諧點,并說明理由;

(2)若和諧點P(a,3)在直線y=-x+b(b為常數(shù))上,求點a, b的值.

例3.在平面直角坐標系中,一動點P(x,y)從M(1,0)出發(fā),沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點組成的正方形邊線(如圖①)按一定方向運動.圖②是P點運動的路程s(個單位)與運動時間 (秒)之間的函數(shù)圖象,圖③是P點的縱坐標y與P點運動的路程s之間的函數(shù)圖象的一部分.

(1)求s與t之間的函數(shù)關(guān)系式.

(2)與圖③相對應的P點的運動路徑是: ;P點出發(fā) 秒首次到達點B;

(3)寫出當38時,y與s之間的函數(shù)關(guān)系式,并在圖③中補全函數(shù)圖象.

課后續(xù)助:

1.某市自來水公司為限制單位用水,每月只給某單位計劃內(nèi)用水3000噸,計劃內(nèi)用水每噸收費0.5元,超計劃部分每噸按0.8元收費.

(1)寫出該單位水費y(元)與每月用水量x(噸)之間的函數(shù)關(guān)系式

①用水量小于等于3000噸 ;②用水量大于3000噸 .

(2)某月該單位用水3200噸,水費是 元;若用水2800噸,水費 元.

(3)若某月該單位繳納水費1540元,則該單位用水多少噸?

2.某通訊公司推出①、②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分鐘)與收費y(元)之間的函數(shù)關(guān)系如圖所示.

(1)有月租費的收費方式是 (填①或②),月租費是 元;

(2)分別求出①、②兩種收費方式中y與自變量x之間的函數(shù)關(guān)系式;

(3)請你根據(jù)用戶通訊時間的多少,給出經(jīng)濟實惠的選擇建議.

3.某氣象研究中心觀測一場沙塵暴從發(fā)生到結(jié)束全過程, 開始時風暴平均每小時增加2千米/時,4小時后,沙塵暴經(jīng)過開闊荒漠地,風速變?yōu)槠骄啃r增加4千米/時,一段時間,風暴保持不變,當沙塵暴遇到綠色植被區(qū)時,其風速平均每小時減小1千米/時,最終停止。 結(jié)合風速與時間的圖像,回答下列問題:

(1)在y軸( )內(nèi)填入相應的數(shù)值;

(2)沙塵暴從發(fā)生到結(jié)束,共經(jīng)過多少小時?

(3)求出當x25時,風速y(千米/時)與時間x(小時)之間的函數(shù)關(guān)系式.

(4)若風速達到或超過20千米/時,稱為強沙塵暴,則強沙塵暴持續(xù)多長時間?

初二數(shù)學教案優(yōu)秀模板(精選篇3)

一、教學目標

1.了解分式、有理式的概念。

2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件。

二、重點、難點

1.重點:理解分式有意義的條件,分式的值為零的條件。

2.難點:能熟練地求出分式有意義的條件,分式的值為零的條件。

3。認知難點與突破方法

難點是能熟練地求出分式有意義的條件,分式的值為零的條件。突破難點的方法是利用分式與分數(shù)有許多類似之處,從分數(shù)入手,研究出分式的有關(guān)概念,同時還要講清分式與分數(shù)的聯(lián)系與區(qū)別。

三、例、習題的意圖分析

本章從實際問題引出分式方程=,給出分式的描述性的定義:像這樣分母中含有字母的式子屬于分式。不要在列方程時耽誤時間,列方程在這節(jié)課里不是重點,也不要求解這個方程。

1.本節(jié)進一步提出P4[思考]讓學生自己依次填出:。為下面的[觀察]提供具體的式子,就以上的式子,有什么共同點?它們與分數(shù)有什么相同點和不同點?

可以發(fā)現(xiàn),這些式子都像分數(shù)一樣都是(即A÷B)的形式。分數(shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母。

P5[歸納]順理成章地給出了分式的定義。分式與分數(shù)有許多類似之處,研究分式往往要類比分數(shù)的有關(guān)概念,所以要引導學生了解分式與分數(shù)的聯(lián)系與區(qū)別。

希望老師注意:分式比分數(shù)更具有一般性,例如分式可以表示為兩個整式相除的商(除式不能為零),其中包括所有的分數(shù)。

2.P5[思考]引發(fā)學生思考分式的分母應滿足什么條件,分式才有意義?由分數(shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零。注意只有滿足了分式的分母不能為零這個條件,分式才有意義。即當B≠0時,分式才有意義。

3.P5例1填空是應用分式有意義的條件—分母不為零,解出字母x的值。還可以利用這道題,不改變分式,只把題目改成“分式無意義”,使學生比較全面地理解分式及有關(guān)的概念,也為今后求函數(shù)的自變量的取值范圍,打下良好的基礎(chǔ)。

4.P12[拓廣探索]中第13題提到了“在什么條件下,分式的值為0?”,下面補充的例2為了學生更全面地體驗分式的值為0時,必須同時滿足兩個條件:1分母不能為零;2分子為零。這兩個條件得到的解集的公共部分才是這一類題目的解。

四、課堂引入

1.讓學生填寫P4[思考],學生自己依次填出:

2.學生看P3的問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?

請同學們跟著教師一起設(shè)未知數(shù),列方程。

設(shè)江水的流速為x千米/時。

初二數(shù)學教案優(yōu)秀模板(精選篇4)

【教學目標】

一、教學知識點

1.命題的組成.

2.命題真假的判斷。

二、能力訓練要求:

1.使學生能夠分清命題的條件和結(jié)論,能判斷命題的真假

2.通過舉例判定一個命題是假命題,使學生學會反面思考問題的方法

三、情感與價值觀要求:

1.通過反例說明假命題,使學生認識到任何事情都是正反兩方面對立統(tǒng)一

2.幫助學生了解數(shù)學發(fā)展史,拓展視野,激發(fā)學習興趣

3.通過對《原本》介紹,使學生感受數(shù)學發(fā)展史和人類文明價值

【教學重點】準確的找出命題的條件和結(jié)論

【教學難點】理解判斷一個真命題需要證明

【教學方法】探討、合作交流

【教具準備】投影片

【教學過程】

一、情景創(chuàng)設(shè)、引入新課

師:如果這個星期不下雨,我們就去郊游,這是命題嗎?分析這句話,這個周日,我們郊游一定能成行嗎?為什么?

新課:

(1)觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同結(jié)構(gòu)特征?與同伴交流。

1.如果兩個三角形的三條邊對應相等,那么這兩個三角形全等。

2.如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形。

3.如果一個三角形是等腰三角形,那么這個三角形的兩個底角相等。

4.如果一個四邊形的對角線相等,那么這個四邊形是矩形。

5.如果一個四邊形的兩條對角線相互垂直,那么這個四邊形是菱形。

師:由此可見,每個命題都是由條件和結(jié)論兩部分組成的,條件是已知的事項,結(jié)論是由已知事項推出的事項。一般地,命題都可以寫成“如果……那么……”的形式,其中“如果”引出部分是條件,“那么”引出部分是結(jié)論。

二、例題講解:

例1:師:下列命題的條件是什么?結(jié)論是什么?

1.如果兩個角相等,那么他們是對頂角;

2.如果a>b,b>c,那么a=c;

3.兩角和其中一角的對邊對應相等的兩個三角形全等;

4.菱形的四條邊都相等;

5.全等三角形的面積相等。

例題教學建議:1:其中(1)、(2)請學生直接回答,(3)、(4)、(5)請學生分成小組交流然后回答。

2:有的命題的描述沒有用“如果……那么……”的形式,在分析時可以擴展成這種形式,以分清條件和結(jié)論。

例2:上述命題哪些是正確的,哪些是不正確的?你是怎么知道它是不正確的?與同伴交流。

師:正確的命題叫真命題,不正確的命題叫假命題。要說明一個命題是假命題,通常可以舉一個例子,使之具備命題的條件,卻不具備命題的結(jié)論,即反例。

教學建議:對于反例的要求可以采取啟發(fā)式層層遞進方式給出,即:說明命題錯誤可以舉例→綜合命題(1)、(2)的兩例,兩例條件具備→例子結(jié)論不吻合→給出如何舉反例要求。

三、思維拓展:

拓展1.師:如何證實一個命題是真命題呢?請同學們分小組交流一下。

教學建議:不急于解決學生怎么證實真命題的問題,可按以下程序設(shè)計教學過程

(1)首先給學生介紹歐幾里得的《原本》

(2)引出概念:公理、定理,證明

(3)啟發(fā)學生,現(xiàn)在如何證實一個命題的正確性

(4)給出本套教材所選用如下6個命題作為公理

(5)等式性質(zhì)、不等式有關(guān)性質(zhì),等量代換也看作定理。

拓展2.師:任何公理、定理是命題嗎?是真命題嗎?為什么?

建議:在學生回答后歸納總結(jié):公理是經(jīng)過長期實踐驗證的,不需要再進行推理論證都承認的真命題。定理是經(jīng)過推理論證的真命題。

練習書p197習題6.31

四、問題式總結(jié)

師:經(jīng)過本節(jié)課我們在一起共同探討交流,你了解了有關(guān)命題的哪些知識?

建議:可對學生進行提示性引導,如:命題的構(gòu)成特點、命題是否都正確、如何判斷一個命題是假命題、如何證實一個命題是真命題。

作業(yè):書p197習題6.32、3

板書設(shè)計:

定義與命題

課時2

條件

1.命題的結(jié)構(gòu)特征

結(jié)論

1.假命題——可以舉反例

2.命題真假的判別

2.真命題——需要證明 學生活動一——

探索命題的結(jié)構(gòu)特征

學生觀察、分組討論,得出結(jié)論:

(1)這五個命題都是用“如果……那么……”形式敘述的

(2)這五個命題都是由已知得到結(jié)論

(3)這五個命題都有條件和結(jié)論

學生活動二——

探索命題的條件和結(jié)論

生:命題1、2如果部分是條件,那么部分是結(jié)論;命題3如果兩個三角形兩角和其中一角對邊對應相等是條件,那么這兩個三角形全等是結(jié)論;命題4如果是菱形是條件,那么四條邊相等是結(jié)論;命題5如果兩三角形全等是條件,那么面積相等是結(jié)論。

學生活動三

探索命題的真假——如何判斷假命題

生:可以舉一個例子,說明命題1是不正確的,如圖:

已知:∠AOB,∠1=∠2,∠1,∠2不是對頂角

生:命題2,若a=10,b=8,c=5,此時a>b,b>c,但a≠c

生:由此說明:命題1、2是不正確的

生:命題3、4、5是正確的

學生活動四

探索命題的真假——如何證實一個命題是真命題

學生交流:

生:用我們以前學過的觀察、實驗、驗證特例等方法

生:這些方法往往并不可靠

生:能夠根據(jù)已知道的真命題證實呢?

生:那已經(jīng)知道的真命題又是如何證實的?

生:那可怎么辦呢?

生:可通過證明的方法

學生分小組討論得出結(jié)論

生:命題的結(jié)構(gòu)特征:條件和結(jié)論

生:命題有真假之分

生:可以通過舉反例的方法判斷假命題

生:可通過證明的方法證實真命題

初二數(shù)學教案優(yōu)秀模板(精選篇5)

創(chuàng)設(shè)情境

1.什么叫平行四邊形?平行四邊形有什么性質(zhì)?

2.將以上的性質(zhì)定理,分別用命題形式敘述出來。

根據(jù)平行四邊形的定義,我們研究了平行四邊形的其它性質(zhì),那么如何來判定一個四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質(zhì)定理的逆命題是否成立?

探究歸納

平行四邊形的判定方法:

證明:兩組對邊分別相等的四邊形是平行四邊形

已知:

求證:

做一做:將四根細木條(其中兩條長相等,另外兩條長也相等)用小釘子釘在一起,做成一個四邊形,使等長的木條成為對邊。它是平行四邊形嗎?

學生交流:把你做的四邊形和其他同學做的進行比較,看看是否都是平行四邊形。

觀察發(fā)現(xiàn):盡管每個人取的邊長不一樣,但只要對邊分別相等,所作的都是平行四邊形

練習:如圖,在ABCD中,E,F(xiàn),G和H分別是各邊中點.求證:四邊形EFGH為平行四邊形

初二數(shù)學教案優(yōu)秀模板(精選篇6)

分式方程

教學目標

1.經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.

2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學生分析問題、解決問題的能力,滲透數(shù)學的轉(zhuǎn)化思想人體,培養(yǎng)學生的應用意識。

3.在活動中培養(yǎng)學生樂于探究、合作學習的習慣,培養(yǎng)學 生努力尋找 解決問題的進取心,體會數(shù)學的應用價值.

教學重點:

將實際問題中的等量 關(guān)系用分式方程表示

教學難點:

找實際問題中的等量關(guān)系

教學過程:

情境導入:

有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)

如果設(shè)第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。

根據(jù)題意,可得方程___________________

二、講授新課

從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。

這 一問題中有哪些等量關(guān)系?

如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。

根據(jù)題意,可得方程_ _____________________。

學生分組探討、交流,列出方程.

三.做一做:

為了幫助遭受自然災害的地區(qū)重建家園,某學校號召同學們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。如果設(shè)第一次捐款人數(shù)為 人,那么 滿足怎樣的方程?

四.議一議:

上面所得到的方程有什么共同特點?

分母中含有未知數(shù)的方程叫做分式方程

分式方程與整式方程有什么區(qū)別?

五、 隨堂練習

(1)據(jù)聯(lián)合國《20__年全球投資 報告》指出,中國20__年吸收外國投資額 達530億美元,比上一年增加了13%。設(shè)20__年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?

(2)輪船在順水中航行20千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度

(3)根據(jù)分式方程 編一道應用題,然后同組交流,看誰編得好

六、學 習小結(jié)

本節(jié)課你學到了哪些知識?有什么感想?

七.作業(yè)布置

初二數(shù)學教案優(yōu)秀模板(精選篇7)

課題:一元二次方程實數(shù)根錯例剖析課

【教學目的】 精選學生在解一元二次方程有關(guān)問題時出現(xiàn)的典型錯例加以剖析,幫助學生找出產(chǎn)生錯誤的原因和糾正錯誤的方法,使學生在解題時少犯錯誤,從而培養(yǎng)學生思維的批判性和深刻性。

【課前練習】

1、關(guān)于x的方程ax2+bx+c=0,當a_____時,方程為一元一次方程;當 a_____時,方程為一元二次方程。

2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當△_______時,方程有兩個相等的實數(shù)根,當△_______時,方程有兩個不相等的實數(shù)根,當△________時,方程沒有實數(shù)根。

【典型例題】

例1 下列方程中兩實數(shù)根之和為2的方程是()

(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

錯答: B

正解: C

錯因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實數(shù)根,故由△可知,方程B無實數(shù)根,方程C合適。

例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個實數(shù)根之和大于-4,則k的取值范圍是( )

(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

錯解 :B

正解:D

錯因剖析:漏掉了方程有實數(shù)根的前提是△≥0

例3(20__廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。

錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

錯因剖析:漏掉了二次項系數(shù)1-2k≠0這個前提。事實上,當1-2k=0即k= 時,原方程變?yōu)橐淮畏匠蹋豢赡苡袃蓚€實根。

正解: -1≤k<2且k≠

例4 (20__山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數(shù)根,當x12+x22=15時,求m的值。

錯解:由根與系數(shù)的關(guān)系得

x1+x2= -(2m+1), x1x2=m2+1,

∵x12+x22=(x1+x2)2-2 x1x2

=[-(2m+1)]2-2(m2+1)

=2 m2+4 m-1

又∵ x12+x22=15

∴ 2 m2+4 m-1=15

∴ m1 = -4 m2 = 2

錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數(shù)根,不符合題意。

正解:m = 2

例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數(shù)根,求m的取值范圍。

錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

∵ △≥0

∴ 16 m+20≥0,

∴ m≥ -5/4

又 ∵ m2-1≠0,

∴ m≠±1

∴ m的取值范圍是m≠±1且m≥ -

錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當m2-1=0時,即m=±1時,方程變?yōu)橐辉淮畏匠蹋杂袑崝?shù)根。

正解:m的取值范圍是m≥-

例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負數(shù),求方程的整數(shù)根。

錯解:∵方程有整數(shù)根,

∴△=9-4a>0,則a<2.25

又∵a是非負數(shù),∴a=1或a=2

令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

∴方程的整數(shù)根是x1= -1, x2= -2

錯因剖析:概念模糊。非負整數(shù)應包括零和正整數(shù)。上面答案僅是一部分,當a=0時,還可以求出方程的另兩個整數(shù)根,x3=0, x4= -3

正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3

【練習】

練習1、(01濟南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數(shù)根x1、x2。

(1)求k的取值范圍;

(2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由。

解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<

∴當k< 時,方程有兩個不相等的實數(shù)根。

(2)存在。

如果方程的兩實數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗k= 是方程- 的解。

∴當k= 時,方程的兩實數(shù)根x1、x2互為相反數(shù)。

讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

解:上面解法錯在如下兩個方面:

(1)漏掉k≠0,正確答案為:當k< 時且k≠0時,方程有兩個不相等的實數(shù)根。

(2)k= 。不滿足△>0,正確答案為:不存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)

練習2(02廣州市)當a取什么值時,關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實數(shù)根 ?

解:(1)當a=0時,方程為4x-1=0,∴x=

(2)當a≠0時,∵△=16+4a≥0 ∴a≥ -4

∴當a≥ -4且a≠0時,方程有實數(shù)根。

又因為方程只有正實數(shù)根,設(shè)為x1,x2,則:

x1+x2=- >0 ;

x1. x2=- >0 解得 :a<0

綜上所述,當a=0、a≥ -4、a<0時,即當-4≤a≤0時,原方程只有正實數(shù)根。

【小結(jié)】

以上數(shù)例,說明我們在求解有關(guān)二次方程的問題時,往往急于尋求結(jié)論而忽視了實數(shù)根的存在與“△”之間的關(guān)系。

1、運用根的判別式時,若二次項系數(shù)為字母,要注意字母不為零的條件。

2、運用根與系數(shù)關(guān)系時,△≥0是前提條件。

3、條件多面時(如例5、例6)考慮要周全。

【布置作業(yè)】

1、當m為何值時,關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數(shù)根。

求證:關(guān)于x的方程

(m-5)x2-2(m+2)x + m=0一定有一個或兩個實數(shù)根。

考題匯編

1、(20__年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。

2、(20__年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0

(1)若方程的一個根為1,求m的值。

(2)m=5時,原方程是否有實數(shù)根,如果有,求出它的實數(shù)根;如果沒有,請說明理由。

3、(20__年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個實數(shù)根,且兩根的平方和比兩根的積大33,求m的值。

4、(20__年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

37219 主站蜘蛛池模板: 机房监控|动环监控|动力环境监控系统方案产品定制厂家 - 迈世OMARA | 清洁设备_洗地机/扫地机厂家_全自动洗地机_橙犀清洁设备官网 | 刚性-柔性防水套管-橡胶伸缩接头-波纹管补偿器-启腾供水材料有限公司 | 2-羟基泽兰内酯-乙酰蒲公英萜醇-甘草查尔酮A-上海纯优生物科技有限公司 | 北京网站建设首页,做网站选【优站网】,专注北京网站建设,北京网站推广,天津网站建设,天津网站推广,小程序,手机APP的开发。 | 永嘉县奥阳陶瓷阀门有限公司| 电伴热系统施工_仪表电伴热保温箱厂家_沃安电伴热管缆工业技术(济南)有限公司 | 十二星座查询(性格特点分析、星座运势解读) - 玄米星座网 | 磁力加热搅拌器-多工位|大功率|数显恒温磁力搅拌器-司乐仪器官网 | 国际船舶网 - 船厂、船舶、造船、船舶设备、航运及海洋工程等相关行业综合信息平台 | 精密线材测试仪-电线电缆检测仪-苏州欣硕电子科技有限公司 | 猪I型/II型胶原-五克隆合剂-细胞冻存培养基-北京博蕾德科技发展有限公司 | 纯化水设备-EDI-制药-实验室-二级反渗透-高纯水|超纯水设备 | 洗砂机械-球磨制砂机-洗沙制砂机械设备_青州冠诚重工机械有限公司 | 仿清水混凝土_清水混凝土装修_施工_修饰_保护剂_修补_清水混凝土修复-德州忠岭建筑装饰工程 | 沉降天平_沉降粒度仪_液体比重仪-上海方瑞仪器有限公司 | 微水泥_硅藻泥_艺术涂料_艺术漆_艺术漆加盟-青岛泥之韵环保壁材 武汉EPS线条_EPS装饰线条_EPS构件_湖北博欧EPS线条厂家 | 冷藏车-东风吸污车-纯电动环卫车-污水净化车-应急特勤保障车-程力专汽厂家-程力专用汽车股份有限公司销售二十一分公司 | 包塑软管|金属软管|包塑金属软管-闵彬管业 | 进口便携式天平,外校_十万分之一分析天平,奥豪斯工业台秤,V2000防水秤-重庆珂偌德科技有限公司(www.crdkj.com) | 高温高压釜(氢化反应釜)百科 | EDLC超级法拉电容器_LIC锂离子超级电容_超级电容模组_软包单体电容电池_轴向薄膜电力电容器_深圳佳名兴电容有限公司_JMX专注中高端品牌电容生产厂家 | 管家婆-管家婆软件-管家婆辉煌-管家婆进销存-管家婆工贸ERP | 无负压供水设备,消防稳压供水设备-淄博创辉供水设备有限公司 | H型钢切割机,相贯线切割机,数控钻床,数控平面钻,钢结构设备,槽钢切割机,角钢切割机,翻转机,拼焊矫一体机 | 信阳网站建设专家-信阳时代网联-【信阳网站建设百度推广优质服务提供商】信阳网站建设|信阳网络公司|信阳网络营销推广 | 河南道路标志牌_交通路标牌_交通标志牌厂家-郑州路畅交通 | 不锈钢轴流风机,不锈钢电机-许昌光维防爆电机有限公司(原许昌光维特种电机技术有限公司) | 济南品牌包装设计公司_济南VI标志设计公司_山东锐尚文化传播 | 台式核磁共振仪,玻璃软化点测定仪,旋转高温粘度计,测温锥和测温块-上海麟文仪器 | 澳门精准正版免费大全,2025新澳门全年免费,新澳天天开奖免费资料大全最新,新澳2025今晚开奖资料,新澳马今天最快最新图库-首页-东莞市傲马网络科技有限公司 | 油罐车_加油机_加油卷盘_加油机卷盘_罐车人孔盖_各类球阀_海底阀等车用配件厂家-湖北华特专用设备有限公司 | 北京网站建设|北京网站开发|北京网站设计|高端做网站公司 | 正压送风机-多叶送风口-板式排烟口-德州志诺通风设备 | 亚洲工业智能制造领域专业门户网站 - 亚洲自动化与机器人网 | 爱科技iMobile-专业的科技资讯信息分享网站| 数码管_LED贴片灯_LED数码管厂家-无锡市冠卓电子科技有限公司 | 南方珠江-南方一线电缆-南方珠江科技电缆-南方珠江科技有限公司 南汇8424西瓜_南汇玉菇甜瓜-南汇水蜜桃价格 | 精密模具制造,注塑加工,吹塑和吹瓶加工,EPS泡沫包装生产 - 济南兴田塑胶有限公司 | 篷房[仓储-婚庆-展览-活动]生产厂家-江苏正德装配式帐篷有限公司 | 云南丰泰挖掘机修理厂-挖掘机维修,翻新,再制造的大型企业-云南丰泰工程机械维修有限公司 |