小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 八年級教案 > 數學教案 >

初中初二數學教案設計

時間: 奕玲 數學教案

作為初二數學教師,要與同事資源共享、彼此支持、共同提高,形成互助團隊,避免孤軍奮戰的局面。下面是小編給大家帶來的初中初二數學教案設計(7篇),歡迎大家閱讀轉發!

初中初二數學教案設計

初中初二數學教案設計(精選篇1)

課題:                  勾股定理的復習

教學目標

1.知識與技能目標:會用勾股定理及直角三角形的判定條件解決實際問題,逐步培養“數形結合”和“轉化”數學能力。

2.過程與方法目標:發展學生的分析問題能力和表達能力。經歷勾股定理的應用過程,熟練掌握其應用方法,明確應用的條件。

3.情感態度與價值觀目標:通過自主學習的發展體驗獲取數學知識的感受;通過有關勾股定理的歷史講解,對學生進行德育教育

教學重點

1、重點:勾股定理及其逆定理的應用

2、難點:勾股定理及其逆定理的應用

一、基礎知識梳理

在本章中,我們探索了直角三角形的三邊關系,并在此基礎上得到了勾股定理,并學習了如何利用拼圖驗證勾股定理,介紹了勾股定理的用途;本章后半部分學習了勾股定理的逆定是以及它的應用.其知識結構如下:

1.勾股定理:

直角三角形兩直角邊的______和等于_______的平方.就是說,對于任意的直角三角形,如果它的兩條直角邊分別為a、b,斜邊為c,那么一定有:————————————.這就是勾股定理.

勾股定理揭示了直角三角形___之間的數量關系,是解決有關線段計算問題的重要依據.

勾股定理的直接作用是知道直角三角形任意兩邊的長度,求第三邊的長.這里一定要注意找準斜邊、直角邊;二要熟悉公式的變形:

,.

2.勾股定理逆定理

“若三角形的兩條邊的平方和等于第三邊的平方,則這個三角形為________.”這一命題是勾股定理的逆定理.它可以幫助我們判斷三角形的形狀.為根據邊的關系解決角的有關問題提供了新的方法.定理的證明采用了構造法.利用已知三角形的邊a,b,c(a2+b2=c2),先構造一個直角邊為a,b的直角三角形,由勾股定理證明第三邊為c,進而通過“SSS”證明兩個三角形全等,證明定理成立.

3.勾股定理的作用:

已知直角三角形的兩邊,求第三邊;

勾股定理的逆定理是用來判定一個三角形是否是直角三角形的,但在判定一個三角形是否是直角三角形時應首先確定該三角形的邊,當其余兩邊的平方和等于邊的平方時,該三角形才是直角三角形.勾股定理的逆定理也可用來證明兩直線是否垂直,這一點同學

勾股定理是直角三角形的性質定理,而勾股定理的逆定理是直角三角形的判定定理,它不僅可以判定三角形是否為直角三角形,還可以判定哪一個角是直角,從而產生了證明兩直線互相垂直的新方法:利用勾股定理的逆定理,通過計算來證明,體現了數形結合的思想.

三角形的三邊分別為a、b、c,其中c為邊,若,則三角形是直角三角形;若,則三角形是銳角三角形;若,則三角形是鈍角三角形.所以使用勾股定理的逆定理時首先要確定三角形的邊.

二、考點剖析

考點一:利用勾股定理求面積

求:(1) 陰影部分是正方形; (2) 陰影部分是長方形; (3) 陰影部分是半圓.

2. 如圖,以Rt△ABC的三邊為直徑分別向外作三個半圓,試探索三個半圓的面積之間的關系.

考點二:在直角三角形中,已知兩邊求第三邊

例(09年山東濱州)如圖2,已知△ABC中,AB=17,AC=10,BC邊上的高,AD=8,則邊BC的長為( )

A.21 B.15 C.6 D.以上答案都不對

【強化訓練】:1.在直角三角形中,若兩直角邊的長分別為5cm,7cm ,則斜邊長為 .

2.(易錯題、注意分類的思想)已知直角三角形的兩邊長為4、5,則另一條邊長的平方是

3、已知直角三角形兩直角邊長分別為5和12, 求斜邊上的高.(結論:直角三角形的兩條直角邊的積等于斜邊與其高的積,ab=ch)

考點三:應用勾股定理在等腰三角形中求底邊上的高

例、(09年湖南長沙)如圖1所示,等腰中,,

是底邊上的高,若,求 ①AD的長;②ΔABC的面積.

考點四:應用勾股定理解決樓梯上鋪地毯問題

例、(09年濱州)某樓梯的側面視圖如圖3所示,其中米,,

,因某種活動要求鋪設紅色地毯,則在AB段樓梯所鋪地毯的長度應為 .

分析:如何利用所學知識,把折線問題轉化成直線問題,是問題解決的關鍵。仔細觀察圖形,不難發現,所有臺階的高度之和恰好是直角三角形ABC的直角邊BC的長度,所有臺階的寬度之和恰好是直角三角形ABC的直角邊AC的長度,只需利用勾股定理,求得這兩條線段的長即可。

考點五、利用列方程求線段的長(方程思想)

1、小強想知道學校旗桿的高,他發現旗桿頂端的繩子垂到地面還多2米,當他把繩子的下端拉開4米后,發現下端剛好接觸地面,你能幫他算出來嗎?

【強化訓練】:折疊矩形ABCD的一邊AD,點D落在BC邊上的點F處,已知AB=4cm,BC=5cm,求CF 和EC。.

考點六:應用勾股定理解決勾股樹問題

例、如右圖所示的圖形中,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中的正方形的邊長為5,則正方形A,B,C,D的面積的和為

分析:勾股樹問題中,處理好兩個方面的問題,

一個是正方形的邊長與面積的關系,另一個是正方形的面積與直角三角形直角邊與斜邊的關系。

考點七:判別一個三角形是否是直角三角形

例1:分別以下列四組數為一個三角形的邊長:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,其中能夠成直角三角形的有

【強化訓練】:已知△ABC中,三條邊長分別為a=n-1, b=2n, c=n+1(n>1).試判斷該三角形是否是直角三角形,若是,請指出哪一條邊所對的角是直角.

考點八:其他圖形與直角三角形

例:如圖是一塊地,已知AD=4m,CD=3m,∠D=90°,AB=13m,BC=12m,求這塊地的面積。

考點九:與展開圖有關的計算

例、如圖,在棱長為1的正方體ABCD—A’B’C’D’的表面上,求從頂點A到頂點C’的最短距離.

【強化訓練】:如圖一個圓柱,底圓周長6cm,高4cm,一只螞蟻沿外壁爬行,要從A點爬到B點,則最少要爬行 cm

四、課時作業優化設計

【駐足“雙基”】

1.設直角三角形的三條邊長為連續自然數,則這個直角三角形的面積是_____.

2.直角三角形的兩直角邊分別為5cm,12cm,其中斜邊上的高為( ).

A.6cm B.8.5cm C.cm D.cm

【提升“學力”】

3.如圖,△ABC的三邊分別為AC=5,BC=12,AB=13,將△ABC沿AD折疊,使AC落在AB上,求DC的長.

4.如圖,一只鴨子要從邊長分別為16m和6m的長方形水池一角M游到水池另一邊中點N,那么這只鴨子游的最短路程應為多少米?

5.一只螞蟻從長、寬都是3,高是8的長方體紙箱的A點沿紙箱爬到B點,那么它所爬行的最短路線的長是

6.如圖:在一個高6米,長10米的樓梯表面鋪地毯,

則該地毯的長度至少是 米。

【聚焦“中考”】

8.(海南省中考題)如圖,鐵路上A、B兩點相距25km,C、D為兩村莊,DA垂直AB于A,CB垂直AB于B,已知AD=15km,BC=10km,現在要在鐵路AB上建一個土特產品收購站E,使得C、D兩村到E站的距離相等,則E站建在距A站多少千米處?

5.一只螞蟻從長、寬都是3,高是8的長方體紙箱的A點沿紙箱爬到B點,那么它所爬行的最短路線的長是

6.如圖:在一個高6米,長10米的樓梯表面鋪地毯,

則該地毯的長度至少是 米。

初中初二數學教案設計(精選篇2)

教學目標 1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.

2.會綜合運用平行四邊形的判定方法和性質來解決問題

教學重點:平行四邊形的判定方法及應用

教學難點:平行四邊形的判定定理與性質定理的靈活應用

小明的父親手中有一些木條,他想通過適當的測量、割剪,釘制一個平行四邊形框架,你能幫他想出一些辦法來嗎?

二.探

閱讀教材P44至P45

利用手中的學具——硬紙板條,通過觀察、測量、猜想、驗證、探索構成平行四邊形的條件,思考并探討:

(1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?

(2)你怎樣驗證你搭建的四邊形一定是平行四邊形?

(3)你能說出你的做法及其道理嗎?

(4)能否將你的探索結論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?

(5)你還能找出其他方法嗎?

從探究中得到:

平行四邊形判定方法1 兩組對邊分別相等的四邊形是平行四邊形。

平行四邊形判定方法2 對角線互相平分的四邊形是平行四邊形。

證一證

平行四邊形判定方法1 兩組對邊分別相等的四邊形是平行四邊形。

證明:(畫出圖形)

平行四邊形判定方法2 一組對邊平行且相等的四邊形是平行四邊形。

證明:(畫出圖形)

三.結

兩組對邊分別相等的四邊形是平行四邊形。

對角線互相平分的四邊形是平行四邊形。

四.用

【例題】

例、已知:如圖所示,在ABCD中,E、F分別為AB、CD的中點,求證四邊形AECF是平行四邊形.

【練習】

1、已知:四邊形ABCD中,AD∥BC,要使四邊形ABCD為平行四邊形,

需要增加條件 .(只需填上一個你認為正確的即可).

2、如圖所示,在ABCD中,E,F分別是對角線BD上的兩點,

且BE=DF,要證明四邊形AECF是平行四邊形,最簡單的方法

是根據 來證明.

作業P46練習1、2題

板書設計

平行四邊形的性質

定理:平行四邊形的性質 例題 練習

教學反思

初中初二數學教案設計(精選篇3)

《梯形》教案

教學目標:

情意目標:培養學生團結協作的精神,體驗探究成功的樂趣。

能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養學生探究問題、自主學習的能力。

認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質。

教學重點、難點

重點:等腰梯形性質的探索;

難點:梯形中輔助線的添加。

教學課件:PowerPoint演示文稿

教學方法:啟發法、

學習方法:討論法、合作法、練習法

教學過程:

(一)導入

1、出示圖片,說出每輛汽車車窗形狀(投影)

2、板書課題:5梯形

3、練習:下列圖形中哪些圖形是梯形?(投影)

4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。

5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)

6、特殊梯形的.分類:(投影)

(二)等腰梯形性質的探究

【探究性質一】

思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

猜想:由此你能得到等腰梯形的內角有什么樣的性質?(學生操作、討論、作答)

如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

等腰梯形性質:等腰梯形的同一條底邊上的兩個內角相等。

【操練】

(1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

(2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)

【探究性質二】

如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)

如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

等腰梯形性質:等腰梯形的兩條對角線相等。

【探究性質三】

問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)

問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)

等腰梯形性質:同以底上的兩個內角相等,對角線相等

(三)質疑反思、小結

讓學生回顧本課教學內容,并提出尚存問題;

學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

初中初二數學教案設計(精選篇4)

《正弦和余弦(二)》

一、素質教育目標

(一)知識教學點

使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系。

(二)能力訓練點

逐步培養學生觀察、比較、分析、綜合、抽象、概括的邏輯思維能力。

(三)德育滲透點

培養學生獨立思考、勇于創新的精神。

二、教學重點、難點

1.重點:使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系并會應用。

2.難點:一個銳角的正弦(余弦)與它的余角的余弦(正弦)之間的關系的應用。

三、教學步驟

(一)明確目標

1.復習提問

(1)什么是∠A的正弦、什么是∠A的余弦,結合圖形請學生回答.因為正弦、余弦的概念是研究本課內容的知識基礎,請中下學生回答,從中可以了解教學班還有多少人不清楚的,可以采取適當的補救措施.

(2)請同學們回憶30°、45°、60°角的正、余弦值(教師板書).

(3)請同學們觀察,從中發現什么特征?學生一定會回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,這三個角的正弦值等于它們余角的余弦值”。

2.導入新課

根據這一特征,學生們可能會猜想“一個銳角的正弦(余弦)值等于它的余角的余弦(正弦)值.”這是否是真命題呢?引出課題。

(二)整體感知

關于銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系,是通過30°、45°、60°角的正弦、余弦值之間的關系引入的,然后加以證明。引入這兩個關系式是為了便于查“正弦和余弦表”,關系式雖然用黑體字并加以文字語言的證明,但不標明是定理,其證明也不要求學生理解,更不應要求學生利用這兩個關系式去推證其他三角恒等式.在本章,這兩個關系式的用處僅僅限于查表和計算,而不是證明。

(三)重點、難點的學習和目標完成過程

1.通過復習特殊角的三角函數值,引導學生觀察,并猜想“任一銳角的正弦(余弦)值等于它的余角的余弦(正弦)值嗎?”提出問題,激發學生的學習熱情,使學生的思維積極活躍。

2.這時少數反應快的學生可能頭腦中已經“畫”出了圖形,并有了思路,但對部分學生來說仍思路凌亂.因此教師應進一步引導:sinA=cos(90°-A),cosA=sin(90°-A)(A是銳角)成立嗎?這時,學生結合正、余弦的概念,完全可以自己解決,教師要給學生足夠的研究解決問題的時間,以培養學生邏輯思維能力及獨立思考、勇于創新的精神。

3.教師板書:

任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。

sinA=cos(90°-A),cosA=sin(90°-A)。

4.在學習了正、余弦概念的基礎上,學生了解以上內容并不困難,但是,由于學生初次接觸三角函數,還不熟練,而定理又涉及余角、余函數,使學生極易混淆.因此,定理的應用對學生來說是難點、在給出定理后,需加以鞏固。

已知∠A和∠B都是銳角,

(1)把cos(90°-A)寫成∠A的正弦。

(2)把sin(90°-A)寫成∠A的余弦。

這一練習只能起到鞏固定理的作用.為了運用定理,教材安排了例3。

學生獨立完成練習2,就說明定理的教學較成功,學生基本會運用。

教材中3的設置,實際上是對前二節課內容的綜合運用,既考察學生正、余弦概念的掌握程度,同時又對本課知識加以鞏固練習,因此例3的安排恰到好處.同時,做例3也為下一節查正余弦表做了準備。

(四)小結與擴展

1.請學生做知識小結,使學生對所學內容進行歸納總結,將所學內容變成自己知識的組成部分。

2.本節課我們由特殊角的正弦(余弦)和它的余角的余弦(正弦)值間關系,以及正弦、余弦的概念得出的結論:任意一個銳角的正弦值等于它的余角的余弦值,任意一個銳角的余弦值等于它的余角的正弦值。

初中初二數學教案設計(精選篇5)

一、業務學習

加強學習,提高思想認識,樹立新的理念.堅持每周的政治學習和業務學習,緊緊圍繞學習新課程,構建新課程,嘗試新教法的目標,不斷更新教學觀念。注重把學習新課程標準與構建新理念有機的結合起來。通過學習新的《課程標準》,認識到新課程改革既是挑戰,又是機遇。將理論聯系到實際教學工作中,解放思想,更新觀念,豐富知識,提高能力,以全新的素質結構接受新一輪課程改革浪潮的“洗禮”。另外,抽時間學習,并作學習筆記,以豐富自己的頭腦,提高業務水平。

二、教學方面

教學工作是學校各項工作的中心,一學期來,在堅持抓好新課程理念學習和應用的同時,我積極探索教育教學規律,充分運用學校現有的教育教學資源,大膽改革課堂教學,加大新型教學方法使用力度,取得了明顯效果,具體表現在:

1、備課深入細致。平時認真研究教材,多方參閱各種資料,力求深入理解教材,準確把握難重點。在制定教學目的時,非常注意學生的實際情況。

2、注重課堂教學效果。針對初一年級學生特點,堅持學生為主體,教師為主導、教學為主線,注重講練結合。在教學中注意抓住重點,突破難點。注意和學生一起探索各種題型,我發現學生都有探求未知的特點,只要勾起他們的求知欲與興趣,學習勁頭就上來了,如每節課后如有時間,我都出幾題有新意,又不難的相關題型,與學生一起研究。

3、要進行一定數量的練習,相當數量的練習是必要的,練習時要有目的,抓基礎與重難點,滲透數學思維,在練習時注重學生數學思維的形成與鍛煉,有了一定的思維能力與打好基礎,可以做到用一把鑰匙開多道門。

4、考前復習中要認真研究與整理出考試要考的知識點,重難點,要重點復習的題目類型,難度,深度。這樣復習時才有的放矢,復習中什么要多抓多練,什么可暫時忽略,這一點很重要,會直接影響復習效果與成績。另外還要抓好后進生工作,后進生會影響全班成績與平均分,所以要花力氣使大部分有希望的后進生跟得上。例如在課堂上,多到他們身邊站一站,多問一句:會不會,懂不懂,課后,對他們的不足及時幫助,使他們感受到老師的關心,從而能夠主動學習。

5、堅持參加校內外教學研討活動,不斷汲取他人的寶貴經驗,提高自己的教學水平。向經驗豐富的教師請教并經常在一起討論教學問題。聽公開課多次,學習他人的先進教學方法。

6、在作業批改上,認真及時,力求做到全批全改,重在訂正,及時了解學生的學習情況,以便在輔導中做到有的放矢。

三、工作中存在的問題

1、教材挖掘不深入。

2、教法不夠靈活,不能總是吸引學生學習,對學生的引導、啟發不足。

3、新課標下新的教學思想學習不深入。對學生的自主學習,合作學習,缺乏理論指導.

4、后進生的輔導不夠,由于對學生的基礎知識掌握情況了解不夠,對學生的學習態度、思維能力不太清楚。上課和復習時該講的都講了,學生掌握的情況怎樣,教師心中也知道,有的學生只是做表面文章,“出工不出力”

5、教學反思不夠。

四、今后努力的方向

1、加強學習,學習新課標下新的教學思想。

2、學習新課標,挖掘教材,進一步把握知識點和考點。

3、多聽課,學習同科目教師先進的教學方法和教學理念。

4、加強轉差培優力度。

5、加強教學反思,加大教學投入。

12.3.1.1等腰三角形(一)

教學目標

1.等腰三角形的概念。2.等腰三角形的性質。3.等腰三角形的概念及性質的應用。

教學重點:1.等腰三角形的概念及性質。2.等腰三角形性質的應用。

教學難點:等腰三角形三線合一的性質的理解及其應用。

教學過程

Ⅰ.提出問題,創設情境

在前面的學習中,我們認識了軸對稱圖形,探究了軸對稱的性質,并且能夠作出一個簡單平面圖形關于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設計一些美麗的圖案.這節課我們就是從軸對稱的角度來認識一些我們熟悉的幾何圖形.來研究:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?

有的三角形是軸對稱圖形,有的三角形不是。

問題:那什么樣的三角形是軸對稱圖形?

滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形。

我們這節課就來認識一種成軸對稱圖形的三角形──等腰三角形。

Ⅱ.導入新課:要求學生通過自己的思考來做一個等腰三角形。

作一條直線L,在L上取點A,在L外取點B,作出點B關于直線L的對稱點C,連結AB、BC、CA,則可得到一個等腰三角形。

等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角。

思考:

1.等腰三角形是軸對稱圖形嗎?請找出它的對稱軸。

2.等腰三角形的兩底角有什么關系?

3.頂角的平分線所在的直線是等腰三角形的對稱軸嗎?

4.底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?

結論:等腰三角形是軸對稱圖形.它的對稱軸是頂角的平分線所在的直線.因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線。

要求學生把自己做的等腰三角形進行折疊,找出它的對稱軸,并看它的兩個底角有什么關系。

沿等腰三角形的頂角的平分線對折,發現它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高。

由此可以得到等腰三角形的性質:

1.等腰三角形的兩個底角相等。(簡寫成“等邊對等角”)

2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合。(通常稱作“三線合一”)

由上面折疊的過程獲得啟發,我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質。同學們現在就動手來寫出這些證明過程。

如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因為

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因為

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA=∠BDC=90°.

[例1]如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,

求:△ABC各角的度數.

分析:根據等邊對等角的性質,我們可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形內角和為180°,就可求出△ABC的三個內角.

把∠A設為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷.

解:因為AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等邊對等角).

設∠A=x,則∠BDC=∠A+∠ABD=2x,

從而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.

[師]下面我們通過練習來鞏固這節課所學的知識.

Ⅲ.隨堂練習:1.課本P51練習1、2、3。2.閱讀課本P49~P51,然后小結。

Ⅳ.課時小結

這節課我們主要探討了等腰三角形的性質,并對性質作了簡單的應用.等腰三角形是軸對稱圖形,它的兩個底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高。

我們通過這節課的學習,首先就是要理解并掌握這些性質,并且能夠靈活應用它們。

Ⅴ.作業:課本P56習題12.3第1、2、3、4題。

板書設計

12.3.1.1等腰三角形

一、設計方案作出一個等腰三角形

二、等腰三角形性質:1.等邊對等角2.三線合一

12.3.1.1等腰三角形(二)

教學目標

1.理解并掌握等腰三角形的判定定理及推論

2.能利用其性質與判定證明線段或角的相等關系.

教學重點:等腰三角形的判定定理及推論的運用

教學難點:正確區分等腰三角形的判定與性質,能夠利用等腰三角形的判定定理證明線段的相等關系.

教學過程:

一、復習等腰三角形的性質

二、新授:

I、提出問題,創設情境

出示投影片.某地質專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點)為B標,然后在這棵樹的正南方(南岸A點抽一小旗作標志)沿南偏東60°方向走一段距離到C處時,測得∠ACB為30°,這時,地質專家測得AC的長度就可知河流寬度.

學生們很想知道,這樣估測河流寬度的根據是什么?帶著這個問題,引導學生學習“等腰三角形的判定”.

II、引入新課

1.由性質定理的題設和結論的變化,引出研究的內容——在△ABC中,苦∠B=∠C,則AB=AC嗎?

作一個兩個角相等的三角形,然后觀察兩等角所對的邊有什么關系?

2.引導學生根據圖形,寫出已知、求證.

3.小結,通過論證,這個命題是真命題,即“等腰三角形的判定定理”。(板書定理名稱).

強調此定理是在一個三角形中把角的相等關系轉化成邊的相等關系的重要依據,類似于性質定理可簡稱“等角對等邊”。

4.引導學生說出引例中地質專家的測量方法的根據。

III、例題與練習

1.如圖2

其中△ABC是等腰三角形的是[]

2.①如圖3,已知△ABC中,AB=AC.∠A=36°,則∠C______(根據什么?).

②如圖4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據什么?).

③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______.

④若已知AD=4cm,則BC______cm.

3.以問題形式引出推論l______.

4.以問題形式引出推論2______.

例:如果三角形一個外角的平分線平行于三角形的一邊,求證這個三角形是等腰三角形.

分析:引導學生根據題意作出圖形,寫出已知、求證,并分析證明.

練習:5.(1)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點F,過F作DE//BC,交AB于點D,交AC于E.問圖中哪些三角形是等腰三角形?

(2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?

練習:P53練習1、2、3。

IV、課堂小結

1.判定一個三角形是等腰三角形有幾種方法?

2.判定一個三角形是等邊三角形有幾種方法?

3.等腰三角形的性質定理與判定定理有何關系?

4.現在證明線段相等問題,一般應從幾方面考慮?

V、布置作業:P56頁習題12.3第5、6題

初中初二數學教案設計(精選篇6)

1、 思考書中第72頁的問題,歸納出變量之間的關系。

2、 完成書上第73頁的思考,體會圖形中體現的變量和變量之間的關系。

3、 歸納出函數的定義,明確函數定義中必須要滿足的條件。

歸納:一般的,在一個變化過程中,如果有______變量x和y,并且對于x的_______,y都有_________與其對應,那么我們就說x是__________,y是x的________。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數值。

補充小結:

(1)函數的定義:

(2)必須是一個變化過程;

(3)兩個變量;其中一個變量每取一個值 ,另一個變量有且有值對它對應。

三、鞏固與拓展:

例1:一輛汽車的油箱中現有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:千米)的增加而減少,平均耗油量為0.1L/千米。

(1)寫出表示y與x的函數關系式.

(2)指出自變量x的取值范圍.

(3) 汽車行駛200千米時,油箱中還有多少汽油?

【當堂檢測知識升華】

1、判斷下列變量之間是不是函數關系:

(1)長方形的寬一定時,其長與面積;

(2)等腰三角形的底邊長與面積;

(3)某人的年齡與身高;

2、寫出下列函數的解析式.

(1)一個長方體盒子高3cm,底面是正方形,這個長方體的體積為y(cm3),底面邊長為x(cm),寫出表示y與x的函數關系的式子.

(2)汽車加油時,加油槍的流量為10L/min.

①如果加油前,油箱里還有5 L油,寫出在加油過程中,油箱中的油量y(L)與加油時間x(min)之間的函數關系;

②如果加油時,油箱是空的,寫出在加油過程中,油箱中的油量y(L)與加油時間x(min) 之間的函數關系.

(3)某種活期儲蓄的月利率為0.16%,存入10000元本金,按國家規定,取款時,應繳納利息部分的20%的利息稅,求這種活期儲蓄扣除利息稅后實得的本息和y(元)與所存月數x之間的關系式.

(4)如圖,每個圖中是由若干個盆花組成的圖案,每條邊(包括兩個頂點)有n盆花,每個圖案的花盆總數是S,求S與n之間的關系式.

【課后作業知識反饋】

1、P74---75頁:1,2題

初中初二數學教案設計(精選篇7)

學習目標

1、通過運算多項式乘法,來推導平方差公式,學生的認識由一般法則到特殊法則的能力。

2、通過親自動手、觀察并發現平方差公式的結構特征,并能從廣義上理解公式中字母的含義。

3、初步學會運用平方差公式進行計算。

學習重難點 重點是平方差公式的推導及應用。

難點是對公式中a,b的廣泛含義的理解及正確運用。

自學過程設計 教學過程設計

看一看

認真閱讀教材,記住以下知識:

文字敘述平方差公式:_________________

用字母表示:________________

做一做:

1、完成下列練習:

①(m+n)(p+q)

②(a+b)(x-y)

③(2x+3y)(a-b)

④(a+2)(a-2)

⑤(3-x)(3+x)

⑥(2m+n)(2m-n)

想一想

你還有哪些地方不是很懂?請寫出來。

_______________________________

_______________________________

________________________________.

1.下列計算對不對?若不對,請在橫線上寫出正確結果.

(1)(x-3)(x+3)=x2-3( ),__________;

(2)(2x-3)(2x+3)=2x2-9( ),_________;

(3)(-x-3)(x-3)=x2-9( ),_________;

(4)(2xy-1)(2xy+1)=2xy2-1( ),________.

2.(1)(3a-4b)( )=9a2-16b2; (2)(4+2x)( )=16-4x2;

(3)(-7-x)( )=49-x2; (4)(-a-3b)(-3b+a)=_________.

3.計算:50×49=_________.

應用探究

1.幾何解釋平方差公式

展示:邊長a的大正方形中有一個邊長為b的小正方形。

(1)請計算圖的陰影部分的面積(讓學生用正方形的面積公式計算)。

(2)小明將陰影部分拼成一個長方形,這個長方形長與寬是多少?你能表示出它的面積嗎?

圖2

2.用平方差公式計算

(1)103×93 (2)59.8×60.2

拓展提高

1.閱讀題:

我們在計算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時,發現直接運算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個算式能用乘法公式計算.解答過程如下:

原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)

=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)

=(24-1)(24+1)(28+1)(216+1)(232+1)

=……=264-1

你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請試試看!

2.仔細觀察,探索規律:

(x-1)(x+1)=x2-1

(x-1)(x2+x+1)=x3-1

(x-1)(x3+x2+x+1)=x4-1

(x-1)(x4+x3+x2+x+1)=x5-1

……

(1)試求25+24+23+22+2+1的值;

(2)寫出22006+22005+22004+…+2+1的個位數.

堂堂清

一、選擇題

1.下列各式中,能用平方差公式計算的是( )

(1)(a-2b)(-a+2b);

(2)(a-2b)(-a-2b);

(3)(a-2b)(a+2b);

(4)(a-2b)(2a+b).

A.(1)(2) B.(2)(3)

C.(3)(4) D.(1)(4)

2.計算(-4x-5y)(5y-4x)的結果是( )

A.16x2-25y2 B.25y2-16x2 C.-16x2-25y2 D.16x2+25y2

3.下列計算錯誤的是( )

A.(6a+1)(6a-1)=36a2-1

B.(-m-n)(m-n)=n2-m2

C.(a3-8)(-a3+8)=a9-64 D.(-a2+1)(-a2-1)=a4-1

4.下列計算正確的是( )

A.(a-b)2=a2-b2

B.(a-b)(b-a)=a2-b2

C.(a+b)(-a-b)=a2-b2 D.(-a-b)(-a+b)=a2-b2

5.下列算式能連續兩次用平方差公式計算的是( )

A.(x-y)(x2+y2)(x-y) B.(x+1)(x2-1)(x+1)

C.(x+y)(x2-y2)(x-y) D.(x+y)(x2+y2)(x-y)

二、計算:

(1)(5ab-3x)(-3x-5ab)

(2)(-y2+x)(x+y2)

教后反思 本節課是運算多項式乘法,來推導平方差公式,使學生的認識由一般法則到特殊法則的能力,并能歸納總結出平方差公式的結構特征,利用平方差公式來進行運算。

37217 主站蜘蛛池模板: 兰州UPS电源,兰州山特UPS-兰州万胜商贸 | IWIS链条代理-ALPS耦合透镜-硅烷预处理剂-上海顶楚电子有限公司 lcd条形屏-液晶长条屏-户外广告屏-条形智能显示屏-深圳市条形智能电子有限公司 | 模具钢_高速钢_不锈钢-万利钢金属材料 | 臻知网大型互动问答社区-你的问题将在这里得到解答!-无锡据风网络科技有限公司 | 【直乐】河北石家庄脊柱侧弯医院_治疗椎间盘突出哪家医院好_骨科脊柱外科专业医院_治疗抽动症/关节病骨伤权威医院|排行-直乐矫形中医医院 | 贴片电容代理-三星电容-村田电容-风华电容-国巨电容-深圳市昂洋科技有限公司 | 首页|光催化反应器_平行反应仪_光化学反应仪-北京普林塞斯科技有限公司 | 蓄电池在线监测系统|SF6在线监控泄露报警系统-武汉中电通电力设备有限公司 | 渣油泵,KCB齿轮泵,不锈钢齿轮泵,重油泵,煤焦油泵,泊头市泰邦泵阀制造有限公司 | 400电话_400电话申请_866元/年_【400电话官方业务办理】-俏号网 3dmax渲染-效果图渲染-影视动画渲染-北京快渲科技有限公司 | LNG鹤管_内浮盘价格,上装鹤管,装车撬厂家-连云港赛威特机械 | 帽子厂家_帽子工厂_帽子定做_义乌帽厂_帽厂_制帽厂_帽子厂_浙江高普制帽厂 | 杭州网络公司_百度SEO优化-外贸网络推广_抖音小程序开发-杭州乐软科技有限公司 | CCC验厂-家用电器|服务器CCC认证咨询-奥测世纪 | 土壤有机碳消解器-石油|表层油类分析采水器-青岛溯源环保设备有限公司 | 南京兰江泵业有限公司-水解酸化池潜水搅拌机-絮凝反应池搅拌机-好氧区潜水推进器 | 液压中心架,数控中心架,自定心中心架-烟台恒阳机电设计有限公司 行星搅拌机,双行星搅拌机,动力混合机,无锡米克斯行星搅拌机生产厂家 | 建筑资质代办-建筑资质转让找上海国信启航 | 油漆辅料厂家_阴阳脚线_艺术漆厂家_内外墙涂料施工_乳胶漆专用防霉腻子粉_轻质粉刷石膏-魔法涂涂 | 中医中药治疗血小板减少-石家庄血液病肿瘤门诊部 | 湖南自考_湖南自学考试网 | 机械立体车库租赁_立体停车设备出租_智能停车场厂家_春华起重 | 除甲醛公司-甲醛检测治理-杭州创绿家环保科技有限公司-室内空气净化十大品牌 | 特材真空腔体_哈氏合金/镍基合金/纯镍腔体-无锡国德机械制造有限公司 | 电动液压篮球架_圆管地埋式篮球架_移动平箱篮球架-强森体育 | 色谱柱-淋洗液罐-巴罗克试剂槽-巴氏吸管-5ml样品瓶-SBS液氮冻存管-上海希言科学仪器有限公司 | 粉丝机械,粉丝烘干机,粉丝生产线-招远市远东粉丝机械有限公司 | 德国GMN轴承,GMN角接触球轴承,GMN单向轴承,GMN油封,GMN非接触式密封 | RFID电子标签厂家-上海尼太普电子有限公司 | 无锡门窗-系统门窗-阳光房-封阳台-断桥铝门窗厂[窗致美] | 手术室净化装修-手术室净化工程公司-华锐手术室净化厂家 | 小型铜米机-干式铜米机-杂线全自动铜米机-河南鑫世昌机械制造有限公司 | 课件导航网_ppt课件_课件模板_课件下载_最新课件资源分享发布平台 | 螺杆式冷水机-低温冷水机厂家-冷冻机-风冷式-水冷式冷水机-上海祝松机械有限公司 | 不锈钢轴流风机,不锈钢电机-许昌光维防爆电机有限公司(原许昌光维特种电机技术有限公司) | 四探针电阻率测试仪-振实密度仪-粉末流动性测定仪-宁波瑞柯微智能 | 青岛成人高考_山东成考报名网 | 球形钽粉_球形钨粉_纳米粉末_难熔金属粉末-广东银纳官网 | 商秀—企业短视频代运营_抖音企业号托管 | MOOG伺服阀维修,ATOS比例流量阀维修,伺服阀维修-上海纽顿液压设备有限公司 | 杭州用友|用友软件|用友财务软件|用友ERP系统--杭州协友软件官网 |