小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 八年級教案 > 數學教案 >

初二數學教案模板大全

時間: 沐欽 數學教案

初二數學教案都有哪些?教學是一種創造性勞動。寫一份優秀教案是設計者教育思想、智慧、動機、經驗、個性和教學藝術性的綜合體現。下面是小編為大家帶來的初二數學教案模板大全七篇,希望大家能夠喜歡!

初二數學教案模板大全

初二數學教案模板大全精選篇1

教學過程

一、復習等腰三角形的判定與性質

二、新授:

1.等邊三角形的性質:三邊相等;三角都是60°;三邊上的中線、高、角平分線相等

2.等邊三角形的判定:

三個角都相等的三角形是等邊三角形;有一個角是60°的等腰三角形是等邊三角形;

在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半

注意:推論1是判定一個三角形為等邊三角形的一個重要方法.推論2說明在等腰三角形中,只要有一個角是600,不論這個角是頂角還是底角,就可以判定這個三角形是等邊三角形。推論3反映的是直角三角形中邊與角之間的關系.

3.由學生解答課本148頁的例子;

4.補充:已知如圖所示,在△ABC中,BD是AC邊上的中線,DB⊥BC于B,

∠ABC=120o,求證:AB=2BC

分析由已知條件可得∠ABD=30o,如能構造有一個銳角是30o的直角三角形,斜邊是AB,30o角所對的邊是與BC相等的線段,問題就得到解決了

初二數學教案模板大全精選篇2

教學目標

1、理解并掌握等腰三角形的判定定理及推論

2、能利用其性質與判定證明線段或角的相等關系.

教學重點:等腰三角形的判定定理及推論的運用

教學難點:正確區分等腰三角形的判定與性質,能夠利用等腰三角形的判定定理證明線段的相等關系.

教學過程:

一、復習等腰三角形的性質

二、新授:

I提出問題,創設情境

出示投影片.某地質專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點)為B標,然后在這棵樹的正南方(南岸A點抽一小旗作標志)沿南偏東60°方向走一段距離到C處時,測得∠ACB為30°,這時,地質專家測得AC的長度就可知河流寬度.

學生們很想知道,這樣估測河流寬度的根據是什么?帶著這個問題,引導學生學習“等腰三角形的判定”.

II引入新課

1.由性質定理的題設和結論的變化,引出研究的內容——在△ABC中,苦∠B=∠C,則AB=AC嗎?

作一個兩個角相等的三角形,然后觀察兩等角所對的邊有什么關系?

2.引導學生根據圖形,寫出已知、求證.

2、小結,通過論證,這個命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).

強調此定理是在一個三角形中把角的相等關系轉化成邊的相等關系的重要依據,類似于性質定理可簡稱“等角對等邊”.

4.引導學生說出引例中地質專家的測量方法的根據.

III例題與練習

1.如圖2

其中△ABC是等腰三角形的是[]

2.①如圖3,已知△ABC中,AB=AC.∠A=36°,則∠C______(根據什么?).

②如圖4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據什么?).

③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______.

④若已知AD=4cm,則BC______cm.

3.以問題形式引出推論l______.

4.以問題形式引出推論2______.

例:如果三角形一個外角的平分線平行于三角形的一邊,求證這個三角形是等腰三角形.

分析:引導學生根據題意作出圖形,寫出已知、求證,并分析證明.

練習:5.(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點F,過F作DE//BC,交AB于點D,交AC于E.問圖中哪些三角形是等腰三角形?

(2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?

練習:P53練習1、2、3。

IV課堂小結

1.判定一個三角形是等腰三角形有幾種方法?

2.判定一個三角形是等邊三角形有幾種方法?

3.等腰三角形的性質定理與判定定理有何關系?

4.現在證明線段相等問題,一般應從幾方面考慮?

V布置作業:P56頁習題12.3第5、6題

初二數學教案模板大全精選篇3

教學目標

1.等腰三角形的概念.2.等腰三角形的性質.3.等腰三角形的概念及性質的應用.

教學重點:1.等腰三角形的概念及性質.2.等腰三角形性質的應用.

教學難點:等腰三角形三線合一的性質的理解及其應用.

教學過程

Ⅰ.提出問題,創設情境

在前面的學習中,我們認識了軸對稱圖形,探究了軸對稱的性質,并且能夠作出一個簡單平面圖形關于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設計一些美麗的圖案.這節課我們就是從軸對稱的角度來認識一些我們熟悉的幾何圖形.來研究:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?

有的三角形是軸對稱圖形,有的三角形不是.

問題:那什么樣的三角形是軸對稱圖形?

滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形.

我們這節課就來認識一種成軸對稱圖形的三角形──等腰三角形.

Ⅱ.導入新課:要求學生通過自己的思考來做一個等腰三角形.

作一條直線L,在L上取點A,在L外取點B,作出點B關于直線L的對稱點C,連結AB、BC、CA,則可得到一個等腰三角形.

等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角.

思考:

1.等腰三角形是軸對稱圖形嗎?請找出它的對稱軸.

2.等腰三角形的兩底角有什么關系?

3.頂角的平分線所在的直線是等腰三角形的對稱軸嗎?

4.底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?

結論:等腰三角形是軸對稱圖形.它的對稱軸是頂角的平分線所在的直線.因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線.

要求學生把自己做的等腰三角形進行折疊,找出它的對稱軸,并看它的兩個底角有什么關系.

沿等腰三角形的頂角的平分線對折,發現它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.

由此可以得到等腰三角形的性質:

1.等腰三角形的兩個底角相等(簡寫成“等邊對等角”).

2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”).

由上面折疊的過程獲得啟發,我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質.同學們現在就動手來寫出這些證明過程).

如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因為

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因為

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA=∠BDC=90°.

[例1]如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,

求:△ABC各角的度數.

分析:根據等邊對等角的性質,我們可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形內角和為180°,就可求出△ABC的三個內角.

把∠A設為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷.

解:因為AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等邊對等角).

設∠A=x,則∠BDC=∠A+∠ABD=2x,

從而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.

[師]下面我們通過練習來鞏固這節課所學的知識.

Ⅲ.隨堂練習:1.課本P51練習1、2、3.2.閱讀課本P

49~P51,然后小結.

Ⅳ.課時小結

這節課我們主要探討了等腰三角形的性質,并對性質作了簡單的應用.等腰三角形是軸對稱圖形,它的兩個底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高.

我們通過這節課的學習,首先就是要理解并掌握這些性質,并且能夠靈活應用它們.

Ⅴ.作業:課本P56習題12.3第1、2、3、4題.

板書設計

12.3.1.1等腰三角形

一、設計方案作出一個等腰三角形

二、等腰三角形性質:1.等邊對等角2.三線合一

初二數學教案模板大全精選篇4

學習目標:

(1)了解運用公式法分解因式的意義;

(2)會用完全平方公式進行因式分解;

(3)清楚優先提取公因式,然后考慮用公式

中考考點:正向、逆向運用公式,特別是配方法是必考點。

預習作業:

1. 完全平方公式字母表示: .

2、形如或的式子稱為

3. 結構特征:項數、次數、系數、符號

填空:

(1)(a+b)(a-b) = ;

(2)(a+b)2= ;

(3)(a–b)2= ;

根據上面式子填空:

(1)a2–b2= ;

(2)a2–2ab+b2= ;

(3)a2+2ab+b2= ;

結 論:形如a2+2ab+b2 與a2–2ab+b2的式子稱為完全平方式.

a2–2ab+b2=(a–b)2 a2+2ab+b2=(a+b)2

完全平方公式特點:首平方,尾平方,積的2倍在中央,符號看前方。

例1: 把下列各式因式分解:

(1)x2–4x+4 (2)9a2+6ab+b2

(3)m2– (4)

例2、將下列各式因式分解:

(1)3ax2+6axy+3ay2 (2)–x2–4y2+4xy

注:優先提取公因式,然后考慮用公式

例3: 分解因式

(1) (2)

(3) (4)

點撥:把 分解因式時:

1、如果常數項q是正數,那么把它分解成兩個同號因數,它們的符號與一次項系數P的符號相同

2、如果常數項q是負數,那么把它分解成兩個異號因數,其中絕對值較大的因數與一次項系數P的符號相同

3、對于分解的兩個因數,還要看它們的和是不是等于一次項的系數P

變式練習:

(1) (2)

(3)

借助畫十字交叉線分解系數,從而幫助我們把二次三項式分解因式的方法,

叫做十字相乘法

口訣:首尾拆,交叉乘,湊中間。

拓展訓練:

若把代數式化為的形式,其中m,k為常數,求m+k的值

已知,求x,y的值

當x為何值時,多項式取得最小值,其最小值為多少?

回顧與思考

學習目標:

(1)提高因式分解的基本運算技能

(2)能熟練進行因式分解方法的綜合運用.

學習準備:

1、把一個多項式化成 的形式,叫做把這個多項式分解因式。

要弄清楚分解因式的概念,應把握如下特點:

(1)結果一定是 的形式;

(2)每個因式都是 ;

(3)各因式一定要分解到 為止。

2、分解因式與 是互逆關系。

3、分解因式常用的方法有:

(1)提公因式法:

(2)應用公式法:①平方差公式: ②完全平方公式:

(3)分組分解法:am+an+bm+bn=

(4)十字相乘法:=

4、分解因式步驟:

(1)首先考慮提取 ,然后再考慮套公式;

(2)對于二次三項式聯想到平方差公式因式分解;

(3)對于二次三項式聯想到完全平方公式,若不行再考慮十字相乘法分解因式;

(4)超過三項的多項式考慮分組分解;

(5)分解完畢不要大意,檢查是否分解徹底。

辨析題:

1、下列哪些式子的變形是因式分解?

(1)x2–4y2=(x+2y)(x–2y)

(3)4m2–6mn+9n2 =2m(2m–3n)+9n2

(4)m2+6mn+9n2=(m+3n)2

2、把下列各式分解因式:

(1)7x2–63 (2)(x+y)2–14(x+y)+49

(3) (4)(a2+4)2–16a2

(5) (6)

(7) (8)

想一想

計算:

1、32004–32003 2、(–2)101+(–2)100

3、已知 ,求的值.

例1: 把下列各式因式分解(分組后能提公因式)

(1)a2-ab+ac-bc (2)2ax-10ay+5by-bx

(3) 3ax +4by+4ay+3bx (4) m2+5n-mn-5m

點撥:1、用分組分解法時,一定要想想分組后能否繼續進行,完成因式分解,

由此合理選擇分組的方法

2、運算律(如加法交換律、分配律)在因式分解中起著重要的作用

初二數學教案模板大全精選篇5

教學目標

1.使學生初步掌握一元一次方程解簡單應用題的方法和步驟;并會列出一元一次方程解簡單的應用題;

2.培養學生觀察能力,提高他們分析問題和解決問題的能力;

3.使學生初步養成正確思考問題的良好習慣.

教學重點和難點

一元一次方程解簡單的應用題的方法和步驟.

課堂教學過程設計

一、從學生原有的認知結構提出問題

在小學算術中,我們學習了用算術方法解決實際問題的有關知識,那么,一個實際問題能否應用一元一次方程來解決呢?若能解決,怎樣解?用一元一次方程解應用題與用算術方法解應用題相比較,它有什么優越性呢?

為了回答上述這幾個問題,我們來看下面這個例題.

例1 某數的3倍減2等于某數與4的和,求某數.

(首先,用算術方法解,由學生回答,教師板書)

解法1:(4+2)÷(3-1)=3.

答:某數為3.

(其次,用代數方法來解,教師引導,學生口述完成)

解法2:設某數為x,則有3x-2=x+4.

解之,得x=3.

答:某數為3.

縱觀例1的這兩種解法,很明顯,算術方法不易思考,而應用設未知數,列出方程并通過解方程求得應用題的解的方法,有一種化難為易之感,這就是我們學習運用一元一次方程解應用題的目的之一.

我們知道方程是一個含有未知數的等式,而等式表示了一個相等關系.因此對于任何一個應用題中提供的條件,應首先從中找出一個相等關系,然后再將這個相等關系表示成方程.

本節課,我們就通過實例來說明怎樣尋找一個相等的關系和把這個相等關系轉化為方程的方法和步驟.

二、師生共同分析、研究一元一次方程解簡單應用題的方法和步驟

例2 某面粉倉庫存放的面粉運出 15%后,還剩余42 500千克,這個倉庫原來有多少面粉?

師生共同分析:

1.本題中給出的已知量和未知量各是什么?

2.已知量與未知量之間存在著怎樣的相等關系?(原來重量-運出重量=剩余重量)

3.若設原來面粉有x千克,則運出面粉可表示為多少千克?利用上述相等關系,如何布列方程?

上述分析過程可列表如下:

解:設原來有x千克面粉,那么運出了15%x千克,由題意,得

x-15%x=42 500,

所以 x=50 000.

答:原來有 50 000千克面粉.

此時,讓學生討論:本題的相等關系除了上述表達形式以外,是否還有其他表達形式?若有,是什么?

(還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)

教師應指出:(1)這兩種相等關系的表達形式與“原來重量-運出重量=剩余重量”,雖形式上不同,但實質是一樣的,可以任意選擇其中的一個相等關系來列方程;

(2)例2的解方程過程較為簡捷,同學應注意模仿.

依據例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據學生總結的情況,教師總結如下:

(1)仔細審題,透徹理解題意.即弄清已知量、未知量及其相互關系,并用字母(如x)表示題中的一個合理未知數;

(2)根據題意找出能夠表示應用題全部含義的一個相等關系.(這是關鍵一步);

(3)根據相等關系,正確列出方程.即所列的方程應滿足兩邊的量要相等;方程兩邊的代數式的單位要相同;題中條件應充分利用,不能漏也不能將一個條件重復利用等;

(4)求出所列方程的解;

(5)檢驗后明確地、完整地寫出答案.這里要求的檢驗應是,檢驗所求出的解既能使方程成立,又能使應用題有意義.

例3 (投影)初一2班第一小組同學去蘋果園參加勞動,休息時工人師傅摘蘋果分給同學,若每人3個還剩余9個;若每人5個還有一個人分4個,試問第一小組有多少學生,共摘了多少個蘋果?

(仿照例2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥.解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現的各種錯誤.并嚴格規范書寫格式)

解:設第一小組有x個學生,依題意,得

3x+9=5x-(5-4),

解這個方程: 2x=10,

所以 x=5.

其蘋果數為 3× 5+9=24.

答:第一小組有5名同學,共摘蘋果24個.

學生板演后,引導學生探討此題是否可有其他解法,并列出方程.

(設第一小組共摘了x個蘋果,則依題意,得 )

三、課堂練習

1.買4本練習本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問練習本每本多少元?

2.我國城鄉居民 1988年末的儲蓄存款達到 3 802億元,比 1978年末的儲蓄存款的 18倍還多4億元.求1978年末的儲蓄存款.

3.某工廠女工人占全廠總人數的 35%,男工比女工多 252人,求全廠總人數.

四、師生共同小結

首先,讓學生回答如下問題:

1.本節課學習了哪些內容?

2.列一元一次方程解應用題的方法和步驟是什么?

3.在運用上述方法和步驟時應注意什么?

依據學生的回答情況,教師總結如下:

(1)代數方法的基本步驟是:全面掌握題意;恰當選擇變數;找出相等關系;布列方程求解;檢驗書寫答案.其中第三步是關鍵;

(2)以上步驟同學應在理解的基礎上記憶.

五、作業

1.買3千克蘋果,付出10元,找回3角4分.問每千克蘋果多少錢?

2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?

3.某廠去年10月份生產電視機2 050臺,這比前年10月產量的 2倍還多 150臺.這家工廠前年10月生產電視機多少臺?

4.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個同樣大小的小箱里,裝滿后還剩余2千克洗衣粉.求每個小箱子里裝有洗衣粉多少千克?

5.把1400獎金分給22名得獎者,一等獎每人200元,二等獎每人50元.求得到一等獎與二等獎的人數.

初二數學教案模板大全精選篇6

一、素質教育目標

(一)知識教學點

1.要求學生學會用移項解方程的方法.

2.使學生掌握移項變號的基本原則.

(二)能力訓練點

由移項變形方法的教學,培養學生由算術解法過渡到代數解法的解方程的基本能力.

(三)德育滲透點

用代數方法解方程中,滲透了數學中的化未知為已知的重要數學思想.

(四)美育滲透點

用移項法解方程明顯比用前面的方法解方程方便,體現了數學的方法美.

二、學法引導

1.教學方法:采用引導發現法發現法則,課堂訓練體現學生的主體地位,引進競爭機制,調動課堂氣氛.

2.學生學法:練習→移項法制→練習

三、重點、難點、疑點及解決辦法

1.重點:移項法則的掌握.

2.難點:移項法解一元一次方程的步驟.

3.疑點:移項變號的掌握.

四、課時安排

3課時

五、教具學具準備

投影儀或電腦、自制膠片、復合膠片.

六、師生互動活動設計

教師出示探索性練習題,學生觀察討論得出移項法則,教師出示鞏固性練習,學生以多種形式完成.

七、教學步驟

(一)創設情境,復習導入

師提出問題:上節課我們研究了方程、方程的解和解方程的有關知識,請同學們首先回顧上節課的有關內容;回答下面問題.

(出示投影1)

利用等式的性質解方程

(1) ;     (2) ;

解:方程的兩邊都加7,   解:方程的兩邊都減去 ,

得  ,      得 ,

即  .       合并同類項得 .

【教法說明】通過上面兩小題,對用等式性質解方程進行鞏固、回憶,為講解新方法奠定基礎.

提出問題:下面我們觀察上面方程的變形過程,從中觀察變化的項的規律是什么?

(二)探索新知,講授新課

投影展示上面變形的過程,用制作復合式運動膠片將上面的變形展示如下,讓學生觀察在變形過程中,變化的項的變化規律,引出新知識.

(出示投影2)

師提出問題:1.上述演示中,兩個題目中的哪些項改變了在原方程中的位置?怎樣變的?

2.改變的項有什么變化?

學生活動:分學習小組討論,各組把討論的結果派代表上報教師,分四組,這樣節省時間.

師總結學生活動的結果:大家討論的結論,有如下共同點:①方程(1)的已知項從左邊移到了方程右邊,方程(2)的 項從右邊移到了左邊;②這些位置變化的項都改變了原來的符號.

【教法說明】在這里的投影變化中,教師要抓住時機,讓學生發現變化的規律,準確掌握這種變化的法則,也是為以后解更復雜方程打下好的基礎.

師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應注意移項要改變符號.

(三)嘗試反饋,鞏固練習

師提出問題:我們可以回過頭來,想一想剛解過的兩個方程哪個變化過程可以叫做移項.

學生活動:要求學生對課前解方程的變形能說出哪一過程是移項.

【教法說明】可由學生對前面兩個解方程問題用移項過程,重新寫一遍,以理解解方程的步驟和格式.

對比練習:(出示投影3)

解方程:(1) ; (2) ;

(3) ; (4) .

學生活動:把學生分四組練習此題,一組、二組同學(1)(2)題用等式性質解,(3)(4)題移項變形解;三、四組同學(1)(2)題用移項變形解,(3)(4)題用等式性質解.

師提出問題:用哪種方法解方程更簡便?解方程的步驟是什么?(答:移項法;移項、合并同類項、檢驗.)

【教法說明】這部分教學旨在于使學生學會用移項這一手段解方程的方法,通過學生動手嘗試,理解解方程的步驟,從而掌握移項這一法則.

鞏固練習:(出示投影4)

通過移項解下列方程,并寫出檢驗.

(1) ;  (2);

(3) ;  (4) .

【教法說明】這組題訓練學生解題過程的嚴密性,故采取學生親自動手做,四個同學板演形式完成.

(四)變式訓練,培養能力

(出示投影5)

口答:

1.下面的移項對不對?如果不對,錯在哪里?應怎樣改正?

(1)從 ,得到 ;

(2)從 ,得到 ;

(3)從 ,得到 ;

2.小明在解方程 時,是這樣寫的解題過程:;

(1)小明這樣寫對不對?為什么?

(2)應該怎樣寫?

【教法說明】通過以上兩題進一步印證移項這種變形的規律,即“移項要變號”.要使學生認清這里的移項是把某項從方程的一邊移到另一邊而不是在同一邊交換位置,弄懂解方程的書寫格式是方程在變形,變形時保持“左右兩邊相等”這一數學模式.

(出示投影6)

用移項解方程:

(1) ;      (2) ;

(3) ; (4) .

【教法說明】這組題增加了難度,即移項變形是左右兩邊都有可移的項,教學時由學生思考后再進行解答書寫,可提醒學生先分組討論,各組由一名同學敘述解題過程,教師歸納出最嚴密最精煉的解題過程,最后全體學生都做這幾個題目.

學生活動:5分鐘競賽:規則是分兩大組,基礎分100分,每組同學全對1人加10分,不全對1人減10分,互相判題,學習委員記分.

(出示投影7)

解下列方程:

(1) ;   (2) ;      (3) ;

(4) ; (5) ; (6) .

【教法說明】這組題用競賽的形式,由學生獨立完成是為了培養學生的解方程的速度和能力,同時激發學生的競爭意識,從而達到調動全體學生參與的目的,而互相評判更增加了課堂上的民主意識.

(五)歸納小結

師:今天我們學習了解方程的變形方法,通過學習我們應該明確兩個方面的問題:①解方程需把方程中的項從一邊移到另一邊,移項要變號這是重點.②檢驗要把所得未知數的值代入原方程.

初二數學教案模板大全精選篇7

教學目標:

知識與技能

1.掌握直角三角形的判別條件,并能進行簡單應用;

2.進一步發展數感,增加對勾股數的直觀體驗,培養從實際問題抽象出數學問題的能力,建立數學模型.

3.會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論.

情感態度與價值觀

敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識.

教學重點

運用身邊熟悉的事物,從多種角度發展數感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論.

教學難點

會辨析哪些問題應用哪個結論.

課前準備

標有單位長度的細繩、三角板、量角器、題篇

教學過程:

復習引入:

請學生復述勾股定理;使用勾股定理的前提條件是什么?

已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎?

創設問題情景:由課前準備好的一組學生以小品的形式演示教材第9頁古埃及造直角的方法.

這樣做得到的是一個直角三角形嗎?

提出課題:能得到直角三角形嗎

講授新課:

⒈如何來判斷?(用直角三角板檢驗)

這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關系?

就是說,如果三角形的三邊為,,,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當滿足較小兩邊的平方和等于較大邊的平方時)

⒉繼續嘗試:下面的三組數分別是一個三角形的三邊長a,b,c:

5,12,13;6,8,10;8,15,17.

(1)這三組數都滿足a2+b2=c2嗎?

(2)分別以每組數為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?

⒊直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.

滿足a2+b2=c2的三個正整數,稱為勾股數.

⒋例1一個零件的形狀如左圖所示,按規定這個零件中∠A和∠DBC都應為直角.工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?

隨堂練習:

⒈下列幾組數能否作為直角三角形的三邊長?說說你的理由.

⑴9,12,15;⑵15,36,39;

⑶12,35,36;⑷12,18,22.

⒉已知?ABC中BC=41,AC=40,AB=9,則此三角形為_______三角形,______是角.

⒊四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積.

⒋習題1.3

課堂小結:

⒈直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.

⒉滿足a2+b2=c2的三個正整數,稱為勾股數.勾股數擴大相同倍數后,仍為勾股數.

33016 主站蜘蛛池模板: 气动调节阀,电动调节阀,自力式压力调节阀,切断阀「厂家」-浙江利沃夫自控阀门 | 磁力去毛刺机_去毛刺磁力抛光机_磁力光饰机_磁力滚抛机_精密金属零件去毛刺机厂家-冠古科技 | 柔性测斜仪_滑动测斜仪-广州杰芯科技有限公司 | 工业风机_环保空调_冷风机_工厂车间厂房通风降温设备旺成服务平台 | 宝鸡市人民医院 | 网优资讯-为循环资源、大宗商品、工业服务提供资讯与行情分析的数据服务平台 | 东莞螺丝|东莞螺丝厂|东莞不锈钢螺丝|东莞组合螺丝|东莞精密螺丝厂家-东莞利浩五金专业紧固件厂家 | 离子色谱自动进样器-青岛艾力析实验科技有限公司 | 桁架机器人_桁架机械手_上下料机械手_数控车床机械手-苏州清智科技装备制造有限公司 | 大功率金属激光焊接机价格_不锈钢汽车配件|光纤自动激光焊接机设备-东莞市正信激光科技有限公司 定制奶茶纸杯_定制豆浆杯_广东纸杯厂_[绿保佳]一家专业生产纸杯碗的厂家 | 膏剂灌装旋盖机-眼药水灌装生产线-西林瓶粉剂分装机-南通博琅机械科技 | 河南凯邦机械制造有限公司| 北京企业宣传片拍摄_公司宣传片制作-广告短视频制作_北京宣传片拍摄公司 | 户外环保不锈钢垃圾桶_标识标牌制作_园林公园椅厂家_花箱定制-北京汇众环艺 | 丹佛斯变频器-丹佛斯压力开关-变送器-广州市风华机电设备有限公司 | 托盘租赁_塑料托盘租赁_托盘出租_栈板出租_青岛托盘租赁-优胜必达 | 冷却塔改造厂家_不锈钢冷却塔_玻璃钢冷却塔改造维修-广东特菱节能空调设备有限公司 | 匀胶机旋涂仪-声扫显微镜-工业水浸超声-安赛斯(北京)科技有限公司 | 有源电力滤波装置-电力有源滤波器-低压穿排电流互感器|安科瑞 | 道达尔润滑油-食品级润滑油-道达尔导热油-合成导热油,深圳道达尔代理商合-深圳浩方正大官网 | 卧涛科技有限公司科技项目申报公司|高新技术企业申报|专利申请 | 山东太阳能路灯厂家-庭院灯生产厂家-济南晟启灯饰有限公司 | 岛津二手液相色谱仪,岛津10A液相,安捷伦二手液相,安捷伦1100液相-杭州森尼欧科学仪器有限公司 | 艺术生文化课培训|艺术生文化课辅导冲刺-济南启迪学校 | 不锈钢复合板|钛复合板|金属复合板|南钢集团安徽金元素复合材料有限公司-官网 | 北京公司注册_代理记账_代办商标注册工商执照-企力宝 | 陶氏道康宁消泡剂_瓦克消泡剂_蓝星_海明斯德谦_广百进口消泡剂 | 薄壁轴承-等截面薄壁轴承生产厂家-洛阳薄壁精密轴承有限公司 | 深圳天际源广告-形象堆头,企业文化墙,喷绘,门头招牌设计制作专家 | 体坛网_体坛+_体坛周报新闻客户端| 周口市风机厂,周鼓风机,河南省周口市风机厂 | 医疗仪器模块 健康一体机 多参数监护仪 智慧医疗仪器方案定制 血氧监护 心电监护 -朗锐慧康 | 酸度计_PH计_特斯拉计-西安云仪 纯水电导率测定仪-万用气体检测仪-低钠测定仪-米沃奇科技(北京)有限公司www.milwaukeeinst.cn | 细砂提取机,隔膜板框泥浆污泥压滤机,螺旋洗砂机设备,轮式洗砂机械,机制砂,圆锥颚式反击式破碎机,振动筛,滚筒筛,喂料机- 上海重睿环保设备有限公司 | 儿童语言障碍训练-武汉优佳加感统文化发展有限公司 | C形臂_动态平板DR_动态平板胃肠机生产厂家制造商-普爱医疗 | 北京四合院出租,北京四合院出售,北京平房买卖 - 顺益兴四合院 | 顺景erp系统_erp软件_erp软件系统_企业erp管理系统-广东顺景软件科技有限公司 | 山东活动策划|济南活动公司|济南公关活动策划-济南锐嘉广告有限公司 | 动库网动库商城-体育用品专卖店:羽毛球,乒乓球拍,网球,户外装备,运动鞋,运动包,运动服饰专卖店-正品运动品网上商城动库商城网 - 动库商城 | 产业规划_产业园区规划-产业投资选址及规划招商托管一体化服务商-中机院产业园区规划网 |