初中八年級數學教案
作為初中八年級數學老師,大家平時也要多聽課,學習和吸取其他優秀教師的教學方法。下面是小編給大家帶來的初中八年級數學教案模板(7篇),歡迎大家閱讀轉發!
初中八年級數學教案(篇1)
教學目標
知識與技能目標
1.經歷平行四邊形判別條件的探索過程,發現平行四邊形的常用判別條件。
2.掌握平行四邊形的判別條件;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形。
3.逐步掌握說理的基本方法。
過程與方法目標
1.在探索平行四邊形的判別條件的過程中,發展學生的合情推理意識,主動探索的習慣。
2.鼓勵學生用多種方法進行說理。
情感與態度目標
1.培養學生探索創新的能力,開拓學生思路,發展學生的思維能力。
2.培養學生合作學習,增強學生的自我評價意識。
教材分析
教材通過創設“釘制平行四邊形框架”這一情境,便于學生發現和探索平行四邊形的常用判別方法。如有條件可要求學生自己準備,由學生自我操作。也可由教師演示。
教學重點:平行四邊形的判別方法。
教學難點:利用平行四邊形的判別方法進行正確的說理。
學情分析
初二學生對平面圖形的認識能力正在形成,抽象思維還不夠,學習幾何知識處于現象描述和說理的過渡時期。因此,對這部分內容的學習,要引導學生學會正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質定理。
教學流程
一、創設情境,引入新課
師:請同學們拿出課前準備的小木條,幫助小明的爸爸釘制平行四邊形的框架。
學生活動:學生按小組進行探索。
初中八年級數學教案(篇2)
新課指南
1.知識與技能:(1)在具體情境中了解代數式及代數式的值的含義;(2)掌握整式、同類項及合并同類項法則和去括號法則;(3)培養學生用字母表示數和探索數學規律的能力.
2.過程與方法:經歷探索規律并用代數式表示規律的過程,學會列簡單的代數式.在具體情境中體會同類項的意義及合并同類項、去括號法則的必要性,總結合并同類項及去括號的法則,并利用它們進行整式的加減運算和解決簡單的實際問題.
3.情感態度與價值觀:通過對整式加減的學習,深入體會代數式在實際生活中的應用,它為后面學習方程(組)、不等式及函數等知識打下良好的基礎,同時,也使我們體會到數學知識的產生來源于實際生產和生活的需求,反之,它又服務于實際生活的方方面面.
4.重點與難點:重點是用含有字母的式子表式規律,理解整式的意義,合并同類項的法則和去括號的法則.難點是探索規律的過程及用代數式表示規律的方法,以及準確識別整式的項、系數等知識.
教材解讀精華要義
數學與生活
如圖15-1所示,用同樣規格的黑、白兩色的正方形瓷磚鋪長方形地面,在第n個圖形中,每一行有塊瓷磚,每一列有塊瓷磚,共有塊瓷磚,其中黑色瓷磚共塊,白色瓷磚共塊.
思考討論由圖15-1可以看到,當n=1時,一橫行有4塊瓷磚,一豎列有3塊瓷磚;當n=2時,一橫行有5塊瓷磚,一豎列有4塊瓷磚;當n=3時,一橫行有6塊瓷磚,一豎列有5塊瓷磚.綜上可以發現:4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一橫行的瓷磚數等于n加上3,一豎列的瓷磚數等于n加上2.所以,在第n個圖形中,每一橫行共有(n+3)塊瓷磚,每一豎列共有(n+2)塊瓷磚,共有(n+3)(n+2)塊瓷磚,其中白色瓷磚共(n+3-2)(n+2-2)=n(n+1)塊,黑色瓷磚共有[(n+3)(n+2)-n(n+1)]塊.這就是用字母來表示數,即代數式,你還能舉出這樣用字母表示數的例子嗎?
知識詳解
知識點1代數式
用基本的運算符號(運算包括加、減、乘、除、乘方與開方)把數和表示數.的字母連接起來的式子叫做代數式.單獨的一個數或一個字母也是代數式.
例如:5,a,(a+b),ab,a2-2ab+b2等等.
知識點2列代數式時應該注意的問題
(1)數與字母、字母與字母相乘時常省略“×”號或用“·”.
如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.
(2)數字通常寫在字母前面.
如:mn×(-5)=-5mn,3×(a+b)=3(a+b).
(3)帶分數與字母相乘時要化成假分數.
如:2×ab=ab,切勿錯誤寫成“2ab”.
(4)除法常寫成分數的形式.
如:S÷x=.
初中八年級數學教案(篇3)
教學目標:
1、知識目標:了解圖案最常見的構圖方式:軸對稱、平移、旋轉……,理解簡單圖案設計的意圖。認識和欣賞平移,旋轉在現實生活中的應用,能夠靈活運用軸對稱、平移、旋轉的組合,設計出簡單的圖案。
2、能力目標:經歷收集、欣賞、分析、操作和設計的過程,培養學生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創新能力。
3、情感體驗點:經歷對典型圖案設計意圖的分析,進一步發展學生的空間觀念,增強審美意識,培養學生積極進取的生活態度。
重點與難點:
重點:靈活運用軸對稱、平移、旋轉……等方法及它們的組合進行的圖案設計。
難點:分析典型圖案的設計意圖。
疑點:在設計的圖案中清晰地表現自己的設計意圖
教具學具準備:
提前一周布置學生以小組為單位,通過各種渠道收集到的圖案、圖標的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。
教學過程設計:
1、情境導入:在優美的音樂中,逐個展示生活中常見的典型圖案,并讓學生試著說一說每種圖案標志的對象。(展示課本圖3—23)
明確在欣賞了圖案后,簡單地復習旋轉的概念,為下面圖案的設計作好理論準備。對教材給出的六個圖案通過觀察、分析進行議論交流,讓學生初步了解圖案的設計中常常運用圖形變換的思想方法,為學生自己設計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉適合角度形成(可以讓學生自己說說每個旋轉的角度和旋轉的次數及旋轉中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學生指出對軸對稱及對稱軸的條數),而圖(2)可以通過平移形成。
2、課本
1 欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。
評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學生逐步能夠進行圖案設計,同時了解軸對稱、平移、旋轉變換是圖案制作的基本手段。例題解答的關鍵是確定“基本圖案”,然后再運用平移、旋轉關系加以說明,注意旋轉中心可以為圖形上某一特征的點。
評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。
(二)課內練習
(1) 以小組為單位,由每組指定一個同學展示該組搜集得到的圖案,并在全班交流。
(2) 利用下面提供的基本圖形,用平移、旋轉、軸對稱、中心對稱等方法進行圖案設計,并簡要說明自己的設計意圖。
(三)議一議
生活中還有那些圖案用到了平移或旋轉?分析其中的一個,并與同伴進行交流。
(四)課時小結
本課時的重點是了解平移、旋轉和軸對稱變換是圖案設計的基本方法,并能運用這些變換設計出一些簡單的圖案。
通過今天的學習,你對圖案的設計又增加了哪些新的認識?(可以利用平移、旋轉、軸對稱等多種方法來設計,而且設計的圖案要能表達自己的創作意圖,再就是圖案的設計一定要新穎,獨特,這樣才能使人過目不忘,達到標志的效果。)
八年級數學上冊教案(五)延伸拓展
進一步搜集身邊的各種標志性圖案,嘗試著重新設計它,并結合實際背景分析它的設計意圖。
初中八年級數學教案(篇4)
教學目標:
(1)理解通分的意義,理解最簡公分母的意義;
(2)掌握分式的通分法則,能熟練掌握通分運算。
教學重點:分式通分的理解和掌握。
教學難點:分式通分中最簡公分母的確定。
教學工具:投影儀
教學方法:啟發式、討論式
教學過程:
(一)引入
(1)如何計算:
由此讓學生復習分數通分的意義、通分的根據、通分的法則以及最簡公分母的概念。
(2)如何計算:
(3)何計算:
引導學生思考,猜想如何求解?
(二)新課
1、類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
注意:通分保證
(1)各分式與原分式相等;
(2)各分式分母相等。
2.通分的依據:分式的基本性質.
3.通分的關鍵:確定幾個分式的最簡公分母.
通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做最簡公分母.
根據分式通分和最簡公分母的定義,將分式通分:
最簡公分母為:
然后根據分式的基本性質,分別對原來的各分式的分子和分母乘一個適當的整式,使各分式的分母都化為通分如下:__
通過本例使學生對于分式的通分大致過程和思路有所了解。讓學生歸納通分的思路過程。
例1 通分:__
分析:讓學生找分式的公分母,可設問“分母的系數各不相同如何解決?”,依據分數的通分找最小公倍數。
解:∵ 最簡公分母是12xy2,
小結:各分母的系數都是整數時,通常取它們的系數的最小公倍數作為最簡公分母的系數.
解:∵最簡公分母是10a2b2c2,
由學生歸納最簡公分母的思路。
分式通分中求最簡公分母概括為:(1)取各分母系數的最小公倍數;(2)凡出現的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數最大的。取這些因式的積就是最簡公分母。
初中八年級數學教案(篇5)
一、教學目標
1、使學生理解并掌握分式的概念,了解有理式的概念;
2、使學生能夠求出分式有意義的條件;
3、通過類比分數研究分式的教學,培養學生運用類比轉化的思想方法解決問題的能力;
4、通過類比方法的教學,培養學生對事物之間是普遍聯系又是變化發展的辨證觀點的再認識。
二、重點、難點、疑點及解決辦法
1、教學重點和難點明確分式的分母不為零。
2、疑點及解決辦法通過類比分數的意義,加強對分式意義的理解。
三、教學過程
【新課引入】
前面所研究的因式分解問題是把整式分解成若干個因式的積的問題,但若有如下問題:某同學分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學給它試命名,并說一說怎樣想到的?(學生有過分數的經驗,可猜想到分式)
【新課】
1、分式的定義
(1)由學生分組討論分式的定義,對于“兩個整式相除叫做分式”等錯誤,由學生舉反例一一加以糾正,得到結論:
用、表示兩個整式,就可以表示成的形式。如果中含有字母,式子就叫做分式。其中叫做分式的分子,叫做分式的分母。
(2)由學生舉幾個分式的例子。
(3)學生小結分式的概念中應注意的問題。
①分母中含有字母。
②如同分數一樣,分式的分母不能為零。
(4)問:何時分式的值為零?[以(2)中學生舉出的分式為例進行討論]
2、有理式的分類
請學生類比有理數的分類為有理式分類:
例1當取何值時,下列分式有意義?
(1);
解:由分母得。
∴當時,原分式有意義。
(2);
解:由分母得。
∴當時,原分式有意義。
(3);
解:∵恒成立,
∴取一切實數時,原分式都有意義。
(4)。
解:由分母得。
∴當且時,原分式有意義。
思考:若把題目要求改為:“當取何值時下列分式無意義?”該怎樣做?
例2當取何值時,下列分式的值為零?
(1);
解:由分子得。
而當時,分母。
∴當時,原分式值為零。
小結:若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零。
(2);
解:由分子得。
而當時,分母,分式無意義。
當時,分母。
∴當時,原分式值為零。
(3);
解:由分子得。
而當時,分母。
當時,分母。
∴當或時,原分式值都為零。
(4)。
解:由分子得。
而當時,,分式無意義。
∴沒有使原分式的值為零的的值,即原分式值不可能為零。
(四)總結、擴展
1、分式與分數的區別。
2、分式何時有意義?
3、分式何時值為零?
(五)隨堂練習
1、填空題:
(1)當時,分式的值為零
(2)當時,分式的值為零
(3)當時,分式的值為零
2、教材P55中1、2、3.
八、布置作業
教材P56中A組3、4;B組(1)、(2)、(3)。
九、板書設計
課題例1
1、定義例2
2、有理式分類
初中八年級數學教案(篇6)
一、課堂導入
回顧平行四邊的性質定理及定義
1.什么叫平行四邊形?平行四邊形有什么性質?
2.將以上的性質定理,分別用命題形式敘述出來。(如果……那么……)
根據平行四邊形的定義,我們研究了平行四邊形的其它性質,那么如何來判定一個四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質定理的逆命題是否成立?
二、新課講解
平行四邊形的判定:
(定義法):兩組對邊分別平行的四邊形的平邊形。
幾何語言表達定義法:
∵AB∥CD,AD∥BC,∴四邊形ABCD是平行四邊形
解析:一個四邊形只要其兩組對邊分別互相平行,則可判定這個四邊形是一個平行四邊形。
活動:用做好的紙條拼成一個四邊形,其中強調兩組對邊分別相等。
(平行四邊形判定定理):
(一)兩組對邊分別相等的四邊形是平行四邊形。
設問:這個命題的前提和結論是什么?
已知:四邊形ABCD中,AB=CD,BC=DA。
求證:四邊ABCD是平行四邊形。
分析:判定平行四邊形的依據目前只有定義,也就是須證明兩組對邊分別平行,當然是借助第三條直線證明角等。連結BD。易證三角形全等。
板書證明過程。
小結:用幾何語言表達用定義法和剛才證明為正確的方法證明一個四邊形是平行四邊形的方法為:
平行四邊形判定定理1:二組對邊分別相等的四邊形是平行四邊形∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形
(二)設問:若一個四邊形有一組對邊平行且相等,能否判定這個四邊形也是平行四邊形呢?
活動:課本探究內容,并用事準備好的紙條(紙條的長度相等),先將紙條放置不平行位置,讓學生設想若二紙條的端點為四邊形的頂點,則組成的四邊形是不是平行四邊形?若將紙條擺放為平行的位置,則同樣用二紙條的端點為頂點組成的四邊形是不是平行四邊形?
設問:我們能否用推理的方法證明這個命題是正確的呢?(讓學生找出題設、結論,然后寫出已知、求證及證明過程。)
初中八年級數學教案(篇7)
【教學目標】
1.了解分式概念.
2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學重難點】
重點:理解分式有意義的條件,分式的值為零的條件.
難點:能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學過程】
一、課堂導入
1.讓學生填寫[思考],學生自己依次填出:,,,.
2.問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?
設江水的流速為x千米/時.
輪船順流航行100千米所用的時間為小時,逆流航行60千米所用時間小時,所以=.
3.以上的式子,,,,有什么共同點?它們與分數有什么相同點和不同點?可以發現,這些式子都像分數一樣都是A÷B的形式.分數的分子A與分母B都是整數,而這些式子中的A、B都是整式,并且B中都含有字母.
[思考]引發學生思考分式的分母應滿足什么條件,分式才有意義?由分數的分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個條件,分式才有意義.即當B≠0時,分式才有意義.
二、例題講解
例1:當x為何值時,分式有意義.
【分析】已知分式有意義,就可以知道分式的分母不為零,進一步解出字母x的取值范圍.
(補充)例2:當m為何值時,分式的值為0?
(1);(2);(3).
【分析】分式的值為0時,必須同時滿足兩個條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.
三、隨堂練習
1.判斷下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.當x取何值時,下列分式有意義?
3.當x為何值時,分式的值為0?
四、小結
談談你的收獲.
五、布置作業
課本128~129頁練習.