小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 九年級教案 > 數學教案 >

初三數學教案模板

時間: 沐欽 數學教案

初三數學教案都有哪些?復數是包含實數的最小代數閉域,我們對任意復數進行四則運算,其化簡結果都是復數。下面是小編為大家帶來的初三數學教案模板七篇,希望大家能夠喜歡!

初三數學教案模板

初三數學教案模板【篇1】

1.經歷用一元二次方程解決實際問題的過程,總結列一元二次方程解決實際問題的一般步驟.

2.通過學生自主探究,會根據傳播問題、百分率問題中的數量關系列一元二次方程并求解,熟悉解題的具體步驟.

3.通過實際問題的解答,讓學生認識到對方程的解必須要進行檢驗,方程的解是否舍去要以是否符合問題的實際意義為標準.

重點

利用一元二次方程解決傳播問題、百分率問題.

難點

如果理解傳播問題的傳播過程和百分率問題中的增長(降低)過程,找到傳播問題和百分率問題中的數量關系.

一、引入新課

1.列方程解應用題的基本步驟有哪些?應注意什么?

2.科學家在細胞研究過程中發現:

(1)一個細胞一次可分裂成2個,經過3次分裂后共有多少個細胞?

(2)一個細胞一次可分裂成x個,經過3次分裂后共有多少個細胞?

(3)如是一個細胞一次可分裂成2個,分裂后原有細胞仍然存在并能再次分裂,試問經過3次分裂后共有多少個細胞?

二、教學活動

活動1:自學教材第19頁探究1,思考教師所提問題.

有一人患了流感,經過兩輪傳染后,有121人患了流感,每輪傳染中平均一個人傳染了幾個人?

(1)如何理解“兩輪傳染”?如果設每輪傳染中平均一個人傳染了x個人,第一輪傳染后共有________人患流感.第二輪傳染后共有________人患流感.

(2)本題中有哪些數量關系?

(3)如何利用已知的數量關系選取未知數并列出方程?

解答:設每輪傳染中平均一個人傳染了x個人,則依題意第一輪傳染后有(x+1)人患了流感,第二輪有x(1+x)人被傳染上了流感.于是可列方程:

1+x+x(1+x)=121

解方程得x1=10,x2=-12(不合題意舍去)

因此每輪傳染中平均一個人傳染了10個人.

變式練習:如果按這樣的傳播速度,三輪傳染后有多少人患了流感?

活動2:自學教材第19頁~第20頁探究2,思考老師所提問題.

兩年前生產1噸甲種藥品的成本是5000元,生產1噸乙種藥品的成本是6000元,隨著生產技術的進步,現在生產1噸甲種藥品的成本是3000元,生產1噸乙種藥品的成本是3600元,哪種藥品成本的年平均下降率較大?

(1)如何理解年平均下降額與年平均下降率?它們相等嗎?

(2)若設甲種藥品年平均下降率為x,則一年后,甲種藥品的成本下降了________元,此時成本為________元;兩年后,甲種藥品下降了________元,此時成本為________元.

(3)增長率(下降率)公式的歸納:設基準數為a,增長率為x,則一月(或一年)后產量為a(1±x);

二月(或二年)后產量為a(1±x)2;

n月(或n年)后產量為a(1±x)n;

如果已知n月(n年)后總產量為M,則有下面等式:M=a(1±x)n.

(4)對甲種藥品而言根據等量關系列方程為:________________.

三、課堂小結與作業布置

課堂小結

1.列一元二次方程解應用題的步驟:審、設、找、列、解、答.最后要檢驗根是否符合實際.

2.傳播問題解決的關鍵是傳播源的確定和等量關系的建立.

3.若平均增長(降低)率為x,增長(或降低)前的基準數是a,增長(或降低)n次后的量是b,則有:a(1±x)n=b(常見n=2).

4.成本下降額較大的藥品,它的下降率不一定也較大,成本下降額較小的藥品,它的下降率不一定也較小.

作業布置

教材第21-22頁 習題21.3第2-7題.第2課時 解決幾何問題

1.通過探究,學會分析幾何問題中蘊含的數量關系,列出一元二次方程解決幾何問題.

2.通過探究,使學生認識在幾何問題中可以將圖形進行適當變換,使列方程更容易.

3.通過實際問題的解答,再次讓學生認識到對方程的解必須要進行檢驗,方程的解是否舍去要以是否符合問題的實際意義為標準.

重點

通過實際圖形問題,培養學生運用一元二次方程分析和解決幾何問題的能力.

難點

在探究幾何問題的過程中,找出數量關系,正確地建立一元二次方程.

活動1 創設情境

1.長方形的周長________,面積________,長方體的體積公式________.

2.如圖所示:

(1)一塊長方形鐵皮的長是10 cm,寬是8 cm,四角各截去一個邊長為2 cm的小正方形,制成一個長方體容器,這個長方體容器的底面積是________,高是________,體積是________.

(2)一塊長方形鐵皮的長是10 cm,寬是8 cm,四角各截去一個邊長為x cm的小正方形,制成一個長方體容器,這個長方體容器的底面積是________,高是________,體積是________.

活動2 自學教材第20頁~第21頁探究3,思考老師所提問題

要設計一本書的封面,封面長27 cm,寬21 cm,正中央是一個與整個封面長寬比例相同的矩形,如果要使四周的彩色邊襯所占面積是封面面積的四分之一,上下邊襯等寬,左右邊襯等寬,應如何設計四周邊襯的寬度(精確到0.1 cm).

(1)要設計書本封面的長與寬的比是________,則正中央矩形的長與寬的比是________.

(2)為什么說上下邊襯寬與左右邊襯寬之比為9∶7?試與同伴交流一下.

(3)若設上、下邊襯的寬均為9x cm,左、右邊襯的寬均為7x cm,則中央矩形的長為________cm,寬為________cm,面積為________cm2.

(4)根據等量關系:________,可列方程為:________.

(5)你能寫出解題過程嗎?(注意對結果是否合理進行檢驗.)

(6)思考如果設正中央矩形的長與寬分別為9x cm和7x cm,你又怎樣去求上下、左右邊襯的寬?

活動3 變式練習

如圖所示,在一個長為50米,寬為30米的矩形空地上,建造一個花園,要求花園的面積占整塊面積的75%,等寬且互相垂直的兩條路的面積占25%,求路的寬度.

答案:路的寬度為5米.

活動4 課堂小結與作業布置

課堂小結

1.利用已學的特殊圖形的面積(或體積)公式建立一元二次方程的數學模型,并運用它解決實際問題的關鍵是弄清題目中的數量關系.

2.根據面積與面積(或體積)之間的等量關系建立一元二次方程,并能正確解方程,最后對所得結果是否合理要進行檢驗.

作業布置

教材第22頁 習題21.3第8,10題.

初三數學教案模板【篇2】

一、素質教育目標

(一)知識教學點

使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系.

(二)能力訓練點

逐步培養學生觀察、比較、分析、綜合、抽象、概括的邏輯思維能力.

(三)德育滲透點

培養學生獨立思考、勇于創新的精神.

二、教學重點、難點

1.重點:使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系并會應用.

2.難點:一個銳角的正弦(余弦)與它的余角的余弦(正弦)之間的關系的應用.

三、教學步驟

(一)明確目標

1.復習提問

(1)、什么是∠A的正弦、什么是∠A的余弦,結合圖形請學生回答.因為正弦、余弦的概念是研究本課內容的知識基礎,請中下學生回答,從中可以了解教學班還有多少人不清楚的,可以采取適當的補救措施.

(2)請同學們回憶30°、45°、60°角的正、余弦值(教師板書).

(3)請同學們觀察,從中發現什么特征?學生一定會回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,這三個角的正弦值等于它們余角的余弦值”.

2.導入新課

根據這一特征,學生們可能會猜想“一個銳角的正弦(余弦)值等于它的余角的余弦(正弦)值.”這是否是真命題呢?引出課題.

(二)、整體感知

關于銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系,是通過30°、45°、60°角的正弦、余弦值之間的關系引入的,然后加以證明.引入這兩個關系式是為了便于查“正弦和余弦表”,關系式雖然用黑體字并加以文字語言的證明,但不標明是定理,其證明也不要求學生理解,更不應要求學生利用這兩個關系式去推證其他三角恒等式.在本章,這兩個關系式的用處僅僅限于查表和計算,而不是證明.

(三)重點、難點的學習和目標完成過程

1.通過復習特殊角的三角函數值,引導學生觀察,并猜想“任一銳角的正弦(余弦)值等于它的余角的余弦(正弦)值嗎?”提出問題,激發學生的學習熱情,使學生的思維積極活躍.

2.這時少數反應快的學生可能頭腦中已經“畫”出了圖形,并有了思路,但對部分學生來說仍思路凌亂.因此教師應進一步引導:sinA=cos(90°-A),cosA=sin(90°-A)(A是銳角)成立嗎?這時,學生結合正、余弦的概念,完全可以自己解決,教師要給學生足夠的研究解決問題的時間,以培養學生邏輯思維能力及獨立思考、勇于創新的精神.

3.教師板書:

任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值.

sinA=cos(90°-A),cosA=sin(90°-A).

4.在學習了正、余弦概念的基礎上,學生了解以上內容并不困難,但是,由于學生初次接觸三角函數,還不熟練,而定理又涉及余角、余函數,使學生極易混淆.因此,定理的應用對學生來說是難點、在給出定理后,需加以鞏固.

已知∠A和∠B都是銳角,

(1)把cos(90°-A)寫成∠A的正弦.

(2)把sin(90°-A)寫成∠A的余弦.

這一練習只能起到鞏固定理的作用.為了運用定理,教材安排了例3.

(2)已知sin35°=0.5736,求cos55°;

(3)已知cos47°6′=0.6807,求sin42°54′.

(1)問比較簡單,對照定理,學生立即可以回答.(2)、(3)比(1)則更深一步,因為(1)明確指出∠B與∠A互余,(2)、(3)讓學生自己發現35°與55°的角,47°6′分42°54′的角互余,從而根據定理得出答案,因此(2)、(3)問在課堂上應該請基礎好一些的同學講清思維過程,便于全體學生掌握,在三個問題處理完之后,將題目變形:

(2)已知sin35°=0.5736,則cos______=0.5736.

(3)cos47°6′=0.6807,則sin______=0.6807,以培養學生思維能力.

為了配合例3的教學,教材中配備了練習題2.

(2)已知sin67°18′=0.9225,求cos22°42′;

(3)已知cos4°24′=0.9971,求sin85°36′.

學生獨立完成練習2,就說明定理的教學較成功,學生基本會運用.

教材中3的設置,實際上是對前二節課內容的綜合運用,既考察學生正、余弦概念的掌握程度,同時又對本課知識加以鞏固練習,因此例3的安排恰到好處.同時,做例3也為下一節查正余弦表做了準備.

(四)小結與擴展

1.請學生做知識小結,使學生對所學內容進行歸納總結,將所學內容變成自己知識的組成部分.

2.本節課我們由特殊角的正弦(余弦)和它的余角的余弦(正弦)值間關系,以及正弦、余弦的概念得出的結論:任意一個銳角的正弦值等于它的余角的余弦值,任意一個銳角的余弦值等于它的余角的正弦值.

四、布置作業

教材習題14.1A組4、5.

五、板書設計

初三數學教案模板【篇3】

一、復習引入

學生活動:請同學們完成下列各題.

問題1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根據完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.

問題2:目前我們都學過哪些方程?二元怎樣轉化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉化成一次?怎樣降次?以前學過哪些降次的方法?

二、探索新知

上面我們已經講了x2=9,根據平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?

(學生分組討論)

老師點評:回答是肯定的,把2t+1變為上面的x,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2

分析:(1)x2+4x+4是一個完全平方公式,那么原方程就轉化為(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接開平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的兩根x1=-3+2,x2=-3-2

解:略.

例2 市政府計劃2年內將人均住房面積由現在的10 m2提高到14.4 m2,求每年人均住房面積增長率.

分析:設每年人均住房面積增長率為x,一年后人均住房面積就應該是10+10x=10(1+x);二年后人均住房面積就應該是10(1+x)+10(1+x)x=10(1+x)2

解:設每年人均住房面積增長率為x,

則:10(1+x)2=14.4

(1+x)2=1.44

直接開平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因為每年人均住房面積的增長率應為正的,因此,x2=-2.2應舍去.

所以,每年人均住房面積增長率應為20%.

(學生小結)老師引導提問:解一元二次方程,它們的共同特點是什么?

共同特點:把一個一元二次方程“降次”,轉化為兩個一元一次方程.我們把這種思想稱為“降次轉化思想”.

三、鞏固練習

教材第6頁 練習.

四、課堂小結

本節課應掌握:由應用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉化為應用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達到降次轉化之目的.若p<0則方程無解.

五、作業布置

初三數學教案模板【篇4】

教學目標:

1、進一步理解函數的概念,能從簡單的實際事例中,抽象出函數關系,列出函數解析式;

2、使學生分清常量與變量,并能確定自變量的取值范圍.

3、會求函數值,并體會自變量與函數值間的對應關系.

4、使學生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數的自變量的取值范圍的求法.

5、通過函數的教學使學生體會到事物是相互聯系的.是有規律地運動變化著的.

教學重點:了解函數的意義,會求自變量的取值范圍及求函數值.

教學難點:函數概念的抽象性.

教學過程:

(一)引入新課:

上一節課我們講了函數的概念:一般地,設在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有的值與它對應,那么就說x是自變量,y是x的函數.

生活中有很多實例反映了函數關系,你能舉出一個,并指出式中的自變量與函數嗎?

1、學校計劃組織一次春游,學生每人交30元,求總金額y(元)與學生數n(個)的關系.

2、為迎接新年,班委會計劃購買100元的小禮物送給同學,求所能購買的總數n(個)與單價(a)元的關系.

解:1、y=30n

y是函數,n是自變量

2、 ,n是函數,a是自變量.

(二)講授新課

剛才所舉例子中的函數,都是利用數學式子即解析式表示的.這種用數學式子表示函數時,要考慮自變量的取值必須使解析式有意義.如第一題中的學生數n必須是正整數.

例1、求下列函數中自變量x的取值范圍.

(1)   (2)

(3)   (4)

(5)   (6)

分析:在(1)、(2)中,x取任意實數, 與 都有意義.

(3)小題的 是一個分式,分式成立的條件是分母不為0.這道題的分母是 ,因此要求 .

同理(4)小題的 也是分式,分式成立的條件是分母不為0,這道題的分母是 ,因此要求 且 .

第(5)小題, 是二次根式,二次根式成立的條件是被開方數大于、等于零. 的被開方數是 .

同理,第(6)小題 也是二次根式, 是被開方數,

.

解:(1)全體實數

(2)全體實數

(3)

(4) 且

(5)

(6)

小結:從上面的例題中可以看出函數的解析式是整數時,自變量可取全體實數;函數的解析式是分式時,自變量的取值應使分母不為零;函數的解析式是二次根式時,自變量的取值應使被開方數大于、等于零.

注意:有些同學沒有真正理解解析式是分式時,自變量的取值應使分母不為零,片面地認為,凡是分母,只要 即可.教師可將解題步驟設計得細致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使函數成立的自變量的取值范圍.二次根式的問題也與次類似.

但象第(4)小題,有些同學會犯這樣的錯誤,將答案寫成 或 .在解一元二次方程時,方程的兩根用“或者”聯接,在這里就直接拿過來用.限于初中學生的接受能力,教師可聯系日常生活講清“且”與“或”.說明這里 與 是并且的關系.即2與-1這兩個值x都不能取.

例2、自行車保管站在某個星期日保管的自行車共有3500輛次,其中變速車保管費是每輛一次0.5元,一般車保管費是每次一輛0.3元.

(1)若設一般車停放的輛次數為x,總的保管費收入為y元,試寫出y關于x的函數關系式;

(2)若估計前來停放的3500輛次自行車中,變速車的輛次不小于25%,但不大于40%,試求該保管站這個星期日收入保管費總數的范圍.

解:(1)

(x是正整數,

(2)若變速車的輛次不小于25%,但不大于40%,

收入在1225元至1330元之間

總結:對于反映實際問題的函數關系,應使得實際問題有意義.這樣,就要求聯系實際,具體問題具體分析.

對于函數 ,當自變量 時,相應的函數y的值是 .60叫做這個函數當 時的函數值.

例3、求下列函數當 時的函數值:

(1)   (2)

(3)   (4)

解:1)當 時,

(2)當 時,

(3)當 時,

(4)當 時,

注:本例既鍛煉了學生的計算能力,又創設了情境,讓學生體會對于x的每一個值,y都有確定的值與之對應.以此加深對函數的理解.

(二)小結:

這節課,我們進一步地研究了有關函數的概念.在研究函數關系時首先要考慮自變量的取值范圍.因此,要求大家能掌握解析式含有一個自變量的簡單的整式、分式、二次根式的函數的自變量取值范圍的求法,并能求出其相應的函數值.另外,對于反映實際問題的函數關系,要具體問題具體分析.

作業:習題13.2A組2、3、5

初三數學教案模板【篇5】

一、教學目標

1. 通過觀察、猜想、比較、具體操作等數學活動,學會用計算器求一個銳角的三角函數值。

2.經歷利用三角函數知識解決實際 問題的過程,促進觀察、分析、歸納、交流等能力的發展。

3.感受數學與生活的密切聯系,豐富數學學習的成功體驗,激發學生繼續學習 的好奇 心,培養學生與他人合作交流的意識。

二、教材分析

在生活中,我們會經常遇到這樣的問題,如測量建筑物的高度、測量江河的寬度、船舶的定位等,要解決這樣的問題,往往要應用到三角函數知識。在上節課中已經學習了30°, 45°,60°角的三角函數值,可以進行一些特定情況下的計算,但是生活中的問題,僅僅依靠這三個特殊角度的三角函數值來解決是不可能的。本節課讓學生使用計算器求三角函數值,讓他們從繁重的計算中解脫出來,體驗發現并提 出問題、分析問題、探究解決方法直至最終解決問題的過程。

三、學校及學生狀況分析

九年級的學生年齡一般在15歲左右,在這個階段,學生以抽象邏輯思維為主要發展趨勢,但在很大程度上,學生仍然要依靠具體的經驗材料和操作活動來理解抽象的邏輯關系。另外,計算器的使用可以極大減輕學生的負擔。因此,依據教材中提供的背景材料,輔以計算器的使用,可以使學生更好地解決問題。

學生自小學起就開始使用計算器,對計算器的操作比較熟悉。同時,在前面的課程中學生已經學習了銳角三角函數的定義,30°,45°,60°角的三角函數值以及與它們相關的簡單計算,具備了學習本節課的知識和技能。

四、教學設計

(一)復習提問

1.梯子靠在墻 上,如果梯子與地面的夾角為60°,梯子的長度為3米,那么梯子底端到墻的距離有幾米?

學生活動:根據題意,求出數值。

2.在生活中,梯子與地面的夾角總是60°嗎?

不是,可以出現各種角度,60°只是一種特殊現象。

圖1(二)創設情境引入課題

1如圖1,當登山纜車的吊箱經過點A到達點B時,它走過了200 m。已知纜車的路線與平面的夾角為∠A=16 °,那么纜車垂直上升的距離是多少?

哪條線段代表纜車上升的垂直距離?

線段BC。

利用哪個直角三角形可以求出BC?

在Rt△ABC中,BC=ABsin 16°,所以BC=200sin 16°。

你知道sin 16°是多少嗎?我們可以借助科學計算器求銳角三角形的三角函數值。 那么,怎樣用科學計算器求三角函數呢?

用科學計算器求三角函數值,要用sin cos和tan鍵。教師活動:(1)展示下表;(2)按表口述,讓學生學會求sin16°的值。按鍵順序顯示結果sin 16°sin16=sin 16°=0275 637 355

學生活動:按表中所列順序求出sin 16°的值。

你能求出cos 42°,tan 85°和sin 72°38′25″的值嗎?

學生活動:類比求sin 16°的方法,通過猜想、討論、相互學習,利用計算器求相應的三角函數值(操作程序如下表):

按鍵順序顯示結果cos 42°cos42 =cos 42°=0743 144 825tan 85°tan85=tan 85°=11430 052 3sin 72°38′25″sin72D′M′S

38D′M′S2

5D′M′S=sin 72°38′25″→

0954 450 321

師:利用科學計算器解決本節一開始的問題。

生:BC=200sin 16°≈5212(m)。

說明:利用學生的學習興趣,鞏固用計算器求三角函數值的操作方法。

(三)想一想

師:在本節一開始的問題中,當纜車繼續由點B到達點D時,它又走過了 200 m,纜車由點B到達點D的行駛路線與 水平面的夾角為∠β=42°,由此你還能計算什么?

學生活動:(1)可以求出第二次上升的垂直距離DE,兩次上升的垂直距離之和,兩次經過的水平距離,等等。(2)互相補充并在這個過程中加深對三角函數的認識。

(四)隨堂練習

1.一個人由山底爬到山頂,需先爬40°的山坡300 m,再爬30°的山坡100 m,求山高(結果精確到0.1 m)。

2.如圖2,∠DAB=56°,∠CAB=50°,AB=20 m,求圖中避雷針CD的長度(結果精確到0.01 m)。

圖2圖3

(五)檢測

如圖3,物華大廈離小偉家60 m,小偉從自家的窗中眺望大廈,并測得大廈頂部的仰角是45°,而大廈底部的俯角是37°,求大廈的高度(結果精確到01 m)。

說明:在學生練習的同時,教師要巡視指導,觀察學生的學習情況,并針對學生的困難給予及時的指導。

(六)小結

學生談學習本節的感受,如本節課學習了哪些新知識,學習過程中遇到哪些困難,如何解決困難,等等。

(七)作業

1.用計算器求下列各式的值:

(1)tan 32°;(2)cos 2453°;(3)sin 62°11′;(4)tan 39°39′39″。

圖42如圖4,為了測量一條河流的寬度,一測量員在河岸邊相距180 m的P,Q兩點分別測定對岸一棵樹T的位置,T在P的正南方向,在Q的南偏西50°的方向,求河寬(結果精確到1 m)。

五、教學反思

1.本節是學習用計算器求三角函數值并加以實際應用的內容,通過本節的學習,可以使學生充分認識到三角函數知識在現實世界中有著廣泛的應用。本節課的知識點不是很多,但是學生通過積極參與課堂,提高了分析問題和解決問題的能力,并 且在意志力、自信心和理性精神 等方面得到了良好的發展。

初三數學教案模板【篇6】

教材分析

本節內容是上一節課在學習余角補角基礎上學習的,學生有了一定的基礎,為以后學__面直角坐標系的學習做好準備。

學情分析

本節課對于學生來說學習起來并不太難,在小學階段學生已經接觸過方位角的內容,而且本節課內容和生活中的方向聯系緊密,故學生比較有興趣。

教學目標

理解方位角的意義,掌握方位角的判別和應用,通過現實情境,充分利用學生的生活經驗去體會方位角的意義。

教學重點和難點

重點:方位角的判別與應用

難點:方位角的畫法及變式題

教學過程(本文來自優秀教育資源網斐.斐.課.件.園)

教學環節教師活動預設學生行為設計意圖

一 、創設情境,導入新課

二、講授新課

三、鞏固練習

四、課時小結五、布置作業 由四面八方這個成語引出學生對八個方位的理解

1.先以一個具體圖形告訴學生基本知識點,方位角一般是以正南正北為基準,然后向東或西旋轉所成的角的始邊方向。

2.師示范方位角的畫法

3.出示補充例題,引對學生通過小組合作完成。 思考并回答老師提出的問題

生觀察圖并理解老師的講解。

生觀察并獨立完成書中的例題

生先獨立思考然后與同學合作完成。 激發學生的學習興趣

通遼具體圖形使學生初步認識方位角的表示方法。

使學生通遼具體操作掌握畫方位角的方法

進一步掌握方位角的有關知識,達到知識提升。

板書設計

4.3.3余角和補角(二)——方位角

學生學習活動評價設計

我先將學生按人數分成若干小組,在課前先給學生發放導學單,課上先給學生充分的討論時間后學生由小組推薦代表發言,累積分數,每個小組輪流回答一次,學生代表回答完畢后,其它同學補充糾錯,然后從知識點是否準確,語言是否流利,思維是否創新,邏輯是否合理嚴密等方面來做出評價,然后給出相應分數。累積到小組積分中課上知識回答后在練習部分,設計搶答題,小組搶答完成。最后計算出總分評出本節課小組及個人獎,給予口頭表揚。

教學反思

本節課是在上節課余角和補角的基礎上學習的,而且在小學階段也已經接觸過這部分知識了,基于這個特點,在課堂上我主要采取了自主學習的方式,學生接受的不錯,本節課的知識雖然簡單但很重要是為以后學__面直角坐標系做準備的。出現的問題是有個別同學對于A看B是北偏東30度,則B看A是什么方向不太清楚,我采取的措施是讓明白的同學講給不明白的同學聽,指導其主要從哪方面入手解決此類問題,還有一點,學生在畫圖后容易忽略寫結論,應強調。以前在上本節課時,我是采取的講授法,感覺學生不是很愛聽,后來一想,知道了是因為小學時他們已經接觸了這部分知識,所以不愛聽,針對于這種情況,這次我采用了自主學習的方式感覺學生的積極性上來了,一節課氣氛很好,相信效果也不錯。以后再講這節課我將繼續采用這種方式,在此基礎上使其更加完善。

初三數學教案模板【篇7】

一、素質教育目標

(一)知識教學點

使學生會查“正弦和余弦表”,即由已知銳角求正弦、余弦值.(二)能力滲透點

逐步培養學生觀察、比較、分析、概括等邏輯思維能力.

(三)德育訓練點

培養學生良好的學習習慣.

二、教學重點、難點

1.重點:“正弦和余弦表”的查法.

2.難點:當角度在0°~90°間變化時,正弦值與余弦值隨角度變化而變化的規律.

三、教學步驟

(一)明確目標

1.復習提問

1)30°、45°、60°的正弦值和余弦值各是多少?請學生口答.

2)任意銳角的正弦(余弦)與它的余角的余弦(正弦)值之間的關系怎樣?通過復習,使學生便于理解正弦和余弦表的設計方式.

(二)整體感知

我們已經求出了30°、45°、60°這三個特殊角的正弦值和余弦值,但在生產和科研中還常用到其他銳角的正弦值和余弦值,為了使用上的方便,我們把0°—90°間每隔1′的各個角所對應的正弦值和余弦值(一般是含有四位有效數字的近似值),列成表格——正弦和余弦表.本節課我們來研究如何使用正弦和余弦表.

(三)重點、難點的學習與目標完成過程

1.“正弦和余弦表”簡介

學生已經會查平方表、立方表、平方根表、立方根表,對數學用表的結構與查法有所了解.但正弦和余弦表與其又有所區別,因此首先向學生介紹“正弦和余弦表”.

(1)“正弦和余弦表”的作用是:求銳角的正弦、余弦值,已知銳角的正弦、余弦值,求這個銳角.

2)表中角精確到1′,正弦、余弦值有四位有效數字.

3)凡表中所查得的值,都用等號,而非“≈”,根據查表所求得的值進行近似計算,結果四舍五入后,一般用約等號“≈”表示.

2.舉例說明

例4 查表求37°24′的正弦值.

學生因為有查表經驗,因此查sin37°24′的值不會是到困難,完全可以自己解決.

例5 查表求37°26′的正弦值.

學生在獨自查表時,在正弦表頂端的橫行里找不到26′,但26′在24′~30′間而靠近24′,比24′多2′,可引導學生注意修正值欄,這樣學生可能直接得答案.教師這時可設問“為什么將查得的5加在0.6074的最后一個數位上,而不是0.6074減去0.0005”.通過引導學生觀察思考,得結論:當角度在0°~90°間變化時,正弦值隨著角度的增大(或減小)而增大(或減小).

解:sin37°24′=0.6074.

角度增2′ 值增0.0005

sin37°26′=0.6079.

例6 查表求sin37°23′的值.

如果例5學生已經理解,那么例6學生完全可以自己解決,通過對比,加強學生的理解.

解:sin37°24′=0.6074

角度減1′值減0.0002

sin37°23′=0.6072.

在查表中,還應引導學生查得:

sin0°=0,sin90°=1.

根據正弦值隨角度變化規律:當角度從0°增加到90°時,正弦值從0增加到1;當角度從90°減少到0°時,正弦值從1減到0.

可引導學生查得:

cos0°=1,cos90°=0.

根據余弦值隨角度變化規律知:當角度從0°增加到90°時,余弦值從1減小到0,當角度從90°減小到0°時,余弦值從0增加到1.

(四)總結與擴展

1.請學生總結

本節課主要討論了“正弦和余弦表”的查法.了解正弦值,余弦值隨角度的變化而變化的規律:當角度在0°~90°間變化時,正弦值隨著角度的增大而增大,隨著角度的減小而減小;當角度在0°~90°間變化時,余弦值隨著角度的增大而減小,隨著角度的減小而增大.

2.“正弦和余弦表”的用處除了已知銳角查其正、余弦值外,還可以已知正、余弦值,求銳角,同學們可以試試看.

四、布置作業

預習教材中例8、例9、例10,養成良好的學習習慣.

五、板書設計

46778 主站蜘蛛池模板: 雨水收集系统厂家-雨水收集利用-模块雨水收集池-徐州博智环保科技有限公司 | 网架支座@球铰支座@钢结构支座@成品支座厂家@万向滑动支座_桥兴工程橡胶有限公司 | 中国品牌排名投票_十大品牌榜单_中国著名品牌【中国品牌榜】 | 5nd音乐网|最新流行歌曲|MP3歌曲免费下载|好听的歌|音乐下载 免费听mp3音乐 | 珠海白蚁防治_珠海灭鼠_珠海杀虫灭鼠_珠海灭蟑螂_珠海酒店消杀_珠海工厂杀虫灭鼠_立净虫控防治服务有限公司 | 找果网 | 苹果手机找回方法,苹果iPhone手机丢了找回,认准找果网! | 超声骨密度仪,双能X射线骨密度仪【起草单位】,骨密度检测仪厂家 - 品源医疗(江苏)有限公司 | 哈希PC1R1A,哈希CA9300,哈希SC4500-上海鑫嵩实业有限公司 | 创绿家招商加盟网-除甲醛加盟-甲醛治理加盟-室内除甲醛加盟-创绿家招商官网 | COD分析仪|氨氮分析仪|总磷分析仪|总氮分析仪-圣湖Greatlake | 大_小鼠elisa试剂盒-植物_人Elisa试剂盒-PCR荧光定量试剂盒-上海一研生物科技有限公司 | 青岛空压机,青岛空压机维修/保养,青岛空压机销售/出租公司,青岛空压机厂家电话 | 浙江栓钉_焊钉_剪力钉厂家批发_杭州八建五金制造有限公司 | 沙盘模型公司_沙盘模型制作公司_建筑模型公司_工业机械模型制作厂家 | 阴离子聚丙烯酰胺价格_PAM_高分子聚丙烯酰胺厂家-河南泰航净水材料有限公司 | 天然气分析仪-液化气二甲醚分析仪|传昊仪器| 鼓风干燥箱_真空烘箱_高温干燥箱_恒温培养箱-上海笃特科学仪器 | 企业VI设计_LOGO设计公司_品牌商标设计_【北京美研】 | 上海公众号开发-公众号代运营公司-做公众号的公司企业服务商-咏熠软件 | 超声骨密度仪,双能X射线骨密度仪【起草单位】,骨密度检测仪厂家 - 品源医疗(江苏)有限公司 | 顶空进样器-吹扫捕集仪-热脱附仪-二次热解吸仪-北京华盛谱信仪器 | 成都离婚律师|成都结婚律师|成都离婚财产分割律师|成都律师-成都离婚律师网 | 工装定制/做厂家/公司_工装订做/制价格/费用-北京圣达信工装 | [官网]叛逆孩子管教_戒网瘾学校_全封闭问题青少年素质教育_新起点青少年特训学校 | 灰板纸、灰底白、硬纸板等纸品生产商-金泊纸业 | 磁力去毛刺机_去毛刺磁力抛光机_磁力光饰机_磁力滚抛机_精密金属零件去毛刺机厂家-冠古科技 | 上海电子秤厂家,电子秤厂家价格,上海吊秤厂家,吊秤供应价格-上海佳宜电子科技有限公司 | 恒温恒湿试验箱厂家-高低温试验箱维修价格_东莞环仪仪器_东莞环仪仪器 | 上海噪音治理公司-专业隔音降噪公司-中广通环保 | 雷冲击高压发生器-水内冷直流高压发生器-串联谐振分压器-武汉特高压电力科技有限公司 | 北京开源多邦科技发展有限公司官网 | 农产品溯源系统_农产品质量安全追溯系统_溯源系统 | 德国UST优斯特氢气检漏仪-德国舒赐乙烷检测仪-北京泽钏 | 合同书格式和范文_合同书样本模板_电子版合同,找范文吧 | 海南在线 海南一家 | HDPE储罐_厂家-山东九州阿丽贝防腐设备 | 云阳人才网_云阳招聘网_云阳人才市场_云阳人事人才网_云阳人家招聘网_云阳最新招聘信息 | 真空乳化机-灌装封尾机-首页-温州精灌| 桥架-槽式电缆桥架-镀锌桥架-托盘式桥架 - 上海亮族电缆桥架制造有限公司 | 汽车润滑油厂家-机油/润滑油代理-高性能机油-领驰慧润滑科技(河北)有限公司 | 阴离子_阳离子聚丙烯酰胺厂家_聚合氯化铝价格_水处理絮凝剂_巩义市江源净水材料有限公司 |