小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 九年級教案 > 數學教案 >

初三數學教案模板

時間: 沐欽 數學教案

初三數學教案都有哪些?數學也就是為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。下面是小編為大家帶來的初三數學教案模板七篇,希望大家能夠喜歡!

初三數學教案模板

初三數學教案模板【篇1】

回顧與反思 當自變量x取同一數值時,這兩個函數的函數值之間有什么關系?反映在圖象上,相應的兩個點之間的位置又有什么關系?

探索 觀察這兩個函數,它們的開口方向、對稱軸和頂點坐標有那些是相同的?又有哪些不同?你能由此說出函數 與 的圖象之間的關系嗎?

例2.在同一直角坐標系中,畫出函數 與 的圖象,并說明,通過怎樣的平移,可以由拋物線 得到拋物線 .

解 列表.

x … -3 -2 -1 0 1 2 3 …

… -8 -3 0 1 0 -3 -8 …

… -10 -5 -2 -1 -2 -5 -10 …

描點、連線,畫出這兩個函數的圖象,如圖26.2.4所示.

可以看出,拋物線 是由拋物線 向下平移兩個單位得到的.

回顧與反思 拋物線 和拋物線 分別是由拋物線 向上、向下平移一個單位得到的.

探索 如果要得到拋物線 ,應將拋物線 作怎樣的平移?

例3.一條拋物線的開口方向、對稱軸與 相同,頂點縱坐標是-2,且拋物線經過點(1,1),求這條拋物線的函數關系式.

解 由題意可得,所求函數開口向上,對稱軸是y軸,頂點坐標為(0,-2),

因此所求函數關系式可看作 , 又拋物線經過點(1,1),

所以, ,

解得 .

故所求函數關系式為 .

回顧與反思 (a、k是常數,a≠0)的圖象的開口方向、對稱軸、頂點坐標歸納如下:

開口方向 對稱軸 頂點坐標

[當堂課內練習]

1. 在同一直角坐標系中,畫出下列二次函數的圖象:

, , .

觀察三條拋物線的相互關系,并分別指出它們的開口方向及對稱軸、頂點的位置.你能說出拋物線 的開口方向及對稱軸、頂點的位置嗎?

2.拋物線 的開口 ,對稱軸是 ,頂點坐標是 ,它可以看作是由拋物線 向 平移 個單位得到的.

3.函數 ,當x 時,函數值y隨x的增大而減小.當x 時,函數取得最 值,最 值y= .

[本課課外作業]

A組

1.已知函數 , , .

(1)分別畫出它們的圖象;

(2)說出各個圖象的開口方向、對稱軸、頂點坐標;

(3)試說出函數 的圖象的開口方向、對稱軸、頂點坐標.

2. 不畫圖象,說出函數 的開口方向、對稱軸和頂點坐標,并說明它是由函數 通過怎樣的平移得到的.

3.若二次函數 的圖象經過點(-2,10),求a的值.這個函數有還是最小值?是多少?

B組

4.在同一直角坐標系中 與 的圖象的大致位置是( )

5.已知二次函數 ,當k為何值時,此二次函數以y軸為對稱軸?寫出其函數關系式.

初三數學教案模板【篇2】

教材分析

本節內容是上一節課在學習余角補角基礎上學習的,學生有了一定的基礎,為以后學面直角坐標系的學習做好準備。

學情分析

本節課對于學生來說學習起來并不太難,在小學階段學生已經接觸過方位角的內容,而且本節課內容和生活中的方向聯系緊密,故學生比較有興趣。

教學目標

理解方位角的意義,掌握方位角的判別和應用,通過現實情境,充分利用學生的生活經驗去體會方位角的意義。

教學重點和難點

重點:方位角的判別與應用

難點:方位角的畫法及變式題

教學過程(本文來自優秀教育資源網斐.斐.課.件.園)

教學環節教師活動預設學生行為設計意圖

一 、創設情境,導入新課

二、講授新課

三、鞏固練習

四、課時小結五、布置作業 由四面八方這個成語引出學生對八個方位的理解

1.先以一個具體圖形告訴學生基本知識點,方位角一般是以正南正北為基準,然后向東或西旋轉所成的角的始邊方向。

2.師示范方位角的畫法

3.出示補充例題,引對學生通過小組合作完成。 思考并回答老師提出的問題

生觀察圖并理解老師的講解。

生觀察并獨立完成書中的例題

生先獨立思考然后與同學合作完成。 激發學生的學習興趣

通遼具體圖形使學生初步認識方位角的表示方法。

使學生通遼具體操作掌握畫方位角的方法

進一步掌握方位角的有關知識,達到知識提升。

板書設計

4.3.3余角和補角(二)——方位角

學生學習活動評價設計

我先將學生按人數分成若干小組,在課前先給學生發放導學單,課上先給學生充分的討論時間后學生由小組推薦代表發言,累積分數,每個小組輪流回答一次,學生代表回答完畢后,其它同學補充糾錯,然后從知識點是否準確,語言是否流利,思維是否創新,邏輯是否合理嚴密等方面來做出評價,然后給出相應分數。累積到小組積分中課上知識回答后在練習部分,設計搶答題,小組搶答完成。最后計算出總分評出本節課小組及個人獎,給予口頭表揚。

教學反思

本節課是在上節課余角和補角的基礎上學習的,而且在小學階段也已經接觸過這部分知識了,基于這個特點,在課堂上我主要采取了自主學習的方式,學生接受的不錯,本節課的知識雖然簡單但很重要是為以后學面直角坐標系做準備的。出現的問題是有個別同學對于A看B是北偏東30度,則B看A是什么方向不太清楚,我采取的措施是讓明白的同學講給不明白的同學聽,指導其主要從哪方面入手解決此類問題,還有一點,學生在畫圖后容易忽略寫結論,應強調。以前在上本節課時,我是采取的講授法,感覺學生不是很愛聽,后來一想,知道了是因為小學時他們已經接觸了這部分知識,所以不愛聽,針對于這種情況,這次我采用了自主學習的方式感覺學生的積極性上來了,一節課氣氛很好,相信效果也不錯。以后再講這節課我將繼續采用這種方式,在此基礎上使其更加完善。

初三數學教案模板【篇3】

教材內容

1.本單元教學的主要內容:

二次根式的概念;二次根式的加減;二次根式的乘除;最簡二次根式.

2.本單元在教材中的地位和作用:

二次根式是在學完了八年級下冊第十七章《反比例正函數》、第十八章《勾股定理及其應用》等內容的基礎之上繼續學習的,它也是今后學習其他數學知識的基礎.

教學目標

1.知識與技能

(1)理解二次根式的概念.

(2)理解 (a≥0)是一個非負數,( )2=a(a≥0), =a(a≥0).

(3)掌握 ? = (a≥0,b≥0), = ? ;

= (a≥0,b>0), = (a≥0,b>0).

(4)了解最簡二次根式的概念并靈活運用它們對二次根式進行加減.

2.過程與方法

(1)先提出問題,讓學生探討、分析問題,師生共同歸納,得出概念.再對概念的內涵進行分析,得出幾個重要結論,并運用這些重要結論進行二次根式的計算和化簡.

(2)用具體數據探究規律,用不完全歸納法得出二次根式的乘(除)法規定,并運用規定進行計算.

(3)利用逆向思維,得出二次根式的乘(除)法規定的逆向等式并運用它進行化簡.

(4)通過分析前面的計算和化簡結果,抓住它們的共同特點,給出最簡二次根式的概念.利用最簡二次根式的概念,來對相同的二次根式進行合并,達到對二次根式進行計算和化簡的目的.

3.情感、態度與價值觀

通過本單元的學習培養學生:利用規定準確計算和化簡的嚴謹的科學精神,經過探索二次根式的重要結論,二次根式的乘除規定,發展學生觀察、分析、發現問題的能力.

教學重點

1.二次根式 (a≥0)的內涵. (a≥0)是一個非負數;( )2=a(a≥0); =a(a≥0)及其運用.

2.二次根式乘除法的規定及其運用.

3.最簡二次根式的概念.

4.二次根式的加減運算.

教學難點

1.對 (a≥0)是一個非負數的理解;對等式( )2=a(a≥0)及 =a(a≥0)的理解及應用.

2.二次根式的乘法、除法的條件限制.

3.利用最簡二次根式的概念把一個二次根式化成最簡二次根式.

教學關鍵

1.潛移默化地培養學生從具體到一般的推理能力,突出重點,突破難點.

2.培養學生利用二次根式的規定和重要結論進行準確計算的能力,培養學生一絲不茍的科學精神.

單元課時劃分

本單元教學時間約需11課時,具體分配如下:

21.1 二次根式 3課時

21.2 二次根式的乘法 3課時

21.3 二次根式的加減 3課時

教學活動、習題課、小結 2課時

21.1 二次根式

第一課時

教學內容

二次根式的概念及其運用

教學目標

理解二次根式的概念,并利用 (a≥0)的意義解答具體題目.

提出問題,根據問題給出概念,應用概念解決實際問題.

教學重難點關鍵

1.重點:形如 (a≥0)的式子叫做二次根式的概念;

2.難點與關鍵:利用“ (a≥0)”解決具體問題.

教學過程

一、復習引入

(學生活動)請同學們獨立完成下列三個問題:

問題1:已知反比例函數y= ,那么它的圖象在第一象限橫、縱坐標相等的點的坐標是___________.

問題2:如圖,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB邊的長是__________.

問題3:甲射擊6次,各次擊中的環數如下:8、7、9、9、7、8,那么甲這次射擊的方差是S2,那么S=_________.

老師點評:

問題1:橫、縱坐標相等,即x=y,所以x2=3.因為點在第一象限,所以x= ,所以所求點的坐標( , ).

問題2:由勾股定理得AB=

問題3:由方差的概念得S= .

二、探索新知

很明顯 、 、 ,都是一些正數的算術平方根.像這樣一些正數的算術平方根的式子,我們就把它稱二次根式.因此,一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.

(學生活動)議一議:

1.-1有算術平方根嗎?

2.0的算術平方根是多少?

3.當a<0, 有意義嗎?

老師點評:(略)

例1.下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y≥0).

分析:二次根式應滿足兩個條件:第一,有二次根號“ ”;第二,被開方數是正數或0.

解:二次根式有: 、 (x>0)、 、- 、 (x≥0,y≥0);不是二次根式的有: 、 、 、 .

例2.當x是多少時, 在實數范圍內有意義?

分析:由二次根式的定義可知,被開方數一定要大于或等于0,所以3x-1≥0, 才能有意義.

解:由3x-1≥0,得:x≥

當x≥ 時, 在實數范圍內有意義.

三、鞏固練習

教材P練習1、2、3.

四、應用拓展

例3.當x是多少時, + 在實數范圍內有意義?

分析:要使 + 在實數范圍內有意義,必須同時滿足 中的≥0和 中的x+1≠0.

解:依題意,得

由①得:x≥-

由②得:x≠-1

當x≥- 且x≠-1時, + 在實數范圍內有意義.

例4(1)已知y= + +5,求 的值.(答案:2)

(2)若 + =0,求a2004+b2004的值.(答案: )

五、歸納小結(學生活動,老師點評)

本節課要掌握:

1.形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.

2.要使二次根式在實數范圍內有意義,必須滿足被開方數是非負數.

六、布置作業

1.教材P8復習鞏固1、綜合應用5.

2.選用課時作業設計.

3.課后作業:《同步訓練》

第一課時作業設計

一、選擇題 1.下列式子中,是二次根式的是( )

A.- B. C. D.x

2.下列式子中,不是二次根式的是( )

A. B. C. D.

3.已知一個正方形的面積是5,那么它的邊長是( )

A.5 B. C. D.以上皆不對

二、填空題

1.形如________的式子叫做二次根式.

2.面積為a的正方形的邊長為________.

3.負數________平方根.

三、綜合提高題

1.某工廠要制作一批體積為1m3的產品包裝盒,其高為0.2m,按設計需要,底面應做成正方形,試問底面邊長應是多少?

2.當x是多少時, +x2在實數范圍內有意義?

3.若 + 有意義,則 =_______.

4.使式子 有意義的未知數x有( )個.

A.0 B.1 C.2 D.無數

5.已知a、b為實數,且 +2 =b+4,求a、b的值.

第一課時作業設計答案:

一、1.A 2.D 3.B

二、1. (a≥0) 2. 3.沒有

三、1.設底面邊長為x,則0.2x2=1,解答:x= .

2.依題意得: ,

∴當x>- 且x≠0時, +x2在實數范圍內沒有意義.

3.

4.B

5.a=5,b=-4

21.1 二次根式(2)

第二課時

教學內容

1. (a≥0)是一個非負數;

2.( )2=a(a≥0).

教學目標

理解 (a≥0)是一個非負數和( )2=a(a≥0),并利用它們進行計算和化簡.

通過復習二次根式的概念,用邏輯推理的方法推出 (a≥0)是一個非負數,用具體數據結合算術平方根的意義導出( )2=a(a≥0);最后運用結論嚴謹解題.

教學重難點關鍵

1.重點: (a≥0)是一個非負數;( )2=a(a≥0)及其運用.

2.難點、關鍵:用分類思想的方法導出 (a≥0)是一個非負數;用探究的方法導出( )2=a(a≥0).

教學過程

一、復習引入

(學生活動)口答

1.什么叫二次根式?

2.當a≥0時, 叫什么?當a<0時, 有意義嗎?

老師點評(略).

二、探究新知

議一議:(學生分組討論,提問解答)

(a≥0)是一個什么數呢?

老師點評:根據學生討論和上面的練習,我們可以得出

(a≥0)是一個非負數.

做一做:根據算術平方根的意義填空:

( )2=_______;( )2=_______;( )2=______;( )2=_______;

( )2=______;( )2=_______;( )2=_______.

老師點評: 是4的算術平方根,根據算術平方根的意義, 是一個平方等于4的非負數,因此有( )2=4.

同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以

( )2=a(a≥0)

例1 計算

1.( )2 2.(3 )2 3.( )2 4.( )2

分析:我們可以直接利用( )2=a(a≥0)的結論解題.

解:( )2 = ,(3 )2 =32?( )2=32?5=45,

( )2= ,( )2= .

三、鞏固練習

計算下列各式的值:

( )2 ( )2 ( )2 ( )2 (4 )2

四、應用拓展

例2 計算

1.( )2(x≥0) 2.( )2 3.( )2

4.( )2

分析:(1)因為x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;

(4)4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2≥0.

所以上面的4題都可以運用( )2=a(a≥0)的重要結論解題.

解:(1)因為x≥0,所以x+1>0

( )2=x+1

(2)∵a2≥0,∴( )2=a2

(3)∵a2+2a+1=(a+1)2

又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1

(4)∵4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2

又∵(2x-3)2≥0

∴4x2-12x+9≥0,∴( )2=4x2-12x+9

例3在實數范圍內分解下列因式:

(1)x2-3 (2)x4-4 (3) 2x2-3

分析:(略)

五、歸納小結

本節課應掌握:

1. (a≥0)是一個非負數;

2.( )2=a(a≥0);反之:a=( )2(a≥0).

六、布置作業

1.教材P8 復習鞏固2.(1)、(2) P9 7.

2.選用課時作業設計.

3.課后作業:《同步訓練》

初三數學教案模板【篇4】

理解間接即通過變形運用開平方法降次解方程,并能熟練應用它解決一些具體問題.

通過復習可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟.

重點

講清直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟.

難點

將不可直接降次解方程化為可直接降次解方程的“化為”的轉化方法與技巧.

一、復習引入

(學生活動)請同學們解下列方程:

(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7

老師點評:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±p或mx+n=±p(p≥0).

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9嗎?

二、探索新知

列出下面問題的方程并回答:

(1)列出的經化簡為一般形式的方程與剛才解題的方程有什么不同呢?

(2)能否直接用上面前三個方程的解法呢?

問題:要使一塊矩形場地的長比寬多6 m,并且面積為16 m2,求場地的長和寬各是多少?

(1)列出的經化簡為一般形式的方程與前面講的三道題不同之處是:前三個左邊是含有x的完全平方式而后二個不具有此特征.

(2)不能.

既然不能直接降次解方程,那么,我們就應該設法把它轉化為可直接降次解方程的方程,下面,我們就來講如何轉化:

x2+6x-16=0移項→x2+6x=16

兩邊加(6/2)2使左邊配成x2+2bx+b2的形式→x2+6x+32=16+9

左邊寫成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以驗證:x1=2,x2=-8都是方程的根,但場地的寬不能是負值,所以場地的寬為2 m,長為8 m.

像上面的解題方法,通過配成完全平方形式來解一元二次方程的方法,叫配方法.

可以看出,配方法是為了降次,把一個一元二次方程轉化為兩個一元一次方程來解.

例1 用配方法解下列關于x的方程:

(1)x2-8x+1=0 (2)x2-2x-12=0

分析:(1)顯然方程的左邊不是一個完全平方式,因此,要按前面的方法化為完全平方式;(2)同上.

解:略.

三、鞏固練習

教材第9頁 練習1,2.(1)(2).

四、課堂小結

本節課應掌握:

左邊不含有x的完全平方形式的一元二次方程化為左邊是含有x的完全平方形式,右邊是非負數,可以直接降次解方程的方程.

五、作業布置

初三數學教案模板【篇5】

理解一元二次方程“降次”——轉化的數學思想,并能應用它解決一些具體問題.

提出問題,列出缺一次項的一元二次方程ax2+c=0,根據平方根的意義解出這個方程,然后知識遷移到解a(ex+f)2+c=0型的一元二次方程.

重點

運用開平方法解形如(x+m)2=n(n≥0)的方程,領會降次——轉化的數學思想.

難點

通過根據平方根的意義解形如x2=n的方程,將知識遷移到根據平方根的意義解形如(x+m)2=n(n≥0)的方程.

一、復習引入

學生活動:請同學們完成下列各題.

問題1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根據完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.

問題2:目前我們都學過哪些方程?二元怎樣轉化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉化成一次?怎樣降次?以前學過哪些降次的方法?

二、探索新知

上面我們已經講了x2=9,根據平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?

(學生分組討論)

老師點評:回答是肯定的,把2t+1變為上面的x,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2

分析:(1)x2+4x+4是一個完全平方公式,那么原方程就轉化為(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接開平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的兩根x1=-3+2,x2=-3-2

解:略.

例2 市政府計劃2年內將人均住房面積由現在的10 m2提高到14.4 m2,求每年人均住房面積增長率.

分析:設每年人均住房面積增長率為x,一年后人均住房面積就應該是10+10x=10(1+x);二年后人均住房面積就應該是10(1+x)+10(1+x)x=10(1+x)2

解:設每年人均住房面積增長率為x,

則:10(1+x)2=14.4

(1+x)2=1.44

直接開平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因為每年人均住房面積的增長率應為正的,因此,x2=-2.2應舍去.

所以,每年人均住房面積增長率應為20%.

(學生小結)老師引導提問:解一元二次方程,它們的共同特點是什么?

共同特點:把一個一元二次方程“降次”,轉化為兩個一元一次方程.我們把這種思想稱為“降次轉化思想”.

三、鞏固練習

教材第6頁 練習.

四、課堂小結

本節課應掌握:由應用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉化為應用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達到降次轉化之目的.若p<0則方程無解.

五、作業布置

初三數學教案模板【篇6】

1.通過類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次項及其系數、一次項及其系數與常數項等概念.

2.了解一元二次方程的解的概念,會檢驗一個數是不是一元二次方程的解.

重點

通過類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用這些概念解決簡單問題.

難點

一元二次方程及其二次項系數、一次項系數和常數項的識別.

活動1 復習舊知

1.什么是方程?你能舉一個方程的例子嗎?

2.下列哪些方程是一元一次方程?并給出一元一次方程的概念和一般形式.

(1)2x-1 (2)mx+n=0 (3)1x+1=0 (4)x2=1

3.下列哪個實數是方程2x-1=3的解?并給出方程的解的概念.

A.0    B.1    C.2    D.3

活動2 探究新知

根據題意列方程.

1.教材第2頁 問題1.

提出問題:

(1)正方形的大小由什么量決定?本題應該設哪個量為未知數?

(2)本題中有什么數量關系?能利用這個數量關系列方程嗎?怎么列方程?

(3)這個方程能整理為比較簡單的形式嗎?請說出整理之后的方程.

2.教材第2頁 問題2.

提出問題:

(1)本題中有哪些量?由這些量可以得到什么?

(2)比賽隊伍的數量與比賽的場次有什么關系?如果有5個隊參賽,每個隊比賽幾場?一共有20場比賽嗎?如果不是20場比賽,那么究竟比賽多少場?

(3)如果有x個隊參賽,一共比賽多少場呢?

3.一個數比另一個數大3,且兩個數之積為0,求這兩個數.

提出問題:

本題需要設兩個未知數嗎?如果可以設一個未知數,那么方程應該怎么列?

4.一個正方形的面積的2倍等于25,這個正方形的邊長是多少?

活動3 歸納概念

提出問題:

(1)上述方程與一元一次方程有什么相同點和不同點?

(2)類比一元一次方程,我們可以給這一類方程取一個什么名字?

(3)歸納一元二次方程的概念.

1.一元二次方程:只含有________個未知數,并且未知數的次數是________,這樣的________方程,叫做一元二次方程.

2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次項,a是二次項系數;bx是一次項,b是一次項系數;c是常數項.

提出問題:

(1)一元二次方程的一般形式有什么特點?等號的左、右分別是什么?

(2)為什么要限制a≠0,b,c可以為0嗎?

(3)2x2-x+1=0的一次項系數是1嗎?為什么?

3.一元二次方程的解(根):使一元二次方程左右兩邊相等的未知數的值叫做一元二次方程的解(根).

活動4 例題與練習

例1 在下列方程中,屬于一元二次方程的是________.

(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;

(4)2x2-2x(x+7)=0.

總結:判斷一個方程是否是一元二次方程的依據:(1)整式方程;(2)只含有一個未知數;(3)含有未知數的項的次數是2.注意有些方程化簡前含有二次項,但是化簡后二次項系數為0,這樣的方程不是一元二次方程.

例2 教材第3頁 例題.

例3 以-2為根的一元二次方程是(  )

A.x2+2x-1=0 B.x2-x-2=0

C.x2+x+2=0 D.x2+x-2=0

總結:判斷一個數是否為方程的解,可以將這個數代入方程,判斷方程左、右兩邊的值是否相等.

練習:

1.若(a-1)x2+3ax-1=0是關于x的一元二次方程,那么a的取值范圍是________.

2.將下列一元二次方程化為一般形式,并分別指出它們的二次項系數、一次項系數和常數項.

(1)4x2=81;(2)(3x-2)(x+1)=8x-3.

3.教材第4頁 練習第2題.

4.若-4是關于x的一元二次方程2x2+7x-k=0的一個根,則k的值為________.

答案:1.a≠1;2.略;3.略;4.k=4.

活動5 課堂小結與作業布置

課堂小結

我們學習了一元二次方程的哪些知識?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程嗎?

作業布置

教材第4頁 習題21.1第1~7題.

初三數學教案模板【篇7】

一、基本情況分析:

上學年學生期末考試的成績總體來看比較好,但是優生面不廣,尖子不尖。在學生所學知識的掌握程度上,良莠不齊,對優生來說,能夠透徹理解知識,知識間的內在聯系也較為清楚,對差一點的學生來說,有些基礎知識還不能有效的掌握,學生仍然缺少大量的推理題訓練,推理的思考方法與寫法上均存在著一定的困難,對幾何有畏難情緒,相關知識學得不很透徹。在學習能力上,學生課外主動獲取知識的能力較差,為減輕學生的經濟負擔與課業負擔,不提倡學生買教輔參考書,學生自主拓展知識面,向深處學習知識的能力沒有得到很好的培養。在以后的教學中,培養學生課外主動獲取知識的能力。學生的邏輯推理、邏輯思維能力,計算能力需要得到加強,以提升學生的整體成績,應在合適的時候補充課外知識,拓展學生的知識面,提升學生素質;在學習態度上,一部分學生上課能全神貫注,積極的投入到學習中去,大部分學生對數學學習好高鶩遠、心浮氣躁,學習態度和學習習慣還需培養。學生的學習習慣養成還不理想,預習的習慣,進行總結的習慣,自習課專心致志學習的習慣,主動糾正(考試、作業后)錯誤的習慣,有些學生不具有或不夠重視,需要教師的督促才能做,陶行知說:“教育就是培養習慣”,這是本期教學中重點予以關注的。

二、指導思想:

通過九年數學的教學,提供進一步學習所必需的數學基礎知識與基本技能,進一步培養學生的運算能力、思維能力和空間想象能力,能夠運用所學知識解決簡單的實際問題,教育學生掌握基礎知識與基本技能,培養學生的邏輯思維能力、運算能力、空間觀念和解決簡單實際問題的能力,使學生逐步學會正確、合理地進行運算,逐步學會觀察分析、綜合、抽象、概括。會用歸納演繹、類比進行簡單的推理。提高學習數學的興趣,逐步培養學生具有良好的學習習慣,實事求是的態度。頑強的學習毅力和獨立思考、探索的新思想。培養學生應用數學知識解決問題的能力。

三、教學內容

本學期的教學內容共五章:

第22章:二次根式;第23章:一元二次方程;第24章:圖形的相似;

第25章:解直角三角形;第26章:隨機事件的概率。

四、教學重點、難點

重點:

1、要求學生掌握證明的基本要求和方法,學會推理論證;

2、探索證明的思路和方法,提倡證明的多樣性。

難點:

1、引導學生探索、猜測、證明,體會證明的必要性;

2、在教學中滲透如歸納、類比、轉化等數學思想。

五、在教學過程中抓住以下幾個環節:

(1)認真備課。認真研究教材及考綱,明確教學目標,抓住重點、難點,精心設計教學過程,重視每一章節內容與前后知識的聯系及其地位,重視課后反思,設計好每一節課的師生互動的細節。

(2)抓住課堂45分鐘。 嚴格按照教學計劃,精心設計每一節課的每一個環節,爭取每節課達到教學目標,突出重點,分散難點,增大課堂容量組織學生人人參與課堂活動,使每個學生積極主動參與課堂活動,使每個學生動手、動口、動腦,及時反饋信息提高課堂效益。

(3)課后反饋。精選適當的練習題、測試卷,及時批改作業,發現問題及時給學生面對面的指出并指導學生搞懂弄通,不留一個疑難點,讓學生學有所獲。

六、教學措施:

1.認真學習鉆研新課標,掌握教材。

2.認真備課,爭取充分掌握學生動態。

3.認真上好每一堂課。

4.落實每一堂課后輔助,查漏補缺。

5.積極與其它老師溝通,加強教研教改,提高教學水平。

6.復習階段多讓學生動腦、動手,通過各種習題、綜合試題和模擬試題的訓練,使學生逐步熟悉各知識點,并能熟練運用。

除了以上計劃外,我還將預計開展培優和治跛工作,教學中注重數學理論與社會實踐的聯系,鼓勵學生多觀察、多思考實際生活中蘊藏的數學問題,逐步培養學生運用書本知識解決實際問題的能力。

34506 主站蜘蛛池模板: 飞行者联盟-飞机模拟机_无人机_低空经济_航空技术交流平台 | 台式低速离心机-脱泡离心机-菌种摇床-常州市万丰仪器制造有限公司 | 杭州成人高考_浙江省成人高考网上报名 | 右手官网|右手工业设计|外观设计公司|工业设计公司|产品创新设计|医疗产品结构设计|EMC产品结构设计 | 防水套管|柔性防水套管|伸缩器|伸缩接头|传力接头-河南伟创管道 防水套管_柔性防水套管_刚性防水套管-巩义市润达管道设备制造有限公司 | CTP磁天平|小电容测量仪|阴阳极极化_双液系沸点测定仪|dsj电渗实验装置-南京桑力电子设备厂 | (中山|佛山|江门)环氧地坪漆,停车场地板漆,车库地板漆,聚氨酯地板漆-中山永旺地坪漆厂家 | 车牌识别道闸_停车场收费系统_人脸识别考勤机_速通门闸机_充电桩厂家_中全清茂官网 | 诸城网站建设-网络推广-网站优化-阿里巴巴托管-诸城恒泰互联 | 便携式XPDM露点仪-在线式防爆露点仪-增强型烟气分析仪-约克仪器 冰雕-冰雪世界-大型冰雕展制作公司-赛北冰雕官网 | 西安耀程造价培训机构_工程预算实训_广联达实作实操培训 | 圆形振动筛_圆筛_旋振筛_三次元振动筛-河南新乡德诚生产厂家 | 铝镁锰板_铝镁锰合金板_铝镁锰板厂家_铝镁锰金属屋面板_安徽建科 | 制氮设备-变压吸附制氮设备-制氧设备-杭州聚贤气体设备制造有限公司 | 间苯二酚,间苯二酚厂家-淄博双和化工 | 济南冷库安装-山东冷库设计|建造|冷库维修-山东齐雪制冷设备有限公司 | 凝胶成像仪,化学发光凝胶成像系统,凝胶成像分析系统-上海培清科技有限公司 | 桑茶-七彩贝壳桑叶茶 长寿茶 | 磨煤机配件-高铬辊套-高铬衬板-立磨辊套-盐山县宏润电力设备有限公司 | 车载加油机品牌_ 柴油加油机厂家 | Q361F全焊接球阀,200X减压稳压阀,ZJHP气动单座调节阀-上海戎钛 | 华中线缆有限公司-电缆厂|电缆厂家|电线电缆厂家 | 上海阳光泵业制造有限公司 -【官方网站】 | 铆钉机|旋铆机|东莞旋铆机厂家|鸿佰专业生产气压/油压/自动铆钉机 | 二次元影像仪|二次元测量仪|拉力机|全自动影像测量仪厂家_苏州牧象仪器 | 不锈钢列管式冷凝器,换热器厂家-无锡飞尔诺环境工程有限公司 | 澳门精准正版免费大全,2025新澳门全年免费,新澳天天开奖免费资料大全最新,新澳2025今晚开奖资料,新澳马今天最快最新图库-首页-东莞市傲马网络科技有限公司 | 北京公积金代办/租房发票/租房备案-北京金鼎源公积金提取服务中心 | 液氮罐(生物液氮罐)百科-无锡爱思科 | 圆形振动筛_圆筛_旋振筛_三次元振动筛-河南新乡德诚生产厂家 | 北京亦庄厂房出租_经开区产业园招商信息平台| 电动车头盔厂家_赠品头盔_安全帽批发_山东摩托车头盔—临沂承福头盔 | 手持气象站_便携式气象站_农业气象站_负氧离子监测站-山东万象环境 | 小小作文网_中小学优秀作文范文大全 | 换链神器官网-友情链接交换、购买交易于一体的站长平台 | 西门子气候补偿器,锅炉气候补偿器-陕西沃信机电工程有限公司 | 润滑脂-高温润滑脂-轴承润滑脂-食品级润滑油-索科润滑油脂厂家 | Dataforth隔离信号调理模块-信号放大模块-加速度振动传感器-北京康泰电子有限公司 | 阿米巴企业经营-阿米巴咨询管理-阿米巴企业培训-广东键锋企业管理咨询有限公司 | 直线模组_滚珠丝杆滑台_模组滑台厂家_万里疆科技| 包塑丝_高铁绑丝_地暖绑丝_涂塑丝_塑料皮铁丝_河北创筹金属丝网制品有限公司 |