小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 九年級教案 > 數學教案 >

初三學生數學教案

時間: 沐欽 數學教案

初三學生數學教案都有哪些?所謂教案的藝術性就是構思巧妙,能讓學生在課堂上不僅能學到知識,而且得到藝術的欣賞和快樂的體驗。下面是小編為大家帶來的初三學生數學教案七篇,希望大家能夠喜歡!

初三學生數學教案

初三學生數學教案篇1

1.了解旋轉及其旋轉中心和旋轉角的概念,了解旋轉對應點的概念及其應用它們解決一些實際問題.

2.通過平移、軸對稱的有關概念及性質,從生活中的數學開始,經歷觀察,產生概念,應用概念解決一些實際問題.

3.旋轉的基本性質.

重點

旋轉及對應點的有關概念及其應用.

難點

旋轉的基本性質.

一、復習引入

(學生活動)請同學們完成下面各題.

1.將如圖所示的四邊形ABCD平移,使點B的對應點為點D,作出平移后的圖形.

2.如圖,已知△ABC和直線l,請你畫出△ABC關于l的對稱圖形△A′B′C′.

3.圓是軸對稱圖形嗎?等腰三角形呢?你還能指出其它的嗎?

(口述)老師點評并總結:

(1)平移的有關概念及性質.

(2)如何畫一個圖形關于一條直線(對稱軸)的對稱圖形并口述它具有的一些性質.

(3)什么叫軸對稱圖形?

二、探索新知

我們前面已經平移等有關內容,生活中是否還有其它運動變化呢?回答是肯定的,下面我們就來研究.

1.請同學們看講臺上的大時鐘,有什么在不停地轉動?旋轉圍繞什么點呢?從現在到下課時針轉了多少度?分針轉了多少度?秒針轉了多少度?

(口答)老師點評:時針、分針、秒針在不停地轉動,它們都繞時鐘的中心.從現在到下課時針轉了________度,分針轉了________度,秒針轉了________度.

2.再看我自制的好像風車風輪的玩具,它可以不停地轉動.如何轉到新的位置?(老師點評略)

3.第1,2兩題有什么共同特點呢?

共同特點是如果我們把時鐘、風車風輪當成一個圖形,那么這些圖形都可以繞著某一固定點轉動一定的角度.

像這樣,把一個圖形繞著某一點O轉動一個角度的圖形變換叫做旋轉,點O叫做旋轉中心,轉動的角叫做旋轉角.

如果圖形上的點P經過旋轉變為點P′,那么這兩個點叫做這個旋轉的對應點.

下面我們來運用這些概念來解決一些問題.

例1 如圖,如果把鐘表的指針看做三角形OAB,它繞O點按順時針方向旋轉得到△OEF,在這個旋轉過程中:

(1)旋轉中心是什么?旋轉角是什么?

(2)經過旋轉,點A,B分別移動到什么位置?

解:(1)旋轉中心是O,∠AOE,∠BOF等都是旋轉角.

(2)經過旋轉,點A和點B分別移動到點E和點F的位置.

自主探究:

請看我手里拿著的硬紙板,我在硬紙板上挖下一個三角形的洞,再挖一個點O作為旋轉中心,把挖好的硬紙板放在黑板上,先在黑板上描出這個挖掉的三角形圖案(△ABC),然后圍繞旋轉中心O轉動硬紙板,在黑板上再描出這個挖掉的三角形(△A′B′C′),移去硬紙板.

(分組討論)根據圖回答下面問題(一組推薦一人上臺說明)

1.線段OA與OA′,OB與OB′,OC與OC′有什么關系?

2.∠AOA′,∠BOB′,∠COC′有什么關系?

3.△ABC與△A′B′C′的形狀和大小有什么關系?

老師點評:1.OA=OA′,OB=OB′,OC=OC′,也就是對應點到旋轉中心的距離相等.

2.∠AOA′=∠BOB′=∠COC′,我們把這三個相等的角,即對應點與旋轉中心所連線段的夾角稱為旋轉角.

3.△ABC和△A′B′C′形狀相同和大小相等,即全等.

綜合以上的實驗操作得出:

(1)對應點到旋轉中心的距離相等;

(2)對應點與旋轉中心所連線段的夾角等于旋轉角;

(3)旋轉前、后的圖形全等.

例2 如圖,△ABC繞C點旋轉后,頂點A的對應點為點D,試確定頂點B的對應點的位置,以及旋轉后的三角形.

分析:繞C點旋轉,A點的對應點是D點,那么旋轉角就是∠ACD,根據對應點與旋轉中心所連線段的夾角等于旋轉角,即∠BCB′=∠ACD,又由對應點到旋轉中心的距離相等,即CB=CB′,就可確定B′的位置,如圖所示.

解:(1)連接CD;

(2)以CB為一邊作∠BCE,使得∠BCE=∠ACD;

(3)在射線CE上截取CB′=CB,則B′即為所求的B的對應點;

(4)連接DB′,則△DB′C就是△ABC繞C點旋轉后的圖形.

三、課堂小結

(學生總結,老師點評)

本節課應掌握:

1.對應點到旋轉中心的距離相等;

2.對應點與旋轉中心所連線段的夾角等于旋轉角;

3.旋轉前、后的圖形全等及其它們的應用.

四、作業布置

教材第62~63頁 習題4,5,6.

初三學生數學教案篇2

理解一元二次方程“降次”——轉化的數學思想,并能應用它解決一些具體問題.

提出問題,列出缺一次項的一元二次方程ax2+c=0,根據平方根的意義解出這個方程,然后知識遷移到解a(ex+f)2+c=0型的一元二次方程.

重點

運用開平方法解形如(x+m)2=n(n≥0)的方程,領會降次——轉化的數學思想.

難點

通過根據平方根的意義解形如x2=n的方程,將知識遷移到根據平方根的意義解形如(x+m)2=n(n≥0)的方程.

一、復習引入

學生活動:請同學們完成下列各題.

問題1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根據完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.

問題2:目前我們都學過哪些方程?二元怎樣轉化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉化成一次?怎樣降次?以前學過哪些降次的方法?

二、探索新知

上面我們已經講了x2=9,根據平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?

(學生分組討論)

老師點評:回答是肯定的,把2t+1變為上面的x,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2

分析:(1)x2+4x+4是一個完全平方公式,那么原方程就轉化為(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接開平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的兩根x1=-3+2,x2=-3-2

解:略.

例2 市政府計劃2年內將人均住房面積由現在的10 m2提高到14.4 m2,求每年人均住房面積增長率.

分析:設每年人均住房面積增長率為x,一年后人均住房面積就應該是10+10x=10(1+x);二年后人均住房面積就應該是10(1+x)+10(1+x)x=10(1+x)2

解:設每年人均住房面積增長率為x,

則:10(1+x)2=14.4

(1+x)2=1.44

直接開平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因為每年人均住房面積的增長率應為正的,因此,x2=-2.2應舍去.

所以,每年人均住房面積增長率應為20%.

(學生小結)老師引導提問:解一元二次方程,它們的共同特點是什么?

共同特點:把一個一元二次方程“降次”,轉化為兩個一元一次方程.我們把這種思想稱為“降次轉化思想”.

三、鞏固練習

教材第6頁 練習.

四、課堂小結

本節課應掌握:由應用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉化為應用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達到降次轉化之目的.若p<0則方程無解.

五、作業布置

初三學生數學教案篇3

教學目標:

1、進一步理解函數的概念,能從簡單的實際事例中,抽象出函數關系,列出函數解析式;

2、使學生分清常量與變量,并能確定自變量的取值范圍.

3、會求函數值,并體會自變量與函數值間的對應關系.

4、使學生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數的自變量的取值范圍的求法.

5、通過函數的教學使學生體會到事物是相互聯系的.是有規律地運動變化著的.

教學重點:了解函數的意義,會求自變量的取值范圍及求函數值.

教學難點:函數概念的抽象性.

教學過程:

(一)引入新課:

上一節課我們講了函數的概念:一般地,設在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有的值與它對應,那么就說x是自變量,y是x的函數.

生活中有很多實例反映了函數關系,你能舉出一個,并指出式中的自變量與函數嗎?

1、學校計劃組織一次春游,學生每人交30元,求總金額y(元)與學生數n(個)的關系.

2、為迎接新年,班委會計劃購買100元的小禮物送給同學,求所能購買的總數n(個)與單價(a)元的關系.

解:1、y=30n

y是函數,n是自變量

2、 ,n是函數,a是自變量.

(二)講授新課

剛才所舉例子中的函數,都是利用數學式子即解析式表示的.這種用數學式子表示函數時,要考慮自變量的取值必須使解析式有意義.如第一題中的學生數n必須是正整數.

例1、求下列函數中自變量x的取值范圍.

(1)   (2)

(3)   (4)

(5)   (6)

分析:在(1)、(2)中,x取任意實數, 與 都有意義.

(3)小題的 是一個分式,分式成立的條件是分母不為0.這道題的分母是 ,因此要求 .

同理(4)小題的 也是分式,分式成立的條件是分母不為0,這道題的分母是 ,因此要求 且 .

第(5)小題, 是二次根式,二次根式成立的條件是被開方數大于、等于零. 的被開方數是 .

同理,第(6)小題 也是二次根式, 是被開方數,

.

解:(1)全體實數

(2)全體實數

(3)

(4) 且

(5)

(6)

小結:從上面的例題中可以看出函數的解析式是整數時,自變量可取全體實數;函數的解析式是分式時,自變量的取值應使分母不為零;函數的解析式是二次根式時,自變量的取值應使被開方數大于、等于零.

注意:有些同學沒有真正理解解析式是分式時,自變量的取值應使分母不為零,片面地認為,凡是分母,只要 即可.教師可將解題步驟設計得細致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使函數成立的自變量的取值范圍.二次根式的問題也與次類似.

但象第(4)小題,有些同學會犯這樣的錯誤,將答案寫成 或 .在解一元二次方程時,方程的兩根用“或者”聯接,在這里就直接拿過來用.限于初中學生的接受能力,教師可聯系日常生活講清“且”與“或”.說明這里 與 是并且的關系.即2與-1這兩個值x都不能取.

例2、自行車保管站在某個星期日保管的自行車共有3500輛次,其中變速車保管費是每輛一次0.5元,一般車保管費是每次一輛0.3元.

(1)若設一般車停放的輛次數為x,總的保管費收入為y元,試寫出y關于x的函數關系式;

(2)若估計前來停放的3500輛次自行車中,變速車的輛次不小于25%,但不大于40%,試求該保管站這個星期日收入保管費總數的范圍.

解:(1)

(x是正整數,

(2)若變速車的輛次不小于25%,但不大于40%,

收入在1225元至1330元之間

總結:對于反映實際問題的函數關系,應使得實際問題有意義.這樣,就要求聯系實際,具體問題具體分析.

對于函數 ,當自變量 時,相應的函數y的值是 .60叫做這個函數當 時的函數值.

例3、求下列函數當 時的函數值:

(1)   (2)

(3)   (4)

解:1)當 時,

(2)當 時,

(3)當 時,

(4)當 時,

注:本例既鍛煉了學生的計算能力,又創設了情境,讓學生體會對于x的每一個值,y都有確定的值與之對應.以此加深對函數的理解.

(二)小結:

這節課,我們進一步地研究了有關函數的概念.在研究函數關系時首先要考慮自變量的取值范圍.因此,要求大家能掌握解析式含有一個自變量的簡單的整式、分式、二次根式的函數的自變量取值范圍的求法,并能求出其相應的函數值.另外,對于反映實際問題的函數關系,要具體問題具體分析.

作業:習題13.2A組2、3、5

初三學生數學教案篇4

一、教學目標

1. 通過觀察、猜想、比較、具體操作等數學活動,學會用計算器求一個銳角的三角函數值。

2.經歷利用三角函數知識解決實際 問題的過程,促進觀察、分析、歸納、交流等能力的發展。

3.感受數學與生活的密切聯系,豐富數學學習的成功體驗,激發學生繼續學習 的好奇 心,培養學生與他人合作交流的意識。

二、教材分析

在生活中,我們會經常遇到這樣的問題,如測量建筑物的高度、測量江河的寬度、船舶的定位等,要解決這樣的問題,往往要應用到三角函數知識。在上節課中已經學習了30°, 45°,60°角的三角函數值,可以進行一些特定情況下的計算,但是生活中的問題,僅僅依靠這三個特殊角度的三角函數值來解決是不可能的。本節課讓學生使用計算器求三角函數值,讓他們從繁重的計算中解脫出來,體驗發現并提 出問題、分析問題、探究解決方法直至最終解決問題的過程。

三、學校及學生狀況分析

九年級的學生年齡一般在15歲左右,在這個階段,學生以抽象邏輯思維為主要發展趨勢,但在很大程度上,學生仍然要依靠具體的經驗材料和操作活動來理解抽象的邏輯關系。另外,計算器的使用可以極大減輕學生的負擔。因此,依據教材中提供的背景材料,輔以計算器的使用,可以使學生更好地解決問題。

學生自小學起就開始使用計算器,對計算器的操作比較熟悉。同時,在前面的課程中學生已經學習了銳角三角函數的定義,30°,45°,60°角的三角函數值以及與它們相關的簡單計算,具備了學習本節課的知識和技能。

四、教學設計

(一)復習提問

1.梯子靠在墻 上,如果梯子與地面的夾角為60°,梯子的長度為3米,那么梯子底端到墻的距離有幾米?

學生活動:根據題意,求出數值。

2.在生活中,梯子與地面的夾角總是60°嗎?

不是,可以出現各種角度,60°只是一種特殊現象。

圖1(二)創設情境引入課題

1如圖1,當登山纜車的吊箱經過點A到達點B時,它走過了200 m。已知纜車的路線與平面的夾角為∠A=16 °,那么纜車垂直上升的距離是多少?

哪條線段代表纜車上升的垂直距離?

線段BC。

利用哪個直角三角形可以求出BC?

在Rt△ABC中,BC=ABsin 16°,所以BC=200sin 16°。

你知道sin 16°是多少嗎?我們可以借助科學計算器求銳角三角形的三角函數值。 那么,怎樣用科學計算器求三角函數呢?

用科學計算器求三角函數值,要用sin cos和tan鍵。教師活動:(1)展示下表;(2)按表口述,讓學生學會求sin16°的值。按鍵順序顯示結果sin 16°sin16=sin 16°=0275 637 355

學生活動:按表中所列順序求出sin 16°的值。

你能求出cos 42°,tan 85°和sin 72°38′25″的值嗎?

學生活動:類比求sin 16°的方法,通過猜想、討論、相互學習,利用計算器求相應的三角函數值(操作程序如下表):

按鍵順序顯示結果cos 42°cos42 =cos 42°=0743 144 825tan 85°tan85=tan 85°=11430 052 3sin 72°38′25″sin72D′M′S

38D′M′S2

5D′M′S=sin 72°38′25″→

0954 450 321

師:利用科學計算器解決本節一開始的問題。

生:BC=200sin 16°≈5212(m)。

說明:利用學生的學習興趣,鞏固用計算器求三角函數值的操作方法。

(三)想一想

師:在本節一開始的問題中,當纜車繼續由點B到達點D時,它又走過了 200 m,纜車由點B到達點D的行駛路線與 水平面的夾角為∠β=42°,由此你還能計算什么?

學生活動:(1)可以求出第二次上升的垂直距離DE,兩次上升的垂直距離之和,兩次經過的水平距離,等等。(2)互相補充并在這個過程中加深對三角函數的認識。

(四)隨堂練習

1.一個人由山底爬到山頂,需先爬40°的山坡300 m,再爬30°的山坡100 m,求山高(結果精確到0.1 m)。

2.如圖2,∠DAB=56°,∠CAB=50°,AB=20 m,求圖中避雷針CD的長度(結果精確到0.01 m)。

圖2圖3

(五)檢測

如圖3,物華大廈離小偉家60 m,小偉從自家的窗中眺望大廈,并測得大廈頂部的仰角是45°,而大廈底部的俯角是37°,求大廈的高度(結果精確到01 m)。

說明:在學生練習的同時,教師要巡視指導,觀察學生的學習情況,并針對學生的困難給予及時的指導。

(六)小結

學生談學習本節的感受,如本節課學習了哪些新知識,學習過程中遇到哪些困難,如何解決困難,等等。

(七)作業

1.用計算器求下列各式的值:

(1)tan 32°;(2)cos 2453°;(3)sin 62°11′;(4)tan 39°39′39″。

圖42如圖4,為了測量一條河流的寬度,一測量員在河岸邊相距180 m的P,Q兩點分別測定對岸一棵樹T的位置,T在P的正南方向,在Q的南偏西50°的方向,求河寬(結果精確到1 m)。

五、教學反思

1.本節是學習用計算器求三角函數值并加以實際應用的內容,通過本節的學習,可以使學生充分認識到三角函數知識在現實世界中有著廣泛的應用。本節課的知識點不是很多,但是學生通過積極參與課堂,提高了分析問題和解決問題的能力,并 且在意志力、自信心和理性精神 等方面得到了良好的發展。

2.教師作為學生學習的組織者、引導者、合作者和幫助者,依據教材特點創設問題情境,從學生已有的知識背景和活動經驗出發,幫助學生取得了成功。

初三學生數學教案篇5

一、素質教育目標

(一)知識教學點

使學生知道當直角三角形的銳角固定時,它的對邊、鄰邊與斜邊的比值也都固定這一事實.

(二)能力訓練點

逐步培養學生會觀察、比較、分析、概括等邏輯思維能力.

(三)德育滲透點

引導學生探索、發現,以培養學生獨立思考、勇于創新的精神和良好的學習習慣.

二、教學重點、難點

1.重點:使學生知道當銳角固定時,它的對邊、鄰邊與斜邊的比值也是固定的這一事實.

2.難點:學生很難想到對任意銳角,它的對邊、鄰邊與斜邊的比值也是固定的事實,關鍵在于教師引導學生比較、分析,得出結論.

三、教學步驟

(一)明確目標

1.如圖6-1,長5米的梯子架在高為3米的墻上,則A、B間距離為多少米?

2.長5米的梯子以傾斜角∠CAB為30°靠在墻上,則A、B間的距離為多少?

3.若長5米的梯子以傾斜角40°架在墻上,則A、B間距離為多少?

4.若長5米的梯子靠在墻上,使A、B間距為2米,則傾斜角∠CAB為多少度?

前兩個問題學生很容易回答.這兩個問題的設計主要是引起學生的回憶,并使學生意識到,本章要用到這些知識.但后兩個問題的設計卻使學生感到疑惑,這對初三年級這些好奇、好勝的學生來說,起到激起學生的學習興趣的作用.同時使學生對本章所要學習的內容的特點有一個初步的了解,有些問題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識是不能解決的,解決這類問題,關鍵在于找到一種新方法,求出一條邊或一個未知銳角,只要做到這一點,有關直角三角形的其他未知邊角就可用學過的知識全部求出來.

通過四個例子引出課題.

(二)整體感知

1.請每一位同學拿出自己的三角板,分別測量并計算30°、45°、60°角的對邊、鄰邊與斜邊的比值.

學生很快便會回答結果:無論三角尺大小如何,其比值是一個固定的值.程度較好的學生還會想到,以后在這些特殊直角三角形中,只要知道其中一邊長,就可求出其他未知邊的長.

2.請同學畫一個含40°角的直角三角形,并測量、計算40°角的對邊、鄰邊與斜邊的比值,學生又高興地發現,不論三角形大小如何,所求的比值是固定的.大部分學生可能會想到,當銳角取其他固定值時,其對邊、鄰邊與斜邊的比值也是固定的嗎?

這樣做,在培養學生動手能力的同時,也使學生對本節課要研究的知識有了整體感知,喚起學生的求知欲,大膽地探索新知.

(三)重點、難點的學習與目標完成過程

1.通過動手實驗,學生會猜想到“無論直角三角形的銳角為何值,它的對邊、鄰邊與斜邊的比值總是固定不變的”.但是怎樣證明這個命題呢?學生這時的思維很活躍.對于這個問題,部分學生可能能解決它.因此教師此時應讓學生展開討論,獨立完成.

2.學生經過研究,也許能解決這個問題.若不能解決,教師可適當引導:

若一組直角三角形有一個銳角相等,可以把其

頂點A1,A2,A3重合在一起,記作A,并使直角邊AC1,AC2,AC3……落在同一條直線上,則斜邊AB1,AB2,AB3……落在另一條直線上.這樣同學們能解決這個問題嗎?引導學生獨立證明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴

形中,∠A的對邊、鄰邊與斜邊的比值,是一個固定值.

通過引導,使學生自己獨立掌握了重點,達到知識教學目標,同時培養學生能力,進行了德育滲透.

而前面導課中動手實驗的設計,實際上為突破難點而設計.這一設計同時起到培養學生思維能力的作用.

練習題為 作了孕伏同時使學生知道任意銳角的對邊與斜邊的比值都能求出來.

(四)總結與擴展

1.引導學生作知識總結:本節課在復習勾股定理及含30°角直角三角形的性質基礎上,通過動手實驗、證明,我們發現,只要直角三角形的銳角固定,它的對邊、鄰邊與斜邊的比值也是固定的.

教師可適當補充:本節課經過同學們自己動手實驗,大膽猜測和積極思考,我們發現了一個新的結論,相信大家的邏輯思維能力又有所提高,希望大家發揚這種創新精神,變被動學知識為主動發現問題,培養自己的創新意識.

2.擴展:當銳角為30°時,它的對邊與斜邊比值我們知道.今天我們又發現,銳角任意時,它的對邊與斜邊的比值也是固定的.如果知道這個比值,已知一邊求其他未知邊的問題就迎刃而解了.看來這個比值很重要,下節課我們就著重研究這個“比值”,有興趣的同學可以提前預習一下.通過這種擴展,不僅對正、余弦概念有了初步印象,同時又激發了學生的興趣.

四、布置作業

本節課內容較少,而且是為正、余弦概念打基礎的,因此課后應要求學生預習正余弦概念.

五、板書設計

初三學生數學教案篇6

教學內容

1.一元二次方程根的概念;

2.?根據題意判定一個數是否是一元二次方程的根及其利用它們解決一些具體題目. 教學目標

了解一元二次方程根的概念,會判定一個數是否是一個一元二次方程的根及利用它們解決一些具體問題. 提出問題,根據問題列出方程,化為一元二次方程的一般形式,列式求解;由解給出根的概念;再由根的概念判定一個數是否是根.同時應用以上的幾個知識點解決一些具體問題. 重難點關鍵

1.重點:判定一個數是否是方程的根;

2.?難點關鍵:由實際問題列出的一元二次方程解出根后還要考慮這些根是否確定是實際問題的根.

教學過程

一、復習引入

學生活動:請同學獨立完成下列問題.

2

問題1.前面有關“執竿進屋”的問題中,我們列得方程x-8x+20=0

列表:

問題2列表:

3

老師點評(略) 二、探索新知 提問:(1)問題1中一元二次方程的解是多少?問題2?中一元二次方程的解是多少? (2)如果拋開實際問題,問題2中還有其它解嗎?

22

老師點評:(1)問題1中x=2與x=10是x-8x+20=0的解,問題2中,x=4是x+7x-44=0的解.(2)如

果拋開實際問題,問題2中還有x=-11的解.

一元二次方程的解也叫做一元二次方程的根.

2

回過頭來看:x-8x+20=0有兩個根,一個是2,另一個是10,都滿足題意;但是,問題2中的x=-11的根不滿足題意.因此,由實際問題列出方程并解得的根,并不一定是實際問題的根,還要考慮這些根是否確實是實際問題的解.

2

例1.下面哪些數是方程2x+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4.

分析:要判定一個數是否是方程的根,只要把其代入等式,使等式兩邊相等即可.

2

解:將上面的這些數代入后,只有-2和-3滿足方程的等式,所以x=-2或x=-3是一元二次方程2x+10x+12=0的兩根.

2

例2.若x=1是關于x的一元二次方程a x+bx+c=0(a≠0)的一個根,求代數式20__(a+b+c)的值

2 2

練習:關于x的一元二次方程(a-1) x+x+a-1=0的一個根為0,則求a的值

點撥:如果一個數是方程的根,那么把該數代入方程,一定能使左右兩邊相等,這種解決問題的思維方法經常用到,同學們要深刻理解.

例3.你能用以前所學的知識求出下列方程的根嗎?

222

(1)x-64=0 (2)3x-6=0 (3)x-3x=0

分析:要求出方程的根,就是要求出滿足等式的數,可用直接觀察結合平方根的意義. 解:略

三、鞏固練習

教材 思考題 練習1、2.

四、歸納小結(學生歸納,老師點評) 本節課應掌握:

(1)一元二次方程根的概念;

(2)要會判斷一個數是否是一元二次方程的根;

(3)要會用一些方法求一元二次方程的根.(“夾逼”方法; 平方根的意義) 六、布臵作業

1.教材 復習鞏固3、4 綜合運用5、6、7 拓廣探索8、9. 2.選用課時作業設計.

第3課時 21.2.1 配方法

教學內容

運用直接開平方法,即根據平方根的意義把一個一元二次方程“降次”,轉化為兩個一元一次方程. 教學目標

理解一元二次方程“降次”──轉化的數學思想,并能應用它解決一些具體問題.

2

提出問題,列出缺一次項的一元二次方程ax+c=0,根據平方根的意義解出這個方程,然后知識遷移到解

2

a(ex+f)+c=0型的一元二次方程. 重難點關鍵

2

1.重點:運用開平方法解形如(x+m)=n(n≥0)的方程;領會降次──轉化的數學思想.

22

2.難點與關鍵:通過根據平方根的意義解形如x=n,知識遷移到根據平方根的意義解形如(x+m)=n(n≥0)的方程. 教學過程

一、復習引入

學生活動:請同學們完成下列各題 問題1.填空

222222

(1)x-8x+______=(x-______);(2)9x+12x+_____=(3x+_____);(3)x+px+_____=(x+____). 問題1:根據完全平方公式可得:(1)16 4;(2)4 2;(3)(

p2p

) . 22

問題2:目前我們都學過哪些方程?二元怎樣轉化成一元?一元二次方程于一元一次方程有什么不同?二次如

何轉化成一次?怎樣降次?以前學過哪些降次的方法? 二、探索新知

4

上面我們已經講了x=9,根據平方根的意義,直接開平方得x=〒3,如果x換元為2t+1,即(2t+1)=9,能否也用直接開平方的方法求解呢? (學生分組討論)

老師點評:回答是肯定的,把2t+1變為上面的x,那么2t+1=〒3 即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=--2

2 2 2

例1:解方程:(1)(2x-1)=5 (2)x+6x+9=2 (3)x-2x+4=-1

22

分析:很清楚,x+4x+4是一個完全平方公式,那么原方程就轉化為(x+2)=1.

2

解:(2)由已知,得:(x+3)=2 直接開平方,得:x+3=

所以,方程的兩根x1

x2

2

例2.市政府計劃2年內將人均住房面積由現在的10m提高到14.4m,求每年人均住房面積增長率. 分析:設每年人均住房面積增長率為x.?一年后人均住房面積就應該是10+?10x=10(1+x);二年后人均

2

住房面積就應該是10(1+x)+10(1+x)x=10(1+x) 解:設每年人均住房面積增長率為x,

2

則:10(1+x)=14.4

2

(1+x)=1.44

直接開平方,得1+x=〒1.2 即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因為每年人均住房面積的增長率應為正的,因此,x2=-2.2應舍去. 所以,每年人均住房面積增長率應為20%.

(學生小結)老師引導提問:解一元二次方程,它們的共同特點是什么? 共同特點:把一個一元二次方程“降次”,轉化為兩個一元一次方程.?我們把這種思想稱為“降次轉化思想”.

三、鞏固練習

教材 練習. 四、應用拓展

例3.某公司一月份營業額為1萬元,第一季度總營業額為3.31萬元,求該公司二、三月份營業額平均增長率是多少?

分析:設該公司二、三月份營業額平均增長率為x,?那么二月份的營業額就應該是(1+x),三月份的營

2

業額是在二月份的基礎上再增長的,應是(1+x). 解:設該公司二、三月份營業額平均增長率為x.

2

那么1+(1+x)+(1+x)=3.31 把(1+x)當成一個數,配方得:

22

1232

)=2.56,即(x+)=2.56 22333

x+=〒1.6,即x+=1.6,x+=-1.6

222

(1+x+

方程的根為x1=10%,x2=-3.1

因為增長率為正數,

所以該公司二、三月份營業額平均增長率為10%. 五、歸納小結

本節課應掌握: 由應用直接開平方法解形如x=p(p≥0),那么x=

解形如(mx+n)=p(p≥0),那么mx+n=

六、布臵作業

1.教材 復習鞏固1、2.

第4課時 22.2.1 配方法(1)

教學內容

間接即通過變形運用開平方法降次解方程. 教學目標

5

2

2

p<0則方程無解

初三學生數學教案篇7

一、素質教育目標

(一)知識教學點

使學生初步了解正弦、余弦概念;能夠較正確地用sinA、cosA表示直角三角形中兩邊的比;熟記特殊角30°、45°、60°角的正、余弦值,并能根據這些值說出對應的銳角度數.

(二)能力訓練點

逐步培養學生觀察、比較、分析、概括的思維能力.

(三)德育滲透點

滲透教學內容中普遍存在的運動變化、相互聯系、相互轉化等觀點.

二、教學重點、難點

1.教學重點:使學生了解正弦、余弦概念.

2.教學難點:用含有幾個字母的符號組sinA、cosA表示正弦、余弦;正弦、余弦概念.

三、教學步驟

(一)明確目標

1.引導學生回憶“直角三角形銳角固定時,它的對邊與斜邊的比值、鄰邊與斜邊的比值也是固定的.”

2.明確目標:這節課我們將研究直角三角形一銳角的對邊、鄰邊與斜邊的比值——正弦和余弦.

(二)整體感知

只要知道三角形任一邊長,其他兩邊就可知.

而上節課我們發現:只要直角三角形的銳角固定,它的對邊與斜邊、鄰邊與斜邊的比值也固定.這樣只要能求出這個比值,那么求直角三角形未知邊的問題也就迎刃而解了.

通過與“30°角所對的直角邊等于斜邊的一半”相類比,學生自然產生想學習的欲望,產生濃厚的學習興趣,同時對以下要研究的內容有了大體印象.

(三)重點、難點的學習與目標完成過程

正弦、余弦的概念是全章知識的基礎,對學生今后的學習與工作都十分重要,因此確定它為本課重點,同時正、余弦概念隱含角度與數之間具有一一對應的函數思想,又用含幾個字母的符號組來表示,因此概念也是難點.

在上節課研究的基礎上,引入正、余弦,“把對邊、鄰邊與斜邊的比值稱做正弦、余弦”.如圖6-3:

請學生結合圖形敘述正弦、余弦定義,以培養學生概括能力及語言表達能力.教師板書:在△ABC中,∠C為直角,我們把銳角A的對邊與斜邊的比叫做∠A的正弦,記作sinA,銳角A的鄰邊與斜邊的比叫做∠A的余弦,記作cosA.

若把∠A的對邊BC記作a,鄰邊AC記作b,斜邊AB記作c,則

引導學生思考:當∠A為銳角時,sinA、cosA的值會在什么范圍內?得結論0<sina<1,0<cosa<1(∠a為銳角).這個問題對于較差學生來說有些難度,應給學生充分思考時間,同時這個問題也使學生將數與形結合起來.< p="">

教材例1的設置是為了鞏固正弦概念,通過教師示范,使學生會求正弦,這里不妨增問“cosA、cosB”,經過反復強化,使全體學生都達到目標,更加突出重點.

例1 求出圖6-4所示的Rt△ABC中的sinA、sinB和cosA、cosB的值.

學生練習1中1、2、3.

讓每個學生畫含30°、45°的直角三角形,分別求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.這一練習既用到以前的知識,又鞏固正弦、余弦的概念,經過學習親自動筆計算后,對特殊角三角函數值印象很深刻.

例2 求下列各式的值:

為了使學生熟練掌握特殊角三角函數值,這里還應安排六個小題:

(1)sin45°+cos45; (2)sin30°?cos60°;

在確定每個學生都牢記特殊角的三角函數值后,引導學生思考,“請大家觀察特殊角的正弦和余弦值,猜測一下,sin20°大概在什么范圍內,cos50°呢?”這樣的引導不僅培養學生的觀察力、注意力,而且培養學生勇于思考、大膽創新的精神.還可以進一步請成績較好的同學用語言來敘述“銳角的正弦值隨角度增大而增大,余弦值隨角度增大而減小.”為查正余弦表作準備.

(四)總結、擴展

首先請學生作小結,教師適當補充,“主要研究了銳角的正弦、余弦概念,已知直角三角形的兩邊可求其銳角的正、余弦值.知道任意銳角A的正、余弦值都在0~1之間,即

0<sina<1, p="" 0<cosa<1(∠a為銳角).

還發現Rt△ABC的兩銳角∠A、∠B,sinA=cosB,cosA=sinB.正弦值隨角度增大而增大,余弦值隨角度增大而減小.”

四、布置作業

教材習題14.1中A組3.

預習下一課內容.

五、板書設計

14.1 正弦和余弦(二)

一、概念: 三、例1---------- 四、特殊角的正余弦值

------------- ------------------- -----------------------

二、范圍: ------------------ 五、例2 ------------

正弦和余弦(三)

一、素質教育目標

(一)知識教學點

使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系.

(二)能力訓練點

逐步培養學生觀察、比較、分析、綜合、抽象、概括的邏輯思維能力.

(三)德育滲透點

培養學生獨立思考、勇于創新的精神.

二、教學重點、難點

1.重點:使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系并會應用.

2.難點:一個銳角的正弦(余弦)與它的余角的余弦(正弦)之間的關系的應用.

三、教學步驟

(一)明確目標

1.復習提問

(1)、什么是∠A的正弦、什么是∠A的余弦,結合圖形請學生回答.因為正弦、余弦的概念是研究本課內容的知識基礎,請中下學生回答,從中可以了解教學班還有多少人不清楚的,可以采取適當的補救措施.

(2)請同學們回憶30°、45°、60°角的正、余弦值(教師板書).

(3)請同學們觀察,從中發現什么特征?學生一定會回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,這三個角的正弦值等于它們余角的余弦值”.

2.導入新課

根據這一特征,學生們可能會猜想“一個銳角的正弦(余弦)值等于它的余角的余弦(正弦)值.”這是否是真命題呢?引出課題.

(二)、整體感知

關于銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系,是通過30°、45°、60°角的正弦、余弦值之間的關系引入的,然后加以證明.引入這兩個關系式是為了便于查“正弦和余弦表”,關系式雖然用黑體字并加以文字語言的證明,但不標明是定理,其證明也不要求學生理解,更不應要求學生利用這兩個關系式去推證其他三角恒等式.在本章,這兩個關系式的用處僅僅限于查表和計算,而不是證明.

(三)重點、難點的學習和目標完成過程

1.通過復習特殊角的三角函數值,引導學生觀察,并猜想“任一銳角的正弦(余弦)值等于它的余角的余弦(正弦)值嗎?”提出問題,激發學生的學習熱情,使學生的思維積極活躍.

2.這時少數反應快的學生可能頭腦中已經“畫”出了圖形,并有了思路,但對部分學生來說仍思路凌亂.因此教師應進一步引導:sinA=cos(90°-A),cosA=sin(90°-A)(A是銳角)成立嗎?這時,學生結合正、余弦的概念,完全可以自己解決,教師要給學生足夠的研究解決問題的時間,以培養學生邏輯思維能力及獨立思考、勇于創新的精神.

3.教師板書:

任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值.

sinA=cos(90°-A),cosA=sin(90°-A).

4.在學習了正、余弦概念的基礎上,學生了解以上內容并不困難,但是,由于學生初次接觸三角函數,還不熟練,而定理又涉及余角、余函數,使學生極易混淆.因此,定理的應用對學生來說是難點、在給出定理后,需加以鞏固.

已知∠A和∠B都是銳角,

(1)把cos(90°-A)寫成∠A的正弦.

(2)把sin(90°-A)寫成∠A的余弦.

這一練習只能起到鞏固定理的作用.為了運用定理,教材安排了例3.

(2)已知sin35°=0.5736,求cos55°;

(3)已知cos47°6′=0.6807,求sin42°54′.

(1)問比較簡單,對照定理,學生立即可以回答.(2)、(3)比(1)則更深一步,因為(1)明確指出∠B與∠A互余,(2)、(3)讓學生自己發現35°與55°的角,47°6′分42°54′的角互余,從而根據定理得出答案,因此(2)、(3)問在課堂上應該請基礎好一些的同學講清思維過程,便于全體學生掌握,在三個問題處理完之后,將題目變形:

(2)已知sin35°=0.5736,則cos______=0.5736.

(3)cos47°6′=0.6807,則sin______=0.6807,以培養學生思維能力.

為了配合例3的教學,教材中配備了練習題2.

(2)已知sin67°18′=0.9225,求cos22°42′;

(3)已知cos4°24′=0.9971,求sin85°36′.

學生獨立完成練習2,就說明定理的教學較成功,學生基本會運用.

教材中3的設置,實際上是對前二節課內容的綜合運用,既考察學生正、余弦概念的掌握程度,同時又對本課知識加以鞏固練習,因此例3的安排恰到好處.同時,做例3也為下一節查正余弦表做了準備.

(四)小結與擴展

1.請學生做知識小結,使學生對所學內容進行歸納總結,將所學內容變成自己知識的組成部分.

2.本節課我們由特殊角的正弦(余弦)和它的余角的余弦(正弦)值間關系,以及正弦、余弦的概念得出的結論:任意一個銳角的正弦值等于它的余角的余弦值,任意一個銳角的余弦值等于它的余角的正弦值.

四、布置作業

教材習題14.1A組4、5.

五、板書設計

34504 主站蜘蛛池模板: 智能化的检漏仪_气密性测试仪_流量测试仪_流阻阻力测试仪_呼吸管快速检漏仪_连接器防水测试仪_车载镜头测试仪_奥图自动化科技 | 成都珞石机械 - 模温机、油温机、油加热器生产厂家 | 整合营销推广|营销网络推广公司|石家庄网站优化推广公司|智营销 好物生环保网、环保论坛 - 环保人的学习交流平台 | KBX-220倾斜开关|KBW-220P/L跑偏开关|拉绳开关|DHJY-I隔爆打滑开关|溜槽堵塞开关|欠速开关|声光报警器-山东卓信有限公司 | 温控器生产厂家-提供温度开关/热保护器定制与批发-惠州市华恺威电子科技有限公司 | 云南标线|昆明划线|道路标线|交通标线-就选云南云路施工公司-云南云路科技有限公司 | 出国劳务公司_正规派遣公司[严海] | 光照全温振荡器(智能型)-恒隆仪器| 铝合金脚手架厂家-专注高空作业平台-深圳腾达安全科技 | 档案密集架,移动密集架,手摇式密集架,吉林档案密集架-厂家直销★价格公道★质量保证 | 纸箱抗压机,拉力机,脂肪测定仪,定氮仪-山东德瑞克仪器有限公司 | 无锡市珂妮日用化妆品有限公司|珂妮日化官网|洗手液厂家 | 培训中心-翰香原香酥板栗饼加盟店总部-正宗板栗酥饼技术 | 东莞市海宝机械有限公司-不锈钢分选机-硅胶橡胶-生活垃圾-涡电流-静电-金属-矿石分选机 | 综合管廊模具_生态,阶梯护坡模具_检查井模具制造-致宏模具厂家 | ptc_浴霸_大巴_干衣机_呼吸机_毛巾架_电动车加热器-上海帕克 | 手术室净化装修-手术室净化工程公司-华锐手术室净化厂家 | 仿古建筑设计-仿古建筑施工-仿古建筑公司-汉匠古建筑设计院 | 粤丰硕水性环氧地坪漆-防静电自流平厂家-环保地坪涂料代理 | 活动策划,舞台搭建,活动策划公司-首选美湖上海活动策划公司 | 【法利莱住人集装箱厂家】—活动集装箱房,集装箱租赁_大品牌,更放心 | 回转窑-水泥|石灰|冶金-巩义市瑞光金属制品有限责任公司 | 沈阳激光机-沈阳喷码机-沈阳光纤激光打标机-沈阳co2激光打标机 | 合肥网带炉_安徽箱式炉_钟罩炉-合肥品炙装备科技有限公司 | 拉力测试机|材料拉伸试验机|电子拉力机价格|万能试验机厂家|苏州皖仪实验仪器有限公司 | 上海电子秤厂家,电子秤厂家价格,上海吊秤厂家,吊秤供应价格-上海佳宜电子科技有限公司 | 杰福伦_磁致伸缩位移传感器_线性位移传感器-意大利GEFRAN杰福伦-河南赉威液压科技有限公司 | 布袋除尘器-单机除尘器-脉冲除尘器-泊头市兴天环保设备有限公司 布袋除尘器|除尘器设备|除尘布袋|除尘设备_诺和环保设备 | 河北中仪伟创试验仪器有限公司是专业生产沥青,土工,水泥,混凝土等试验仪器的厂家,咨询电话:13373070969 | HYDAC过滤器,HYDAC滤芯,现货ATOS油泵,ATOS比例阀-东莞市广联自动化科技有限公司 | 头条搜索极速版下载安装免费新版,头条搜索极速版邀请码怎么填写? - 欧远全 | 私人别墅家庭影院系统_家庭影院音响_家庭影院装修设计公司-邦牛影音 | 合肥办公室装修 - 合肥工装公司 - 天思装饰 | 缓蚀除垢剂_循环水阻垢剂_反渗透锅炉阻垢剂_有机硫化物-郑州威大水处理材料有限公司 | sus630/303cu不锈钢棒,440C/430F/17-4ph不锈钢研磨棒-江苏德镍金属科技有限公司 | 自动化展_机器人展_机床展_工业互联网展_广东佛山工博会 | 智成电子深圳tdk一级代理-提供TDK电容电感贴片蜂鸣器磁芯lambda电源代理经销,TDK代理商有哪些TDK一级代理商排名查询。-深圳tdk一级代理 | 政府回应:200块在义乌小巷能买到爱情吗?——揭秘打工族省钱约会的生存智慧 | AGV无人叉车_激光叉车AGV_仓储AGV小车_AGV无人搬运车-南昌IKV机器人有限公司[官网] | 中视电广_短视频拍摄_短视频推广_短视频代运营_宣传片拍摄_影视广告制作_中视电广 | 泰国专线_泰国物流专线_广州到泰国物流公司-泰廊曼国际 |