小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 九年級教案 > 數學教案 >

初三數學教案內容

時間: 沐欽 數學教案

初三數學教案內容都有哪些?教學進程常常有可能離開教案所預想的情況,因此教師不能死扣教案,不能把學生的思維的積極性壓下去,下面是小編為大家帶來的初三數學教案內容七篇,希望大家能夠喜歡!

初三數學教案內容

初三數學教案內容精選篇1

一、素質教育目標

(一)知識教學點

使學生知道當直角三角形的銳角固定時,它的對邊、鄰邊與斜邊的比值也都固定這一事實.

(二)能力訓練點

逐步培養學生會觀察、比較、分析、概括等邏輯思維能力.

(三)德育滲透點

引導學生探索、發現,以培養學生獨立思考、勇于創新的精神和良好的學習習慣.

二、教學重點、難點

1.重點:使學生知道當銳角固定時,它的對邊、鄰邊與斜邊的比值也是固定的這一事實.

2.難點:學生很難想到對任意銳角,它的對邊、鄰邊與斜邊的比值也是固定的事實,關鍵在于教師引導學生比較、分析,得出結論.

三、教學步驟

(一)明確目標

1.如圖6-1,長5米的梯子架在高為3米的墻上,則A、B間距離為多少米?

2.長5米的梯子以傾斜角∠CAB為30°靠在墻上,則A、B間的距離為多少?

3.若長5米的梯子以傾斜角40°架在墻上,則A、B間距離為多少?

4.若長5米的梯子靠在墻上,使A、B間距為2米,則傾斜角∠CAB為多少度?

前兩個問題學生很容易回答.這兩個問題的設計主要是引起學生的回憶,并使學生意識到,本章要用到這些知識.但后兩個問題的設計卻使學生感到疑惑,這對初三年級這些好奇、好勝的學生來說,起到激起學生的學習興趣的作用.同時使學生對本章所要學習的內容的特點有一個初步的了解,有些問題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識是不能解決的,解決這類問題,關鍵在于找到一種新方法,求出一條邊或一個未知銳角,只要做到這一點,有關直角三角形的其他未知邊角就可用學過的知識全部求出來.

通過四個例子引出課題.

(二)整體感知

1.請每一位同學拿出自己的三角板,分別測量并計算30°、45°、60°角的對邊、鄰邊與斜邊的比值.

學生很快便會回答結果:無論三角尺大小如何,其比值是一個固定的值.程度較好的學生還會想到,以后在這些特殊直角三角形中,只要知道其中一邊長,就可求出其他未知邊的長.

2.請同學畫一個含40°角的直角三角形,并測量、計算40°角的對邊、鄰邊與斜邊的比值,學生又高興地發現,不論三角形大小如何,所求的比值是固定的.大部分學生可能會想到,當銳角取其他固定值時,其對邊、鄰邊與斜邊的比值也是固定的嗎?

這樣做,在培養學生動手能力的同時,也使學生對本節課要研究的知識有了整體感知,喚起學生的求知欲,大膽地探索新知.

(三)重點、難點的學習與目標完成過程

1.通過動手實驗,學生會猜想到“無論直角三角形的銳角為何值,它的對邊、鄰邊與斜邊的比值總是固定不變的”.但是怎樣證明這個命題呢?學生這時的思維很活躍.對于這個問題,部分學生可能能解決它.因此教師此時應讓學生展開討論,獨立完成.

2.學生經過研究,也許能解決這個問題.若不能解決,教師可適當引導:

若一組直角三角形有一個銳角相等,可以把其

頂點A1,A2,A3重合在一起,記作A,并使直角邊AC1,AC2,AC3……落在同一條直線上,則斜邊AB1,AB2,AB3……落在另一條直線上.這樣同學們能解決這個問題嗎?引導學生獨立證明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴

形中,∠A的對邊、鄰邊與斜邊的比值,是一個固定值.

通過引導,使學生自己獨立掌握了重點,達到知識教學目標,同時培養學生能力,進行了德育滲透.

而前面導課中動手實驗的設計,實際上為突破難點而設計.這一設計同時起到培養學生思維能力的作用.

練習題為 作了孕伏同時使學生知道任意銳角的對邊與斜邊的比值都能求出來.

(四)總結與擴展

1.引導學生作知識總結:本節課在復習勾股定理及含30°角直角三角形的性質基礎上,通過動手實驗、證明,我們發現,只要直角三角形的銳角固定,它的對邊、鄰邊與斜邊的比值也是固定的.

教師可適當補充:本節課經過同學們自己動手實驗,大膽猜測和積極思考,我們發現了一個新的結論,相信大家的邏輯思維能力又有所提高,希望大家發揚這種創新精神,變被動學知識為主動發現問題,培養自己的創新意識.

2.擴展:當銳角為30°時,它的對邊與斜邊比值我們知道.今天我們又發現,銳角任意時,它的對邊與斜邊的比值也是固定的.如果知道這個比值,已知一邊求其他未知邊的問題就迎刃而解了.看來這個比值很重要,下節課我們就著重研究這個“比值”,有興趣的同學可以提前預習一下.通過這種擴展,不僅對正、余弦概念有了初步印象,同時又激發了學生的興趣.

四、布置作業

本節課內容較少,而且是為正、余弦概念打基礎的,因此課后應要求學生預習正余弦概念.

五、板書設計

第十四章 解直角三角形

一、銳角三角函數 證明:------------------

結論:--------------------

練習:---------------------

初三數學教案內容精選篇2

一、素質教育目標

(一)知識教學點

使學生初步了解正弦、余弦概念;能夠較正確地用sinA、cosA表示直角三角形中兩邊的比;熟記特殊角30°、45°、60°角的正、余弦值,并能根據這些值說出對應的銳角度數.

(二)能力訓練點

逐步培養學生觀察、比較、分析、概括的思維能力.

(三)德育滲透點

滲透教學內容中普遍存在的運動變化、相互聯系、相互轉化等觀點.

二、教學重點、難點

1.教學重點:使學生了解正弦、余弦概念.

2.教學難點:用含有幾個字母的符號組sinA、cosA表示正弦、余弦;正弦、余弦概念.

三、教學步驟

(一)明確目標

1.引導學生回憶“直角三角形銳角固定時,它的對邊與斜邊的比值、鄰邊與斜邊的比值也是固定的.”

2.明確目標:這節課我們將研究直角三角形一銳角的對邊、鄰邊與斜邊的比值——正弦和余弦.

(二)整體感知

只要知道三角形任一邊長,其他兩邊就可知.

而上節課我們發現:只要直角三角形的銳角固定,它的對邊與斜邊、鄰邊與斜邊的比值也固定.這樣只要能求出這個比值,那么求直角三角形未知邊的問題也就迎刃而解了.

通過與“30°角所對的直角邊等于斜邊的一半”相類比,學生自然產生想學習的欲望,產生濃厚的學習興趣,同時對以下要研究的內容有了大體印象.

(三)重點、難點的學習與目標完成過程

正弦、余弦的概念是全章知識的基礎,對學生今后的學習與工作都十分重要,因此確定它為本課重點,同時正、余弦概念隱含角度與數之間具有一一對應的函數思想,又用含幾個字母的符號組來表示,因此概念也是難點.

在上節課研究的基礎上,引入正、余弦,“把對邊、鄰邊與斜邊的比值稱做正弦、余弦”.如圖6-3:

請學生結合圖形敘述正弦、余弦定義,以培養學生概括能力及語言表達能力.教師板書:在△ABC中,∠C為直角,我們把銳角A的對邊與斜邊的比叫做∠A的正弦,記作sinA,銳角A的鄰邊與斜邊的比叫做∠A的余弦,記作cosA.

若把∠A的對邊BC記作a,鄰邊AC記作b,斜邊AB記作c,則

引導學生思考:當∠A為銳角時,sinA、cosA的值會在什么范圍內?得結論0<sina<1,0<cosa<1(∠a為銳角).這個問題對于較差學生來說有些難度,應給學生充分思考時間,同時這個問題也使學生將數與形結合起來.< p="">

教材例1的設置是為了鞏固正弦概念,通過教師示范,使學生會求正弦,這里不妨增問“cosA、cosB”,經過反復強化,使全體學生都達到目標,更加突出重點.

例1 求出圖6-4所示的Rt△ABC中的sinA、sinB和cosA、cosB的值.

學生練習1中1、2、3.

讓每個學生畫含30°、45°的直角三角形,分別求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.這一練習既用到以前的知識,又鞏固正弦、余弦的概念,經過學習親自動筆計算后,對特殊角三角函數值印象很深刻.

例2 求下列各式的值:

為了使學生熟練掌握特殊角三角函數值,這里還應安排六個小題:

(1)sin45°+cos45; (2)sin30°?cos60°;

在確定每個學生都牢記特殊角的三角函數值后,引導學生思考,“請大家觀察特殊角的正弦和余弦值,猜測一下,sin20°大概在什么范圍內,cos50°呢?”這樣的引導不僅培養學生的觀察力、注意力,而且培養學生勇于思考、大膽創新的精神.還可以進一步請成績較好的同學用語言來敘述“銳角的正弦值隨角度增大而增大,余弦值隨角度增大而減小.”為查正余弦表作準備.

(四)總結、擴展

首先請學生作小結,教師適當補充,“主要研究了銳角的正弦、余弦概念,已知直角三角形的兩邊可求其銳角的正、余弦值.知道任意銳角A的正、余弦值都在0~1之間,即

0<sina<1, p="" 0<cosa<1(∠a為銳角).

還發現Rt△ABC的兩銳角∠A、∠B,sinA=cosB,cosA=sinB.正弦值隨角度增大而增大,余弦值隨角度增大而減小.”

四、布置作業

教材習題14.1中A組3.

預習下一課內容.

五、板書設計

14.1 正弦和余弦(二)

一、概念:

二、范圍: ------------------

三、例1----------

四、特殊角的正余弦值

------------- ------------------- -----------------------

五、例2 ------------

初三數學教案內容精選篇3

一、素質教育目標

(一)知識教學點

使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系.

(二)能力訓練點

逐步培養學生觀察、比較、分析、綜合、抽象、概括的邏輯思維能力.

(三)德育滲透點

培養學生獨立思考、勇于創新的精神.

二、教學重點、難點

1.重點:使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系并會應用.

2.難點:一個銳角的正弦(余弦)與它的余角的余弦(正弦)之間的關系的應用.

三、教學步驟

(一)明確目標

1.復習提問

(1)、什么是∠A的正弦、什么是∠A的余弦,結合圖形請學生回答.因為正弦、余弦的概念是研究本課內容的知識基礎,請中下學生回答,從中可以了解教學班還有多少人不清楚的,可以采取適當的補救措施.

(2)請同學們回憶30°、45°、60°角的正、余弦值(教師板書).

(3)請同學們觀察,從中發現什么特征?學生一定會回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,這三個角的正弦值等于它們余角的余弦值”.

2.導入新課

根據這一特征,學生們可能會猜想“一個銳角的正弦(余弦)值等于它的余角的余弦(正弦)值.”這是否是真命題呢?引出課題.

(二)、整體感知

關于銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系,是通過30°、45°、60°角的正弦、余弦值之間的關系引入的,然后加以證明.引入這兩個關系式是為了便于查“正弦和余弦表”,關系式雖然用黑體字并加以文字語言的證明,但不標明是定理,其證明也不要求學生理解,更不應要求學生利用這兩個關系式去推證其他三角恒等式.在本章,這兩個關系式的用處僅僅限于查表和計算,而不是證明.

(三)重點、難點的學習和目標完成過程

1.通過復習特殊角的三角函數值,引導學生觀察,并猜想“任一銳角的正弦(余弦)值等于它的余角的余弦(正弦)值嗎?”提出問題,激發學生的學習熱情,使學生的思維積極活躍.

2.這時少數反應快的學生可能頭腦中已經“畫”出了圖形,并有了思路,但對部分學生來說仍思路凌亂.因此教師應進一步引導:sinA=cos(90°-A),cosA=sin(90°-A)(A是銳角)成立嗎?這時,學生結合正、余弦的概念,完全可以自己解決,教師要給學生足夠的研究解決問題的時間,以培養學生邏輯思維能力及獨立思考、勇于創新的精神.

3.教師板書:

任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值.

sinA=cos(90°-A),cosA=sin(90°-A).

4.在學習了正、余弦概念的基礎上,學生了解以上內容并不困難,但是,由于學生初次接觸三角函數,還不熟練,而定理又涉及余角、余函數,使學生極易混淆.因此,定理的應用對學生來說是難點、在給出定理后,需加以鞏固.

已知∠A和∠B都是銳角,

(1)把cos(90°-A)寫成∠A的正弦.

(2)把sin(90°-A)寫成∠A的余弦.

這一練習只能起到鞏固定理的作用.為了運用定理,教材安排了例3.

(2)已知sin35°=0.5736,求cos55°;

(3)已知cos47°6′=0.6807,求sin42°54′.

(1)問比較簡單,對照定理,學生立即可以回答.(2)、(3)比(1)則更深一步,因為(1)明確指出∠B與∠A互余,(2)、(3)讓學生自己發現35°與55°的角,47°6′分42°54′的角互余,從而根據定理得出答案,因此(2)、(3)問在課堂上應該請基礎好一些的同學講清思維過程,便于全體學生掌握,在三個問題處理完之后,將題目變形:

(2)已知sin35°=0.5736,則cos______=0.5736.

(3)cos47°6′=0.6807,則sin______=0.6807,以培養學生思維能力.

為了配合例3的教學,教材中配備了練習題2.

(2)已知sin67°18′=0.9225,求cos22°42′;

(3)已知cos4°24′=0.9971,求sin85°36′.

學生獨立完成練習2,就說明定理的教學較成功,學生基本會運用.

教材中3的設置,實際上是對前二節課內容的綜合運用,既考察學生正、余弦概念的掌握程度,同時又對本課知識加以鞏固練習,因此例3的安排恰到好處.同時,做例3也為下一節查正余弦表做了準備.

(四)小結與擴展

1.請學生做知識小結,使學生對所學內容進行歸納總結,將所學內容變成自己知識的組成部分.

2.本節課我們由特殊角的正弦(余弦)和它的余角的余弦(正弦)值間關系,以及正弦、余弦的概念得出的結論:任意一個銳角的正弦值等于它的余角的余弦值,任意一個銳角的余弦值等于它的余角的正弦值.

四、布置作業

教材習題14.1A組4、5.

五、板書設計

初三數學教案內容精選篇4

本學期是初中學習的關鍵時期,教學任務非常艱巨。因此,要完成教學任務,必須緊扣教學大綱,結合教學內容和學生實際,把握好重點、難點,努力把本學期的任務圓滿完成。九年級畢業班總復習教學時間緊,任務重,要求高,如何提高數學總復習的質量和效益,是每位畢業班數學教師必須面對的問題。下面特制定以下教學復習計劃。

一、學情分析

經過前面五個學期的數學教學,本班學生的數學基礎和學習態度已經明晰可見。通過上個學期多次摸底測試及期末檢測發現,本班的特點是兩極分化現象極為嚴重。雖然涌現了一批學習刻苦,成績優異的優秀學生,但后進學生因數學成績十分低下,厭學情緒非常嚴重,基本放棄對數學的學習了。其次是部分中等學生對前面所學的一些基礎知識記憶不清,掌握不牢。

二、指導思想

堅持貫徹黨的____教育方針,繼續深入開展新課程教學改革。立足中考,把握新課程改革下的中考命題方向,以課堂教學為中心,針對近年來中考命題的變化和趨勢進行研究,積極探索高效的復習途徑,夯實學生數學基礎,提高學生做題解題的能力,和解答的準確性,以期在中考中取得優異的數學成績。并通過本學期的課堂教學,完成九年級下冊數學教學任務及整個初中階段的數學復習教學。

三、教學內容分析

本學期,除了要完成規定的所學內容,就將開始進入初中數學總復習,將九年制義務教育數學課本教學內容分成代數、幾何兩大部分,其中初中數學教學中的六大版塊即:“實數與統計”、“方程與函數”、“解直角三角形”、“三角形”、“四邊形”、“圓”是學業考試考中的重點內容。

在《課標》要求下,培養學生創新精神和實踐能力是當前課堂教學的目標。在近幾年的中考試卷中逐漸出現了一些新穎的題目,如探索開放性問題,閱讀理解問題,以及與生活實際相聯系的應用問題。這些新題型在中考試題中也占有一定的位置,并且有逐年擴大的趨勢。如果想在綜合題以及應用性問題和開放性問題中獲得好成績,那么必須具備扎實的基礎知識和知識遷移能力。因此在總復習階段,必須牢牢抓住基礎不放,對一些常見題解題中的通性通法須掌握。

學生解題過程中存在的主要問題:

(1)審題不清,不能正確理解題意;

(2)解題時自己畫幾何圖形不會畫或有偏差,從而給解題帶來障礙;

(3)對所學知識綜合應用能力不夠;

(4)幾何依然對部分同學是一個難點,主要是幾何分析能力和推理能力較差。

四、教學目標

態度與價值觀:通過學習交流、合作、討論的方式,積極探索,改進學生的學習方式,提高學習質量,逐步形成正確地數學價值觀。

知識與技能:理解二次函數的圖像、性質與應用;理解相似三角形、相似多邊形的判定方法與性質,理解投影與視圖在生活中的應用。掌握銳角三角函數有關的計算方法。過程與方法:通過探索、學習,使學生逐步學會正確合理地進行運算,逐步學會觀察、分析、綜合、抽象,會用歸納、演繹、類比進行簡單地推理。班級教學目標:中考優秀率達到30%,合格率:80%。

五、采取的措施

1、認真學習鉆研新課標,通盤熟悉初中數學教材及教學目標,認真備好每一堂課,精心制作總復習計劃;

2、認真上好每一堂課,抓住關鍵點,分散難點,突出重點,在培養能力上下工夫;

3、注重課后反思,及時的將一節課的得失記錄下來,不斷積累教學經驗;

4、加強學校教師與家長、社會的聯系,共同努力提高學生的學習成績;

5、積極與其他教師溝通,加強教研教改,提高教學水平;

6、經常聽取學生良好的合理化建議;

7、以“兩頭”帶“中間”的戰略不變;

8、注重教學中的自主學習、合作學習、探究學習等學習方式的引導;

9、認真開展課內、課外活動,激發學生的學習興趣。

10、抓好中招備考工作。認真研讀中招數學的考試要求和近期的考試題目類型,設計好復習內容,讓學生有針對性做好復習,迎接中招的到來。

初三數學教案內容精選篇5

一、素質教育目標

(一)知識教學點

使學生會查“正弦和余弦表”,即由已知銳角求正弦、余弦值.(二)能力滲透點

逐步培養學生觀察、比較、分析、概括等邏輯思維能力.

(三)德育訓練點

培養學生良好的學習習慣.

二、教學重點、難點

1.重點:“正弦和余弦表”的查法.

2.難點:當角度在0°~90°間變化時,正弦值與余弦值隨角度變化而變化的規律.

三、教學步驟

(一)明確目標

1.復習提問

1)30°、45°、60°的正弦值和余弦值各是多少?請學生口答.

2)任意銳角的正弦(余弦)與它的余角的余弦(正弦)值之間的關系怎樣?通過復習,使學生便于理解正弦和余弦表的設計方式.

(二)整體感知

我們已經求出了30°、45°、60°這三個特殊角的正弦值和余弦值,但在生產和科研中還常用到其他銳角的正弦值和余弦值,為了使用上的方便,我們把0°—90°間每隔1′的各個角所對應的正弦值和余弦值(一般是含有四位有效數字的近似值),列成表格——正弦和余弦表.本節課我們來研究如何使用正弦和余弦表.

(三)重點、難點的學習與目標完成過程

1.“正弦和余弦表”簡介

學生已經會查平方表、立方表、平方根表、立方根表,對數學用表的結構與查法有所了解.但正弦和余弦表與其又有所區別,因此首先向學生介紹“正弦和余弦表”.

(1)“正弦和余弦表”的作用是:求銳角的正弦、余弦值,已知銳角的正弦、余弦值,求這個銳角.

2)表中角精確到1′,正弦、余弦值有四位有效數字.

3)凡表中所查得的值,都用等號,而非“≈”,根據查表所求得的值進行近似計算,結果四舍五入后,一般用約等號“≈”表示.

2.舉例說明

例4 查表求37°24′的正弦值.

學生因為有查表經驗,因此查sin37°24′的值不會是到困難,完全可以自己解決.

例5 查表求37°26′的正弦值.

學生在獨自查表時,在正弦表頂端的橫行里找不到26′,但26′在24′~30′間而靠近24′,比24′多2′,可引導學生注意修正值欄,這樣學生可能直接得答案.教師這時可設問“為什么將查得的5加在0.6074的最后一個數位上,而不是0.6074減去0.0005”.通過引導學生觀察思考,得結論:當角度在0°~90°間變化時,正弦值隨著角度的增大(或減小)而增大(或減小).

解:sin37°24′=0.6074.

角度增2′ 值增0.0005

sin37°26′=0.6079.

例6 查表求sin37°23′的值.

如果例5學生已經理解,那么例6學生完全可以自己解決,通過對比,加強學生的理解.

解:sin37°24′=0.6074

角度減1′值減0.0002

sin37°23′=0.6072.

在查表中,還應引導學生查得:

sin0°=0,sin90°=1.

根據正弦值隨角度變化規律:當角度從0°增加到90°時,正弦值從0增加到1;當角度從90°減少到0°時,正弦值從1減到0.

可引導學生查得:

cos0°=1,cos90°=0.

根據余弦值隨角度變化規律知:當角度從0°增加到90°時,余弦值從1減小到0,當角度從90°減小到0°時,余弦值從0增加到1.

(四)總結與擴展

1.請學生總結

本節課主要討論了“正弦和余弦表”的查法.了解正弦值,余弦值隨角度的變化而變化的規律:當角度在0°~90°間變化時,正弦值隨著角度的增大而增大,隨著角度的減小而減小;當角度在0°~90°間變化時,余弦值隨著角度的增大而減小,隨著角度的減小而增大.

2.“正弦和余弦表”的用處除了已知銳角查其正、余弦值外,還可以已知正、余弦值,求銳角,同學們可以試試看.

四、布置作業

預習教材中例8、例9、例10,養成良好的學習習慣.

五、板書設計

初三數學教案內容精選篇6

一、素質教育目標

(一)知識教學點

使學生會根據一個銳角的正弦值和余弦值,查出這個銳角的大小.(二)能力訓練點

逐步培養學生觀察、比較、分析、概括等邏輯思維能力.

(三)德育滲透點

培養學生良好的學習習慣.

二、教學重點、難點和疑點

1.重點:由銳角的正弦值或余弦值,查出這個銳角的大小.

2.難點:由銳角的正弦值或余弦值,查出這個銳角的大小.

3.疑點:由于余弦是減函數,查表時“值增角減,值減角增”學生常常出錯.

三、教學步驟

(一)明確目標

1.銳角的正弦值與余弦值隨角度變化的規律是什么?

這一規律也是本課查表的依據,因此課前還得引導學生回憶.

答:當角度在0°~90°間變化時,正弦值隨著角度的增大(或減小)而增大(或減小);當角度在0°~90°間變化時,余弦值隨角度的增大(或減小)而減小(或增大).

2.若cos21°30′=0.9304,且表中同一行的修正值是 則cos21°31′=______,

cos21°28′=______.

3.不查表,比較大?。?/p>

(1)sin20°______sin20°15′;

(2)cos51°______cos50°10′;

(3)sin21°______cos68°.

學生在回答2題時極易出錯,教師一定要引導學生敘述思考過程,然后得出答案.

3題的設計主要是考察學生對函數值隨角度的變化規律的理解,同時培養學生估算.

(二)整體感知

已知一個銳角,我們可用“正弦和余弦表”查出這個角的正弦值或余弦值.反過來,已知一個銳角的正弦值或余弦值,可用“正弦和余弦表”查出這個角的大小.因為學生有查“平方表”、“立方表”等經驗,對這一點必深信無疑.而且通過逆向思維,可能很快會掌握已知函數值求角的方法.

(三)重點、難點的學習與目標完成過程.

例8 已知sinA=0.2974,求銳角A.

學生通過上節課已知銳角查其正弦值和余弦值的經驗,完全能獨立查得銳角A,但教師應請同學講解查的過程:從正弦表中找出0.2974,由這個數所在行向左查得17°,由同一數所在列向上查得18′,即0.2974=sin17°18′,以培養學生語言表達能力.

解:查表得sin17°18′=0.2974,所以

銳角A=17°18′.

例9 已知cosA=0.7857,求銳角A.

分析:學生在表中找不到0.7857,這時部分學生可能束手無策,但有上節課查表的經驗,少數思維較活躍的學生可能會想出辦法.這時教師讓學生討論,在探討中尋求辦法.這對解決本題會有好處,使學生印象更深,理解更透徹.

若條件許可,應在討論后請一名學生講解查表過程:在余弦表中查不到0.7857.但能找到同它最接近的數0.7859,由這個數所在行向右查得38°,由同一個數向下查得12′,即0.7859=cos38°12′.但cosA=0.7857,比0.7859小0.0002,這說明∠A比38°12′要大,由0.7859所在行向右查得修正值0.0002對應的角度是1′,所以∠A=38°12′+1′=38°13′.

解:查表得cos38°12′=0.7859,所以:

0.7859=cos38°12′.

值減0.0002角度增1′

0.7857=cos38°13′,

即 銳角A=38°13′.

例10 已知cosB=0.4511,求銳角B.

例10與例9相比較,只是出現余差(本例中的0.0002)與修正值不一致.教師只要講清如何使用修正值(用最接近的值),以使誤差最小即可,其余部分學生在例9的基礎上,可以獨立完成.

解:0.4509=cos63°12′

值增0.0003角度減1′

0.4512=cos63°11′

∴銳角B=63°11′

為了對例題加以鞏固,教師在此應設計練習題,教材P.15中2、3.

2.已知下列正弦值或余弦值,求銳角A或B:

(1)sinA=0.7083,sinB=0.9371,

sinA=0.3526,sinB=0.5688;

(2)cosA=0.8290,cosB=0.7611,

cosA=0.2996,cosB=0.9931.

此題是配合例題而設置的,要求學生能快速準確得到答案.

(1)45°6′,69°34′,20°39′,34°40′;

(2)34°0′,40°26′,72°34′,6°44′.

3.查表求sin57°與cos33°,所得的值有什么關系?

此題是讓學生通過查表進一步印證關系式sinA=cos(90°-A),cosA=0.8387,∴sin57°=cos33°,或sin57°=cos(90°-57°),cos33°=sin(90°-33°).

(四)、總結、擴展

本節課我們重點學習了已知一個銳角的正弦值或余弦值,可用“正弦和余弦表”查出這個銳角的大小,這也是本課難點,同學們要會依據正弦值和余弦值隨角度變化規律(角度變化范圍0°~90°)查“正弦和余弦表”.

四、布置作業

教材復習題十四A組3、4,要求學生只查正、余弦。

五、板書設計

初三數學教案內容精選篇7

目的要求

1.理解并掌握函數值與最小值的意義及其求法.

2.弄清函數極值與最值的區別與聯系.

3.養成“整體思維”的習慣,提高應用知識解決實際問題的能力.

內容分析

1.教科書結合函數圖象,直觀地指出函數值、最小值的概念,從中得出利用導數求函數值和最小值的方法.

2.要著重引導學生弄清函數最值與極值的區別與聯系.函數值和最小值是比較整個定義域上的函數值得出的,而函數的極值則是比較極值點附近兩側的函數值而得出的,是局部的.

3.我們所討論的函數y=f(x)在[a,b]上有定義,在開區間(a,b)內有導數.在文科的數學教學中回避了函數連續的概念.規定y=f(x)在[a,b]上有定義,是為了保證函數在[a,b]內有值和最小值;在(a,b)內可導,是為了能用求導的方法求解.

4.求函數值和最小值,先確定函數的極大值和極小值,然后,再比較函數在區間兩端的函數值,因此,用導數判斷函數極大值與極小值是解決函數最值問題的關鍵.

5.有關函數最值的實際應用問題的教學,是本節內容的難點.教學時,必須引導學生確定正確的數學建模思想,分析實際問題中各變量之間的關系,給出自變量與因變量的函數關系式,同時確定函數自變量的實際意義,找出取值范圍,確保解題的正確性.從此,在函數最值的求法中多了一種非常優美而簡捷的方法——求導法.依教學大綱規定,有關此類函數最值的實際應用問題一般指單峰函數,而文科所涉及的函數必須是在所學導數公式之內能求導的函數.

教學過程

1.復習函數極值的一般求法

①學生復述求函數極值的三個步驟.

②教師強調理解求函數極值時應注意的幾個問題.

2.提出問題(用字幕打出)

①在教科書中的(圖2-11)中,哪些點是極大值點?哪些點是極小值點?

②x=a、x=b是不是極值點?

③在區間[a,b]上函數y=f(x)的值是什么?最小值是什么?

④一般地,設y=f(x)是定義在[a,b]上的函數,且在(a,b)內有導數.求函數y=f(x)在[a,b]上的值與最小值,你認為應通過什么方法去求解?

3.分組討論,回答問題

①學生回答:f(x2)是極大值,f(x1)與f(x3)都是極小值.

②依照極值點的定義討論得出:f(a)、f(b)不是函數y=f(x)的極值.

③直觀地從函數圖象中看出:f(x3)是最小值,f(b)是值.

(教師在回答完問題①②③之后,再提問:如果在沒有給出函數圖象的情況下,怎樣才能判斷出f(x3)是最小值,而f(b)是值呢?)

④與學生共同討論,得出求函數最值的一般方法:

i)求y=f(x)在(a,b)內的極值(極大值與極小值);

ii)將函數y=f(x)的各極值與f(a)、f(b)作比較,其中的一個為值,最小的一個為最小值.

4.分析講解例題

例4 求函數y=x4-2x2+5在區間[-2,2]上的值與最小值.

板書講解,鞏固求函數最值的求導法的兩個步驟,同時復習求函數極值的一般求法.

例5 用邊長為60cm的正方形鐵皮做一個無蓋小箱,先在四角分別截去一個小正方形,然后把四邊翻轉90°角,再焊接而成(教科書中圖2-13).問水箱底邊的長取多少時,水箱容積,容積為多少?

用多媒體課件講解:

①用課件展示題目與水箱的制作過程.

②分析變量與變量的關系,確定建模思想,列出函數關系式V=f(x),x∈D.

③解決V=f(x),x∈D求最值問題的方法(高次函數的最值,一般采用求導的方法,提醒學生注意自變量的實際意義).

④用“幾何畫板”平臺驗證答案.

5.強化訓練

演板P68練習

6.歸納小結

①求函數值與最小值的兩個步驟.

②解決最值應用題的一般思路.

布置作業

教科書習題2.5第4題、第5題、第6題、第7題.

34499 主站蜘蛛池模板: 陕西自考报名_陕西自学考试网 | 回转窑-水泥|石灰|冶金-巩义市瑞光金属制品有限责任公司 | 骨灰存放架|骨灰盒寄存架|骨灰架厂家|智慧殡葬|公墓陵园管理系统|网上祭奠|告别厅智能化-厦门慈愿科技 | PC构件-PC预制构件-构件设计-建筑预制构件-PC构件厂-锦萧新材料科技(浙江)股份有限公司 | 真空吸污车_高压清洗车厂家-程力专用汽车股份有限公司官网 | 蓝鹏测控平台 - 智慧车间系统 - 车间生产数据采集与分析系统 | 骨龄仪_骨龄检测仪_儿童骨龄测试仪_品牌生产厂家【品源医疗】 | 拖鞋定制厂家-品牌拖鞋代加工厂-振扬实业中国高端拖鞋大型制造商 | 冷水机-冰水机-冷冻机-冷风机-本森智能装备(深圳)有限公司 | 温控器生产厂家-提供温度开关/热保护器定制与批发-惠州市华恺威电子科技有限公司 | 专业音响设备_舞台音响设备_会议音响工程-首选深圳一禾科技 | 土壤肥料养分速测仪_测土配方施肥仪_土壤养分检测仪-杭州鸣辉科技有限公司 | 打包钢带,铁皮打包带,烤蓝打包带-高密市金和金属制品厂 | 防火卷帘门价格-聊城一维工贸特级防火卷帘门厂家▲ | 汝成内控-行政事业单位内部控制管理服务商 | 台湾Apex减速机_APEX行星减速机_台湾精锐减速机厂家代理【现货】-杭州摩森机电 | 家乐事净水器官网-净水器厂家「官方」 | 公交驾校-北京公交驾校欢迎您! 工作心得_读书心得_学习心得_找心得体会范文就上学道文库 | 温泉机设备|温泉小镇规划设计|碳酸泉设备 - 大连连邦温泉科技 | 布袋除尘器-单机除尘器-脉冲除尘器-泊头市兴天环保设备有限公司 布袋除尘器|除尘器设备|除尘布袋|除尘设备_诺和环保设备 | 插针变压器-家用电器变压器-工业空调变压器-CD型电抗器-余姚市中驰电器有限公司 | 横河变送器-横河压力变送器-EJA变送器-EJA压力变送器-「泉蕴仪表」 | 武汉天安盾电子设备有限公司 - 安盾安检,武汉安检门,武汉安检机,武汉金属探测器,武汉测温安检门,武汉X光行李安检机,武汉防爆罐,武汉车底安全检查,武汉液体探测仪,武汉安检防爆设备 | 暖气片十大品牌厂家_铜铝复合暖气片厂家_暖气片什么牌子好_欣鑫达散热器 | 深圳市宏康仪器科技有限公司-模拟高空低压试验箱-高温防爆试验箱-温控短路试验箱【官网】 | 衬塑管道_衬四氟管道厂家-淄博恒固化工设备有限公司 | 贝朗斯动力商城(BRCPOWER.COM) - 买叉车蓄电池上贝朗斯商城,价格更超值,品质有保障! | 政府回应:200块在义乌小巷能买到爱情吗?——揭秘打工族省钱约会的生存智慧 | 置顶式搅拌器-优莱博化学防爆冰箱-磁驱搅拌器-天津市布鲁克科技有限公司 | 胶水,胶粘剂,AB胶,环氧胶,UV胶水,高温胶,快干胶,密封胶,结构胶,电子胶,厌氧胶,高温胶水,电子胶水-东莞聚力-聚厉胶粘 | 柔软云母板-硬质-水位计云母片组件-首页-武汉长丰云母绝缘材料有限公司 | 在线钠离子分析仪-硅酸根离子浓度测定仪-油液水分测定仪价格-北京时代新维测控设备有限公司 | 济南网站建设_济南网站制作_济南网站设计_济南网站建设公司_富库网络旗下模易宝_模板建站 | 背压阀|减压器|不锈钢减压器|减压阀|卫生级背压阀|单向阀|背压阀厂家-上海沃原自控阀门有限公司 本安接线盒-本安电路用接线盒-本安分线盒-矿用电话接线盒-JHH生产厂家-宁波龙亿电子科技有限公司 | 专业的新乡振动筛厂家-振动筛品质保障-环保振动筛价格—新乡市德科筛分机械有限公司 | 领袖户外_深度旅游、摄影旅游、小团慢旅行、驴友网 | 东莞工作服_东莞工作服定制_工衣订做_东莞厂服 | 变色龙云 - 打包app_原生app_在线制作平台_短链接_ip查询 | 带压开孔_带压堵漏_带压封堵-菏泽金升管道工程有限公司 | 煤矿支护网片_矿用勾花菱形网_缝管式_管缝式锚杆-邯郸市永年区志涛工矿配件有限公司 | 上海新光明泵业制造有限公司-电动隔膜泵,气动隔膜泵,卧式|立式离心泵厂家 |