小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 九年級教案 > 數學教案 >

初三數學課堂教案

時間: 沐欽 數學教案

初三數學課堂教案都有哪些?教案,要根據學生的實際改變原先的教學計劃和方法,滿腔熱忱地啟發學生的思維,針對疑點積極引導。下面是小編為大家帶來的初三數學課堂教案七篇,希望大家能夠喜歡!

初三數學課堂教案

初三數學課堂教案(精選篇1)

一、教學目標

1. 通過觀察、猜想、比較、具體操作等數學活動,學會用計算器求一個銳角的三角函數值。

2.經歷利用三角函數知識解決實際 問題的過程,促進觀察、分析、歸納、交流等能力的發展。

3.感受數學與生活的密切聯系,豐富數學學習的成功體驗,激發學生繼續學習 的好奇 心,培養學生與他人合作交流的意識。

二、教材分析

在生活中,我們會經常遇到這樣的問題,如測量建筑物的高度、測量江河的寬度、船舶的定位等,要解決這樣的問題,往往要應用到三角函數知識。在上節課中已經學習了30°, 45°,60°角的三角函數值,可以進行一些特定情況下的計算,但是生活中的問題,僅僅依靠這三個特殊角度的三角函數值來解決是不可能的。本節課讓學生使用計算器求三角函數值,讓他們從繁重的計算中解脫出來,體驗發現并提 出問題、分析問題、探究解決方法直至最終解決問題的過程。

三、學校及學生狀況分析

九年級的學生年齡一般在15歲左右,在這個階段,學生以抽象邏輯思維為主要發展趨勢,但在很大程度上,學生仍然要依靠具體的經驗材料和操作活動來理解抽象的邏輯關系。另外,計算器的使用可以極大減輕學生的負擔。因此,依據教材中提供的背景材料,輔以計算器的使用,可以使學生更好地解決問題。

學生自小學起就開始使用計算器,對計算器的操作比較熟悉。同時,在前面的課程中學生已經學習了銳角三角函數的定義,30°,45°,60°角的三角函數值以及與它們相關的簡單計算,具備了學習本節課的知識和技能。

四、教學設計

(一)復習提問

1.梯子靠在墻 上,如果梯子與地面的夾角為60°,梯子的長度為3米,那么梯子底端到墻的距離有幾米?

學生活動:根據題意,求出數值。

2.在生活中,梯子與地面的夾角總是60°嗎?

不是,可以出現各種角度,60°只是一種特殊現象。

圖1(二)創設情境引入課題

1如圖1,當登山纜車的吊箱經過點A到達點B時,它走過了200 m。已知纜車的路線與平面的夾角為∠A=16 °,那么纜車垂直上升的距離是多少?

哪條線段代表纜車上升的垂直距離?

線段BC。

利用哪個直角三角形可以求出BC?

在Rt△ABC中,BC=ABsin 16°,所以BC=200sin 16°。

你知道sin 16°是多少嗎?我們可以借助科學計算器求銳角三角形的三角函數值。 那么,怎樣用科學計算器求三角函數呢?

用科學計算器求三角函數值,要用sin cos和tan鍵。教師活動:(1)展示下表;(2)按表口述,讓學生學會求sin16°的值。按鍵順序顯示結果sin 16°sin16=sin 16°=0275 637 355

學生活動:按表中所列順序求出sin 16°的值。

你能求出cos 42°,tan 85°和sin 72°38′25″的值嗎?

學生活動:類比求sin 16°的方法,通過猜想、討論、相互學習,利用計算器求相應的三角函數值(操作程序如下表):

按鍵順序顯示結果cos 42°cos42 =cos 42°=0743 144 825tan 85°tan85=tan 85°=11430 052 3sin 72°38′25″sin72D′M′S

38D′M′S2

5D′M′S=sin 72°38′25″→

0954 450 321

師:利用科學計算器解決本節一開始的問題。

生:BC=200sin 16°≈5212(m)。

說明:利用學生的學習興趣,鞏固用計算器求三角函數值的操作方法。

(三)想一想

師:在本節一開始的問題中,當纜車繼續由點B到達點D時,它又走過了 200 m,纜車由點B到達點D的行駛路線與 水平面的夾角為∠β=42°,由此你還能計算什么?

學生活動:(1)可以求出第二次上升的垂直距離DE,兩次上升的垂直距離之和,兩次經過的水平距離,等等。(2)互相補充并在這個過程中加深對三角函數的認識。

(四)隨堂練習

1.一個人由山底爬到山頂,需先爬40°的山坡300 m,再爬30°的山坡100 m,求山高(結果精確到0.1 m)。

2.如圖2,∠DAB=56°,∠CAB=50°,AB=20 m,求圖中避雷針CD的長度(結果精確到0.01 m)。

圖2圖3

(五)檢測

如圖3,物華大廈離小偉家60 m,小偉從自家的窗中眺望大廈,并測得大廈頂部的仰角是45°,而大廈底部的俯角是37°,求大廈的高度(結果精確到01 m)。

說明:在學生練習的同時,教師要巡視指導,觀察學生的學習情況,并針對學生的困難給予及時的指導。

(六)小結

學生談學習本節的感受,如本節課學習了哪些新知識,學習過程中遇到哪些困難,如何解決困難,等等。

(七)作業

1.用計算器求下列各式的值:

(1)tan 32°;(2)cos 2453°;(3)sin 62°11′;(4)tan 39°39′39″。

圖42如圖4,為了測量一條河流的寬度,一測量員在河岸邊相距180 m的P,Q兩點分別測定對岸一棵樹T的位置,T在P的正南方向,在Q的南偏西50°的方向,求河寬(結果精確到1 m)。

五、教學反思

1.本節是學習用計算器求三角函數值并加以實際應用的內容,通過本節的學習,可以使學生充分認識到三角函數知識在現實世界中有著廣泛的應用。本節課的知識點不是很多,但是學生通過積極參與課堂,提高了分析問題和解決問題的能力,并 且在意志力、自信心和理性精神 等方面得到了良好的發展。

2.教師作為學生學習的組織者、引導者、合作者和幫助者,依據教材特點創設問題情境,從學生已有的知識背景和活動經驗出發,幫助學生取得了成功。

初三數學課堂教案(精選篇2)

教材分析

本節內容是上一節課在學習余角補角基礎上學習的,學生有了一定的基礎,為平面直角坐標系的學習做好準備。

學情分析

本節課對于學生來說學習起來并不太難,在小學階段學生已經接觸過方位角的內容,而且本節課內容和生活中的方向聯系緊密,故學生比較有興趣。

教學目標

理解方位角的意義,掌握方位角的判別和應用,通過現實情境,充分利用學生的生活經驗去體會方位角的意義。

教學重點和難點

重點:方位角的判別與應用

難點:方位角的畫法及變式題

教學過程(本文來自優秀教育資源網斐.斐.課.件.園)

教學環節教師活動預設學生行為設計意圖

一 、創設情境,導入新課

二、講授新課

三、鞏固練習

四、課時小結五、布置作業 由四面八方這個成語引出學生對八個方位的理解

1.先以一個具體圖形告訴學生基本知識點,方位角一般是以正南正北為基準,然后向東或西旋轉所成的角的始邊方向。

2.師示范方位角的畫法

3.出示補充例題,引對學生通過小組合作完成。 思考并回答老師提出的問題

生觀察圖并理解老師的講解。

生觀察并獨立完成書中的例題

生先獨立思考然后與同學合作完成。 激發學生的學習興趣

通遼具體圖形使學生初步認識方位角的表示方法。

使學生通遼具體操作掌握畫方位角的方法

進一步掌握方位角的有關知識,達到知識提升。

板書設計

4.3.3余角和補角(二)——方位角

學生學習活動評價設計

我先將學生按人數分成若干小組,在課前先給學生發放導學單,課上先給學生充分的討論時間后學生由小組推薦代表發言,累積分數,每個小組輪流回答一次,學生代表回答完畢后,其它同學補充糾錯,然后從知識點是否準確,語言是否流利,思維是否創新,邏輯是否合理嚴密等方面來做出評價,然后給出相應分數。累積到小組積分中課上知識回答后在練習部分,設計搶答題,小組搶答完成。最后計算出總分評出本節課小組及個人獎,給予口頭表揚。

教學反思

本節課是在上節課余角和補角的基礎上學習的,而且在小學階段也已經接觸過這部分知識了,基于這個特點,在課堂上我主要采取了自主學習的方式,學生接受的不錯,本節課的知識雖然簡單但很重要是為以后平面直角坐標系做準備的。出現的問題是有個別同學對于A看B是北偏東30度,則B看A是什么方向不太清楚,我采取的措施是讓明白的同學講給不明白的同學聽,指導其主要從哪方面入手解決此類問題,還有一點,學生在畫圖后容易忽略寫結論,應強調。以前在上本節課時,我是采取的講授法,感覺學生不是很愛聽,后來一想,知道了是因為小學時他們已經接觸了這部分知識,所以不愛聽,針對于這種情況,這次我采用了自主學習的方式感覺學生的積極性上來了,一節課氣氛很好,相信效果也不錯。以后再講這節課我將繼續采用這種方式,在此基礎上使其更加完善。

初三數學課堂教案(精選篇3)

教學目標

1、在把實際問題轉化為一元二次方程的模型的過程中,形成對一元二次方程的感性認識。

2、理解一元二次方程的定義,能識別一元二次方程。

3、知道一元二次方程的一般形式,能熟練地把一元二次方程整理成一般形式,能寫出一般形式的二次項系數、一次項系數和常數項。

重點難點

重點:能建立一元二次方程模型,把一元二次方程整理成一般形式。

難點:把實際問題轉化為一元二次方程的模型。

教學過程

(一)創設情境

前面我們曾把實際問題轉化成一元一次方程和二元一次方程組的模型,大家已經感受到了方程是刻畫現實世界數量關系的工具。本節課我們將繼續進行建立方程模型的探究。

1、展示課本P.2問題一

引導學生設人行道寬度為xm,表示草坪邊長為35-2xm,找等量關系,列出方程。

(35-2x)2=900①

2、展示課本P.2問題二

引導思考:小明與小亮第一次相遇以后要再次相遇,他們走的路程有何關系?怎樣用他們再次相遇的時間表示他們各自行駛的路程?

通過思考上述問題,引導學生設經過ts小明與小亮相遇,用s表示他們各自行駛的路程,利用路程方面的等量關系列出方程

2t+×0.01t2=3t②

3、能把①,②化成右邊為0,而左邊是只含有一個未知數的二次多項式的形式嗎?讓學生展開討論,并引導學生把①,②化成下列形式:

4x2-140x+32③

0.01t2-2t=0④

(二)探究新知

1、觀察上述方程③和④,啟發學生歸納得出:

如果一個方程通過移項可以使右邊為0,而左邊是只含有一個未知數的二次多項式,那么這樣的方程叫作一元二次方程,它的一般形式是:

ax2+bx+c=0,(a,b,c是已知數且a≠0),

其中a,b,c分別叫作二次項系數、一次項系數、常數項。

2、讓學生指出方程③,④中的二次項系數、一次項系數和常數項。

(三)講解例題

例1:把方程(x+3)(3x-4)=(x+2)2化成一般形式,并指出它的二次項系數、一次項系數和常數項。

[解]去括號,得3x2+5x-12=x2+4x+4,

化簡,得2x2+x-16=0。

二次項系數是2,一次項系數是1,常數項是-16。

點評:一元二次方程的一般形式ax2+bx+c=0(a≠0)具有兩個特征:一是方程的右邊為0,二是左邊二次項系數不能為0。此外要使學生認識到:二次項系數、一次項系數和常數項都是包括符號的。

例2:下列方程,哪些是一元一次方程?哪些是一元二次方程?

(1)2x+3=5x-2;(2)x2=25;

(3)(x-1)(x-2)=x2+6;(4)(x+2)(3x-1)=(x-1)2。

[解]方程(1),(3)是一元一次方程;方程(2),(4)是一元二次方程。

點評:通過一元一次方程與一元二次方程的比較,使學生深刻理解一元二次方程的意義。

(四)應用新知

課本P.4,練習第3題,

(五)課堂小結

1、一元二次方程的顯著特征是:只有一個未知數,并且未知數的次數是2。

2、一元二次方程的一般形式為:ax2+bx+c=0(a≠0),一元二次方程的二次項系數、一次項系數、常數項都是根據一般形式確定的。

3、在把實際問題轉化為一元二次方程模型的過程中,體會學習一元二次方程的必要性和重要性。

(六)思考與拓展

當常數a,b,c滿足什么條件時,方程(a-1)x2-bx+c=0是一元二次方程?這時方程的二次項系數、一次項系數分別是什么?當常數a,b,c滿足什么條件時,方程(a-1)x2-bx+c=0是一元一次方程?

當a≠1時是一元二次方程,這時方程的二次項系數是a-1,一次項系數是-b;當a=1,b≠0時是一元一次方程。

布置作業

課本習題1.1中A組第1,2,3題。

教學后記:

初三數學課堂教案(精選篇4)

學習目標

1.了解圓周角的概念.

2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.

3.理解圓周角定理的推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.

4.熟練掌握圓周角的定理及其推理的靈活運用.

設置情景,給出圓周角概念,探究這些圓周角與圓心角的關系,運用數學分類思想給予邏輯證明定理,得出推導,讓學生活動證明定理推論的正確性,最后運用定理及其推導解決一些實際問題

學習過程

一、 溫故知新:

(學生活動)同學們口答下面兩個問題.

1.什么叫圓心角?

2.圓心角、弦、弧之間有什么內在聯系呢?

二、 自主學習:

自學教材P90---P93,思考下列問題:

1、 什么叫圓周角?圓周角的兩個特征: 。

2、 在下面空里作一個圓,在同一弧上作一些圓心角及圓周角。通過圓周角的概念和度量的方法回答下面的問題.

(1)一個弧上所對的圓周角的個數有多少個?

(2).同弧所對的圓周角的度數是否發生變化?

(3).同弧上的圓周角與圓心角有什么關系?

3、默寫圓周角定理及推論并證明。

4、能去掉"同圓或等圓"嗎?若把"同弧或等弧"改成"同弦或等弦"性質成立嗎?

5、教材92頁思考?在同圓或等圓中,如果兩個圓周角相等,它們所對的弧一定相等嗎?為什么?

三、 典型例題:

例1、(教材93頁例2)如圖, ⊙O的直徑AB為10cm,弦AC為6cm,,∠ACB的平分線交⊙O于D,求BC、AD、BD的長。

例2、如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到C,使AC=AB,BD與CD的大小有什么關系?為什么?

四、 鞏固練習:

1、(教材P93練習1)

解:

2、(教材P93練習2)

3、(教材P93練習3)

證明:

4、(教材P95習題24.1第9題)

五、 總結反思:

達標檢測

1.如圖1,A、B、C三點在⊙O上,∠AOC=100°,則∠ABC等于( ).

A.140° B.110° C.120° D.130°

(1) (2) (3)

2.如圖2,∠1、∠2、∠3、∠4的大小關系是( )

A.∠4<∠1<∠2<∠3 B.∠4<∠1=∠3<∠2

C.∠4<∠1<∠3∠2 D.∠4<∠1<∠3=∠2

3.如圖3,(中考題)AB是⊙O的直徑,BC,CD,DA是⊙O的弦,且BC=CD=DA,則∠BCD等于( )

A.100° B.110° C.120° D.130°

4.半徑為2a的⊙O中,弦AB的長為2 a,則弦AB所對的圓周角的度數是________.

5.如圖4,A、B是⊙O的直徑,C、D、E都是圓上的點,則∠1+∠2=_______.

(4) (5)

6.(中考題)如圖5, 于 ,若 ,則

7.如圖,弦AB把圓周分成1:2的兩部分,已知⊙O半徑為1,求弦長AB.

拓展創新

1.如圖,已知AB=AC,∠APC=60°

(1)求證:△ABC是等邊三角形.

(2)若BC=4cm,求⊙O的面積.

3、教材P95習題24.1第12、13題。

布置作業教材P95習題24.1第10、11題。

初三數學課堂教案(精選篇5)

教材內容

1.本單元教學的主要內容:

二次根式的概念;二次根式的加減;二次根式的乘除;最簡二次根式.

2.本單元在教材中的地位和作用:

二次根式是在學完了八年級下冊第十七章《反比例正函數》、第十八章《勾股定理及其應用》等內容的基礎之上繼續學習的,它也是今后學習其他數學知識的基礎.

教學目標

1.知識與技能

(1)理解二次根式的概念.

(2)理解 (a≥0)是一個非負數,( )2=a(a≥0), =a(a≥0).

(3)掌握 ? = (a≥0,b≥0), = ? ;

= (a≥0,b>0), = (a≥0,b>0).

(4)了解最簡二次根式的概念并靈活運用它們對二次根式進行加減.

2.過程與方法

(1)先提出問題,讓學生探討、分析問題,師生共同歸納,得出概念.再對概念的內涵進行分析,得出幾個重要結論,并運用這些重要結論進行二次根式的計算和化簡.

(2)用具體數據探究規律,用不完全歸納法得出二次根式的乘(除)法規定,并運用規定進行計算.

(3)利用逆向思維,得出二次根式的乘(除)法規定的逆向等式并運用它進行化簡.

(4)通過分析前面的計算和化簡結果,抓住它們的共同特點,給出最簡二次根式的概念.利用最簡二次根式的概念,來對相同的二次根式進行合并,達到對二次根式進行計算和化簡的目的.

3.情感、態度與價值觀

通過本單元的學習培養學生:利用規定準確計算和化簡的嚴謹的科學精神,經過探索二次根式的重要結論,二次根式的乘除規定,發展學生觀察、分析、發現問題的能力.

教學重點

1.二次根式 (a≥0)的內涵. (a≥0)是一個非負數;( )2=a(a≥0); =a(a≥0)及其運用.

2.二次根式乘除法的規定及其運用.

3.最簡二次根式的概念.

4.二次根式的加減運算.

教學難點

1.對 (a≥0)是一個非負數的理解;對等式( )2=a(a≥0)及 =a(a≥0)的理解及應用.

2.二次根式的乘法、除法的條件限制.

3.利用最簡二次根式的概念把一個二次根式化成最簡二次根式.

教學關鍵

1.潛移默化地培養學生從具體到一般的推理能力,突出重點,突破難點.

2.培養學生利用二次根式的規定和重要結論進行準確計算的能力,培養學生一絲不茍的科學精神.

單元課時劃分

本單元教學時間約需11課時,具體分配如下:

21.1 二次根式 3課時

21.2 二次根式的乘法 3課時

21.3 二次根式的加減 3課時

教學活動、習題課、小結 2課時

21.1 二次根式

第一課時

教學內容

二次根式的概念及其運用

教學目標

理解二次根式的概念,并利用 (a≥0)的意義解答具體題目.

提出問題,根據問題給出概念,應用概念解決實際問題.

教學重難點關鍵

1.重點:形如 (a≥0)的式子叫做二次根式的概念;

2.難點與關鍵:利用“ (a≥0)”解決具體問題.

教學過程

一、復習引入

(學生活動)請同學們獨立完成下列三個問題:

問題1:已知反比例函數y= ,那么它的圖象在第一象限橫、縱坐標相等的點的坐標是___________.

問題2:如圖,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB邊的長是__________.

問題3:甲射擊6次,各次擊中的環數如下:8、7、9、9、7、8,那么甲這次射擊的方差是S2,那么S=_________.

老師點評:

問題1:橫、縱坐標相等,即x=y,所以x2=3.因為點在第一象限,所以x= ,所以所求點的坐標( , ).

問題2:由勾股定理得AB=

問題3:由方差的概念得S= .

二、探索新知

很明顯 、 、 ,都是一些正數的算術平方根.像這樣一些正數的算術平方根的式子,我們就把它稱二次根式.因此,一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.

(學生活動)議一議:

1.-1有算術平方根嗎?

2.0的算術平方根是多少?

3.當a<0, 有意義嗎?

老師點評:(略)

例1.下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y≥0).

分析:二次根式應滿足兩個條件:第一,有二次根號“ ”;第二,被開方數是正數或0.

解:二次根式有: 、 (x>0)、 、- 、 (x≥0,y≥0);不是二次根式的有: 、 、 、 .

例2.當x是多少時, 在實數范圍內有意義?

分析:由二次根式的定義可知,被開方數一定要大于或等于0,所以3x-1≥0, 才能有意義.

解:由3x-1≥0,得:x≥

當x≥ 時, 在實數范圍內有意義.

三、鞏固練習

教材P練習1、2、3.

四、應用拓展

例3.當x是多少時, + 在實數范圍內有意義?

分析:要使 + 在實數范圍內有意義,必須同時滿足 中的≥0和 中的x+1≠0.

解:依題意,得

由①得:x≥-

由②得:x≠-1

當x≥- 且x≠-1時, + 在實數范圍內有意義.

例4(1)已知y= + +5,求 的值.(答案:2)

(2)若 + =0,求a2004+b2004的值.(答案: )

五、歸納小結(學生活動,老師點評)

本節課要掌握:

1.形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.

2.要使二次根式在實數范圍內有意義,必須滿足被開方數是非負數.

六、布置作業

1.教材P8復習鞏固1、綜合應用5.

2.選用課時作業設計.

3.課后作業:《同步訓練》

第一課時作業設計

一、選擇題 1.下列式子中,是二次根式的是( )

A.- B. C. D.x

2.下列式子中,不是二次根式的是( )

A. B. C. D.

3.已知一個正方形的面積是5,那么它的邊長是( )

A.5 B. C. D.以上皆不對

二、填空題

1.形如________的式子叫做二次根式.

2.面積為a的正方形的邊長為________.

3.負數________平方根.

三、綜合提高題

1.某工廠要制作一批體積為1m3的產品包裝盒,其高為0.2m,按設計需要,底面應做成正方形,試問底面邊長應是多少?

2.當x是多少時, +x2在實數范圍內有意義?

3.若 + 有意義,則 =_______.

4.使式子 有意義的未知數x有( )個.

A.0 B.1 C.2 D.無數

5.已知a、b為實數,且 +2 =b+4,求a、b的值.

第一課時作業設計答案:

一、1.A 2.D 3.B

二、1. (a≥0) 2. 3.沒有

三、1.設底面邊長為x,則0.2x2=1,解答:x= .

2.依題意得: ,

∴當x>- 且x≠0時, +x2在實數范圍內沒有意義.

3.

4.B

5.a=5,b=-4

初三數學課堂教案(精選篇6)

教學內容

1. (a≥0)是一個非負數;

2.( )2=a(a≥0).

教學目標

理解 (a≥0)是一個非負數和( )2=a(a≥0),并利用它們進行計算和化簡.

通過復習二次根式的概念,用邏輯推理的方法推出 (a≥0)是一個非負數,用具體數據結合算術平方根的意義導出( )2=a(a≥0);最后運用結論嚴謹解題.

教學重難點關鍵

1.重點: (a≥0)是一個非負數;( )2=a(a≥0)及其運用.

2.難點、關鍵:用分類思想的方法導出 (a≥0)是一個非負數;用探究的方法導出( )2=a(a≥0).

教學過程

一、復習引入

(學生活動)口答

1.什么叫二次根式?

2.當a≥0時, 叫什么?當a<0時, 有意義嗎?

老師點評(略).

二、探究新知

議一議:(學生分組討論,提問解答)

(a≥0)是一個什么數呢?

老師點評:根據學生討論和上面的練習,我們可以得出

(a≥0)是一個非負數.

做一做:根據算術平方根的意義填空:

( )2=_______;( )2=_______;( )2=______;( )2=_______;

( )2=______;( )2=_______;( )2=_______.

老師點評: 是4的算術平方根,根據算術平方根的意義, 是一個平方等于4的非負數,因此有( )2=4.

同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以

( )2=a(a≥0)

例1 計算

1.( )2 2.(3 )2 3.( )2 4.( )2

分析:我們可以直接利用( )2=a(a≥0)的結論解題.

解:( )2 = ,(3 )2 =32?( )2=32?5=45,

( )2= ,( )2= .

三、鞏固練習

計算下列各式的值:

( )2 ( )2 ( )2 ( )2 (4 )2

四、應用拓展

例2 計算

1.( )2(x≥0) 2.( )2 3.( )2

4.( )2

分析:(1)因為x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;

(4)4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2≥0.

所以上面的4題都可以運用( )2=a(a≥0)的重要結論解題.

解:(1)因為x≥0,所以x+1>0

( )2=x+1

(2)∵a2≥0,∴( )2=a2

(3)∵a2+2a+1=(a+1)2

又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1

(4)∵4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2

又∵(2x-3)2≥0

∴4x2-12x+9≥0,∴( )2=4x2-12x+9

例3在實數范圍內分解下列因式:

(1)x2-3 (2)x4-4 (3) 2x2-3

分析:(略)

五、歸納小結

本節課應掌握:

1. (a≥0)是一個非負數;

2.( )2=a(a≥0);反之:a=( )2(a≥0).

六、布置作業

1.教材P8 復習鞏固2.(1)、(2) P9 7.

2.選用課時作業設計.

3.課后作業:《同步訓練》

初三數學課堂教案(精選篇7)

理解一元二次方程“降次”——轉化的數學思想,并能應用它解決一些具體問題.

提出問題,列出缺一次項的一元二次方程ax2+c=0,根據平方根的意義解出這個方程,然后知識遷移到解a(ex+f)2+c=0型的一元二次方程.

重點

運用開平方法解形如(x+m)2=n(n≥0)的方程,領會降次——轉化的數學思想.

難點

通過根據平方根的意義解形如x2=n的方程,將知識遷移到根據平方根的意義解形如(x+m)2=n(n≥0)的方程.

一、復習引入

學生活動:請同學們完成下列各題.

問題1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根據完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.

問題2:目前我們都學過哪些方程?二元怎樣轉化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉化成一次?怎樣降次?以前學過哪些降次的方法?

二、探索新知

上面我們已經講了x2=9,根據平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?

(學生分組討論)

老師點評:回答是肯定的,把2t+1變為上面的x,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2

分析:(1)x2+4x+4是一個完全平方公式,那么原方程就轉化為(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接開平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的兩根x1=-3+2,x2=-3-2

解:略.

例2 市政府計劃2年內將人均住房面積由現在的10 m2提高到14.4 m2,求每年人均住房面積增長率.

分析:設每年人均住房面積增長率為x,一年后人均住房面積就應該是10+10x=10(1+x);二年后人均住房面積就應該是10(1+x)+10(1+x)x=10(1+x)2

解:設每年人均住房面積增長率為x,

則:10(1+x)2=14.4

(1+x)2=1.44

直接開平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因為每年人均住房面積的增長率應為正的,因此,x2=-2.2應舍去.

所以,每年人均住房面積增長率應為20%.

(學生小結)老師引導提問:解一元二次方程,它們的共同特點是什么?

共同特點:把一個一元二次方程“降次”,轉化為兩個一元一次方程.我們把這種思想稱為“降次轉化思想”.

三、鞏固練習

教材第6頁 練習.

四、課堂小結

本節課應掌握:由應用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉化為應用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達到降次轉化之目的.若p<0則方程無解.

五、作業布置

教材第16頁 復習鞏固1.第2課時 配方法的基本形式

理解間接即通過變形運用開平方法降次解方程,并能熟練應用它解決一些具體問題.

通過復習可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟.

重點

講清直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟.

難點

將不可直接降次解方程化為可直接降次解方程的“化為”的轉化方法與技巧.

一、復習引入

(學生活動)請同學們解下列方程:

(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7

老師點評:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±p或mx+n=±p(p≥0).

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9嗎?

二、探索新知

列出下面問題的方程并回答:

(1)列出的經化簡為一般形式的方程與剛才解題的方程有什么不同呢?

(2)能否直接用上面前三個方程的解法呢?

問題:要使一塊矩形場地的長比寬多6 m,并且面積為16 m2,求場地的長和寬各是多少?

(1)列出的經化簡為一般形式的方程與前面講的三道題不同之處是:前三個左邊是含有x的完全平方式而后二個不具有此特征.

(2)不能.

既然不能直接降次解方程,那么,我們就應該設法把它轉化為可直接降次解方程的方程,下面,我們就來講如何轉化:

x2+6x-16=0移項→x2+6x=16

兩邊加(6/2)2使左邊配成x2+2bx+b2的形式→x2+6x+32=16+9

左邊寫成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以驗證:x1=2,x2=-8都是方程的根,但場地的寬不能是負值,所以場地的寬為2 m,長為8 m.

像上面的解題方法,通過配成完全平方形式來解一元二次方程的方法,叫配方法.

可以看出,配方法是為了降次,把一個一元二次方程轉化為兩個一元一次方程來解.

例1 用配方法解下列關于x的方程:

(1)x2-8x+1=0 (2)x2-2x-12=0

分析:(1)顯然方程的左邊不是一個完全平方式,因此,要按前面的方法化為完全平方式;(2)同上.

解:略.

三、鞏固練習

教材第9頁 練習1,2.(1)(2).

四、課堂小結

本節課應掌握:

左邊不含有x的完全平方形式的一元二次方程化為左邊是含有x的完全平方形式,右邊是非負數,可以直接降次解方程的方程.

五、作業布置

教材第17頁 復習鞏固2,3.(1)(2).第3課時 配方法的靈活運用

了解配方法的概念,掌握運用配方法解一元二次方程的步驟.

通過復習上一節課的解題方法,給出配方法的概念,然后運用配方法解決一些具體題目.

重點

講清配方法的解題步驟.

難點

對于用配方法解二次項系數為1的一元二次方程,通常把常數項移到方程右邊后,兩邊加上的常數是一次項系數一半的平方;對于二次項系數不為1的一元二次方程,要先化二次項系數為1,再用配方法求解.

一、復習引入

(學生活動)解下列方程:

(1)x2-4x+7=0 (2)2x2-8x+1=0

老師點評:我們上一節課,已經學習了如何解左邊不含有x的完全平方形式的一元二次方程以及不可以直接開方降次解方程的轉化問題,那么這兩道題也可以用上面的方法進行解題.

解:略. (2)與(1)有何關聯?

二、探索新知

討論:配方法解一元二次方程的一般步驟:

(1)先將已知方程化為一般形式;

(2)化二次項系數為1;

(3)常數項移到右邊;

(4)方程兩邊都加上一次項系數的一半的平方,使左邊配成一個完全平方式;

(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程無實根.

例1 解下列方程:

(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0

分析:我們已經介紹了配方法,因此,我們解這些方程就可以用配方法來完成,即配一個含有x的完全平方式.

解:略.

三、鞏固練習

教材第9頁 練習2.(3)(4)(5)(6).

四、課堂小結

本節課應掌握:

1.配方法的概念及用配方法解一元二次方程的步驟.

2.配方法是解一元二次方程的通法,它的重要性,不僅僅表現在一元二次方程的解法中,也可通過配方,利用非負數的性質判斷代數式的正負性.在今后學習二次函數,到高中學習二次曲線時,還將經常用到.

五、作業布置

教材第17頁 復習鞏固3.(3)(4).

補充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.

(2)求證:無論x,y取任何實數,多項式x2+y2-2x-4y+16的值總是正數.21.2.2 公式法

理解一元二次方程求根公式的推導過程,了解公式法的概念,會熟練應用公式法解一元二次方程.

復習具體數字的一元二次方程配方法的解題過程,引入ax2+bx+c=0(a≠0)的求根公式的推導,并應用公式法解一元二次方程.

重點

求根公式的推導和公式法的應用.

難點

一元二次方程求根公式的推導.

一、復習引入

1.前面我們學習過解一元二次方程的“直接開平方法”,比如,方程

(1)x2=4 (2)(x-2)2=7

提問1 這種解法的(理論)依據是什么?

提問2 這種解法的局限性是什么?(只對那種“平方式等于非負數”的特殊二次方程有效,不能實施于一般形式的二次方程.)

2.面對這種局限性,怎么辦?(使用配方法,把一般形式的二次方程配方成能夠“直接開平方”的形式.)

(學生活動)用配方法解方程 2x2+3=7x

(老師點評)略

總結用配方法解一元二次方程的步驟(學生總結,老師點評).

(1)先將已知方程化為一般形式;

(2)化二次項系數為1;

(3)常數項移到右邊;

(4)方程兩邊都加上一次項系數的一半的平方,使左邊配成一個完全平方式;

(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程無實根.

二、探索新知

用配方法解方程:

(1)ax2-7x+3=0 (2)ax2+bx+3=0

如果這個一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步驟求出它們的兩根,請同學獨立完成下面這個問題.

問題:已知ax2+bx+c=0(a≠0),試推導它的兩個根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(這個方程一定有解嗎?什么情況下有解?)

分析:因為前面具體數字已做得很多,我們現在不妨把a,b,c也當成一個具體數字,根據上面的解題步驟就可以一直推下去.

解:移項,得:ax2+bx=-c

二次項系數化為1,得x2+bax=-ca

配方,得:x2+bax+(b2a)2=-ca+(b2a)2

即(x+b2a)2=b2-4ac4a2

∵4a2>0,當b2-4ac≥0時,b2-4ac4a2≥0

∴(x+b2a)2=(b2-4ac2a)2

直接開平方,得:x+b2a=±b2-4ac2a

即x=-b±b2-4ac2a

∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數a,b,c而定,因此:

(1)解一元二次方程時,可以先將方程化為一般形式ax2+bx+c=0,當b2-4ac≥0時,將a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.

(2)這個式子叫做一元二次方程的求根公式.

(3)利用求根公式解一元二次方程的方法叫公式法.

公式的理解

(4)由求根公式可知,一元二次方程最多有兩個實數根.

例1 用公式法解下列方程:

(1)2x2-x-1=0 (2)x2+1.5=-3x

(3)x2-2x+12=0 (4)4x2-3x+2=0

分析:用公式法解一元二次方程,首先應把它化為一般形式,然后代入公式即可.

補:(5)(x-2)(3x-5)=0

三、鞏固練習

教材第12頁 練習1.(1)(3)(5)或(2)(4)(6).

四、課堂小結

本節課應掌握:

(1)求根公式的概念及其推導過程;

(2)公式法的概念;

(3)應用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項要變號,盡量讓a>0;2)找出系數a,b,c,注意各項的系數包括符號;3)計算b2-4ac,若結果為負數,方程無解;4)若結果為非負數,代入求根公式,算出結果.

(4)初步了解一元二次方程根的情況.

五、作業布置

教材第17頁 習題4,5.21.2.3 因式分解法

掌握用因式分解法解一元二次方程.

通過復習用配方法、公式法解一元二次方程,體會和探尋用更簡單的方法——因式分解法解一元二次方程,并應用因式分解法解決一些具體問題.

重點

用因式分解法解一元二次方程.

難點

讓學生通過比較解一元二次方程的多種方法感悟用因式分解法使解題更簡便.

一、復習引入

(學生活動)解下列方程:

(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)

老師點評:(1)配方法將方程兩邊同除以2后,x前面的系數應為12,12的一半應為14,因此,應加上(14)2,同時減去(14)2.(2)直接用公式求解.

二、探索新知

(學生活動)請同學們口答下面各題.

(老師提問)(1)上面兩個方程中有沒有常數項?

(2)等式左邊的各項有沒有共同因式?

(學生先答,老師解答)上面兩個方程中都沒有常數項;左邊都可以因式分解.

因此,上面兩個方程都可以寫成:

(1)x(2x+1)=0 (2)3x(x+2)=0

因為兩個因式乘積要等于0,至少其中一個因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何實現降次的?)

因此,我們可以發現,上述兩個方程中,其解法都不是用開平方降次,而是先因式分解使方程化為兩個一次式的乘積等于0的形式,再使這兩個一次式分別等于0,從而實現降次,這種解法叫做因式分解法.

例1 解方程:

(1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2

思考:使用因式分解法解一元二次方程的條件是什么?

解:略 (方程一邊為0,另一邊可分解為兩個一次因式乘積.)

練習:下面一元二次方程解法中,正確的是(  )

A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7

B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35

C.(x+2)2+4x=0,∴x1=2,x2=-2

D.x2=x,兩邊同除以x,得x=1

三、鞏固練習

教材第14頁 練習1,2.

四、課堂小結

本節課要掌握:

(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應用.

(2)因式分解法要使方程一邊為兩個一次因式相乘,另一邊為0,再分別使各一次因式等于0.

五、作業布置

教材第17頁 習題6,8,10,11.21.2.4 一元二次方程的根與系數的關系

1.掌握一元二次方程的根與系數的關系并會初步應用.

2.培養學生分析、觀察、歸納的能力和推理論證的能力.

3.滲透由特殊到一般,再由一般到特殊的認識事物的規律.

4.培養學生去發現規律的積極性及勇于探索的精神.

重點

根與系數的關系及其推導

難點

正確理解根與系數的關系.一元二次方程根與系數的關系是指一元二次方程兩根的和、兩根的積與系數的關系.

一、復習引入

1.已知方程x2-ax-3a=0的一個根是6,則求a及另一個根的值.

2.由上題可知一元二次方程的系數與根有著密切的關系.其實我們已學過的求根公式也反映了根與系數的關系,這種關系比較復雜,是否有更簡潔的關系?

3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的兩根為x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.觀察兩式右邊,分母相同,分子是-b+b2-4ac與-b-b2-4ac.兩根之間通過什么計算才能得到更簡潔的關系?

二、探索新知

解下列方程,并填寫表格:

方程 x1 x2 x1+x2 x1?x2

x2-2x=0

x2+3x-4=0

x2-5x+6=0

觀察上面的表格,你能得到什么結論?

(1)關于x的方程x2+px+q=0(p,q為常數,p2-4q≥0)的兩根x1,x2與系數p,q之間有什么關系?

(2)關于x的方程ax2+bx+c=0(a≠0)的兩根x1,x2與系數a,b,c之間又有何關系呢?你能證明你的猜想嗎?

解下列方程,并填寫表格:

方程 x1 x2 x1+x2 x1?x2

2x2-7x-4=0

3x2+2x-5=0

5x2-17x+6=0

小結:根與系數關系:

(1)關于x的方程x2+px+q=0(p,q為常數,p2-4q≥0)的兩根x1,x2與系數p,q的關系是:x1+x2=-p,x1?x2=q(注意:根與系數關系的前提條件是根的判別式必須大于或等于零.)

(2)形如ax2+bx+c=0(a≠0)的方程,可以先將二次項系數化為1,再利用上面的結論.

即:對于方程 ax2+bx+c=0(a≠0)

∵a≠0,∴x2+bax+ca=0

∴x1+x2=-ba,x1?x2=ca

(可以利用求根公式給出證明)

例1 不解方程,寫出下列方程的兩根和與兩根積:

(1)x2-3x-1=0   (2)2x2+3x-5=0

(3)13x2-2x=0 (4)2x2+6x=3

(5)x2-1=0 (6)x2-2x+1=0

例2 不解方程,檢驗下列方程的解是否正確?

(1)x2-22x+1=0 (x1=2+1,x2=2-1)

(2)2x2-3x-8=0 (x1=7+734,x2=5-734)

例3 已知一元二次方程的兩個根是-1和2,請你寫出一個符合條件的方程.(你有幾種方法?)

例4 已知方程2x2+kx-9=0的一個根是-3,求另一根及k的值.

變式一:已知方程x2-2kx-9=0的兩根互為相反數,求k;

變式二:已知方程2x2-5x+k=0的兩根互為倒數,求k.

三、課堂小結

1.根與系數的關系.

2.根與系數關系使用的前提是:(1)是一元二次方程;(2)判別式大于等于零.

四、作業布置

1.不解方程,寫出下列方程的兩根和與兩根積.

(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0

(4)3x2+x+1=0

2.已知方程x2-3x+m=0的一個根為1,求另一根及m的值.

3.已知方程x2+bx+6=0的一個根為-2,求另一根及b的值.

34498 主站蜘蛛池模板: 南方珠江-南方一线电缆-南方珠江科技电缆-南方珠江科技有限公司 南汇8424西瓜_南汇玉菇甜瓜-南汇水蜜桃价格 | 耐磨焊丝,堆焊焊丝,耐磨药芯焊丝,碳化钨焊丝-北京耐默公司 | 新能源汽车电池软连接,铜铝复合膜柔性连接,电力母排-容发智能科技(无锡)有限公司 | 工业胀紧套_万向节联轴器_链条-规格齐全-型号选购-非标订做-厂家批发价格-上海乙谛精密机械有限公司 | 粉末包装机-给袋式包装机-全自动包装机-颗粒-液体-食品-酱腌菜包装机生产线【润立机械】 | 低温等离子清洗机(双气路进口)-嘉润万丰| 计算机毕业设计源码网| 龙门加工中心-数控龙门加工中心厂家价格-山东海特数控机床有限公司_龙门加工中心-数控龙门加工中心厂家价格-山东海特数控机床有限公司 | 广州印刷厂_广州彩印厂-广州艺彩印务有限公司 | 泰国试管婴儿_泰国第三代试管婴儿费用|成功率|医院—新生代海外医疗 | 佛山市钱丰金属不锈钢蜂窝板定制厂家|不锈钢装饰线条|不锈钢屏风| 电梯装饰板|不锈钢蜂窝板不锈钢工艺板材厂家佛山市钱丰金属制品有限公司 | 圆窗水平仪|伊莉莎冈特elesa+ganter | 济南网站建设_济南网站制作_济南网站设计_济南网站建设公司_富库网络旗下模易宝_模板建站 | 印刷人才网 印刷、包装、造纸,中国80%的印刷企业人才招聘选印刷人才网! | 鹤壁创新仪器公司-全自动量热仪,定硫仪,煤炭测硫仪,灰熔点测定仪,快速自动测氢仪,工业分析仪,煤质化验仪器 | 机械立体车库租赁_立体停车设备出租_智能停车场厂家_春华起重 | 济南冷库安装-山东冷库设计|建造|冷库维修-山东齐雪制冷设备有限公司 | 电缆接头-防爆电缆接头-格兰头-金属电缆接头-防爆填料函 | 新中天检测有限公司青岛分公司-山东|菏泽|济南|潍坊|泰安防雷检测验收 | 软文发布平台 - 云软媒网络软文直编发布营销推广平台 | 鼓风干燥箱_真空烘箱_高温干燥箱_恒温培养箱-上海笃特科学仪器 | 冷库安装厂家_杭州冷库_保鲜库建设-浙江克冷制冷设备有限公司 | 双舌接地线-PC68数字式高阻计-ZC36|苏海百科 | 企业微信scrm管理系统_客户关系管理平台_私域流量运营工具_CRM、ERP、OA软件-腾辉网络 | 湖州织里童装_女童男童中大童装_款式多尺码全_织里儿童网【官网】-嘉兴嘉乐网络科技有限公司 | 海尔生物医疗四川代理商,海尔低温冰箱四川销售-成都壹科医疗器械有限公司 | 筒瓦厂家-仿古瓦-寺庙-古建琉璃瓦-宜兴市古典园林建筑陶瓷厂有限公司 | 天津中都白癜风医院_天津白癜风医院_天津治疗白癜风 | 驾驶式洗地机/扫地机_全自动洗地机_工业洗地机_荣事达工厂官网 | 飞歌臭氧发生器厂家_水处理臭氧发生器_十大臭氧消毒机品牌 | 流水线电子称-钰恒-上下限报警电子秤-上海宿衡实业有限公司 | 知网论文检测系统入口_论文查重免费查重_中国知网论文查询_学术不端检测系统 | 西宁装修_西宁装修公司-西宁业之峰装饰-青海业之峰墅级装饰设计公司【官网】 | 南京技嘉环保科技有限公司-杀菌除臭剂|污水|垃圾|厕所|橡胶厂|化工厂|铸造厂除臭剂 | 联系我们-腾龙公司上分客服微信19116098882 | 天然气分析仪-液化气二甲醚分析仪|传昊仪器| 护腰带生产厂家_磁石_医用_热压护腰_登山护膝_背姿矫正带_保健护具_医疗护具-衡水港盛 | NBA直播_NBA直播免费观看直播在线_NBA直播免费高清无插件在线观看-24直播网 | 美的商用净水器_美的直饮机_一级代理经销商_Midea租赁价格-厂家反渗透滤芯-直饮水批发品牌售后 | 艺术涂料|木纹漆施工|稻草漆厂家|马来漆|石桦奴|水泥漆|选加河南天工涂料 | 西门子代理商_西门子变频器总代理-翰粤百科 |