2023九年級數學復習教案
九年級數學復習教案都有哪些?數學可以說是接受度最高的“數學”。可以說,從大家小時候開始學數數開始,第一個接觸數學的就是戴數學。下面是小編為大家帶來的2023九年級數學復習教案七篇,希望大家能夠喜歡!
2023九年級數學復習教案精選篇1
教學目標
1, 掌握有理數的概念,會對有理數按照一定的標準進行分類,培養分類能力;
2, 了解分類的標準與分類結果的相關性,初步了解“集合”的含義;
3, 體驗分類是數學上的常用處理問題的方法。
教學難點 正確理解分類的標準和按照一定的標準進行分類
知識重點 正確理解有理數的概念
教學過程(師生活動) 設計理念
探索新知 在前兩個學段,我們已經學習了很多不同類型的數,通過上兩節課的學習,又知道了現在的數包括了負數,現在請同學們在草稿紙上任意寫出3個數(同時請3個同學在黑板上寫出).
問題1:觀察黑板上的9個數,并給它們進行分類.
學生思考討論和交流分類的情況.
學生可能只給出很粗略的分類,如只分為“正數”和“負數”或“零”三類,此時,教師應給予引導和鼓勵.
例如,
對于數5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數嗎?(不可以)所以它們是不同類型的數,數5是正數中整個的數,我們就稱它為“正整數”,而5. 1不是整個的數,稱為“正分數,,.…(由于小數可化為分數,以后把小數和分數都稱為分數)
通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經學過的5類不同的數,它們分別是“正整數,零,負整數,正分數,負分數,’.
按照書本的說法,得出“整數”“分數”和“有理數”的概念.
看書了解有理數名稱的由來.
“統稱”是指“合起來總的名稱”的意思.
試一試:按照以上的分類,你能作出一張有理數的分類表嗎?你能說出以上有理數的分類是以什么為標準的嗎?(是按照整數和分數來劃分的) 分類是數學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與
學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數的類型要從文字所表示的意義上去引導,這樣學生易于理解。
有理數的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會
練一練 1,任意寫出三個有理數,并說出是什么類型的數,與同伴進行交流.
2,教科書第10頁練習.
此練習中出現了集合的概念,可向學生作如下的說明.
把一些數放在一起,就組成了一個數的集合,簡稱“數集”,所有有理數組成的數集叫做有理數集.類似地,所有整數組成的數集叫做整數集,所有負數組成的數集叫做負數集……;
數集一般用圓圈或大括號表示,因為集合中的數是無限的,而本題中只填了所給的幾個數,所以應該加上省略號.
思考:上面練習中的四個集合合并在一起就是全體有理數的集合嗎?
也可以教師說出一些數,讓學生進行判斷。
集合的概念不必深入展開。
創新探究 問題2:有理數可分為正數和負數兩大類,對嗎?為什么?
教學時,要讓學生總結已經學過的數,鼓勵學生概括,通過交流和討論,教師作適當的指導,逐步得到如下的分類表。
有理數 這個分類可視學生的程度確定是否有必要教學。
應使學生了解分類的標準不一樣時,分類的結果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等
小結與作業
課堂小結 到現在為止我們學過的數都是有理數(圓周率除外),有理數可以按不同的標準進行分類,標準不同,分類的結果也不同。
本課作業
1, 必做題:教科書第18頁習題1.2第1題
2, 教師自行準備
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,本課在引人了負數后對所學過的數按照一定的標準進行分類,提出了有理數的概念.分類是數學中解決問題的常用手段,通過本節課的學習使學生了解分類的思想并進行簡單的分類是數學能力的體現,教師在教學中應引起足夠的重視.關于分類標準與分類結果的關系,分類標準的確定可向學生作適當的滲透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。
2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現合作學習、交流、探究提高的特點,對學生分類能力的養成有很好的作用。
3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。
2023九年級數學復習教案精選篇2
①結合你對一元一次方程中的一次的理解,說一說你對一次函數中的“一次”的理解. ②k可以是怎樣的數?
③你怎樣認識一次函數和正比例函數的關系?
一個常數b的和即 Y=kx+b 定義:一般地,形
如
Y=kx+b( k,b 是常數,k≠0 )的函數,叫做一次函數, 當
b=0時,
Y=kx+b即Y=kx,所以說正比例函數是一種特殊的一次函數。
例1、下列函數中,Y是X的一次函數的是( )①Y=X-6②Y=3X③Y=X2④Y=7-X
學生獨立
A①②③B①③④C①②④D①②③④
例2、寫出下列各題中x與y之間的關系式,并判
解釋與應用
斷,y是否為x的一次函數?是否為正比例函數?①汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間(時)之間的關系式;②圓的面積y(厘米2)與他的半徑x(厘米)之間的關系:③一棵樹現在高50厘米,每個月長高2厘米,x月后這棵樹的高度y(厘米)之間的關系式
2023九年級數學復習教案精選篇3
教學目標:
1、 在現實情境中理解線段、射線、直線等簡單圖形(知識目標)
2、 會說出線段、射線、直線的特征;會用字母表示線段、射線、直線(能力目標)
3、 通過操作活動,了解兩點確定一條直線等事實,積累操作活動的經驗,培養學生的興趣、愛好,感受圖形世界的豐富多彩。(情感態度目標)
教學難點:了解“兩點確定一條直線”等事實,并應用它解決一些實際問題
教 具: 多媒體、棉線、三角板
教學過程:
情景創設:觀察電腦展示圖,使學生感受圖形世界的豐富多彩,激發學習興趣。
如何來描述我們所看到的現象?
教學過程:
1、 一段拉直的棉線可近似地看作線段
師生畫線段
演示投影片1:①將線段向一個方向無限延長,就形成了______
學生畫射線
②將線段向兩個方向無限延長就形成了_______
學生畫直線
2、 討論小組交流:
① 生活中,還有哪些物體可以近似地看作線段、射線、直線?
(強調近似兩個字,注意引導學生線段、射線、直線是從生活上抽象出來的)
②線段、射線、直線,有哪些不同之處, 有哪些相同之處?
(鼓勵學生用自己的語言描述它們各自的特點)
3、 問題1:圖中有幾條線段?哪幾條?
“要說清楚哪幾條,必須先給線段起名字!”從而引出線段的記法。
點的記法: 用一個大寫英文字母
線段的記法:①用兩個端點的字母來表示
②用一個小寫英文字母表示
自己想辦法表示射線,讓學生充分討論,并比較如何表示合理
射線的記法:
用端點及射線上一點來表示,注意端點的字母寫在前面
直線的記法:
① 用直線上兩個點來表示
② 用一個小寫字母來表示
強調大寫字母與小寫字母來表示它們時的區別
(我們知道他們是無限延長的,我們為了方便研究約定成俗的用上面的方法來表示它們。)
練習1:讀句畫圖(如圖示)
(1) 連BC、AD
(2) 畫射線AD
(3) 畫直線AB、CD相交于E
(4) 延長線段BC,反向延長線段DA相交與F
(5) 連結AC、BD相交于O
練習2:右圖中,有哪幾條線段、射線、直線
4、 問題2 請過一點A畫直線,可以畫幾條?過兩點A、B呢?
學生通過畫圖,得出結論:過一點可以畫無數條直線
經過兩點有且只有一條直線
問題3 如果你想將一硬紙條固定在硬紙板上,至少需要幾根圖釘?
為什么?(學生通過操作,回答)
小組討論交流:
你還能舉出一個能反映“經過兩點有且只有一條直線”的實例嗎?
適當引導:栽樹時只要確定兩個樹坑的位置,就能確定同一行的樹坑所在的直線。建筑工人在砌墻時,經常在兩個墻角分別立一根標志桿,在兩根標志桿之間拉一根繩,沿這根繩就可以砌出直的墻來。
5、 小結:
① 學生回憶今天這節課學過的內容
進一步清晰線段、射線、直線的概念
② 強調線段、射線、直線表示方法的掌握
6、 作業:①閱讀“讀一讀” P121
②習題4的1、2、3。4作為思考題
2023九年級數學復習教案精選篇4
教學目標
1.經歷不同的拼圖方法驗證公式的過程,在此過程中加深對因式分解、整式運算、面積等的認識。
2.通過驗證過程中數與形的結合,體會數形結合的思想以及數學知識之間內在聯系,每一部分知識并不是孤立的。
3.通過豐富有趣的拼圖活動,經歷觀察、比較、拼圖、計算、推理交流等過程,發展空間觀念和有條理地思考和表達的能力,獲得一些研究問題與合作交流方法與經驗。
4.通過獲得成功的體驗和克服困難的經歷,增進數學學習的信心。通過豐富有趣拼的圖活動增強對數學學習的興趣。
重點1.通過綜合運用已有知識解決問題的過程,加深對因式分解、整式運算、面積等的認識。
2.通過拼圖驗證公式的過程,使學習獲得一些研究問題與合作交流的方法與經驗。
難點利用數形結合的方法驗證公式
教學方法動手操作,合作探究課型新授課教具投影儀
教師活動學生活動
情景設置:
你已知道的關于驗證公式的拼圖方法有哪些?(教師在此給予學生獨立思考和討論的時間,讓學生回想前面拼圖。)
新課講解:
把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常常可以得到一些有用的式子。美國第二十任總統伽菲爾德就由這個圖(由兩個邊長分別為a、b、c的直角三角形和一個兩條直角邊都是c的直角三角形拼成一個新的圖形)得出:c2=a2+b2他的證法在數學史上被傳為佳話。他是這樣分析的,如圖所示:
教師接著在介紹教材第94頁例題的拼法及相關公式
提問:還能通過怎樣拼圖來解決以下問題
(1)任意選取若干塊這樣的硬紙片,嘗試拼成一個長方形,計算它的面積,并寫出相應的等式;
(2)任意寫出一個關于a、b的二次三項式,如a2+4ab+3b2
試用拼一個長方形的方法,把這個二次三項式因式分解。
這個問題要給予學生充足的時間和空間進行討論和拼圖,教師在這要引導適度,不要限制學生思維,同時鼓勵學生在拼圖過程中進行交流合作
了解學生拼圖的情況及利用自己的拼圖驗證的情況。教師在巡視過程中,及時指導,并讓學生展示自己的拼圖及讓學生講解驗證公式的方法,并根據不同學生的不同狀況給予適當的引導,引導學生整理結論。
小結:
從這節課中你有哪些收獲?
(教師應給予學生充分的時間鼓勵學生暢所欲言,只要是學生的感受和想法,教師要多鼓勵、多肯定。最后,教師要對學生所說的進行全面的總結。)
學生回答
a(b+c+d)=ab+ac+ad
(a+b)(c+d)=ac+ad+bc+bd
(a+b)2=a2+2ab+b2
學生拿出準備好的硬紙板制作
給學生充分的時間進行拼圖、思考、交流經驗,對于有困難的學生教師要給予適當引導。
作業第95頁第3題
板書設計
復習例1板演
………………
………………
……例2……
………………
………………
教學后記
2023九年級數學復習教案精選篇5
教材分析:
一元二次方程根與系數的關系的知識內容主要是以前一單元中的求根公式為基礎的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根與系數的關系,以及以數x1、x2為根的一元二次方程的求方程模型。然后通過4個例題介紹了利用根與系數的關系簡化一些計算的知識。
學情分析:
1.學生已學習用求根公式法解一元二次方程。
2.本課的教學對象是九年級學生,學生對事物的認識多是直觀、形象的,他們所注意的多是事物外部的、直接的、具體形象的特征。
3.在教學初始,出示一些學生所熟悉和感興趣的東西,結合一元二次方程求根公式使他們在現代化的教學模式和傳統的教學模式相結合的基礎上掌握一元二次方程根與系數的關系。
教學目標:
1、知識目標:要求學生在理解的基礎上掌握一元二次方程根與系數的關系式,能運用根與系數的關系由已知一元二次方程的一個根求出另一個根與未知數,會求一元二次方程兩個根的倒數和與平方數,兩根之差。
2、能力目標:通過韋達定理的教學過程,使學生經歷觀察、實驗、猜想、證明等數學活動過程,發展推理能力,能有條理地、清晰地闡述自己的觀點,進一步培養學生的創新意識和創新精神。
3、情感目標:通過情境教學過程,激發學生的求知欲望,培養學生積極學習數學的態度。體驗數學活動中充滿著探索與創造,體驗數學活動中的成功感,建立自信心。
教學重難點:
1、重點:一元二次方程根與系數的關系。
2、難點:讓學生從具體方程的根發現一元二次方程根與系數之間的關系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關系,比較抽象,學生真正掌握有一定的難度,是教學的難點。
板書設計:
一元二次方程根與系數的關系如果ax+bx+c=0(a≠0)的兩根是x1,x2,那么x1+x2=,x1x2=。
問題6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用嗎?①二次項系數a是否為零,決定著方程是否為二次方程;②當a≠0時,b=0,a、c異號,方程兩根互為相反數;③當a≠0時,△=b-4ac可判定根的情況;④當a≠0,b-4ac≥0時,x1+x2=,x1x2=。⑤當a≠0,c=0時,方程必有一根為0。
學生學習活動評價設計:
本節課充分讓學生分析、觀察、提高了學生的歸納能力及推理論證的能力。
教學反思:
1.一元二次方程根與系數的關系的推導是在求根公式的基礎上進行。它深化了兩根的和與積同系數之間的關系,是我們今后繼續研究一元二次方程根的情況的主要工具,必須熟記,為進一步使用打下基礎。
2.以一元二次方程根與系數的關系的探索與推導,向學生展示認識事物的一般規律,提倡積極思維,勇于探索的精神,借此鍛煉學生分析、觀察、歸納的能力及推理論證的能力。
3.一元二次方程的根與系數的關系,在中考中多以填空,選擇,解答題的形式出現,考查的頻率較高,也常與幾何、二次函數等問題結合考查,是考試的熱點,它是方程理論的重要組成部分。
4.使學生體會解題方法的多樣性,開闊解題思路,優化解題方法,增強擇優能力。力求讓學生在自主探索和合作交流的過程中進行學習,獲得數學活動經驗,教師應注意引導。
2023九年級數學復習教案精選篇6
教學目的
1、使學生了解無理數和實數的概念,掌握實數的分類,會準確判斷一個數是有理數還是無理數。
2、使學生能了解實數絕對值的意義。
3、使學生能了解數軸上的點具有一一對應關系。
4、由實數的分類,滲透數學分類的思想。
5、由實數與數軸的一一對應,滲透數形結合的思想。
教學分析
重點:無理數及實數的概念。
難點:有理數與無理數的區別,點與數的一一對應。
教學過程
一、復習
1、什么叫有理數?
2、有理數可以如何分類?
(按定義分與按大小分。)
二、新授
1、無理數定義:無限不循環小數叫做無理數。
判斷:無限小數都是無理數;無理數都是無限小數;帶根號的數都是無理數。
2、實數的定義:有理數與無理數統稱為實數。
3、按課本中列表,將各數間的聯系介紹一下。
除了按定義還能按大小寫出列表。
4、實數的相反數:
5、實數的絕對值:
6、實數的運算
講解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?
例2,判斷題:
(1)任何實數的偶次冪是正實數。( )
(2)在實數范圍內,若| x|=|y|則x=y。( )
(3)0是最小的實數。( )
(4)0是絕對值最小的實數。( )
解:略
三、練習
P148 練習:3、4、5、6。
四、小結
1、今天我們學習了實數,請同學們首先要清楚,實數是如何定義的,它與有理數是怎樣的關系,二是對實數兩種不同的分類要清楚。
2、要對應有理數的相反數與絕對值定義及運算律和運算性質,來理解在實數中的運用。
五、作業
1、P150 習題A:3。
2、基礎訓練:同步練習1。
2023九年級數學復習教案精選篇7
一、教材分析:
反比例函數的圖象與性質是對正比例函數圖象與性質的復習和對比,也是以后學習二次函數的基礎。本課時的學習是學生對函數的圖象與性質一個再知的過程,由于初二學生是首次接觸雙曲線這種函數圖象,所以教學時應注意引導學生抓住反比例函數圖象的特征,讓學生對反比例函數有一個形象和直觀的認識。
二、教學目標分析
根據二期課改“以學生為主體,激活課堂氣氛,充分調動起學生參與教學過程”的精神。在教學設計上,我設想通過使用多媒體課件創設情境,在掌握反比例函數相關知識的同時激發學生的學習興趣和探究欲望,引導學生積極參與和主動探索。因此把教學目標確定為:
1、掌握反比例函數的概念,能夠根據已知條件求出反比例函數的解析式;學會用描點法畫出反比例函數的圖象;掌握圖象的特征以及由函數圖象得到的函數性質。
2、在教學過程中引導學生自主探索、思考及想象,從而培養學生觀察、分析、歸納的綜合能力。
3、通過學習培養學生積極參與和勇于探索的精神。
三、教學重點難點分析
本堂課的重點是掌握反比例函數的定義、圖象特征以及函數的性質;
難點則是如何抓住特征準確畫出反比例函數的圖象。
為了突出重點、突破難點。我設計并制作了能動態演示函數圖象的多媒體課件。讓學生親手操作,積極參與并主動探索函數性質,幫助學生直觀地理解反比例函數的性質。
四、教學方法
鑒于教材特點及初二學生的年齡特點、心理特征和認知水平,設想采用問題教學法和對比教學法,用層層推進的提問啟發學生深入思考,主動探究,主動獲取知識。同時注意與學生已有知識的聯系,減少學生對新概念接受的困難,給學生充分的自主探索時間。通過教師的引導,啟發調動學生的積極性,讓學生在課堂上多活動、多觀察,主動參與到整個教學活動中來,組織學生參與“探究——討論——交流——總結”的學習活動過程,同時在教學中,還充分利用多媒體教學,通過演示,操作,觀察,練習等師生的共同活動中啟發學生,讓每個學生動手、動口、動眼、動腦,培養學生直覺思維能力。
五、學法指導
本堂課立足于學生的“學”,要求學生多動手,多觀察,從而可以幫助學生形成分析、對比、歸納的思想方法。在對比和討論中讓學生在“做中學”,提高學生利用已學知識去主動獲取新知識的能力。因此在課堂上要采用積極引導學生主動參與,合作交流的方法組織教學,使學生真正成為教學的主體,體會參與的樂趣,成功的喜悅,感知數學的奇妙。
六、教學過程
(一)復習引入——反函數解析式
練習1:寫出下列各題的關系式:
(1)正方形的周長C和它的一邊的長a之間的關系
(2)運動會的田徑比賽中,運動員小王的平均速度是8米/秒,他所跑過的路程s和所用時間t之間的關系
(3)矩形的面積為10時,它的長x和寬y之間的關系
(4)王師傅要生產100個零件,他的工作效率x和工作時間t之間的關系
問題1:請大家判斷一下,在我們寫出來的這些關系式中哪些是正比例函數?
問題1主要是復習正比例函數的定義,為后面學生運用對比的方法給出反比例函數的定義打下基礎。
問題2:那么請大家再仔細觀察一下,其余兩個函數關系式有什么共同點嗎?
通過問題2來引出反比例函數的解析式,請學生對比正比例函數的定義來給出反比例函數的定義,這不僅有助于對舊知識的復習和鞏固,同時還可以培養學生的對比和探究能力。
例題1:已知變量y與x成反比例,且當x=2時,y=9
(1)寫出y與x之間的函數解析式
(2)當x=3、5時,求y的值
(3)當y=5時,求x的值
通過對例1的學習使學生掌握如何根據已知條件來求出反比例函數的解析式。在解題過程中,引導學生運用在求正比例函數的解析式時用到的“待定系數法”,先設反比例函數為,再把相應的x,y值代入求出k,k值的確定,函數解析式也就確定了。
課堂練習:已知x與y成反比例,根據以下條件,求出y與x之間的函數關系式
(1)x=2,y=3(2)x=,y=
通過此題,對學生掌握如何根據已知條件去求反比例函數的解析式的學習情況做一個簡單的反饋。
(二)探究學習1——函數圖象的畫法
問題3:如何畫出正比例函數的圖象?
通過問題3來復習正比例函數圖象的畫法主要分為列表、描點、連線三個步驟,為學習反比例函數圖像的畫法打下基礎。
問題4:那反比例函數的圖象應該怎樣去畫呢?
在教學過程中可以引導學生仿照正比例函數圖象的的畫法。
設想的教學設計是:
(1)引導學生運用在畫正比例函數圖象中所學到的方法,分小組討論嘗試,采用列表、描點、連線的方法畫出函數和的圖象;
(2)老師邊巡視,邊指導,用實物投影儀反映一些學生在函數圖象中出現的典型錯誤,和學生一起找出錯誤的地方,分析原因;
(3)隨后老師在黑板上演示畫好反比例函數圖像的步驟,展示正確的函數圖象,引導學生觀察其圖象特征(雙曲線有兩個分支)。
初二學生是首次接觸到雙曲線這種比較特殊函數圖象,設想學生可能會在下面幾個環節中出錯:
(1)在“列表”這一環節
在取點時學生可能會取零,在這里可以引導學生結合代數的方法得出x不能為零。也可能由于在取點時的不恰當,導致函數圖象的不完整、不對稱。在這里應該要指導學生在列表時,自變量x的取值可以選取絕對值相等而符號相反的數,相應的就得到絕對相等而符號相反的對應的函數值,這樣可以簡化計算的手續,又便于在坐標平面內找到點。
(2)在“連線”這一環節
學生畫的點與點之間連線可能會有端點,未能用光滑的線條連接。因而在這里要特別要強調在將所選取的點連結時,應該是“光滑曲線”,為以后學習二次函數的圖像打下基礎。為了使函數圖象清晰明顯,可以引導學生注意盡量選取較多的自變量x的值和對應的函數值y,以便在坐標平面內得到較多的“點”,畫出曲線。
從而引導學生畫出正確的函數圖象。
(3)圖象與x軸或y軸相交
在這里我認為可以埋下一個伏筆,給學生留下一個懸念,為后面學習函數的性質打下基礎。
需要說明的是:利用多媒體課件學習能吸引學生的注意力,引起學生進一步學習的興趣。不過,盡管多媒體的演示既快又準確,我認為在學生第學畫反比例函數圖象的過程中,老師還是應該在黑板上認真示范畫出圖象的每一個步驟,畢竟多媒體還是不能替代我們平時老師在黑板上板書。
鞏固練習:畫出函數和的圖象
通過鞏固練習,讓學生再次動手畫出函數圖象,改正在初次畫圖象時出現在一些問題。老師使用函數圖象的課件,用屏幕顯示的函數圖象驗證學生畫出的函數圖象的準確性。
(三)探究學習2——函數圖象性質
1、圖象的分布情況
問題5:請大家回憶一下正比例函數的分布情況是怎么樣的呢?
提出問題5主要是起到鞏固復習,為引導學生學習反比例函數圖象的分布情況打下基礎。
問題6:觀察剛才所畫的圖象我們發現反比例函數的圖象有兩個分支,那么它的分布情況又是怎么樣的呢?
在這一環節中的設計:
(1)引導學生對比正比例函數圖象的分布,啟發他們主動探索反比例函數的分布情況,給學生充分考慮的時間;
(2)充分運用多媒體的優勢進行教學,使用函數圖象的課件試著任意輸入幾個k的值,觀察函數圖象的不同分布,觀察函數圖象的動態演變過程。把不同的函數圖象集中到一個屏幕中,便于學生對比和探究。學生通過觀察及對比,對反比例函數圖象的分布與k的關系有一個直觀的了解;
(3)組織小組討論來歸納出反比例函數的一條性質:當k>0時,函數圖象的兩支分別在第一、三象限內;當k<0時,函數圖象的兩支分別在第二、四象限內。
2、圖象的變化情況
問題7:正比例函數圖象的變化情況是怎么樣的呢?
提出問題7主要是起到鞏固復習,為引導學生學習反比例函數圖象的變化情況打下基礎。
問題8:那反比例函數的圖象,是否也具有這樣的性質呢?
在這一環節的教學設計是:
(1)回顧反比例函數和的圖象,通過實際觀察;
(2)根據解析式對行取值,比較x在取不同值時函數值的變化情況;
(3)電腦演示及學生小組討論,請學生給出結論。即這個問題必須分成兩種情況討論即當k>0時,自變量x逐漸增大時,y的值則隨著逐漸減小;當k<0時,自變量x逐漸增大時,y的值也隨著逐漸增大。
(4)對于學生做出的結論,老師應該要給予肯定,同時可以提出:有沒有同學需要補充的呢?若沒有,則可以舉例:當k>0,分別比較在第三象限x=—2,第一象限x=2時的y的值的大小,則以上性質是否依然成立?學生的回答應該是:不成立。這時老師再請學生做小結:必須限定在每一個象限內,才有以上性質成立。
問題9:當函數圖象的兩個分支無限延伸時,它與x軸、y軸相交嗎?為什么?
在這個環節中,可以結合剛才學生所畫的錯誤圖象,引導學生可以通過代數的方法分析反比例函數的解析式,由分母不能為零,得x不能為零。由k≠0,得y必不為零,從而驗證了反比例函數的圖象。當兩個分支無限延伸時,可以無限地逼近x軸、y軸,但永遠不會與兩軸相交。隨即強調畫圖時要注意準確性。
(四)備用思考題
1、反比例函數的圖象在第一、三象限,求a的取值范圍
2、當m為何值時,y是x的正比例函數;當m為何值時,y是x的反比例函數
(五)小結: