2023數學教案九年級
數學教案九年級都有哪些?教案的作用,學生能在什么地方出現問題,大都會出現什么問題,怎樣引導,要考慮幾種教學方案。下面是小編為大家帶來的2023數學教案九年級七篇,希望大家能夠喜歡!
2023數學教案九年級【篇1】
一、素質教育目標
(一)知識教學點
使學生知道當直角三角形的銳角固定時,它的對邊、鄰邊與斜邊的比值也都固定這一事實.
(二)能力訓練點
逐步培養學生會觀察、比較、分析、概括等邏輯思維能力.
(三)德育滲透點
引導學生探索、發現,以培養學生獨立思考、勇于創新的精神和良好的學習習慣.
二、教學重點、難點
1.重點:使學生知道當銳角固定時,它的對邊、鄰邊與斜邊的比值也是固定的這一事實.
2.難點:學生很難想到對任意銳角,它的對邊、鄰邊與斜邊的比值也是固定的事實,關鍵在于教師引導學生比較、分析,得出結論.
三、教學步驟
(一)明確目標
1.如圖6-1,長5米的梯子架在高為3米的墻上,則A、B間距離為多少米?
2.長5米的梯子以傾斜角∠CAB為30°靠在墻上,則A、B間的距離為多少?
3.若長5米的梯子以傾斜角40°架在墻上,則A、B間距離為多少?
4.若長5米的梯子靠在墻上,使A、B間距為2米,則傾斜角∠CAB為多少度?
前兩個問題學生很容易回答.這兩個問題的設計主要是引起學生的回憶,并使學生意識到,本章要用到這些知識.但后兩個問題的設計卻使學生感到疑惑,這對初三年級這些好奇、好勝的學生來說,起到激起學生的學習興趣的作用.同時使學生對本章所要學習的內容的特點有一個初步的了解,有些問題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識是不能解決的,解決這類問題,關鍵在于找到一種新方法,求出一條邊或一個未知銳角,只要做到這一點,有關直角三角形的其他未知邊角就可用學過的知識全部求出來.
通過四個例子引出課題.
(二)整體感知
1.請每一位同學拿出自己的三角板,分別測量并計算30°、45°、60°角的對邊、鄰邊與斜邊的比值.
學生很快便會回答結果:無論三角尺大小如何,其比值是一個固定的值.程度較好的學生還會想到,以后在這些特殊直角三角形中,只要知道其中一邊長,就可求出其他未知邊的長.
2.請同學畫一個含40°角的直角三角形,并測量、計算40°角的對邊、鄰邊與斜邊的比值,學生又高興地發現,不論三角形大小如何,所求的比值是固定的.大部分學生可能會想到,當銳角取其他固定值時,其對邊、鄰邊與斜邊的比值也是固定的嗎?
這樣做,在培養學生動手能力的同時,也使學生對本節課要研究的知識有了整體感知,喚起學生的求知欲,大膽地探索新知.
(三)重點、難點的學習與目標完成過程
1.通過動手實驗,學生會猜想到“無論直角三角形的銳角為何值,它的對邊、鄰邊與斜邊的比值總是固定不變的”.但是怎樣證明這個命題呢?學生這時的思維很活躍.對于這個問題,部分學生可能能解決它.因此教師此時應讓學生展開討論,獨立完成.
2.學生經過研究,也許能解決這個問題.若不能解決,教師可適當引導:
若一組直角三角形有一個銳角相等,可以把其
頂點A1,A2,A3重合在一起,記作A,并使直角邊AC1,AC2,AC3……落在同一條直線上,則斜邊AB1,AB2,AB3……落在另一條直線上.這樣同學們能解決這個問題嗎?引導學生獨立證明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的對邊、鄰邊與斜邊的比值,是一個固定值.
通過引導,使學生自己獨立掌握了重點,達到知識教學目標,同時培養學生能力,進行了德育滲透.
而前面導課中動手實驗的設計,實際上為突破難點而設計.這一設計同時起到培養學生思維能力的作用.
練習題為 作了孕伏同時使學生知道任意銳角的對邊與斜邊的比值都能求出來.
(四)總結與擴展
1.引導學生作知識總結:本節課在復習勾股定理及含30°角直角三角形的性質基礎上,通過動手實驗、證明,我們發現,只要直角三角形的銳角固定,它的對邊、鄰邊與斜邊的比值也是固定的.
教師可適當補充:本節課經過同學們自己動手實驗,大膽猜測和積極思考,我們發現了一個新的結論,相信大家的邏輯思維能力又有所提高,希望大家發揚這種創新精神,變被動學知識為主動發現問題,培養自己的創新意識.
2.擴展:當銳角為30°時,它的對邊與斜邊比值我們知道.今天我們又發現,銳角任意時,它的對邊與斜邊的比值也是固定的.如果知道這個比值,已知一邊求其他未知邊的問題就迎刃而解了.看來這個比值很重要,下節課我們就著重研究這個“比值”,有興趣的同學可以提前預習一下.通過這種擴展,不僅對正、余弦概念有了初步印象,同時又激發了學生的興趣.
四、布置作業
本節課內容較少,而且是為正、余弦概念打基礎的,因此課后應要求學生預習正余弦概念.
2023數學教案九年級【篇2】
教學目標:
1.探索直角三角形中銳角三角函數值與三邊之間的關系。
2.掌握三角函數定義式 : sinA= , cosA= ,tanA= 。
重點和難點
重點: 三角函數定義的理解 。
難點:直角三角形中銳角三角函數值與三邊之間的關系及求三角函數值。
【教學過程】
一、情境導入
如圖是兩個自動扶梯,甲、乙兩人分別從1、2號自動扶梯上樓,誰 先到達樓頂?如果AB和A′B′相 等而∠α和∠ β大小不同,那么它們的高度AC 和A′C′相等嗎?AB、 AC、BC與∠α,A′B′、A′C′、B′C′與∠β之間有什么關系呢? --- ---導出新課
二、新課教學
1、合作探究
見課本
2、三角函數 的定義在Rt△ABC中,如果銳角A確定,那么∠A的對邊與斜邊的比、鄰邊與斜邊的比也隨之確定.
∠A 的對邊與鄰邊的比叫 做∠A的正弦(sine),記作s inA,即s in A=
∠A的鄰邊與斜邊的比叫做∠A的余弦(cosine),記作cosA,即cosA=
∠A的對邊與∠A的鄰邊的比叫做∠A的正切(tangent) ,記作tanA,即
銳角A的正弦、余弦和正切統稱∠A的三角函數.
注意 :sinA,cosA, tanA都是一個完整的符號,單獨的 “sin”沒有意義 ,其中A前面的“∠”一般省略不寫。
師:根據上面的三角函數定義,你知道正弦與余弦三角函數值的取值范圍嗎 ?
師:(點撥)直角三角形中,斜邊大于直角邊.
生:獨立思考,嘗試回答 ,交流結果.
明確:0<sina<1,0 p="" <cosa<1.
鞏固練 習:課內練習T1、作業題T1、2
3、如圖,在Rt△ABC中,∠C=90°,AB=5,BC=3, 求∠A, ∠B的正弦,余弦和正切.
分析:由勾股定理求出AC的長度,再根據直角三角形中銳角三角函數值與三邊之間的關系求出各函數值。
師:觀察以上 計算結果,你 發現了什么?
明確:sinA=cosB,cosA=sinB,tanA?ta nB=1
4 、課堂練習:課本課內練習T2、3,作業題T3、4、5、6
三、課 堂小結:談談今天 的收獲
1、內容總結
(1)在RtΔA BC中,設∠C= 900,∠α為RtΔABC的一個銳角,則
∠α的正弦 , ∠α的余弦 ,
∠α的正切
(2)一般地,在Rt△ ABC中, 當∠C=90°時,sinA=cosB,cosA=sinB,tanA?tanB=1
2、 方法歸納
在涉及直角三角形邊角關系時, 常借助三角函數定義來解
2023數學教案九年級【篇3】
目的要求
1.理解并掌握函數值與最小值的意義及其求法.
2.弄清函數極值與最值的區別與聯系.
3.養成“整體思維”的習慣,提高應用知識解決實際問題的能力.
內容分析
1.教科書結合函數圖象,直觀地指出函數值、最小值的概念,從中得出利用導數求函數值和最小值的方法.
2.要著重引導學生弄清函數最值與極值的區別與聯系.函數值和最小值是比較整個定義域上的函數值得出的,而函數的極值則是比較極值點附近兩側的函數值而得出的,是局部的.
3.我們所討論的函數y=f(x)在[a,b]上有定義,在開區間(a,b)內有導數.在文科的數學教學中回避了函數連續的概念.規定y=f(x)在[a,b]上有定義,是為了保證函數在[a,b]內有值和最小值;在(a,b)內可導,是為了能用求導的方法求解.
4.求函數值和最小值,先確定函數的極大值和極小值,然后,再比較函數在區間兩端的函數值,因此,用導數判斷函數極大值與極小值是解決函數最值問題的關鍵.
5.有關函數最值的實際應用問題的教學,是本節內容的難點.教學時,必須引導學生確定正確的數學建模思想,分析實際問題中各變量之間的關系,給出自變量與因變量的函數關系式,同時確定函數自變量的實際意義,找出取值范圍,確保解題的正確性.從此,在函數最值的求法中多了一種非常優美而簡捷的方法——求導法.依教學大綱規定,有關此類函數最值的實際應用問題一般指單峰函數,而文科所涉及的函數必須是在所學導數公式之內能求導的函數.
教學過程
1.復習函數極值的一般求法
①學生復述求函數極值的三個步驟.
②教師強調理解求函數極值時應注意的幾個問題.
2.提出問題(用字幕打出)
①在教科書中的(圖2-11)中,哪些點是極大值點?哪些點是極小值點?
②x=a、x=b是不是極值點?
③在區間[a,b]上函數y=f(x)的值是什么?最小值是什么?
④一般地,設y=f(x)是定義在[a,b]上的函數,且在(a,b)內有導數.求函數y=f(x)在[a,b]上的值與最小值,你認為應通過什么方法去求解?
3.分組討論,回答問題
①學生回答:f(x2)是極大值,f(x1)與f(x3)都是極小值.
②依照極值點的定義討論得出:f(a)、f(b)不是函數y=f(x)的極值.
③直觀地從函數圖象中看出:f(x3)是最小值,f(b)是值.
(教師在回答完問題①②③之后,再提問:如果在沒有給出函數圖象的情況下,怎樣才能判斷出f(x3)是最小值,而f(b)是值呢?)
④與學生共同討論,得出求函數最值的一般方法:
i)求y=f(x)在(a,b)內的極值(極大值與極小值);
ii)將函數y=f(x)的各極值與f(a)、f(b)作比較,其中的一個為值,最小的一個為最小值.
4.分析講解例題
例4 求函數y=x4-2x2+5在區間[-2,2]上的值與最小值.
板書講解,鞏固求函數最值的求導法的兩個步驟,同時復習求函數極值的一般求法.
例5 用邊長為60cm的正方形鐵皮做一個無蓋小箱,先在四角分別截去一個小正方形,然后把四邊翻轉90°角,再焊接而成(教科書中圖2-13).問水箱底邊的長取多少時,水箱容積,容積為多少?
用多媒體課件講解:
①用課件展示題目與水箱的制作過程.
②分析變量與變量的關系,確定建模思想,列出函數關系式V=f(x),x∈D.
③解決V=f(x),x∈D求最值問題的方法(高次函數的最值,一般采用求導的方法,提醒學生注意自變量的實際意義).
④用“幾何畫板”平臺驗證答案.
5.強化訓練
演板P68練習
6.歸納小結
①求函數值與最小值的兩個步驟.
②解決最值應用題的一般思路.
布置作業
教科書習題2.5第4題、第5題、第6題、第7題.
2023數學教案九年級【篇4】
考標要求:
1體會因式分解法適用于解一邊為0,另一邊可分解為兩個一次因式的乘積的一元二次方程;
2會用因式分解法解某些一元二次方程。
重點:用因式分解法解一元二次方程。
難點:用因式分解把一元二次方程化為左邊是兩個一次二項式相乘右邊是零的形式。
一填空題(每小題5分,共25分)
1解方程(2+x)(x-3)=0,就相當于解方程()
A2+x=0,Bx-3=0C2+x=0且x-3=0,D2+x=0或x-3=0
2用因式分解法解一元二次方程的思路是降次,下面是甲、乙兩位同學解方程的過程:
(1)解方程:,小明的解法是:解:兩邊同除以x得:x=2;
(2)解方程:(x-1)(x-2)=2,小亮的解法是:解:x-1=1,x-2=2或者x-1=2,x-2=1,或者,x-1=-1,x-2=-2,或者x-1=-2,x-2=-1∴=2,=4,=3,=0
其中正確的是()
A小明B小亮C都正確D都不正確
3下面方程不適合用因式分解法求解的是()
A2-32=0,B2(2x-3)-=0,,D
4方程2x(x-3)=5(x-3)的根是()
Ax=,Bx=3C=,=3Dx=
5定義一種運算“※”,其規則為:a※b=(a+1)(b+1),根據這個規則,方程x※(x+1)=0的解是()
Ax=0Bx=-1C=0,=-1,D=-1=-2
二填空題(每小題5分,共25分)
6方程(1+)-(1-)x=0解是=_____,=__________
7當x=__________時,分式值為零。
8若代數式與代數式4(x-3)的值相等,則x=_________________
9已知方程(x-4)(x-9)=0的解是等腰三角形的兩邊長,則這個等腰三角形的周長=_______.
10如果,則關于x的一元二次方程a+bx=0的解是_________
三解答題(每小題10分,共50分)
11解方程
(1)+2x+1=0(2)4-12x+9=0
(3)25=9(4)7x(2x-3)=4(3-2x)
12解方程=(a-2)(3a-4)
13已知k是關于x的方程4k-8x-k=0的一個根,求k的值。?
14解方程:-2+1=0
15對于向上拋的物體,在沒有空氣阻力的情況下,有如下關系:h=vt-g,其中h是上升到高度,v是初速度,g是重力加速度,(為方便起見,本題中g取10米/),t是拋出后所經過的時間。
如果將一物體以每秒25米的初速向上拋,物體多少秒后落到地面
2023數學教案九年級【篇5】
教學目標
1、理解“配方”是一種常用的數學方法,在用配方法將一元二次方程變形的過程中,讓學生進一步體會化歸的思想方法。
2、會用配方法解二次項系數為1的一元二次方程。
重點難點
重點:會用配方法解二次項系數為1的一元二次方程。
難點:用配方法將一元二次方程變形成可用因式分解法或直接開平方法解的方程。
教學過程
(一)復習引入
1、a2±2ab+b2=?
2、用兩種方法解方程(x+3)2-5=0。
如何解方程x2+6x+4=0呢?
(二)創設情境
如何解方程x2+6x+4=0呢?
(三)探究新知
1、利用“復習引入”中的內容引導學生思考,得知:反過來把方程x2+6x+4=0化成(x+3)2-5=0的形式,就可用前面所學的因式分解法或直接開平方法解。
2、怎樣把方程x2+6x+4=0化成(x+3)2-5=0的形式呢?讓學生完成課本P.10的“做一做”并引導學生歸納:當二次項系數為“1”時,只要在二次項和一次項之后加上一次項系數一半的平方,再減去這個數,使得含未知數的項在一個完全平方式里,這種做法叫作配方.將方程一邊化為0,另一邊配方后就可以用因式分解法或直接開平方法解了,這樣解一元二次方程的方法叫作配方法。
(四)講解例題
例1(課本P.11,例5)
[解](1)x2+2x-3(觀察二次項系數是否為“l”)
=x2+2x+12-12-3(在一次項和二次項之后加上一次項系數一半的平方,再減去這個數,使它與原式相等)
=(x+1)2-4。(使含未知數的項在一個完全平方式里)
用同樣的方法講解(2),讓學生熟悉上述過程,進一步明確“配方”的意義。
例2引導學生完成P.11~P.12例6的填空。
(五)應用新知
1、課本P.12,練習。
2、學生相互交流解題經驗。
(六)課堂小結
1、怎樣將二次項系數為“1”的一元二次方程配方?
2、用配方法解一元二次方程的基本步驟是什么?
(七)思考與拓展
解方程:(1)x2-6x+10=0;(2)x2+x+=0;(3)x2-x-1=0。
說一說一元二次方程解的情況。
[解](1)將方程的左邊配方,得(x-3)2+1=0,移項,得(x-3)2=-1,所以原方程無解。
(2)用配方法可解得x1=x2=-。
(3)用配方法可解得x1=,x2=
一元二次方程解的情況有三種:無實數解,如方程(1);有兩個相等的實數解,如方程(2);有兩個不相等的實數解,如方程(3)。
課后作業
課本習題
教學后記
2023數學教案九年級【篇6】
教學目標
1、理解用配方法解一元二次方程的基本步驟。
2、會用配方法解二次項系數為1的一元二次方程。
3、進一步體會化歸的思想方法。
重點難點
重點:會用配方法解一元二次方程.
難點:使一元二次方程中含未知數的項在一個完全平方式里。
教學過程
(一)復習引入
1、用配方法解方程x2+x-1=0,學生練習后再完成課本P.13的“做一做”.
2、用配方法解二次項系數為1的一元二次方程的基本步驟是什么?
(二)創設情境
現在我們已經會用配方法解二次項系數為1的一元二次方程,而對于二次項系數不為1的一元二次方程能不能用配方法解?
怎樣解這類方程:2x2-4x-6=0
(三)探究新知
讓學生議一議解方程2x2-4x-6=0的方法,然后總結得出:對于二次項系數不為1的一元二次方程,可將方程兩邊同除以二次項的系數,把二次項系數化為1,然后按上一節課所學的方法來解。讓學生進一步體會化歸的思想。
(四)講解例題
1、展示課本P.14例8,按課本方式講解。
2、引導學生完成課本P.14例9的填空。
3、歸納用配方法解一元二次方程的基本步驟:首先將方程化為二次項系數是1的一般形式;其次加上一次項系數的一半的平方,再減去這個數,使得含未知數的項在一個完全平方式里;最后將配方后的一元二次方程用因式分解法或直接開平方法來解。
(五)應用新知
課本P.15,練習。
(六)課堂小結
1、用配方法解一元二次方程的基本步驟是什么?
2、配方法是一種重要的數學方法,它的重要性不僅僅表現在一元二次方程的解法中,在今后學習二次函數,高中學習二次曲線時都要經常用到。
3、配方法是解一元二次方程的通法,但是由于配方的過程要進行較繁瑣的運算,在解一元二次方程時,實際運用較少。
4、按圖1—l的框圖小結前面所學解
一元二次方程的算法。
(七)思考與拓展
不解方程,只通過配方判定下列方程解的
情況。
(1)4x2+4x+1=0;(2)x2-2x-5=0;
(3)–x2+2x-5=0;
[解]把各方程分別配方得
(1)(x+)2=0;
(2)(x-1)2=6;
(3)(x-1)2=-4
由此可得方程(1)有兩個相等的實數根,方程(2)有兩個不相等的實數根,方程(3)沒有實數根。
點評:通過解答這三個問題,使學生能靈活運用“配方法”,并強化學生對一元二次方程解的三種情況的認識。
2023數學教案九年級【篇7】
教學目標:
1、進一步理解函數的概念,能從簡單的實際事例中,抽象出函數關系,列出函數解析式;
2、使學生分清常量與變量,并能確定自變量的取值范圍.
3、會求函數值,并體會自變量與函數值間的對應關系.
4、使學生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數的自變量的取值范圍的求法.
5、通過函數的教學使學生體會到事物是相互聯系的.是有規律地運動變化著的.
教學重點:了解函數的意義,會求自變量的取值范圍及求函數值.
教學難點:函數概念的抽象性.
教學過程:
(一)引入新課:
上一節課我們講了函數的概念:一般地,設在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有的值與它對應,那么就說x是自變量,y是x的函數.
生活中有很多實例反映了函數關系,你能舉出一個,并指出式中的自變量與函數嗎?
1、學校計劃組織一次春游,學生每人交30元,求總金額y(元)與學生數n(個)的關系.
2、為迎接新年,班委會計劃購買100元的小禮物送給同學,求所能購買的總數n(個)與單價(a)元的關系.
解:1、y=30n
y是函數,n是自變量
2、 ,n是函數,a是自變量.
(二)講授新課
剛才所舉例子中的函數,都是利用數學式子即解析式表示的.這種用數學式子表示函數時,要考慮自變量的取值必須使解析式有意義.如第一題中的學生數n必須是正整數.
例1、求下列函數中自變量x的取值范圍.
(1) (2)
(3) (4)
(5) (6)
分析:在(1)、(2)中,x取任意實數, 與 都有意義.
(3)小題的 是一個分式,分式成立的條件是分母不為0.這道題的分母是 ,因此要求 .
同理(4)小題的 也是分式,分式成立的條件是分母不為0,這道題的分母是 ,因此要求 且 .
第(5)小題, 是二次根式,二次根式成立的條件是被開方數大于、等于零. 的被開方數是 .
同理,第(6)小題 也是二次根式, 是被開方數,
.
解:(1)全體實數
(2)全體實數
(3)
(4) 且
(5)
(6)
小結:從上面的例題中可以看出函數的解析式是整數時,自變量可取全體實數;函數的解析式是分式時,自變量的取值應使分母不為零;函數的解析式是二次根式時,自變量的取值應使被開方數大于、等于零.
注意:有些同學沒有真正理解解析式是分式時,自變量的取值應使分母不為零,片面地認為,凡是分母,只要 即可.教師可將解題步驟設計得細致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使函數成立的自變量的取值范圍.二次根式的問題也與次類似.
但象第(4)小題,有些同學會犯這樣的錯誤,將答案寫成 或 .在解一元二次方程時,方程的兩根用“或者”聯接,在這里就直接拿過來用.限于初中學生的接受能力,教師可聯系日常生活講清“且”與“或”.說明這里 與 是并且的關系.即2與-1這兩個值x都不能取.
例2、自行車保管站在某個星期日保管的自行車共有3500輛次,其中變速車保管費是每輛一次0.5元,一般車保管費是每次一輛0.3元.
(1)若設一般車停放的輛次數為x,總的保管費收入為y元,試寫出y關于x的函數關系式;
(2)若估計前來停放的3500輛次自行車中,變速車的輛次不小于25%,但不大于40%,試求該保管站這個星期日收入保管費總數的范圍.
解:(1)
(x是正整數,
(2)若變速車的輛次不小于25%,但不大于40%,
則
收入在1225元至1330元之間
總結:對于反映實際問題的函數關系,應使得實際問題有意義.這樣,就要求聯系實際,具體問題具體分析.
對于函數 ,當自變量 時,相應的函數y的值是 .60叫做這個函數當 時的函數值.
例3、求下列函數當 時的函數值:
(1) (2)
(3) (4)
解:1)當 時,
(2)當 時,
(3)當 時,
(4)當 時,
注:本例既鍛煉了學生的計算能力,又創設了情境,讓學生體會對于x的每一個值,y都有確定的值與之對應.以此加深對函數的理解.
(二)小結:
這節課,我們進一步地研究了有關函數的概念.在研究函數關系時首先要考慮自變量的取值范圍.因此,要求大家能掌握解析式含有一個自變量的簡單的整式、分式、二次根式的函數的自變量取值范圍的求法,并能求出其相應的函數值.另外,對于反映實際問題的函數關系,要具體問題具體分析.
作業:習題13.2A組2、3、5