小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 九年級教案 > 數學教案 >

高中數學教育教案范文

時間: 沐欽 數學教案

數學作為研究數字的學科,代數學也是數學最重要的組成部分之一。幾何是數學要研究的第一個分支。下面是小編為大家帶來的高中數學教育教案范文七篇,希望大家能夠喜歡!

高中數學教育教案范文

高中數學教育教案范文【篇1】

教材分析

(一) 教材地位、作用

《古典概型》是高中數學人教A版必修3第三章概率3.2的內容,教學安排是2課時,本節是第一課時。是在隨機事件的概率之后,幾何概型之前,尚未學習排列組合的情況下教學的。古典概型是一種特殊的數學模型,也是一種最基本的概率模型,它的引入避免了大量的重復試驗,而且得到的是概率精確值,同時古典概型

也是后面學習條件概率的基礎,它有利于理解概率的概念,有利于計算一些事件的概率,有利于解釋生活中的一些問題,起到承前啟后的作用,所以在概率論中占有相當重要的地位。

(二)教材處理:

學情分析:學生基礎一般,但師生之間,學生之間情感融洽,上課互動氛圍良好。他們具備一定的觀察,類比,分析,歸納能力,但對知識的理解和方法的掌握在一些細節上不完備,反映在解題中就是思維不慎密,過程不完整。

教學內容組織和安排:根據上面的學情分析,學生思維不嚴密,意志力薄弱,故而整個教學環節總是創設恰當的問題情境,引導學生積極思考,培養他們的邏輯思維能力。通過對問題情境的分析,引出基本事件的概念,古典概型中基本事件的特點,以及古典概型的計算公式。對典型例題進行分析,以鞏固概念,掌握解題方法。

二、三維目標

知識與技能目標:

(1)正確理解古典概型的兩大特點:1)試驗中所有可能出現的基本事件只有有限個;2)每個基本事件出現的可能性相等;

(2)理解古典概型的概率計算公式 :P(A)=

(3)會用列舉法計算一些隨機事件所含的基本事件數及事件發生的概率。

過程與方法目標:根據本節課的內容和學生的實際水平,通過模擬試驗讓學生理解古典概型的特征:試驗結果的有限性和每一個試驗結果出現的等可能性,觀察類比各個試驗,歸納總結出古典概型的概率計算公式,體現了化歸的重要思想,掌握列舉法,學會運用分類討論的思想解決概率的計算問題。

情感態度與價值觀目標:通過各種有趣的,貼近學生生活的素材,激發學生學習數學的熱情和興趣,培養學生勇于探索,善于發現的創新思想;通過參與探究活動,領會理論與實踐對立統一的辨證思想;結合問題的現實意義,培養學生的合作精神.

三、 教學重點與難點

1、重點:理解古典概型的概念及利用古典概型求解隨機事件的概率。

2、難點:如何判斷一個試驗是否為古典概型,弄清在一個古典概型中某隨機事件包含的基本事件的個數和試驗中基本事件的總數

四、教法與學法分析

教法分析:根據本節課的特點,采用引導發現和歸納概括相結合的教學方法,通過提出問題、思考問題、解決問題等教學過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發學生的學習興趣,調動學生的主體能動性,讓每一個學生充分地參與到學習活動中來。

學法分析:學生在教師創設的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結合,體現了學生的主體地位,培養了學生由具體到抽象,由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。

五、教學基本流程

六、教學設計

教學設計 設計意圖 師生互動 1 課前模擬試驗:

①擲一枚質地均勻的硬幣的試驗;

②擲一枚質地均勻的骰子的試驗。

問題1 用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?

問題2 分別說出上述兩試驗的所有可能的實驗結果是什么?每個結果之間都有什么關系? 模擬實驗的目的是創建與新課內容相關的實驗模型,把問題具體化,過渡到新課時自然有序,同時也培養了學生的動手能力和與人合作的能力。

問題1的引出,激發學生的求知欲望和學習興趣

讓學生思考討論問題2,直接進入新課,把課堂交給學生。

學生——實驗、思考、討論

老師——利用試驗給出所有可能出現的結果即基本事件。

老師——加以引導與啟發,利用基本事件的關系發現基本事件的特點。

學生——歸納與總結,鼓勵學生用自己的語言表述,從而提高學生的表達能力與數學語言的組織能力 2 問題一:什么是基本事件?基本事件有什么特征?

例從字母a,b,c,d中任意選出兩個不同字母的試驗中,有哪些基本事件?

練習(1)在擲骰子的試驗中,事件“出現偶數點 ”是哪些基本事件的并事件?

(2)先后拋擲兩枚均勻的硬幣的試驗中,有哪些基本事件?

問題二:上述試驗和練習的共同特點是什么?

(1)試驗中所有可能出現的基本事件只有有限個;

(2)每個基本事件出現的可能性相等 為了引出古典概型的概念,設計了練習。通過列舉法列舉基本事件,進一步理解與鞏固基本事件的概念;然后設疑:“類比試驗與練習中基本事件有什么共同點?”,通過問題的解決讓學生體驗由特殊到一般的數學思想方法的應用,從而引出古典概型的概念。 老師——引導學生列舉時做到不重復、不遺漏

學生——列舉出基本事件

老師——引導學生找出共性。我們將具有這兩個特點的概率模型稱為古典概率模型,簡稱古典概型。 3 思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率又如何計算?

觀察:擲硬幣與擲骰子的試驗完成 例1 .(1)求在拋擲一枚硬幣觀察哪個面向上的試 驗中“正面朝上”和“反面朝上”這2個基本事件的概率?

(2)在拋擲一枚骰子的試驗中,出現“1點”、“2點”、“3點”、“4點”、“5點”、“6點”這6個基本事件的概率?

(3)在擲骰子的試驗中,事件“出現偶數點”發生的概率是多少?

總結:你能從這些試驗中找出規律,總結出公式嗎?

了解古典概型的概念之后,就要引領學生探究概率公式。為了突破這個重點我設計了3個環節

首先,讓學生帶著思考問題觀察試驗,使其有目的的去尋找答案,有效的利用課堂時間,達到教學目標。

其次,公式的推導是在老師的啟發引導下,讓學生帶著好奇心去觀察數學模型。(模型演示)多媒體引入課堂為學生提供了廣闊的空間,通過直觀感受,使學生對規律的總結快速而準確。

最后,學生在回答例1問題的過程中,逐步感受由特殊性演變到一般性,最終得出結論。過程自然而有序,讓學生體驗到認知的自然升華,感受數學美妙的意境。 老師——提出問題

高中數學教育教案范文【篇2】

教材分析

? 教材地位及作用 本節課是高中數學3(必修)第三章概率的第二節古典概型的第一課時,是在隨機事件的概率之后,幾何概型之前,尚未學習排列組合的情況下教學的。古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位。

學好古典概型可以為其它概率的學習奠定基礎,同時有利于理解概率的概念,有利于計算一些事件的概率,有利于解釋生活中的一些問題。 ? 教學重點 理解古典概型的概念及利用古典概型求解隨機事件的概率。 根據本節課的地位和作用以及新課程標準的具體要求,制訂教學重點。 教學難點 如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數和試驗中基本事件的總數。 根據本節課的內容,即尚未學習排列組合,以及學生的心理特點和認知水平,制定了教學難點。 教

目標 1.知識與技能

(1)理解古典概型及其概率計算公式,

(2)會用列舉法計算一些隨機事件所含的基本事件數及事件發生的概率。

2.過程與方法

根據本節課的內容和學生的實際水平,通過模擬試驗讓學生理解古典概型的特征:試驗結果的有限性和每一個試驗結果出現的等可能性,觀察類比各個試驗,歸納總結出古典概型的概率計算公式,體現了化歸的重要思想,掌握列舉法,學會運用數形結合、分類討論的思想解決概率的計算問題。

3.情感態度與價值觀

概率教學的核心問題是讓學生了解隨機現象與概率的意義,加強與實際生活的聯系,以科學的態度評價身邊的一些隨機現象。適當地增加學生合作學習交流的機會,盡量地讓學生自己舉出生活和學習中與古典概型有關的實例。使得學生在體會概率意義的同時,感受與他人合作的重要性以及初步形成實事求是地科學態度和鍥而不舍的求學精神。 根據新課程標準,并結合學生心理發展的需求,以及人格、情感、價值觀的具體要求制訂而成。這對激發學生學好數學概念,養成數學習慣,感受數學思想,提高數學能力起到了積極的作用。 ?

項 目 內 容 師生活動 理論依據或意圖 

過程分析 一

提出問題引入新課 在課前,教師布置任務,以數學小組為單位,完成下面兩個模擬試驗:

試驗一:拋擲一枚質地均勻的硬幣,分別記錄“正面朝上”和“反面朝上”的次數,要求每個數學小組至少完成20次(最好是整十數),最后由科代表匯總;

試驗二:拋擲一枚質地均勻的骰子,分別記錄“1點”、“2點”、“3點”、“4點”、“5點”和“6點”的次數,要求每個數學小組至少完成60次(最好是整十數),最后由科代表匯總。

在課上,學生展示模擬試驗的操作方法和試驗結果,并與同學交流活動感受。

教師最后匯總方法、結果和感受,并提出問題?

1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?

不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結果是頻率,而不是概率。

2.根據以前的學習,上述兩個模擬試驗的每個結果之間都有什么特點? 學生展示模擬試驗的操作方法和試驗結果,并與同學交流活動感受,教師最后匯總方法、結果和感受,并提出問題。 通過課前的模擬實驗的展示,讓學生感受與他人合作的重要性,培養學生運用數學語言的能力。隨著新問題的提出,激發了學生的求知欲望,通過觀察對比,培養了學生發現問題的能力。

二思考交流形成概念

在試驗一中隨機事件只有兩個,即“正面朝上”和“反面朝上”,并且他們都是互斥的,由于硬幣質地是均勻的,因此出現兩種隨機事件的可能性相等,即它們的概率都是 ;

在試驗二中隨機事件有六個,即“1點”、“2點”、“3點”、“4點”、“5點”和“6點”,并且他們都是互斥的,由于骰子質地是均勻的,因此出現六種隨機事件的可能性相等,即它們的概率都是 。

我們把上述試驗中的隨機事件稱為基本事件,它是試驗的每一個可能結果。

基本事件有如下的兩個特點:

(1)任何兩個基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

特點(2)的理解:在試驗一中,必然事件由基本事件“正面朝上”和“反面朝上”組成;在試驗二中,隨機事件“出現偶數點”可以由基本事件“2點”、“4點”和“6點”共同組成。 學生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關特點加以說明,加深新概念的理解。 讓學生從問題的相同點和不同點中找出研究對象的對立統一面,這能培養學生分析問題的能力,同時也教會學生運 用對立統一的辯證唯物主義觀點來分析問題的一種方法。

教師的注解可以使學生更好的把握問題的關鍵。 項 目 內 ?容 師生活動 理論依據或意圖 教

過程分析

二思考交流形成概念 例1 從字母 中任意取出兩個不同字母的試驗中,有哪些基本事件?

分析:為了解基本事件,我們可以按照字典排序的順序,把所有可能的結果都列出來。利用樹狀圖可以將它們之間的關系列出來。

我們一般用列舉法列出所有基本事件的結果,畫樹狀圖是列舉法的基本方法,一般分布完成的結果(兩步以上)可以用樹狀圖進行列舉。

(樹狀圖)

解:所求的基本事件共有6個:

, , ,

, ,

觀察對比,發現兩個模擬試驗和例1的共同特點:

試驗一中所有可能出現的基本事件有“正面朝上”和“反面朝上”2個,并且每個基本事件出現的可能性相等,都是 ;

試驗二中所有可能出現的基本事件有“1點”、“2點”、“3點”、“4點”、“5點”和“6點”6個,并且每個基本事件出現的可能性相等,都是 ;

例1中所有可能出現的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6個,并且每個基本事件出現的可能性相等,都是 ;

經概括總結后得到:

(1)試驗中所有可能出現的基本事件只有有限個;(有限性)

(2)每個基本事件出現的可能性相等。(等可能性)

我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型。

思考交流:

(1)向一個圓面內隨機地投射一個點,如果該點落在圓內任意一點都是等可能的,你認為這是古典概型嗎?為什么?

先讓學生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優點。

讓學生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結得到的結論,教師最后補充說明。

學生互相交流,回答補充,教師歸納。 將數形結合和分類討論的思想滲透到具體問題中來。由于沒有學習排列組合,因此用列舉法列舉基本事件的個數,不僅能讓學生直觀的感受到對象的總數,而且還能使學生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數這一難點。

培養運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現了數學的化歸思想。啟發誘導的同時,訓練了學生觀察和概括歸納的能力。通過用表格列出相同和不同點,能讓學生很好的理解古典概型。從而突出了古典概型這一重點。

兩個問題的設計是為了讓學生更加準確的把握古典概型的兩個特點。突破了如何判斷一個試驗是否是古典概型這一教學難點。 項 目 內 容 師生活動 理論依據或意圖 教

過程分析 思考交流形成概念 答:不是古典概型,因為試驗的所有可能結果是圓面內所有的點,試驗的所有可能結果數是無限的,雖然每一個試驗結果出現的“可能性相同”,但這個試驗不滿足古典概型的第一個條件。

(2)如圖,某同學隨機地向一靶心進行射擊,這一試驗的結果只有有限個:命中10環、命中9環……命中5環和不中環。你認為這是古典概型嗎?為什么?

答:不是古典概型,因為試驗的所有可能結果只有7個,而命中10環、命中9環……命中5環和不中環的出現不是等可能的,即不滿足古典概型的第二個條件。 ? ? 三

觀察分析推導方程 問題思考:在古典概型下,基本事件出現的概率是多少?隨機事件出現的概率如何計算?

分析:

實驗一中,出現正面朝上的概率與反面朝上的概率相等,即

P(“正面朝上”)=P(“反面朝上”)

由概率的加法公式,得

P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1

因此 P(“正面朝上”)=P(“反面朝上”)=

即 試驗二中,出現各個點的概率相等,即

P(“1點”)=P(“2點”)=P(“3點”)

=P(“4點”)=P(“5點”)=P(“6點”)

反復利用概率的加法公式,我們有

P(“1點”)+P(“2點”)+P(“3點”)+P(“4點”)+P(“5點”)+P(“6點”)=P(必然事件)=1

所以P(“1點”)=P(“2點”)=P(“3點”)

=P(“4點”)=P(“5點”)=P(“6點”)=

進一步地,利用加法公式還可以計算這個試驗中任何一個事件的概率,例如,

P(“出現偶數點”)=P(“2點”)+P(“4點”)+P(“6點”)= + + = =

即 根據上述兩則模擬試驗,可以概括總結出,古典概型計算任何事件的概率計算公式為:

教師提出問題,引導學生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結果,發現其中的聯系。 鼓勵學生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學生感受數學化歸思想的優越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點。

高中數學教育教案范文【篇3】

教學目標:(1)理解古典概型及其概率計算公式,

(2)會用列舉法計算一些隨機事件所含的基本事件數及事件發生的概率。

教學重點:理解古典概型的概念及利用古典概型求解隨機事件的概率.

教學難點:如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數和試驗中基本事件的總數.

教學過程:

導入:故事引入

探究一

試驗:

(1)擲一枚質地均勻的硬幣的試驗

(2)擲一枚質地均勻的骰子的試驗

上述兩個試驗的所有結果是什么?

一.基本事件

1.基本事件的定義:

隨機試驗中可能出現的每一個結果稱為一個基本事件

2.基本事件的特點:

(1)任何兩個基本事件是互斥的

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

例1、從字母a,b,c,d中任意取出兩個不同的字母的試驗中,有幾個基本事件?分別是什么?

探究二:你能從上面的兩個試驗和例題1發現它們的共同特點嗎?

二.古典概型

(1)試驗中所有可能出現的基本事件只有有限個;(有限性)

(2)每個基本事件出現的可能性相等。(等可能性)

我們將具有這兩個特點的概率模型稱為古典概率模型,簡稱古典概型。

思考:判斷下列試驗是否為古典概型?為什么?

(1).從所有整數中任取一個數

(2).向一個圓面內隨機地投一個點,如果該點落在圓面內任意一點都是等可能的。

(3).射擊運動員向一靶心進行射擊,這一試驗的結果只有有限個,命中10環,命中9環,….命中1環和命中0環(即不命中)。

(4).有紅心1,2,3和黑桃4,5共5張撲克牌,將其牌點向下置于桌上,現從中任意抽取一張.

高中數學教育教案范文【篇4】

(一)教學內容

本節課選自《普通高中課程標準實驗教科書》人教A版必修3第三章第二節《古典概型》,教學安排是2課時,本節課是第一課時。

(二)教學目標

1. 知識與技能:

(1) 通過試驗理解基本事件的概念和特點;

(2) 通過具體實例分析,抽離出古典概型的兩個基本特征,并推導出古典概型下的概率計算公式;

(3) 會求一些簡單的古典概率問題。

2. 過程與方法:經歷探究古典概型的過程,體驗由特殊到一般的數學思想方法。

3. 情感與價值:用具有現實意義的實例,激發學生的學習興趣,培養學生勇于探索,善于發現的創新思想。

(三)教學重、難點

重點:理解古典概型的概念,利用古典概型求解隨機事件的概率。

難點:如何判斷一個試驗是否為古典概型,弄清在一個古典概型中基本事件的總數和某隨機事件包含的基本事件的個數。

(四)學情分析

[知識儲備]

初中:了解頻率與概率的關系,會計算一些簡單等可能事件發生的概率;

高中:進一步學習概率的意義,概率的基本性質。

[學生特點]

我所帶班級的學生思維活躍,但對基本概念重視不足,對知識深入理解不夠。善于發現具體事件中的共同點及區別,但從感性認識上升到理性認識有待提高。

(五)教學策略

由身邊實例出發,讓學生在不斷的矛盾沖突中,通過“老師引導”,“小組討論”,“自主探究”等多種方式逐漸形成發現問題,解決問題的思想。

(六) 教學用具

多媒體課件,投影儀,硬幣,骰子。

(七)教學過程

[情景設置]

有一本好書,兩位同學都想看。甲同學提議擲硬幣:正面向上甲先看,反面向上乙先看。乙同學提議擲骰子:三點以下甲先看,三點以上乙先看。這兩種方法是否公平?

☆處理:通過生活實例,快速地將學生的注意力引入課堂。提出公平與否實質上是概率大小問題,切入本堂課主題。

[溫故知新]

(1)回顧前幾節課對概率求取的方法:大量重復試驗。

(2)由隨機試驗方法的不足之處引發矛盾沖突:我們需要尋求另外一種更為簡單易行的方式,提出建立概率模型的必要性。

[探究新知]

一、基本事件

思考:試驗1:擲一枚質地均勻的硬幣,觀察可能出現哪幾種結果?

試驗2:擲一枚質地均勻的骰子,觀察可能出現的點數有哪幾種結果?

定義:一次試驗中可能出現的每一個結果稱為一個基本事件。

☆處理:圍繞對兩個試驗的分析,提出基本事件的概念。類比生物學中對細胞的研究,過渡到研究基本事件對建立概率模型的必要性。

思考:擲一枚質地均勻的骰子

(1)在一次試驗中,會同時出現“1點”和“2點”這兩個基本事件嗎

(2)隨機事件“出現點數小于3”與“出現點數大于3”包含哪幾個基本事件?

擲一枚質地均勻的硬幣

(1)在一次試驗中,會同時出現“正面向上”和“反面向上”這兩個基本事件嗎

(2)“必然事件”包含哪幾個基本事件?

基本事件的特點:(1)任何兩個基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

☆處理:引導學生從個性中尋找共性,提升學生發現、歸納、總結的能力。設計隨機事件“出現點數小于3”與“出現點數大于3”與課堂引入相呼應,也為后面隨機事件概率的求取打下伏筆。

二、古典概型

思考:從基本事件角度來看,上述兩個試驗有何共同特征?

古典概型的特征:(1)試驗中所有可能出現的基本事件的個數有限;

(2)每個基本事件出現的可能性相等。

☆處理:引導學生觀察、分析、總結這兩個試驗的共同點,培養他們從具體到抽象、從特殊到一般的數學思維能力。在提問時明確思考的角度,讓學生的思維直指概念的本質,避免不必要的發散。

師生互動:由學生和老師各自舉出一些生活實例并分析是否具備古典概型的兩個特征。

(1)向一個圓面內隨機地投射一個點,如果該點落在圓內任意一點都是等可能的,你認為這一試驗能用古典概型來描述嗎?為什么?

(2)08年北京奧運會上我國選手張娟娟以出色的成績為我國贏得了射箭項目的第一枚奧運金牌。你認為打靶這一試驗能用古典概型來描述嗎?為什么?

設計意圖:讓學生通過身邊實例更加形象、準確的把握古典概型的兩個特點,突破如何判斷一個試驗是否是古典概型這一教學難點。

三、求解古典概型

思考:古典概型下,每個基本事件出現的概率是多少?隨機事件出現的概率又如何計算?

(1) 基本事件的概率

試驗1:擲硬幣

P (“正面向上”)= P (“反面向上”)=

試驗2:擲骰子

P(“1點”)=P(“2點”)=P(“3點”)=P(“4點”)=P(“5點”)=P(“6點”)=

結論:古典概型中,若基本事件總數有n個,則每一個基本事件出現的概率為

☆處理:提出“如果不做試驗,如何利用古典概型的特征求取概率?”

先由學生分小組討論擲硬幣試驗中基本事件的概率如何求取并規范學生解答,同時點出甲同學提出的“擲硬幣方案”的公平性;再由學生分析擲骰子試驗中基本事件概率的求解過程并得出一般性結論。

(2)隨機事件的概率

擲骰子試驗中,記事件A為“出現點數小于3” ,事件B為“出現點數大于3”,如何求解P(A)與P(B)?

高中數學教育教案范文【篇5】

函數單調性與(小)值

一、教材分析

1、 教材的地位和作用

(1)本節課主要對函數單調性的學習;

(2)它是在學習函數概念的基礎上進行學習的,同時又為基本初等函數的學習奠定了基礎,所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節來寫)

(3)它是歷年高考的熱點、難點問題

(根據具體的課題改變就行了,如果不是熱點難點問題就刪掉)

2、 教材重、難點

重點:函數單調性的定義

難點:函數單調性的證明

重難點突破:在學生已有知識的基礎上,通過認真觀察思考,并通過小組合作探究的辦法來實現重難點突破。(這個必須要有)

二、教學目標

知識目標:(1)函數單調性的定義

(2)函數單調性的證明

能力目標:培養學生全面分析、抽象和概括的能力,以及了解由簡單到復雜,由特殊到一般的化歸思想

情感目標:培養學生勇于探索的精神和善于合作的意識

(這樣的教學目標設計更注重教學過程和情感體驗,立足教學目標多元化)

三、教法學法分析

1、教法分析

“教必有法而教無定法”,只有方法得當才會有效。新課程標準之處教師是教學的組織者、引導者、合作者,在教學過程要充分調動學生的積極性、主動性。本著這一原則,在教學過程中我主要采用以下教學方法:開放式探究法、啟發式引導法、小組合作討論法、反饋式評價法

2、學法分析

“授人以魚,不如授人以漁”,最有價值的知識是關于方法的只是。學生作為教學活動的主題,在學習過程中的參與狀態和參與度是影響教學效果最重要的因素。在學法選擇上,我主要采用:自主探究法、觀察發現法、合作交流法、歸納總結法。

(前三部分用時控制在三分鐘以內,可適當刪減)

四、教學過程

1、以舊引新,導入新知

通過課前小研究讓學生自行繪制出一次函數f(x)=x和二次函數f(x)=x^2的圖像,并觀察函數圖象的特點,總結歸納。通過課上小組討論歸納,引導學生發現,教師總結:一次函數f(x)=x的圖像在定義域是直線上升的,而二次函數f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來更自然)

2、創設問題,探索新知

緊接著提出問題,你能用二次函數f(x)=x^2表達式來描述函數在(-∞,0)的圖像?教師總結,并板書,揭示函數單調性的定義,并注意強調可以利用作差法來判斷這個函數的單調性。

讓學生模仿剛才的表述法來描述二次函數f(x)=x^2在(0,+∞)的圖像,并找個別同學起來作答,規范學生的數學用語。

讓學生自主學習函數單調區間的定義,為接下來例題學習打好基礎。

3、 例題講解,學以致用

例1主要是對函數單調區間的鞏固運用,通過觀察函數定義在(—5,5)的圖像來找出函數的單調區間。這一例題主要以學生個別回答為主,學生回答之后通過互評來糾正答案,檢查學生對函數單調區間的掌握。強調單調區間一般寫成半開半閉的形式

例題講解之后可讓學生自行完成課后練習4,以學生集體回答的方式檢驗學生的學習效果。

例2是將函數單調性運用到其他領域,通過函數單調性來證明物理學的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規范總結證明步驟。一設二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。

學生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學上臺板演,其他同學在下面自行完成,并通過自評、互評檢查證明步驟。

4、歸納小結

本節課我們主要學習了函數單調性的定義及證明過程,并在教學過程中注重培養學生勇于探索的精神和善于合作的意識。

5、作業布置

為了讓學生學習不同的數學,我將采用分層布置作業的方式:一組 習題1.3A組1、2、3 ,二組 習題1.3A組2、3、B組1、2

6、板書設計

我力求簡潔明了地概括本節課的學習要點,讓學生一目了然。

(這部分最重要用時六到七分鐘,其中定義講解跟例題講解一定要說明學生的活動)

五、教學評價

本節課是在學生已有知識的基礎上學習的,在教學過程中通過自主探究、合作交流,充分調動學生的積極性跟主動性,及時吸收反饋信息,并通過學生的自評、互評,讓內部動機和外界刺激協調作用,促進其數學素養不斷提高。

高中數學教育教案范文【篇6】

正弦定理

一 教材分析

本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。

根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:

認知目標:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理與三角形的內角和定理解斜三角形的兩類問題。

能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。

情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,給學生成功的體驗,激發學生學習的興趣。

教學重點:正弦定理的內容,正弦定理的證明及基本應用。

教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數。

二 教法

根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當的提示和指導。突破難點的方法:抓住學生的能力線聯系方法與技能使學生較易證明正弦定理,另外通過例題和練習來突破難點

三 學法:

指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。

四 教學過程

第一:創設情景,大概用2分鐘

第二:實踐探究,形成概念,大約用25分鐘

第三:應用概念,拓展反思,大約用13分鐘

(一)創設情境,布疑激趣

“興趣是的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。

(二)探尋特例,提出猜想

1.激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。

2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。

3.讓學生總結實驗結果,得出猜想:

在三角形中,角與所對的邊滿足關系

這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。

(三)邏輯推理,證明猜想

1.強調將猜想轉化為定理,需要嚴格的理論證明。

2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。

3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。

4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明

(四)歸納總結,簡單應用

1.讓學生用文字敘述正弦定理,引導學生發現定理具有對稱和諧美,提升對數學美的享受。

2.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。

3.運用正弦定理求解本節課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。

(五)講解例題,鞏固定理

1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

例1簡單,結果為解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。

(六)課堂練習,提高鞏固

1.在△ABC中,已知下列條件,解三角形.

(1)A=45°,C=30°,c=10cm

(2)A=60°,B=45°,c=20cm

2. 在△ABC中,已知下列條件,解三角形.

(1)a=20cm,b=11cm,B=30°

(2)c=54cm,b=39cm,C=115°

學生板演,老師巡視,及時發現問題,并解答。

(七)小結反思,提高認識

通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?

1.用向量證明了正弦定理,體現了數形結合的數學思想。

2.它表述了三角形的邊與對角的正弦值的關系。

3.定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。

(從實際問題出發,通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。)

(八)任務后延,自主探究

如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發現正弦定理不適用了,那么自然過渡到下一節內容,余弦定理。布置作業,預習下一節內容。

高中數學教育教案范文【篇7】

指數與指數冪的運算教案

整體設計

教學分析

我們在初中的學習過程中,已了解了整數指數冪的概念和運算性質.從本節開始我們將在回顧平方根和立方根的基礎上,類比出正數的n次方根的定義,從而把指數推廣到分數指數.進而推廣到有理數指數,再推廣到實數指數,并將冪的運算性質由整數指數冪推廣到實數指數冪.

教材為了讓學生在學習之外就感受到指數函數的實際背景,先給出兩個具體例子:GDP的增長問題和碳14的衰減問題.前一個問題,既讓學生回顧了初中學過的整數指數冪,也讓學生感受到其中的函數模型,并且還有思想教育價值.后一個問題讓學生體會其中的函數模型的同時,激發學生探究分數指數冪、無理數指數冪的興趣與欲望,為新知識的學習作了鋪墊.

本節安排的內容蘊涵了許多重要的數學思想方法,如推廣的思想(指數冪運算律的推廣)、類比的思想、逼近的思想(有理數指數冪逼近無理數指數冪)、數形結合的思想(用指數函數的圖象研究指數函數的性質)等,同時,充分關注與實際問題的結合,體現數學的應用價值.

根據本節內容的特點,教學中要注意發揮信息技術的力量,盡量利用計算器和計算機創設教學情境,為學生的數學探究與數學思維提供支持.

三維目標

1.通過與初中所學的知識進行類比,理解分數指數冪的概念,進而學習指數冪的性質.掌握分數指數冪和根式之間的互化,掌握分數指數冪的運算性質.培養學生觀察分析、抽象類比的能力.

2.掌握根式與分數指數冪的互化,滲透“轉化”的數學思想.通過運算訓練,養成學生嚴謹治學,一絲不茍的學習習慣,讓學生了解數學來自生活,數學又服務于生活的哲理.

3.能熟練地運用有理指數冪運算性質進行化簡、求值,培養學生嚴謹的思維和科學正確的計算能力.

4.通過訓練及點評,讓學生更能熟練掌握指數冪的運算性質.展示函數圖象,讓學生通過觀察,進而研究指數函數的性質,讓學生體驗數學的簡潔美和統一美.

重點難點

教學重點

(1)分數指數冪和根式概念的理解.

(2)掌握并運用分數指數冪的運算性質.

(3)運用有理指數冪的性質進行化簡、求值.

教學難點

(1)分數指數冪及根式概念的理解.

(2)有理指數冪性質的靈活應用.

課時安排

3課時

教學過程

第1課時

作者:路致芳

導入新課

思路1.同學們在預習的過程中能否知道考古學家如何判斷生物的發展與進化,又怎樣判斷它們所處的年代?(考古學家是通過對生物化石的研究來判斷生物的發展與進化的,第二個問題我們不太清楚)考古學家是按照這樣一條規律推測生物所處的年代的.教師板書本節課題:指數函數——指數與指數冪的運算.

思路2.同學們,我們在初中學習了平方根、立方根,那么有沒有四次方根、五次方根…n次方根呢?答案是肯定的,這就是我們本堂課研究的課題:指數函數——指數與指數冪的運算.

推進新課

新知探究

提出問題

(1)什么是平方根?什么是立方根?一個數的平方根有幾個,立方根呢?

(2)如x4=a,x5=a,x6=a,根據上面的結論我們又能得到什么呢?

(3)根據上面的結論我們能得到一般性的結論嗎?

(4)可否用一個式子表達呢?

活動:教師提示,引導學生回憶初中的時候已經學過的平方根、立方根是如何定義的,對照類比平方根、立方根的定義解釋上面的式子,對問題(2)的結論進行引申、推廣,相互交流討論后回答,教師及時啟發學生,具體問題一般化,歸納類比出n次方根的概念,評價學生的思維.

討論結果:(1)若x2=a,則x叫做a的平方根,正實數的平方根有兩個,它們互為相反數,如:4的平方根為±2,負數沒有平方根,同理,若x3=a,則x叫做a的立方根,一個數的立方根只有一個,如:-8的立方根為-2.

(2)類比平方根、立方根的定義,一個數的四次方等于a,則這個數叫a的四次方根.一個數的五次方等于a,則這個數叫a的五次方根.一個數的六次方等于a,則這個數叫a的六次方根.

(3)類比(2)得到一個數的n次方等于a,則這個數叫a的n次方根.

(4)用一個式子表達是,若xn=a,則x叫a的n次方根.

教師板書n次方根的意義:

一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整數集.

可以看出數的平方根、立方根的概念是n次方根的概念的特例.

提出問題

(1)你能根據n次方根的意義求出下列數的n次方根嗎?(多媒體顯示以下題目).

①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.

(2)平方根,立方根,4次方根,5次方根,7次方根,分別對應的方根的指數是什么數,有什么特點?4,±8,16,-32,32,0,a6分別對應什么性質 的數,有什么特點?

(3)問題(2)中,既然方根有奇次的也有偶次的,數a有正有負,還有零,結論有一個的,也有兩個的,你能否總結一般規律呢?

(4)任何一個數a的偶次方根是否存在呢?

活動:教師提示學生切實緊扣n次方根的概念,求一個數a的n次方根,就是求出的那個數的n次方等于a,及時點撥學生,從數的分類考慮,可以把具體的數寫出來,觀察數的 特點,對問題(2)中的結論,類比推廣引申,考慮要全面,對回答正確的學生及時表揚,對回答不準確的學生提示引導考慮問題的思路.

討論結果:(1)因為±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所 以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分別是±2,±2,±2,2,-2,0,a2.

(2)方根的指數是2,3,4,5,7…特點是有奇數和偶數.總的來看,這些數包括正數,負數和零.

(3)一個數a的奇次方根只有一個,一個正數a的偶次方根有兩個,是互為相反數.0的任何次方根都是0.

(4)任何一個數a的偶次方根不一定存在,如負數的偶次方根就不存在,因為沒有一個數的偶次方是一個負數.

類比前面的平方根、立方根,結合剛才的討論,歸納出一般情形,得到n次方根的性質:

①當n為偶數時,正數a的n次方根有兩個,是互為相反數,正的n次方根用na表示,如果是負數,負的n次方根用-na表示,正的n次方根與負的n次方根合并寫成±na(a>0).

②n為奇數時,正數的n次方根是一個正數,負數的n次方根是一個負數,這時a的n次方根用符號na表示.

③負數沒有偶次方根;0的任何次方根都是零.

上面的文字語言可用下面的式子表示:

a為正數:n為奇數, a的n次方根有一個為na,n為偶數, a的n次方根有兩個為±na.

a為負數:n為奇數, a的n次方根只有一個為na,n為偶數, a的n次方根不存在.

零的n次方根為零,記為n0=0.

可以看出數的平方根、立方根的性質是n次方根的性質的特例.

思考

根據n次方根的性質能否舉例說明上述幾種情況?

活動:教師提示學生對方根的性質要分類掌握,即正數的奇偶次方根,負數的奇次方根,零的任何次方根,這樣才不重不漏,同時巡視學生,隨機給出一個數,我們寫出它的平方根,立方根,四次方根等,看是否有意義,注意觀察方根的形式,及時糾正學生在舉例過程中的問題.

解:答案不,比如,64的立方根是4,16的四次方根為±2,-27的5次方根為5-27,而-27的4次方根不存在等.其中5-27也表示方根,它類似于na的形式,現在我們給式子na一個名稱——根式.

根式的概念:

式子na叫做根式,其中a叫做被開方數,n叫做根指數.

如3-27中,3叫根指數,-27叫被開方數.

思考

nan表示an的n次方根,式子nan=a一定成立嗎?如果不一定成立,那么nan等于什么?

活動:教師讓學生注意討論n為奇偶數和a的符號,充分讓學生多舉實例,分組討論.教師點撥,注意歸納整理.

〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕.

解答:根據n次方根的意義,可得:(na)n=a.

通過探究得到:n為奇數,nan=a.

n為偶數,nan=|a|=a,-a,a≥0,a<0.

因此我們得到n次方根的運算性質:

①(na)n=a.先開方,再乘方(同次),結果為被開方數.

②n為奇數,nan=a.先奇次乘方,再開方(同次),結果為被開方數.

n為偶數,nan=|a|=a,-a,a≥0,a<0.先偶次乘方,再開方(同次),結果為被開方數的絕對值.

應用示例

思路1

例 求下列各式的值:

(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b).

活動:求某些式子的值,首先考慮的應是什么,明確題目的要求是什么,都用到哪些知識,關鍵是啥,搞清這些之后,再針對每一個題目仔細分析.觀察學生的解題情況,讓學生展示結果,抓住學生在解題過程中出現的問題并對癥下藥.求下列各式的值實際上是求數的方根,可按方根的運算性質來解,首先要搞清楚運算順序,目的是把被開方數的符號定準,然后看根指數是奇數還是偶數,如果是奇數,無需考慮符號,如果是偶數,開方的結果必須是非負數.

解:(1)3(-8)3=-8;

(2)(-10)2=10;

(3)4(3-π)4=π-3;

(4)(a-b)2=a-b(a>b).

點評:不注意n的奇偶性對式子nan的值的影響 ,是導致問題出現的一個重要原因,要在理解的基礎上,記準,記熟,會用,活用.

變式訓練

求出下列各式的值:

(1)7(-2)7;

(2)3(3a-3)3(a≤1);

(3)4(3a-3)4.

解:(1)7(-2)7=-2,

(2)3(3a-3)3(a≤1)=3a-3,

(3)4(3a-3)4=

點評:本題易錯的是第(3)題,往往忽視a與1大小的討論,造成錯解.

思路2

例1 下列各式中正確的是(  )

A.4a4=a

B.6(-2)2=3-2

C.a0=1

D.10(2-1)5=2-1

活動:教師提示,這是一道選擇題,本題考查n次方根的運算性質,應首先考慮根據方根的意義和運算性質來解,既要考慮被開方數,又要考慮根指數,嚴格按求方根的步驟,體會方根運算的實質,學生先思考哪些地方容易出錯,再回答.

解析:(1)4a4=a,考查n次方根的運算性質,當n為偶數時,應先寫nan=|a|,故A項錯.

(2)6(-2)2=3-2,本質上與上題相同,是一個正數的偶次方根,根據運算順序也應如此,結論為6(-2)2=32,故B項錯.

(3)a0=1是有條件的,即a≠0,故C項也錯.

(4)D項是一個正數的偶次方根,根據運算順序也應如此,故D項正確.所以答案選D.

答案:D

點評:本題由于考查n次方根的運算性質與運算順序,有時極易選錯,選四個答案的情況都會有,因此解題時千萬要細心.

例2 3+22+3-22=__________.

活動:讓同學們積極思考,交流討論,本題乍一看內容與本節無關,但仔細一想,我們學習的內容是方根,這里是帶有雙重根號的式子,去掉一層根號,根據方根的運算求出結果是解題的關鍵,因此將根號下面的式子化成一個完全平方式就更為關鍵了,從何處入手?需利用和的平方公式與差的平方公式化為完全平方式.正確分析題意是關鍵,教師提示,引導學生解題的思路.

解析:因為3+22=1+22+(2)2=(1+2)2=2+1,

3-22=(2)2-22+1=(2-1)2=2-1,

所以3+22+3-22=22.

答案:22

點評:不難看出3-22與3+22形式上有些特點,即是對稱根式,是A±2B形式的式子,我們總能找到辦法把其化成一個完全平方式.

思考

上面的例2還有別的解法嗎?

活動:教師引導,去根號常常利用完全平方公式,有時平方差公式也可,同學們觀察兩個式子的特點,具有對稱性,再考慮并交流討論,一個是“+”,一個是“-”,去掉一層根號后,相加正好抵消.同時借助平方差,又可去掉根號,因此把兩個式子的和看成一個整體,兩邊平方即可,探討得另一種解法.

另解:利用整體思想,x=3+22+3-22,

兩邊平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.

點評:對雙重二次根式,特別是A±2B形式的式子,我們總能找到辦法將根號下面的式子化成一個完全平方式,問題迎刃而解,另外對A+2B±A-2B的式子,我們可以把它們看成一個整體利用完全平方公式和平方差公式去解.

變式訓練

若a2-2a+1=a-1,求a的取值范圍.

解:因為a2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,

即a-1≥0,

所以a≥1.

點評:利用方根的運算性質轉化為去絕對值符號,是解題的關鍵.

知能訓練

(教師用多媒體顯示在屏幕上)

1.以下說法正確的是(  )

A.正數的n次方根是一個正數

B.負數的n次方根是一個負數

C.0的n次方根是零

D.a的n次方根用na表示(以上n>1且n∈正整數集)

答案:C

2.化簡下列各式:

(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.

答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|.

3.計算7+40+7-40=__________.

解析:7+40+7-40

=(5)2+25?2+(2)2+(5)2-25?2+(2)2

=(5+2)2+(5-2)2

=5+2+5-2

=25.

答案:25

拓展提升

問題:nan=a與(na)n=a(n>1,n∈N)哪一個是恒等式,為什么?請舉例說明.

活動:組織學生結合前面的例題及其解答,進行分析討論,解決這一問題要緊扣n次方根的定義.

通過歸納,得出問題結果,對a是正數和零,n為偶數時,n為奇數時討論一下.再對a是負數,n為偶數時,n為奇數時討論一下,就可得到相應的結論.

解:(1)(na)n=a(n>1,n∈N).

如果xn=a(n>1,且n∈N)有意義,則無論n是奇數或偶數,x=na一定是它的一個n次方根,所以(na)n=a恒成立.

例如:(43)4=3,(3-5)3=-5.

(2)nan=a,|a|,當n為奇數,當n為偶數.

當n為奇數時,a∈R,nan=a恒成立.

例如:525=2,5(-2)5=-2.

當n為偶數時,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=|a|=-a,如(-3)2=32=3,

即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有條件的.

點評:實質上是對n次方根的概念、性質以及運算性質的深刻理解.

課堂小結

學生仔細交流討論后,在筆記上寫出本節課的學習收獲,教師用多媒體顯示在屏幕上.

1.如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整數集.用式子na表示,式子na叫根式,其中a叫被開方數,n叫根指數.

(1)當n為偶數時,a的n次方根有兩個,是互為相反數,正的n次方根用na表示,如果是負數,負的n次方根用-na表示,正的n次方根與負的n次方根合并寫成±na(a>0).

(2)n為奇數時,正數的n次方根是一個正數,負數的n次方根是一個負數,這時a的n次方根用符號na表示.

(3)負數沒有偶次方根.0的任何次方根都是零.

2.掌握兩個公式:n為奇數時,(na)n=a,n為偶數時,nan=|a|=a,-a,a≥0,a<0.

作業

課本習題2.1A組 1.

補充作業:

1.化簡下列各式:

(1)681;(2)15-32;(3)6a2b4.

解:(1)681=634=332=39;

(2)15-32=-1525=-32;

(3)6a2b4=6(|a|?b2)2=3|a|?b2.

2.若5<a<8,則式子(a-5)2-(a-8)2的值為__________.< p="">

解析:因為5<a<8,所以(a-5)2-(a-8)2=a-5-8+a=2a-13.< p="">

答案:2a-13

3.5+26+5-26=__________.

解析:對雙重二次根式,我們覺得難以下筆,我們考慮只有在開方的前提下才可能解出,由此提示我們想辦法去掉一層根式,

不難看出5+26=(3+2)2=3+2.

同理5-26=(3-2)2=3-2.

所以5+26+5-26=23.

答案:23

設計感想

學生已經學習了數的平方根和立方根,根式的內容是這些內容的推廣,本節課由于方根和根式的概念和性質難以理解,在引入根式的概念時,要結合已學內容,列舉具體實例,根式na的講解要分n是奇數和偶數兩種情況來進行,每種情況又分a>0,a<0,a=0三種情況,并結合具體例子講解,因此設計了大量的類比和練習題目,要靈活處理這些題目,幫助學生加以理解,所以需要用多媒體信息技術服務教學.

第2課時

作者:郝云靜

導入新課

思路1.碳14測年法.原來宇宙射線在大氣層中能夠產生放射性碳14,并與氧結合成二氧化碳后進入所有活組織,先為植物吸收,再為動物吸收,只要植物和動物生存著,它們就會不斷地吸收碳14在機體內保持一定的水平.而當有機體死亡后,即會停止吸收碳14,其組織內的碳14便以約5 730年的半衰期開始衰變并消失.對于任何含碳物質只要測定剩下的放射性碳14的含量,便可推斷其年代(半衰期:經過一定的時間,變為原來的一半).引出本節課題:指數與指數冪的運算之分數指數冪.

思路2.同學們,我們在初中學習了整數指數冪及其運算性質,那么整數指數冪是否可以推廣呢?答案是肯定的.這就是本節的主講內容,教師板書本節課題——指數與指數冪的運算之分數指數冪.

推進新課

新知探究

提出問題

(1)整數指數冪的運算性質是什么?

(2)觀察以下式子,并總結出規律:a>0 ,

① ;

②a8=(a4)2=a4= ,;

③4a12=4(a3)4=a3= ;

④2a10=2(a5)2=a5= .

(3)利用(2)的規律,你能表示下列式子嗎?

, , , (x>0,m,n∈正整數集,且n>1).

(4)你能用方根的意義來解釋(3)的式子嗎?

(5)你能推廣到一般的情形嗎?

活動:學生回顧初中學習的整數指數冪及運算性質,仔細觀察,特別是每題的開始和最后兩步的指數之間的關系,教師引導學生體會方根的意義,用方根的意義加以解釋,指點啟發學生類比(2)的規律表示,借鑒(2)(3),我們把具體推廣到一般,對寫正確的同學及時表揚,其他學生鼓勵提示.

討論結果:(1)整數指數冪的運算性質:an=a?a?a?…?a,a0=1(a≠0);00無意義;

a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.

(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根.實質上①5a10= ,②a8= ,③4a12= ,④2a10= 結果的a的指數是2,4,3,5分別寫成了105,82,124,105,形式上變了,本質沒變.

根據4個式子的最后結果可以總結:當根式的被開方數的指數能被根指數整除時,根式可以寫成分數作為指數的形式(分數指數冪形式).

(3)利用(2)的規律,453= ,375= ,5a7= ,nxm= .

(4)53的四次方根是 ,75的三次方根是 ,a7的五次方根是 ,xm的n次方根是 .

結果表明方根的結果和分數指數冪是相通的.

(5)如果a>0,那么am的n次方根可表示為nam= ,即 =nam(a>0,m,n∈正整數集,n>1).

綜上所述,我們得到正數的正分數指數冪的意義,教師板書:

規定:正數的正分數指數冪的意義是 =nam(a>0,m,n∈正整數集,n>1).

提出問題

(1)負整數指數冪的意義是怎樣規定的?

(2)你能得出負分數指數冪的意義嗎?

(3)你認為應怎樣規定零的分數指數冪的意義?

(4)綜合上述,如何規定分數指數冪的意義?

(5)分數指數冪的意義中,為什么規定a>0,去掉這個規定會產生什么樣的后果?

(6)既然指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質是否也適用于有理數指數冪呢?

活動:學生回想初中學習的情形,結合 自己的學習體會回答,根據零的整數指數冪的意義和負整數指數冪的意義來類比,把正分數指數冪的意義與負分數指數冪的意義融合起來,與整數指數冪的運算性質類比可得有理數指數冪的運算性質,教師在黑板上板書,學生合作交流,以具體的實例說明a>0的必要性,教師及時作出評價.

討論結果:(1)負整數指數冪的意義是:a-n=1an(a≠0),n∈N+.

(2)既然負整數指數冪的意義是這樣規定的,類比正數的正分數指數冪的意義可得正數的負分數指數冪的意義.

規定:正數的負分數指數冪的意義是 = =1nam(a>0,m,n∈=N+,n>1).

(3)規定:零的分數指數冪的意義是:零的正分數次冪等于零,零的負分數指數冪沒有意義.

(4)教師板書分數指數冪的意義.分數指數冪的意義就是:

正數的正分數指數冪的意義是 =nam(a>0,m,n∈正整數集,n>1),正數的負分數指數冪的意義是 = =1nam(a>0,m,n∈正整數集,n>1),零的正分數次冪等于零,零的負分數指數冪沒有意義.

(5)若沒有a>0這個條件會怎樣呢?

如 =3-1=-1, =6(-1)2=1具有同樣意義的兩個式子出現了截然不同的結果,這只說明分數指數冪在底數小于零時是無意義的.因此在把根式化成分數指數時,切記要使底數大于零,如無a>0的條件,比如式子3a2= ,同時負數開奇次方是有意義的,負數開奇次方時,應把負號移到根式的外邊,然后再按規定化成分數指數冪,也就是說,負分數指數冪在有意義的情況下總表示正數,而不是負數,負數只是出現在指數上.

(6)規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數.

有理數指數冪的運算性質:對任意的有理數r,s,均有下面的運算性質:

①ar?as=ar+s(a>0,r,s∈Q),

②(ar)s=ars(a>0,r,s∈Q),

③(a?b)r=arbr(a>0,b>0,r∈Q).

我們利用分數指數冪的意義和有理數指數冪的運算性質可以解決一些問題,來看下面的例題.

應用示例

例1 求值:(1) ;(2) ;(3)12-5;(4) .

活動:教師引導學生考慮解題的方法,利用冪的運算性質計算出數值或化成最簡根式,根據題目要求,把底數寫成冪的形式,8寫成23,25寫成52,12寫成2-1,1681寫成234,利用有理數冪的運算性質可以解答,完成后,把自己的答案用投影儀展示出來.

解:(1) =22=4;

(2) =5-1=15;

(3)12-5=(2-1)-5=2-1×(-5)=32;

(4) =23-3=278.

點評:本例主要考查冪值運算,要按規定來解.在進行冪值運算時,要首先考慮轉化為指數運算,而不是首先轉化為熟悉的根式運算,如 =382=364=4.

例2 用分數指數冪的形式表示下列各式.

a3?a;a2?3a2;a3a(a>0).

活動:學生觀察、思考,根據解題的順序,把根式化為分數指數冪,再由冪的運算性質來運算,根式化為分數指數冪時,要由里往外依次進行,把握好運算性質和順序,學生討論交流自己的解題步驟,教師評價學生的解題情況,鼓勵學生注意總結.

解:a3?a=a3? = ;

a2?3a2=a2? = ;

a3a= .

點評:利用分數指數冪的意義和有理數指數冪的運算性質進行根式運算時,其順序是先把根式化為分數指數 冪,再由冪的運算性質來運算.對于計算的結果,不強求統一用什么形式來表示,沒有特別要求,就用分數指數冪的形式來表示,但結果不能既有分數指數又有根式,也不能既有分母又有負指數.

例3 計算下列各式(式中字母都是正數).

(1) ;

(2) .

活動:先由學生觀察以上兩個式子的特征,然后分析,四則運算的順序是先算乘方,再算乘除,最后算加減,有括號的先算括號內的,整數冪的運算性質及運算規律擴充到分數指數冪后,其運算順序仍符合我們以前的四則運算順序,再解答,把自己的答案用投影儀展示出來,相互交流,其中要注意到(1)小題是單項式的乘除運算,可以用單項式的乘除法運算順序進行,要注意符號,第(2)小題是乘方運算,可先按積的乘方計算,再按冪的乘方進行計算,熟悉后可以簡化步驟.

解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;

(2) =m2n-3=m2n3.

點評:分數指數冪不表示相同因式的積,而是根式的另一種寫法.有了分數指數冪,就可把根式轉化成分數指數冪的形式,用分數指數冪的運算法則進行運算了.

本例主要是指數冪的運算法則的綜合考查和應用.

變式訓練

求值:(1)33?33?63;

(2)627m3125n64.

解:(1)33?33?63= =32=9;

(2)627m3125n64= =9m225n4=925m2n-4.

例4 計算下列各式:

(1)(325-125)÷425;

(2)a2a?3a2(a>0).

活動:先由學生觀察以上兩個式子的特 征,然后分析,化為同底.利用分數指數冪計算,在第(1)小題中,只含有根式,且不是同次根式,比較難計算,但把根式先化為分數指數冪再計算,這樣就簡便多了,第(2)小題也是先把根式轉化為分數指數冪后再由運算法則計算,最后寫出解答.

解:(1)原式=

= =65-5;

(2)a2a?3a2= =6a5.

知能訓練

課本本節練習 1,2,3

【補充練習】

教師用實物投影儀把題目投射到屏幕上讓學生解答,教師巡視,啟發,對做得好的同學給予表揚鼓勵.

1.(1)下列運算中,正確的是(  )

A.a2?a3=a6 B.(-a2)3=(-a3)2

C.(a-1)0=0 D.(-a2)3=-a6

(2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意義的是(  )

A.①② B.①③ C.①②③④ D.①③④

(3)(34a6)2?(43a6)2等于(  )

A.a B.a2 C.a3 D.a4

(4)把根式-25(a-b)-2改寫成分數指數冪的形式為(  )

A. B.

C. D.

(5)化簡 的結果是(  )

A.6a B.-a C.-9a D.9a

2.計算:(1) --17-2+ -3-1+(2-1)0=__________.

(2)設5x=4,5y=2,則52x-y=__________.

3.已知x+y=12,xy=9且x<y,求 p="" 的值.

答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8

3.解: .

因為x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27.

又因為x<y,所以x-y=-2×33=-63.< p="">

所以原式= =12-6-63=-33.

拓展提升

1.化簡: .

活動:學生觀察式子特點,考慮x的指數之間的關系可以得到解題思路,應對原式進行因式分解,根據本題的特點,注意到:

x-1= -13= ;

x+1= +13= ;

.

構建解題思路教師適時啟發提示.

解:

=

=

=

= .

點撥:解這類題目,要注意運用以下公式,

=a-b,

=a± +b,

=a±b.

2.已知 ,探究下列各式的值的求法.

(1)a+a-1;(2)a2+a-2;(3) .

解:(1)將 ,兩邊平方,得a+a-1+2=9,即a+a-1=7;

(2)將a+a-1=7兩邊平方,得a2+a-2+2=49,即a2+ a-2=47;

(3)由于 ,

所以有 =a+a-1+1=8.

點撥:對“條件求值”問題,一定要弄清已知與未知的聯系,然后采取“整體代換”或“求值后代換”兩種方法求值.

課堂小結

活動:教師,本節課同學們有哪些收獲?請把你的學習收獲記錄在你的筆記本上,同學們之間相互交流.同時教師用投影儀顯示本堂課的知識要點:

(1)分數指數冪的意義就是:正數的正分數指數冪的意義是 =nam(a>0,m,n∈正整數集,n>1),正數的負分數指數冪的意義是 = =1nam(a>0,m,n∈正整數集,n>1),零的正分數次冪等于零,零的負分數指數冪沒有意義.

(2)規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數.

(3)有理數指數冪的運算性質:對任意的有理數r,s,均有下面的運算性質:

①ar?as=ar+s(a>0,r,s∈Q),

②(ar)s=ars(a>0,r,s∈Q),

③(a?b)r=arbr(a>0,b>0,r∈Q).

(4)說明兩點:

①分數指數冪的意義是一種規定,我們前面所舉的例子只表明這種規定的合理性,其中沒有推出關系.

②整數指數冪的運算性質對任意的有理數指數冪也同樣適用.因而分數指數冪與根式可以互化,也可以利用 =am來計算.

作業

課本習題2.1A組 2,4.

設計感想

本節課是分數指數冪的意義的引出及應用,分數指數是指數概念的又一次擴充,要讓學生反復理解分數指數冪的意義,教學中可以通過根式與分數指數冪的互化來鞏固加深對這一概念的理解,用觀察、歸納和類比的方法完成,由于是硬性的規定,沒有合理的解釋,因此多安排一些練習,強化訓練,鞏固知識,要輔助以信息技術的手段來完成大容量的課堂教學任務.

第3課時

作者:鄭芳鳴

導入新課

思路1.同學們,既然我們把指數從正整數推廣到整數,又從整數推廣到正分數到負分數,這樣指數就推廣到有理數,那么它是否也和數的推廣一樣,到底有沒有無理數指數冪呢?回顧數的擴充過程,自然數到整數,整數到分數(有理數),有理數到實數.并且知道,在有理數到實數的擴充過程中,增添的數是無理數.對無理數指數冪,也是這樣擴充而來.既然如此,我們這節課的主要內容是:教師板書本堂課的課題〔指數與指數冪的運算(3)〕之無理數指數冪.

思路2.同學們,在初中我們學習了函數的知識,對函數有了一個初步的了解,到了高中,我們又對函數的概念進行了進一步的學習,有了更深的理解,我們僅僅學了幾種簡單的函數,如一次函數、二次函數、正比例函數、反比例函數、三角函數等,這些遠遠不能滿足我們的需要,隨著科學的發展,社會的進步,我們還要學習許多函數,其中就有指數函數,為了學習指數函數的知識,我們必須學習實數指數冪的運算性質,為此,我們必須把指數冪從有理數指數冪擴充到實數指數冪,因此我們本節課學習:指數與指數冪的運算(3)之無理數指數冪,教師板書本節課的課題.

推進新課

新知探究

提出問題

(1)我們知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值?

(2)多媒體顯示以下圖表:同學們從上面的兩個表中,能發現什么樣的規律?

2的過剩近似值

的近似值

1.5 11.180 339 89

1.42 9.829 635 328

1.415 9.750 851 808

1.414 3 9.739 872 62

1.414 22 9.738 618 643

1.414 214 9.738 524 602

1.414 213 6 9.738 518 332

1.414 213 57 9.738 517 862

1.414 213 563 9.738 517 752

… …

的近似值

2的不足近似值

9.518 269 694 1.4

9.672 669 973 1.41

9.735 171 039 1.414

9.738 305 174 1.414 2

9.738 461 907 1.414 21

9.738 508 928 1.414 213

9.738 516 765 1.414 213 5

9.738 517 705 1.414 213 56

9.738 517 736 1.414 213 562

… …

(3)你能給上述思想起個名字嗎?

(4)一個正數的無理數次冪到底是一個什么性質的數呢?如 ,根據你學過的知識,能作出判斷并合理地解釋嗎?

(5)借助上面的結論你能說出一般性的結論嗎?

活動:教師引導,學生回憶,教師提問,學生回答,積極交流,及時評價學生,學生有困惑時加以解釋,可用多媒體顯示輔助內容:

問題(1)從近似值的分類來考慮,一方面從大于2的方向,另一方面從小于2的方向.

問題(2)對圖表的觀察一方面從上往下看,再一方面從左向右看,注意其關聯.

問題(3)上述方法實際上是無限接近,最后是逼近.

問題(4)對問題給予大膽猜測,從數軸的觀點加以解釋.

問題(5)在(3)(4)的基礎上,推廣到一般的情形,即由特殊到一般.

討論結果:(1)1.41,1.414,1.414 2,1.414 21,…這些數都小于2,稱2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,這些數都大于2,稱2的過剩近似值.

(2)第一個表:從大于2的方向逼近2時, 就從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于 的方向逼近 .

第二個表:從小于2的方向逼近2時, 就從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于 的方向逼近 .

從另一角度來看這個問題,在數軸上近似地表示這些點,數軸上的數字表明一方面 從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于 的方向接近 ,而另一方面 從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于 的方向接近 ,可以說從兩個方向無限地接近 ,即逼近 ,所以 是一串有理數指數冪51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理數指數冪51.5,51.42,51.415,51.414 3,51.414 22,…,按上述變化規律變化的結果,事實上表示這些數的點從兩個方向向表示 的點靠近,但這個點一定在數軸上,由此我們可得到的結論是 一定是一個實數,即51.4<51.41<51.414<51.414 2<51.414 21<…< <…<51.414 22<51.414 3<51.415<51.42<51.5.

充分表明 是一個實數.

(3)逼近思想,事實上里面含有極限的思想,這是以后要學的知識.

(4)根據(2)(3)我們可以推斷 是一個實數,猜測一個正數的無理數次冪是一個實數.

(5)無理數指數冪的意義:

一般地,無理數指數冪aα(a>0,α是無理數)是一個確定的實數.

也就是說無理數可以作為指數,并且它的結果是一個實數,這樣指數概念又一次得到推廣,在數的擴充過程中,我們知道有理數和無理數統稱為實數.我們規定了無理數指數冪的意義,知道它是一個確定的實數,結合前面的有理數指數冪,那么,指數冪就從有理數指數冪擴充到實數指數冪.

提出問題

(1)為什么在規定無理數指數冪的意義時,必須規定底數是正數?

(2)無理數指數冪的運算法則是怎樣的?是否與有理數指數冪的運算法則相通呢?

(3)你能給出實數指數冪的運算法則嗎?

活動:教師組織學生互助合作,交流探討,引導他們用反例說明問題,注意類比,歸納.

對問題(1)回顧我們學習分數指數冪的意義時對底數的規定,舉例說明.

對問題(2)結合有理數指數冪的運算法則,既然無理數指數冪aα(a>0,α是無理數)是一個確定的實數,那么無理數指數冪的運算法則應當與有理數指數冪的運算法則類似,并且相通.

對問題(3)有了有理數指數冪的運算法則和無理數指數冪的運算法則,實數的運算法則自然就得到了.

討論結果:(1)底數大于零的必要性,若a=-1,那么aα是+1還是-1就無法確定了,這樣就造成混亂,規定了底數是正數后,無理數指數冪aα是一個確定的實數,就不會再造成混亂.

(2)因為無理數指數冪是一個確定的實數,所以能進行指數的運算,也能進行冪的運算,有理數指數冪的運算性質,同樣也適用于無理數指數冪.類比有理數指數冪的運算性質可以得到無理數指數冪的運算法則:

①ar?as=ar+s(a>0,r,s都是無理數).

②(ar)s=ars(a>0,r,s都是無理數).

③(a?b)r=arbr(a>0,b>0,r是無理數).

(3)指數冪擴充到實數后,指數冪的運算性質也就推廣到了實數指數冪.

實數指數冪的運算性質:

對任意的實數r,s,均有下面的運算性質:

①ar?as=ar+s(a>0,r,s∈R).

②(ar)s=ars(a>0,r,s∈R).

③(a?b)r=arbr(a>0,b>0,r∈R).

應用示例

例1 利用函數計算器計算.(精確到0.001)

(1)0.32.1;(2)3.14-3;(3) ;(4) .

活動:教師教會學生利用函數計算器計算,熟悉計算器的各鍵的功能,正確輸入各類數,算出數值,對于(1),可先按底數0.3,再按xy鍵,再按冪指數2.1,最后按=,即可求得它的值;

對于(2),先按底數3.14,再按xy鍵,再按負號-鍵,再按3,最后按=即可;

對于(3),先按底數3.1,再按xy鍵,再按3÷4,最后按=即可;

對于(4),這種無理指數冪,可先按底數3,其次按xy鍵,再按 鍵,再按3,最后按=鍵.有時也可按2ndf或shift鍵,使用鍵上面的功能去運算.

學生可以相互交流,挖掘計算器的用途.

解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705.

點評:熟練掌握用計算器計算冪的值的方法與步驟,感受現代技術的威力,逐步把自己融入現代信息社會;用四舍五入法求近似值,若保留小數點后n位,只需看第(n+1)位能否進位即可.

例2 求值或化簡.

(1)a-4b23ab2(a>0,b>0);

(2) (a>0,b>0);

(3)5-26+7-43-6-42.

活動:學生觀察,思考,所謂化簡,即若能化為常數則化為常數,若不能化為常數則應使所化式子達到最簡,對既有分數指數冪又有根式的式子,應該把根式統一化為分數指數冪的形式,便于運算,教師有針對性地提示引導,對(1)由里向外把根式化成分數指數冪,要緊扣分數指數冪的意義和運算性質,對(2)既有分數指數冪又有根式,應當統一起來,化為分數指數冪,對(3)有多重根號的式子,應先去根號,這里是二次根式,被開方數應湊完全平方,這樣,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并對學生作及時的評價,注意總結解題的方法和規律.

解:(1)a-4b23ab2= =3b46a11 .

點評:根式的運算常常化成冪的運算進行,計算結果如沒有特殊要求,就用根式的形式來表示.

(2)

=

=425a0b0=425.

點評:化簡這類式子一般有兩種辦法,一是首先用負指數冪的定義把負指數化成正指數,另一個方法是采用分式的基本性質把負指數化成正指數.

(3)5-26+7-43-6-42

=(3-2)2+(2-3)2-(2-2)2

=3-2+2-3-2+2=0.

點評:考慮根號里面的數是一個完全平方數,千萬注意方根的性質的運用.

例3 已知 ,n∈正整數集,求(x+1+x2)n的值.

活動:學生思考,觀察題目的特點,從整體上看,應先化簡,然后再求值,要有預見性, 與 具有對稱性,它們的積是常數1,為我們解題提供了思路,教師引導學生考慮問題的思路,必要時給予提示.

= .

這時應看到1+x2= ,

這樣先算出1+x2,再算出1+x2,代入即可.

解:將 代入1+x2,得1+x2= ,

所以(x+1+x2)n=

=

= =5.

點評:運用整體思想和完全平方公式是解決本題的關鍵,要深刻理解這種做法.

知能訓練

課本習題2.1A組 3.

利用投影儀投射下列補充練習:

1.化簡: 的結果是(  )

A. B.

C. D.

解析:根據本題的特點,注意到它的整體性,特別是指數的規律性,我們可以進行適當的變形.

因為 ,所以原式的分子分母同乘以 .

依次類推,所以 .

答案:A

2.計算2790.5+0.1-2+ -3π0+9-0.5+490.5×2-4.

解:原式=

=53+100+916-3+13+716=100.

3.計算a+2a-1+a-2a-1(a≥1).

解:原式=(a-1+1)2+(a-1-1)2=a-1+1+|a-1-1|(a≥1).

本題可以繼續向下做,去掉絕對值,作為思考留作課下練習.

4.設a>0, ,則(x+1+x2)n的值為__________.

解析:1+x2= .

這樣先算出1+x2,再算出1+x2,

將 代入1+x2,得1+x2= .

所以(x+1+x2)n=

= =a.

答案:a

拓展提升

參照我們說明無理數指數冪的意義的過程,請你說明無理數指數冪 的意義.

活動:教師引導學生回顧無理數指數冪 的意義的過程,利用計算器計算出3的近似值,取它的過剩近似值和不足近似值,根據這些近似值計算 的過剩近似值和不足近似值,利用逼近思想,“逼出” 的意義,學生合作交流,在投影儀上展示自己的探究結果.

解:3=1.732 050 80…,取它的過剩近似值和不足近似值如下表.

3的過剩近似值

的過剩近似值

3的不足近似值

的不足近似值

1.8 3.482 202 253 1.7 3.249 009 585

1.74 3.340 351 678 1.73 3.317 278 183

1.733 3.324 183 446 1.731 3.319 578 342

1.732 1 3.322 110 36 1.731 9 3.321 649 849

1.732 06 3.322 018 252 1.732 04 3.321 972 2

1.732 051 3.321 997 529 1.732 049 3.321 992 923

1.732 050 9 3.321 997 298 1.732 050 7 3.321 996 838

1.732 050 81 3.321 997 091 1.732 050 79 3.321 997 045

… … … …

我們把用2作底數,3的不足近似值作指數的各個冪排成從小到大的一列數

21.7,21.72,21.731,21.731 9,…,

同樣把用2作底數,3的過剩近似值作指數的各個冪排成從大到小的一列數:

21.8,21.74,21.733,21.732 1,…,不難看出3的過剩近似值和不足近似值相同的位數越多,即3的近似值精確度越高,以其過剩近似值和不足近似值為指數的冪2α會越來越趨近于同一個數,我們把這個數記為 ,

即21.7<21.73<21.731<21.731 9<…< <…<21.732 1<21.733<21.74<21.8.

也就是說 是一個實數, =3.321 997 …也可以這樣解釋:

當3的過剩近似值從大于3的方向逼近3時,23的近似值從大于 的方向逼近 ;

當3的不足近似值從小于3的方向逼近3時,23的近似值從小于 的方向逼近 .

所以 就是一串有理指數冪21.7,21.73,21.731,21.731 9,…,和另一串有理指數冪21.8,21.74,21.733,21.732 1,…,按上述規律變化的結果,即 ≈3.321 997.

課堂小結

(1)無理指數冪的意義.

一般地,無理數指數冪aα(a>0,α是無理數) 是一個確定的實數.

(2)實數指數冪的運算性質:

對任意的實數r,s,均有下面的運算性質:

①ar?as=ar+s(a>0,r,s∈R).

②(ar)s=ars(a>0,r,s∈R).

③(a?b)r=arbr(a>0,b>0,r∈R).

(3)逼近的思想,體會無限接近的含義.

作業

課本習題2.1 B組 2.

設計感想

無理數指數是指數概念的又一次擴充, 教學中要讓學生通過多媒體的演示,理解無理數指數冪的意義,教學中也可以讓學生自己通過實際情況去探索,自己得出結論,加深對概念的理解,本堂課內容較為抽象,又不能進行推理,只能通過多媒體的教學手段,讓學生體會,特別是逼近的思想、類比的思想,多作練習,提高學生理解問題、分析問題的能力.

備課資料

【備用習題】

1.以下各式中成立且結果為最簡根式的是(  )

A.a?5a3a?10a7=10a4

B.3xy2(xy)2=y?3x2

C.a2bb3aab3=8a7b15

D.(35-125)3=5+125125-235?125

答案:B

2.對于a>0,r,s∈Q,以下運算中正確的是(  )

A.ar?as=ars B.(ar)s=ars

C.abr=ar?bs D.arbs=(ab)r+s

答案:B

3.式子x-2x-1=x-2x-1成立當且僅當(  )

A.x-2x-1≥0 B.x≠1 C.x<1 D.x≥2

解析:方法一:

要使式子x-2x-1=x-2x-1成立,需x-1>0,x-2≥0,即x≥2.

若x≥2,則式子x-2x-1=x-2x-1成立.

故選D.

方法二:

對A,式子x-2x-1≥0連式子成立也保證不了,尤其x-2≤0,x-1<0時式子不成立.

對B,x-1<0時式子不成立.

對C,x<1時x-1無意義.

對D正確.

答案:D

4.化簡b-(2b-1)(1<b<2).< p="">

解:b-(2b-1)=(b-1)2=b-1(1<b<2).< p="">

5.計算32+5+32-5.

解:令x=32+5+32-5,

兩邊立方得x3=2+5+2-5+332+5?32-5?(32+5+32-5),即x3=4-3x,x3+3x-4=0.∴(x-1)(x2+x+4)=0.

∵x2+x+4=x+122+154>0,∴x-1=0,即x=1.

∴32+5+32-5=1.

27588 主站蜘蛛池模板: 并离网逆变器_高频UPS电源定制_户用储能光伏逆变器厂家-深圳市索克新能源 | 定量包装秤,吨袋包装称,伸缩溜管,全自动包装秤,码垛机器人,无锡市邦尧机械工程有限公司 | pbt头梳丝_牙刷丝_尼龙毛刷丝_PP塑料纤维合成毛丝定制厂_广州明旺 | 石栏杆_青石栏杆_汉白玉栏杆_花岗岩栏杆 - 【石雕之乡】点石石雕石材厂 | 台湾阳明固态继电器-奥托尼克斯光电传感器-接近开关-温控器-光纤传感器-编码器一级代理商江苏用之宜电气 | 消泡剂_水处理消泡剂_切削液消泡剂_涂料消泡剂_有机硅消泡剂_广州中万新材料生产厂家 | 华东师范大学在职研究生招生网_在职研究生招生联展网 | 信阳网站建设专家-信阳时代网联-【信阳网站建设百度推广优质服务提供商】信阳网站建设|信阳网络公司|信阳网络营销推广 | 塑钢件_塑钢门窗配件_塑钢配件厂家-文安县启泰金属制品有限公司 深圳南财多媒体有限公司介绍 | 在线PH计-氧化锆分析仪-在线浊度仪-在线溶氧仪- 无锡朝达 | 济南网站建设|济南建网站|济南网站建设公司【济南腾飞网络】【荐】 | 螺钉式热电偶_便携式温度传感器_压簧式热电偶|无锡联泰仪表有限公司|首页 | 钢衬四氟管道_钢衬四氟直管_聚四氟乙烯衬里管件_聚四氟乙烯衬里管道-沧州汇霖管道科技有限公司 | 废气处理_废气处理设备_工业废气处理_江苏龙泰环保设备制造有限公司 | 泉州陶瓷pc砖_园林景观砖厂家_石英砖地铺石价格 _福建暴风石英砖 | 危废处理系统,水泥厂DCS集散控制系统,石灰窑设备自动化控制系统-淄博正展工控设备 | CTP磁天平|小电容测量仪|阴阳极极化_双液系沸点测定仪|dsj电渗实验装置-南京桑力电子设备厂 | 电伴热系统施工_仪表电伴热保温箱厂家_沃安电伴热管缆工业技术(济南)有限公司 | 选宝石船-陆地水上开采「精选」色选机械设备-青州冠诚重工机械有限公司 | 长沙发电机-湖南发电机-柴油发电机供应厂家-长沙明邦智能科技 | 东莞工作服_东莞工作服定制_工衣订做_东莞厂服 | 发电机价格|发电机组价格|柴油发电机价格|柴油发电机组价格网 | 泥浆在线密度计厂家-防爆数字压力表-膜盒-远传压力表厂家-江苏大亚自控设备有限公司 | 明渠式紫外线杀菌器-紫外线消毒器厂家-定州市优威环保 | 北京乾茂兴业科技发展有限公司| 骨密度仪-骨密度测定仪-超声骨密度仪-骨龄测定仪-天津开发区圣鸿医疗器械有限公司 | 证券新闻,热播美式保罗1984第二部_腾讯1080p-仁爱影院 | 温室大棚建设|水肥一体化|物联网系统 | 压力喷雾干燥机,喷雾干燥设备,柱塞隔膜泵-无锡市闻华干燥设备有限公司 | 光栅尺_Magnescale探规_磁栅尺_笔式位移传感器_苏州德美达 | 手持式浮游菌采样器-全排二级生物安全柜-浙江孚夏医疗科技有限公司 | 地图标注-手机导航电子地图如何标注-房地产商场地图标记【DiTuBiaoZhu.net】 | 航拍_专业的无人机航拍摄影门户社区网站_航拍网 | 武汉画册印刷厂家-企业画册印刷-画册设计印刷制作-宣传画册印刷公司 - 武汉泽雅印刷厂 | 电动垃圾车,垃圾清运车-江苏速利达机车有限公司 | 事迹材料_个人事迹名人励志故事 学生作文网_中小学生作文大全与写作指导 | 蓄电池回收,ups电池后备电源回收,铅酸蓄电池回收,机房电源回收-广州益夫铅酸电池回收公司 | 防水套管-柔性防水套管-刚性防水套管-上海执品管件有限公司 | 洗瓶机厂家-酒瓶玻璃瓶冲瓶机-瓶子烘干机-封口旋盖压盖打塞机_青州惠联灌装机械 | 右手官网|右手工业设计|外观设计公司|工业设计公司|产品创新设计|医疗产品结构设计|EMC产品结构设计 | 专业的新乡振动筛厂家-振动筛品质保障-环保振动筛价格—新乡市德科筛分机械有限公司 |