九年級(jí)數(shù)學(xué)下冊(cè)人教教案
九年級(jí)數(shù)學(xué)老師要激發(fā)學(xué)生的興趣,多換位思考,了解學(xué)生的想法,并以學(xué)生為中心。所有的九年級(jí)數(shù)學(xué)老師都必須知道如何寫九年級(jí)數(shù)學(xué)教案,你也來(lái)寫一篇和我們分享吧。你是否在找正準(zhǔn)備撰寫“九年級(jí)數(shù)學(xué)下冊(cè)人教教案”,下面小編收集了相關(guān)的素材,供大家寫文參考!
九年級(jí)數(shù)學(xué)下冊(cè)人教教案篇1
垂直于弦的直徑
理解垂徑定理并靈活運(yùn)用垂徑定理及圓的概念解決一些實(shí)際問題.
通過復(fù)合圖形的折疊方法得出猜想垂徑定理,并輔以邏輯證明加予理解.
重點(diǎn)
垂徑定理及其運(yùn)用.
難點(diǎn)
探索并證明垂徑定理及利用垂徑定理解決一些實(shí)際問題.
一、復(fù)習(xí)引入
①在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)所形成的圖形叫做圓.固定的端點(diǎn)O叫做圓心,線段OA叫做半徑.以點(diǎn)O為圓心的圓,記作“⊙O”,讀作“圓O”.
②連接圓上任意兩點(diǎn)的線段叫做弦,如圖線段AC,AB;
③經(jīng)過圓心的弦叫做直徑,如圖線段AB;
④圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧,以A,C為端點(diǎn)的弧記作“︵AC”,讀作“圓弧AC”或“弧AC”.大于半圓的弧(如圖所示︵ABC)叫做優(yōu)弧,小于半圓的弧(如圖所示︵AC或︵BC)叫做劣弧.
⑤圓的任意一條直徑的兩個(gè)端點(diǎn)把圓分成兩條弧,每一條弧都叫做半圓.
⑥圓是軸對(duì)稱圖形,其對(duì)稱軸是任意一條過圓心的直線.
二、探索新知
(學(xué)生活動(dòng))請(qǐng)同學(xué)按要求完成下題:
如圖,AB是⊙O的一條弦,作直徑CD,使CD⊥AB,垂足為M.
(1)如圖是軸對(duì)稱圖形嗎?如果是,其對(duì)稱軸是什么?
(2)你能發(fā)現(xiàn)圖中有哪些等量關(guān)系?說(shuō)一說(shuō)你理由.
(老師點(diǎn)評(píng))(1)是軸對(duì)稱圖形,其對(duì)稱軸是CD.
(2)AM=BM,︵AC=︵BC,︵AD=︵BD,即直徑CD平分弦AB,并且平分︵AB及︵ADB.
這樣,我們就得到下面的定理:
垂直于弦的直徑平分弦,并且平分弦所對(duì)的兩條弧.
下面我們用邏輯思維給它證明一下:
已知:直徑CD、弦AB,且CD⊥AB垂足為M.
求證:AM=BM,︵AC=︵BC,︵AD=︵BD.
分析:要證AM=BM,只要證AM,BM構(gòu)成的兩個(gè)三角形全等.因此,只要連接OA,OB或AC,BC即可.
證明:如圖,連接OA,OB,則OA=OB,
在Rt△OAM和Rt△OBM中,
∴Rt△OAM≌Rt△OBM,
∴AM=BM,
∴點(diǎn)A和點(diǎn)B關(guān)于CD對(duì)稱,
∵⊙O關(guān)于直徑CD對(duì)稱,
∴當(dāng)圓沿著直線CD對(duì)折時(shí),點(diǎn)A與點(diǎn)B重合,︵AC與︵BC重合,︵AD與︵BD重合.
∴︵AC=︵BC,︵AD=︵BD.
進(jìn)一步,我們還可以得到結(jié)論:
平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧.
(本題的證明作為課后練習(xí))
例1 有一石拱橋的橋拱是圓弧形,如圖所示,正常水位下水面寬AB=60 m,水面到拱頂距離CD=18 m,當(dāng)洪水泛濫時(shí),水面寬MN=32 m時(shí)是否需要采取緊急措施?請(qǐng)說(shuō)明理由.
分析:要求當(dāng)洪水到來(lái)時(shí),水面寬MN=32 m是否需要采取緊急措施,只要求出DE的長(zhǎng),因此只要求半徑R,然后運(yùn)用幾何代數(shù)解求R.
解:不需要采取緊急措施,
設(shè)OA=R,在Rt△AOC中,AC=30,CD=18,
R2=302+(R-18)2,
R2=900+R2-36R+324,
解得R=34(m),
連接OM,設(shè)DE=x,在Rt△MOE中,ME=16,
342=162+(34-x)2,
162+342-68x+x2=342,x2-68x+256=0,
解得x1=4,x2=64(不合題意,舍去),
∴DE=4,
∴不需采取緊急措施.
三、課堂小結(jié)(學(xué)生歸納,老師點(diǎn)評(píng))
垂徑定理及其推論以及它們的應(yīng)用.
四、作業(yè)布置
1.垂徑定理推論的證明.
2.教材第89,90頁(yè) 習(xí)題第8,9,10題.
九年級(jí)數(shù)學(xué)下冊(cè)人教教案篇2
配方法的基本形式
理解間接即通過變形運(yùn)用開平方法降次解方程,并能熟練應(yīng)用它解決一些具體問題.
通過復(fù)習(xí)可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟.
重點(diǎn)
講清直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟.
難點(diǎn)
將不可直接降次解方程化為可直接降次解方程的“化為”的轉(zhuǎn)化方法與技巧.
一、復(fù)習(xí)引入
(學(xué)生活動(dòng))請(qǐng)同學(xué)們解下列方程:
(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7
老師點(diǎn)評(píng):上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±或mx+n=±(p≥0).
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9嗎?
二、探索新知
列出下面問題的方程并回答:
(1)列出的經(jīng)化簡(jiǎn)為一般形式的方程與剛才解題的方程有什么不同呢?
(2)能否直接用上面前三個(gè)方程的解法呢?
問題:要使一塊矩形場(chǎng)地的長(zhǎng)比寬多6 m,并且面積為16 m2,求場(chǎng)地的長(zhǎng)和寬各是多少?
(1)列出的經(jīng)化簡(jiǎn)為一般形式的方程與前面講的三道題不同之處是:前三個(gè)左邊是含有x的完全平方式而后二個(gè)不具有此特征.
既然不能直接降次解方程,那么,我們就應(yīng)該設(shè)法把它轉(zhuǎn)化為可直接降次解方程的方程,下面,我們就來(lái)講如何轉(zhuǎn)化:
x2+6x-16=0移項(xiàng)→x2+6x=16
兩邊加(6/2)2使左邊配成x2+2bx+b2的形式→x2+6x+32=16+9
左邊寫成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以驗(yàn)證:x1=2,x2=-8都是方程的根,但場(chǎng)地的寬不能是負(fù)值,所以場(chǎng)地的寬為2 m,長(zhǎng)為8 m.
像上面的解題方法,通過配成完全平方形式來(lái)解一元二次方程的方法,叫配方法.
可以看出,配方法是為了降次,把一個(gè)一元二次方程轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解.
例1 用配方法解下列關(guān)于x的方程:
(1)x2-8x+1=0 (2)x2-2x-21=0
三、鞏固練習(xí)
教材第9頁(yè) 練習(xí)1,2.(1)(2).
四、課堂小結(jié)
本節(jié)課應(yīng)掌握:
左邊不含有x的完全平方形式的一元二次方程化為左邊是含有x的完全平方形式,右邊是非負(fù)數(shù),可以直接降次解方程的方程.
五、作業(yè) 教材第17頁(yè) 復(fù)習(xí)鞏固2,3.(1)(2).
九年級(jí)數(shù)學(xué)下冊(cè)人教教案篇3
二次根式的乘除法
教學(xué)目標(biāo)
1、使學(xué)生掌握二次根式的除法運(yùn)算法則,會(huì)用它進(jìn)行簡(jiǎn)單的二次根式的除法運(yùn)算。
2、使學(xué)生了解兩個(gè)二次根式的商仍然是一個(gè)二次根式或有理式。
3、使學(xué)生會(huì)將分母中含有一個(gè)二次根式的式子進(jìn)行分母有理化。
4、經(jīng)歷探索二次根式的除法運(yùn)算法則過程,培養(yǎng)學(xué)生的探究精神和合作交流的習(xí)慣。
教學(xué)過程
一、創(chuàng)設(shè)問題情境
問題l 上一節(jié)課,我們采取什么方法來(lái)研究二次根式的乘法法則?
問題2 是否也有二次根式的除法法則呢?
問題2 兩個(gè)二次根式相除,怎樣進(jìn)行呢?
二、加強(qiáng)合作,探索規(guī)律
讓抽象的問題具體化,這是我們研究抽象問題的一個(gè)重要方法、請(qǐng)同學(xué)們參考二次根式的乘法法則的研究,分組討論兩個(gè)二次根式相除,會(huì)有什么結(jié)論,并提出你的見解,然后其他小組同學(xué)補(bǔ)充,歸納為:
提問:
1、a和b有沒有限制?如果有限制,其取值范圍是什么?
2、= (a≥0,b>0)成立嗎?為什么?請(qǐng)舉例。
三、范例
例1、計(jì)算。
教學(xué)要求:(1)對(duì)于(1)可由教師解答示范;(2)對(duì)于(2)可由學(xué)生自己計(jì)算。
提問:
1、除了課本中的解答外,是否還有其他解法?如果有,請(qǐng)給出另外解法。
2、哪種方法更簡(jiǎn)便?
例2、化簡(jiǎn):(要求分母不帶根號(hào))
說(shuō)明:二次根式的化簡(jiǎn)要求滿足以下兩條:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式,也就是說(shuō)“被開方數(shù)不含分母”。
(2)被開方數(shù)中不含能開得盡的因數(shù)或因式,也就是說(shuō)“被開方數(shù)的每一個(gè)因數(shù)或因式的指數(shù)都小于2”。
把一個(gè)二次根式化簡(jiǎn)的具體方法是:化去根號(hào)下的分母;并把被開方數(shù)中能開得盡方的因數(shù)或因式用它的算術(shù)平方根代替后移到根號(hào)外面。
四、做一做
化簡(jiǎn):
教學(xué)要點(diǎn):(1)叫兩位同學(xué)板演,其他同學(xué)做完練習(xí)進(jìn)行評(píng)價(jià)、(2)可用提問的方式引導(dǎo)學(xué)生探索其他解法。
五、課堂練習(xí)
P12 練習(xí)1、(3)、(4)
六、小結(jié)
本節(jié)課,我們學(xué)習(xí)了二次根式的除法法則,即= (a≥0,b>0),并利用它進(jìn)行計(jì)算和化簡(jiǎn)。化簡(jiǎn)要做到“被開方數(shù)不含分母”和“被開方數(shù)的每一個(gè)因數(shù)或因式的指數(shù)都小于2”。具體辦法是:化去根號(hào)下的分母;并把被開方數(shù)中能開得盡方的因數(shù)或因式用它的算術(shù)平方根代替后移到根號(hào)外面、化簡(jiǎn)的具體方法可用于計(jì)算。
七、作業(yè)
P14頁(yè)習(xí)題22.2 2(3)、3(3)
教學(xué)后記:
九年級(jí)數(shù)學(xué)下冊(cè)人教教案篇4
圓
經(jīng)歷圓的概念的形成過程,理解圓、弧、弦等與圓有關(guān)的概念,了解等圓、等弧的概念.
重點(diǎn)
經(jīng)歷形成圓的概念的過程,理解圓及其有關(guān)概念.
難點(diǎn)
理解圓的概念的形成過程和圓的集合性定義.
活動(dòng)1 創(chuàng)設(shè)情境,引出課題
1.多媒體展示生活中常見的給我們以圓的形象的物體.
2.提出問題:我們看到的物體給我們什么樣的形象?
活動(dòng)2 動(dòng)手操作,形成概念
在沒有圓規(guī)的情況下,讓學(xué)生用鉛筆和細(xì)線畫一個(gè)圓.
教師巡視,展示學(xué)生的作品,提出問題:我們畫的圓的位置和大小一樣嗎?畫的圓的位置和大小分別由什么決定?
教師強(qiáng)調(diào)指出:位置由固定的一個(gè)端點(diǎn)決定,大小由固定端點(diǎn)到鉛筆尖的細(xì)線的長(zhǎng)度決定.
1.從以上圓的形成過程,總結(jié)概念:在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)所形成的圖形叫做圓.固定的端點(diǎn)O叫做圓心,線段OA叫做半徑.以點(diǎn)O為圓心的圓,記作“⊙O”,讀作“圓O”.
2.小組討論下面的兩個(gè)問題:
問題1:圓上各點(diǎn)到定點(diǎn)(圓心O)的距離有什么規(guī)律?
問題2:到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)又有什么特點(diǎn)?
3.小組代表發(fā)言,教師點(diǎn)評(píng)總結(jié),形成新概念.
(1)圓上各點(diǎn)到定點(diǎn)(圓心O)的距離都等于定長(zhǎng)(半徑r);
(2)到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)都在同一個(gè)圓上.
因此,我們可以得到圓的新概念:圓心為O,半徑為r的圓可以看成是所有到定點(diǎn)O的距離等于定長(zhǎng)r的點(diǎn)的集合.(一個(gè)圖形看成是滿足條件的點(diǎn)的集合,必須符合兩點(diǎn):在圖形上的每個(gè)點(diǎn),都滿足這個(gè)條件;滿足這個(gè)條件的每個(gè)點(diǎn),都在這個(gè)圖形上.)
活動(dòng)3 學(xué)以致用,鞏固概念
1.教材第81頁(yè) 練習(xí)第1題.
2.教材第80頁(yè) 例1.
多媒體展示例1,引導(dǎo)學(xué)生分析要證明四個(gè)點(diǎn)在同一圓上,實(shí)際是要證明到定點(diǎn)的距離等于定長(zhǎng),即四個(gè)點(diǎn)到O的距離相等.
活動(dòng)4 自學(xué)教材,辨析概念
1.自學(xué)教材第80頁(yè)例1后面的內(nèi)容,判斷下列問題正確與否:
(1)直徑是弦,弦是直徑;半圓是弧,弧是半圓.
(2)圓上任意兩點(diǎn)間的線段叫做弧.
(3)在同圓中,半徑相等,直徑是半徑的2倍.
(4)長(zhǎng)度相等的兩條弧是等弧.(教師強(qiáng)調(diào):長(zhǎng)度相等的弧不一定是等弧,等弧必須是在同圓或等圓中的弧.)
(5)大于半圓的弧是劣弧,小于半圓的弧是優(yōu)弧.
2.指出圖中所有的弦和弧.
活動(dòng)5 達(dá)標(biāo)檢測(cè),反饋新知
教材第81頁(yè) 練習(xí)第2,3題.
活動(dòng)6 課堂小結(jié),作業(yè)布置
課堂小結(jié)
1.圓、弦、弧、等圓、等弧的概念.要特別注意“直徑和弦”“弧和半圓”以及“同圓、等圓”這些概念的區(qū)別和聯(lián)系.等圓和等弧的概念是建立在“能夠完全重合”這一前提條件下的,它將作為今后判斷兩圓或兩弧相等的依據(jù).
2.證明幾點(diǎn)在同一圓上的方法.
3.集合思想.
作業(yè)布置
1.以定點(diǎn)O為圓心,作半徑等于2厘米的圓.
2.如圖,在Rt△ABC和Rt△ABD中,∠C=90°,∠D=90°,點(diǎn)O是AB的中點(diǎn).
求證:A,B,C,D四個(gè)點(diǎn)在以點(diǎn)O為圓心的同一圓上.
答案:1.略;2.證明OA=OB=OC=OD即可.
九年級(jí)數(shù)學(xué)下冊(cè)人教教案篇5
配方法
教學(xué)內(nèi)容
運(yùn)用直接開平方法,即根據(jù)平方根的意義把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元一次方程.
教學(xué)目標(biāo)
理解一元二次方程“降次”──轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問題.
提出問題,列出缺一次項(xiàng)的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個(gè)方程,然后知識(shí)遷移到解a(ex+f)2+c=0型的一元二次方程.
重難點(diǎn)關(guān)鍵
1.重點(diǎn):運(yùn)用開平方法解形如(x+m)2=n(n≥0)的方程;領(lǐng)會(huì)降次──轉(zhuǎn)化的數(shù)學(xué)思想.
2.難點(diǎn)與關(guān)鍵:通過根據(jù)平方根的意義解形如x2=n,知識(shí)遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程.
教學(xué)過程
一、復(fù)習(xí)引入
學(xué)生活動(dòng):請(qǐng)同學(xué)們完成下列各題
問題1.填空
(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+____)2.
問題1:根據(jù)完全平方公式可得:(1)16 4;(2)4 2;(3)()2 .
問題2:目前我們都學(xué)過哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程于一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過哪些降次的方法?
二、探索新知
上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?
(學(xué)生分組討論)
老師點(diǎn)評(píng):回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的兩根為t1=1,t2=--2
例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1
分析:很清楚,x2+4x+4是一個(gè)完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.
解:(2)由已知,得:(x+3)2=2
直接開平方,得:x+3=±
即x+3=,x+3=-
所以,方程的兩根x1=-3+,x2=-3-
例2.市政府計(jì)劃2年內(nèi)將人均住房面積由現(xiàn)在的10m2提高到14.4m,求每年人均住房面積增長(zhǎng)率.
分析:設(shè)每年人均住房面積增長(zhǎng)率為x.一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2
解:設(shè)每年人均住房面積增長(zhǎng)率為x,
則:10(1+x)2=14.4
(1+x)2=1.44
直接開平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的兩根是x1=0.2=20%,x2=-2.2
因?yàn)槊磕耆司》棵娣e的增長(zhǎng)率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去.
所以,每年人均住房面積增長(zhǎng)率應(yīng)為20%.
(學(xué)生小結(jié))老師引導(dǎo)提問:解一元二次方程,它們的共同特點(diǎn)是什么?
共同特點(diǎn):把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元一次方程.我們把這種思想稱為“降次轉(zhuǎn)化思想”.
三、鞏固練習(xí)
教材 練習(xí).
四、應(yīng)用拓展
例3.某公司一月份營(yíng)業(yè)額為1萬(wàn)元,第一季度總營(yíng)業(yè)額為3.31萬(wàn)元,求該公司二、三月份營(yíng)業(yè)額平均增長(zhǎng)率是多少?
分析:設(shè)該公司二、三月份營(yíng)業(yè)額平均增長(zhǎng)率為x,那么二月份的營(yíng)業(yè)額就應(yīng)該是(1+x),三月份的營(yíng)業(yè)額是在二月份的基礎(chǔ)上再增長(zhǎng)的,應(yīng)是(1+x)2.
解:設(shè)該公司二、三月份營(yíng)業(yè)額平均增長(zhǎng)率為x.
那么1+(1+x)+(1+x)2=3.31
把(1+x)當(dāng)成一個(gè)數(shù),配方得:
(1+x+)2=2.56,即(x+)2=2.56
x+=±1.6,即x+=1.6,x+=-1.6
方程的根為x1=10%,x2=-3.1
因?yàn)樵鲩L(zhǎng)率為正數(shù),
所以該公司二、三月份營(yíng)業(yè)額平均增長(zhǎng)率為10%.
五、歸納小結(jié)
本節(jié)課應(yīng)掌握: 由應(yīng)用直接開平方法解形如x2=p(p≥0),那么x=±轉(zhuǎn)化為應(yīng)用直接開平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,達(dá)到降次轉(zhuǎn)化之目的.若p<0則方程無(wú)解
六、布置作業(yè)
1.教材 復(fù)習(xí)鞏固1、2.