高中數(shù)學(xué)教學(xué)教案
了解對(duì)數(shù)的概念及其運(yùn)算性質(zhì),知道一般對(duì)數(shù)可以通過改變底數(shù)公式轉(zhuǎn)化為自然對(duì)數(shù)或普通對(duì)數(shù);通過閱讀材料,理解對(duì)數(shù)的歷史及其在簡(jiǎn)化運(yùn)算中的作用。下面是小編為大家?guī)淼母咧袛?shù)學(xué)教學(xué)教案七篇,希望大家能夠喜歡!
高中數(shù)學(xué)教學(xué)教案精選篇1
一、教學(xué)內(nèi)容分析
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實(shí)踐后的高度抽象、恰當(dāng)?shù)乩枚x__題,許多時(shí)候能以簡(jiǎn)馭繁、因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來熟練的解題”。
二、學(xué)生學(xué)習(xí)情況分析
我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。
三、設(shè)計(jì)思想
由于這部分知識(shí)較為抽象,如果離開感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情、在教學(xué)時(shí),借助多媒體動(dòng)畫,引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問題、解決問題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率、
四、教學(xué)目標(biāo)
1、深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用__解決問題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。
2、通過對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問題的能力;通過對(duì)問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。
3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣、
五、教學(xué)重點(diǎn)與難點(diǎn):
教學(xué)重點(diǎn)
1、對(duì)圓錐曲線定義的理解
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程
教學(xué)難點(diǎn):
巧用圓錐曲線定義__
高中數(shù)學(xué)教學(xué)教案精選篇2
一、教學(xué)內(nèi)容分析:
本節(jié)教材選自人教a版數(shù)學(xué)必修②第二章第一節(jié)課,本節(jié)內(nèi)容在立幾學(xué)習(xí)中起著承上啟下的作用,具有重要的意義與地位。本節(jié)課是在前面已學(xué)空間點(diǎn)、線、面位置關(guān)系的基礎(chǔ)作為學(xué)習(xí)的出發(fā)點(diǎn),結(jié)合有關(guān)的實(shí)物模型,通過直觀感知、操作確認(rèn)(合情推理,不要求證明)歸納出直線與平面平行的判定定理。本節(jié)課的學(xué)習(xí)對(duì)培養(yǎng)學(xué)生空間感與邏輯推理能力起到重要作用,特別是對(duì)線線平行、面面平行的判定的學(xué)習(xí)作用重大。
二、學(xué)生學(xué)習(xí)情況分析:
任教的學(xué)生在年段屬中上程度,學(xué)生學(xué)習(xí)興趣較高,但學(xué)習(xí)立幾所具備的語言表達(dá)及空間感與空間想象能力相對(duì)不足,學(xué)習(xí)方面有一定困難。
三、設(shè)計(jì)思想
本節(jié)課的設(shè)計(jì)遵循從具體到抽象的原則,適當(dāng)運(yùn)用多媒體輔助教學(xué)手段,借助實(shí)物模型,通過直觀感知,操作確認(rèn),合情推理,歸納出直線與平面平行的判定定理,將合情推理與演繹推理有機(jī)結(jié)合,讓學(xué)生在觀察分析、自主探索、合作交流的過程中,揭示直線與平面平行的判定、理解數(shù)學(xué)的概念,領(lǐng)會(huì)數(shù)學(xué)的思想方法,養(yǎng)成積極主動(dòng)、勇于探索、自主學(xué)習(xí)的學(xué)習(xí)方式,發(fā)展學(xué)生的空間觀念和空間想象力,提高學(xué)生的數(shù)學(xué)邏輯思維能力。
四、教學(xué)目標(biāo)
通過直觀感知——觀察——操作確認(rèn)的認(rèn)識(shí)方法理解并掌握直線與平面平行的判定定理,掌握直線與平面平行的畫法并能準(zhǔn)確使用數(shù)學(xué)符號(hào)語言、文字語言表述判定定理。培養(yǎng)學(xué)生觀察、探究、發(fā)現(xiàn)的能力和空間想象能力、邏輯思維能力。讓學(xué)生在觀察、探究、發(fā)現(xiàn)中學(xué)習(xí),在自主合作、交流中學(xué)習(xí),體驗(yàn)學(xué)習(xí)的樂趣,增強(qiáng)自信心,樹立積極的學(xué)習(xí)態(tài)度,提高學(xué)習(xí)的自我效能感。
五、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn)是判定定理的引入與理解,難點(diǎn)是判定定理的應(yīng)用及立幾空間感、空間觀念的形成與邏輯思維能力的培養(yǎng)。
六、教學(xué)過程設(shè)計(jì)
(一)知識(shí)準(zhǔn)備、新課引入
提問1:根據(jù)公共點(diǎn)的情況,空間中直線a和平面?有哪幾種位置關(guān)系?并完成下表:(多媒體幻燈片演示)a??
提問2:根據(jù)直線與平面平行的定義(沒有公共點(diǎn))來判定直線與平面平行你認(rèn)為方便嗎?談?wù)勀愕目捶ǎ⒅赋鍪欠裼袆e的判定途徑。
[設(shè)計(jì)意圖:通過提問,學(xué)生復(fù)習(xí)并歸納空間直線與平面位置關(guān)系引入本節(jié)課題,并為探尋直線與平面平行判定定理作好準(zhǔn)備。]
(二)判定定理的探求過程
1、直觀感知
提問:根據(jù)同學(xué)們?nèi)粘I畹挠^察,你們能感知到并舉出直線與平面平行的具體事例嗎?
生1:例舉日光燈與天花板,樹立的電線桿與墻面。
生2:門轉(zhuǎn)動(dòng)到離開門框的任何位置時(shí),門的邊緣線始終與門框所在的平面平行(由學(xué)生到教室門前作演示),然后教師用多媒體動(dòng)畫演示。
2、動(dòng)手實(shí)踐
教師取出預(yù)先準(zhǔn)備好的直角梯形泡沫板演示:當(dāng)把互相平行的一邊放在講臺(tái)桌面上并轉(zhuǎn)動(dòng),觀察另一邊與桌面的位置給人以平行的感覺,而當(dāng)把直角腰放在桌面上并轉(zhuǎn)動(dòng),觀察另一邊與桌面給人的印象就不平行。又如老師直立講臺(tái),則大家會(huì)感覺到老師(視為線)與四周墻面平行,如老師向前或后傾斜則感覺老師(視為線)與左、右墻面平行,如老師向左、右傾斜,則感覺老師(視為線)與前、后墻面平行(老師也可用事先準(zhǔn)備的木條放在講臺(tái)桌上作上述情形的演示)。
3、探究思考
(1)上述演示的直線與平面位置關(guān)系為何有如此的不同?關(guān)鍵是什么因素起了作用呢?通過觀察感知發(fā)現(xiàn)直線與平面平行,關(guān)鍵是三個(gè)要素:
①平面外一條線
②我們把直線與平面相交或平行的位置關(guān)系統(tǒng)稱為直線在平面外,用符號(hào)表示為平面內(nèi)一條直線
③這兩條直線平行
(2)如果平面外的直線a與平面?內(nèi)的一條直線b平行,那么直線a與平面?平行嗎?
4、歸納確認(rèn):(多媒體幻燈片演示)
直線和平面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線和這個(gè)平面平行。
(三)定理運(yùn)用,問題探究(多媒體幻燈片演示)
1、想一想:
(1)判斷下列命題的真假?說明理由:
①如果一條直線不在平面內(nèi),則這條直線就與平面平行()
②過直線外一點(diǎn)可以作無數(shù)個(gè)平面與這條直線平行()
③一直線上有二個(gè)點(diǎn)到平面的距離相等,則這條直線與平面平行()
(2)若直線a與平面?內(nèi)無數(shù)條直線平行,則a與?的位置關(guān)系是()a、a||b、a、c、a||或a、d、a[學(xué)情預(yù)設(shè):設(shè)計(jì)這組問題目的是強(qiáng)調(diào)定理中三個(gè)條件的重要性,同時(shí)預(yù)設(shè)(1)中的③學(xué)生可能認(rèn)為正確的,這樣就無法達(dá)到老師的預(yù)設(shè)與生成的目的,這時(shí)教師要引導(dǎo)學(xué)生思考,讓學(xué)生想象的空間更廣闊些。此外教師可用預(yù)先準(zhǔn)備好的羊毛針與泡沫板進(jìn)行演示,讓羊毛針穿過泡沫板以舉不平行的反例,如果有的學(xué)生空間想象力強(qiáng),能按老師的要求生成正確的結(jié)果則就由個(gè)別學(xué)生進(jìn)行演示。]
2、作一作:
設(shè)a、b是二異面直線,則過a、b外一點(diǎn)p且與a、b都平行的平面存在嗎?若存在請(qǐng)畫出平面,不存在說明理由?
先由學(xué)生討論交流,教師提問,然后教師總結(jié),并用準(zhǔn)備好的羊毛針、鐵線、泡沫板等演示平面的形成過程,最后借多媒體展示作圖的動(dòng)畫過程。
[設(shè)計(jì)意圖:這是一道動(dòng)手操作的問題,不僅是為了拓展加深對(duì)定理的認(rèn)識(shí),更重要的是培養(yǎng)學(xué)生空間感與思維的嚴(yán)謹(jǐn)性。]
3、證一證:
例1(見課本60頁例1):已知空間四邊形abcd中,e、f分別是ab、ad的中點(diǎn),求證:ef||平面bcd。
變式一:空間四邊形abcd中,e、f、g、h分別是邊ab、bc、cd、da中點(diǎn),連結(jié)ef、fg、gh、he、ac、bd請(qǐng)分別找出圖中滿足線面平行位置關(guān)系的所有情況。(共6組線面平行)變式二:在變式一的圖中如作pq?ef,使p點(diǎn)在線段ae上、q點(diǎn)在線段fc上,連結(jié)ph、qg,并繼續(xù)探究圖中所具有的線面平行位置關(guān)系?(在變式一的基礎(chǔ)上增加了4組線面平行),并判斷四邊形efgh、pqgh分別是怎樣的四邊形,說明理由。
[設(shè)計(jì)意圖:設(shè)計(jì)二個(gè)變式訓(xùn)練,目的是通過問題探究、討論,思辨,及時(shí)鞏固定理,運(yùn)用定理,培養(yǎng)學(xué)生的識(shí)圖能力與邏輯推理能力。]例2:如圖,在正方體abcd—a1b1c1d1中,e、f分別是棱bc與c1d1中點(diǎn),求證:ef||平面bdd1b1分析:根據(jù)判定定理必須在平
面bdd1b1內(nèi)找(作)一條線與ef平行,聯(lián)想到中點(diǎn)問題找中點(diǎn)解決的方法,可以取bd或b1d1中點(diǎn)而證之。
思路一:取bd中點(diǎn)g連d1g、eg,可證d1gef為平行四邊形。
思路二:取d1b1中點(diǎn)h連hb、hf,可證hfeb為平行四邊形。
[知識(shí)鏈接:根據(jù)空間問題平面化的思想,因此把找空間平行直線問題轉(zhuǎn)化為找平行四邊形或三角形中位線問題,這樣就自然想到了找中點(diǎn)。平行問題找中點(diǎn)解決是個(gè)好途徑好方法。這種思想方法是解決立幾論證平行問題,培養(yǎng)邏輯思維能力的重要思想方法]
4、練一練:
練習(xí)1:見課本6頁練習(xí)1、2
練習(xí)2:將兩個(gè)全等的正方形abcd和abef拼在一起,設(shè)m、n分別為ac、bf中點(diǎn),求證:mn||平面bce。
變式:若將練習(xí)2中m、n改為ac、bf分點(diǎn)且am=fn,試問結(jié)論仍成立嗎?試證之。
[設(shè)計(jì)意圖:設(shè)計(jì)這組練習(xí),目的是為了鞏固與深化定理的運(yùn)用,特別是通過練習(xí)2及其變式的訓(xùn)練,讓學(xué)生能在復(fù)雜的圖形中去識(shí)圖,去尋找分析問題、解決問題的途徑與方法,以達(dá)到逐步培養(yǎng)空間感與邏輯思維能力。]
(四)總結(jié)
先由學(xué)生口頭總結(jié),然后教師歸納總結(jié)(由多媒體幻燈片展示):
1、線面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線與這個(gè)平面平行。
2、定理的符號(hào)表示:ba||?a||b??簡(jiǎn)述:(內(nèi)外)線線平行則線面平行
3、定理運(yùn)用的關(guān)鍵是找(作)面內(nèi)的線與面外的線平行,途徑有:取中點(diǎn)利用平行四邊形或三角形中位線性質(zhì)等。
七、教學(xué)反思
本節(jié)“直線與平面平行的判定”是學(xué)生學(xué)習(xí)空間位置關(guān)系的判定與性質(zhì)的第一節(jié)課,也是學(xué)生開始學(xué)習(xí)立幾演澤推理論述的思維方式方法,因此本節(jié)課學(xué)習(xí)對(duì)發(fā)展學(xué)生的空間觀念和邏輯思維能力是非常重要的。
本節(jié)課的設(shè)計(jì)遵循“直觀感知——操作確認(rèn)——思辯論證”的認(rèn)識(shí)過程,注重引導(dǎo)學(xué)生通過觀察、操作交流、討論、有條理的思考和推理等活動(dòng),從多角度認(rèn)識(shí)直線和平面平行的判定方法,讓學(xué)生通過自主探索、合作交流,進(jìn)一步認(rèn)識(shí)和掌握空間圖形的性質(zhì),積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),發(fā)展合情推理、發(fā)展空間觀念與推理能力。
本節(jié)課的設(shè)計(jì)注重訓(xùn)練學(xué)生準(zhǔn)確表達(dá)數(shù)學(xué)符號(hào)語言、文字語言及圖形語言,加強(qiáng)各種語言的互譯。比如上課開始時(shí)的復(fù)習(xí)引入,讓學(xué)生用三種語言的表達(dá),動(dòng)手實(shí)踐、定理探求過程以及定理描述也注重三種語言的表達(dá),對(duì)例題的講解與分析也注意指導(dǎo)學(xué)生三種語言的表達(dá)。
本節(jié)課對(duì)定理的探求與認(rèn)識(shí)過程的設(shè)計(jì)始終貫徹直觀在先,感知在先,學(xué)自己身邊的數(shù)學(xué),感知生活中包涵的數(shù)學(xué)現(xiàn)象與數(shù)學(xué)原理,體驗(yàn)數(shù)學(xué)即生活的道理,比如讓學(xué)生舉生活中能感知線面平行的例子,學(xué)生會(huì)舉出日光燈與天花板,電線桿與墻面,轉(zhuǎn)動(dòng)的門等等,同時(shí)老師的舉例也很貼進(jìn)生活,如老師直立時(shí)與四周墻面平行,而向前、向后傾斜則只與左右墻面平行,而向左、右傾斜則與前后黑板面平行。然后引導(dǎo)學(xué)生從中抽象概括出定理。
高中數(shù)學(xué)教學(xué)教案精選篇3
教材分析:
三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教B版)數(shù)學(xué)必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時(shí),教學(xué)內(nèi)容是公式(三)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法。
教案背景:
通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
教學(xué)方法:
以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式。
教學(xué)目標(biāo):
借助單位圓探究誘導(dǎo)公式。
能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角三角函數(shù)。
教學(xué)重點(diǎn):
誘導(dǎo)公式(三)的推導(dǎo)及應(yīng)用。
教學(xué)難點(diǎn):
誘導(dǎo)公式的應(yīng)用。
教學(xué)手段:
多媒體。
教學(xué)情景設(shè)計(jì):
一.復(fù)習(xí)回顧:
1. 誘導(dǎo)公式(一)(二)。
2. 角 (終邊在一條直線上)
3. 思考:下列一組角有什么特征?( )能否用式子來表示?
二.新課:
已知 由
可知
而 (課件演示,學(xué)生發(fā)現(xiàn))
所以
于是可得: (三)
設(shè)計(jì)意圖:結(jié)合幾何畫板的演示利用同一點(diǎn)的坐標(biāo)變換,導(dǎo)出公式。
由公式(一)(三)可以看出,角 角 相等。即:
.
公式(一)(二)(三)都叫誘導(dǎo)公式。利用誘導(dǎo)公式可以求三角函數(shù)式的值或化簡(jiǎn)三角函數(shù)式。
設(shè)計(jì)意圖:結(jié)合學(xué)過的公式(一)(二),發(fā)現(xiàn)特點(diǎn),總結(jié)公式。
1. 練習(xí)
(1)
設(shè)計(jì)意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。
(學(xué)生板演,老師點(diǎn)評(píng),用彩色粉筆強(qiáng)調(diào)重點(diǎn),引導(dǎo)學(xué)生總結(jié)公式。)
三.例題
例3:求下列各三角函數(shù)值:
(1)
(2)
(3)
(4)
例4:化簡(jiǎn)
設(shè)計(jì)意圖:利用公式解決問題。
練習(xí):
(1)
(2) (學(xué)生板演,師生點(diǎn)評(píng))
設(shè)計(jì)意圖:觀察公式特點(diǎn),選擇公式解決問題。
四.課堂小結(jié):將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結(jié)合思想的應(yīng)用,培養(yǎng)了學(xué)生分析問題、解決問題的能力,熟練應(yīng)用解決問題。
五.課后作業(yè):課后練習(xí)A、B組
六.課后反思與交流
很榮幸大家來聽我的課,通過這課,我學(xué)習(xí)到如下的東西:
1.要認(rèn)真的研讀新課標(biāo),對(duì)教學(xué)的目標(biāo),重難點(diǎn)把握要到位
2.注意板書設(shè)計(jì),注重細(xì)節(jié)的東西,語速需要改正
3.進(jìn)一步的學(xué)習(xí)網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學(xué)生更容易操作
4.盡可能讓你的學(xué)生自主提出問題,自主的思考,能夠化被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí),充分享受學(xué)習(xí)數(shù)學(xué)的樂趣
5.上課的生動(dòng)化,形象化需要加強(qiáng)
聽課者評(píng)價(jià):
1.評(píng)議者:網(wǎng)絡(luò)輔助教學(xué),起到了很好的效果;教態(tài)大方,作為新教師,開設(shè)校際課,勇氣可嘉!建議:感覺到老師有點(diǎn)緊張,其實(shí)可以放開點(diǎn)的,相信效果會(huì)更好的!重點(diǎn)不夠清晰,有引導(dǎo)數(shù)學(xué)時(shí),最好值有個(gè)側(cè)重點(diǎn);網(wǎng)絡(luò)設(shè)計(jì)上,網(wǎng)頁上公開的推導(dǎo)公式為上,留有更大的空間讓學(xué)生來思考。
2.評(píng)議者:網(wǎng)絡(luò)教學(xué)效果良好,給學(xué)生自主思考,學(xué)習(xí)的空間發(fā)揮,教學(xué)設(shè)計(jì)得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚(yáng)頓挫應(yīng)注意課堂例題練習(xí)可以多兩題。
3.評(píng)議者:學(xué)科網(wǎng)絡(luò)平臺(tái)的使用;建議:應(yīng)重視引導(dǎo)學(xué)生將一些唾手可得的有用結(jié)論總結(jié)出來,并形成自我的經(jīng)驗(yàn)。
4.評(píng)議者:引導(dǎo)學(xué)生通過網(wǎng)絡(luò)進(jìn)行探究。
建議:課件制作在線測(cè)評(píng)部分,建議不能重復(fù)選擇,應(yīng)全部做完后,顯示結(jié)果,再重復(fù)測(cè)試;多提問學(xué)生。
( 1)給學(xué)生思考的時(shí)間較長(zhǎng),語調(diào)相對(duì)平緩,總結(jié)時(shí),給學(xué)生一些激勵(lì)的語言更好
( 2)這樣子的教學(xué)可以提高上課效率,讓學(xué)生更多的時(shí)間思考
( 3)網(wǎng)絡(luò)平臺(tái)的使用,使得學(xué)生的參與度明顯提高,存在問題:1.公式對(duì)稱性的誘導(dǎo),點(diǎn)與點(diǎn)的對(duì)稱的誘導(dǎo),終邊的關(guān)系的誘導(dǎo),要進(jìn)一步的修正;2.公式的概括要注意引導(dǎo)學(xué)生怎么用,學(xué)習(xí)這個(gè)誘導(dǎo)公式的作用
( 4)給學(xué)生答案,這個(gè)網(wǎng)頁要進(jìn)一步的修正,答案能否不要一點(diǎn)就出來
( 5)1.板書設(shè)計(jì)要進(jìn)一步的加強(qiáng),2.語速相對(duì)是比較快的3.練習(xí)量比較少
( 6)讓學(xué)生多探究,課堂會(huì)更熱鬧
( 7)注意引入的過程要帶有目的,帶著問題來教學(xué),學(xué)生帶著問題來學(xué)習(xí)
( 8)教學(xué)模式相對(duì)簡(jiǎn)單重復(fù)
( 9)思路較為清晰,規(guī)范化的推理
高中數(shù)學(xué)教學(xué)教案精選篇4
一、教學(xué)目標(biāo)
【知識(shí)與技能】
在掌握?qǐng)A的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。
【過程與方法】
通過對(duì)方程x+y+Dx+Ey+F=0表示圓的的條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問題的實(shí)際能力得到提高。
【情感態(tài)度與價(jià)值觀】
滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵(lì)學(xué)生創(chuàng)新,勇于探索。
二、教學(xué)重難點(diǎn)
【重點(diǎn)】
掌握?qǐng)A的一般方程,以及用待定系數(shù)法求圓的一般方程。
【難點(diǎn)】
二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的關(guān)系。
三、教學(xué)過程
(一)復(fù)習(xí)舊知,引出課題
1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。
2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
高中數(shù)學(xué)教學(xué)教案精選篇5
一、教材分析
《正弦定理》是人教版教材必修五第一章《解三角形》的第一節(jié)內(nèi)容,也是三角形理論中的一個(gè)重要內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系。在此之前,學(xué)生已經(jīng)學(xué)習(xí)過了正弦函數(shù)和余弦函數(shù),知識(shí)儲(chǔ)備已足夠。它是后續(xù)課程中解三角形的理論依據(jù),也是解決實(shí)際生活中許多測(cè)量問題的工具。因此熟練掌握正弦定理能為接下來學(xué)習(xí)解三角形打下堅(jiān)實(shí)基礎(chǔ),并能在實(shí)際應(yīng)用中靈活變通。
二、教學(xué)目標(biāo)
根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,制定如下教學(xué)目標(biāo):
知識(shí)目標(biāo):理解并掌握正弦定理的證明,運(yùn)用正弦定理解三角形。
能力目標(biāo):探索正弦定理的證明過程,用歸納法得出結(jié)論,并能掌握多種證明方法。
情感目標(biāo):通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對(duì)稱美和數(shù)學(xué)的實(shí)際應(yīng)用價(jià)值。
三、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。
教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。
四、教法分析
依據(jù)本節(jié)課內(nèi)容的特點(diǎn),學(xué)生的認(rèn)識(shí)規(guī)律,本節(jié)知識(shí)遵循以教師為主導(dǎo),以學(xué)生為主體的指導(dǎo)思想,采用與學(xué)生共同探索的教學(xué)方法,命題教學(xué)的發(fā)生型模式,以問題實(shí)際為參照對(duì)象,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化,并且運(yùn)用例題和習(xí)題來強(qiáng)化內(nèi)容的掌握,突破重難點(diǎn)。即指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法。學(xué)生采用自主式、合作式、探討式的學(xué)習(xí)方法,這樣能使學(xué)生積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),培養(yǎng)學(xué)生的合作意識(shí)和探究精神。
五、教學(xué)過程
本節(jié)知識(shí)教學(xué)采用發(fā)生型模式:
1、問題情境
有一個(gè)旅游景點(diǎn),為了吸引更多的游客,想在風(fēng)景區(qū)兩座相鄰的山之間搭建一條觀光索道。已知一座山A到山腳C的上面斜距離是1500米,在山腳測(cè)得兩座山頂之間的夾角是450,在另一座山頂B測(cè)得山腳與A山頂之間的夾角是300。求需要建多長(zhǎng)的索道?
可將問題數(shù)學(xué)符號(hào)化,抽象成數(shù)學(xué)圖形。即已知AC=1500m,∠C=450,∠B=300。求AB=?
此題可運(yùn)用做輔助線BC邊上的高來間接求解得出。
提問:有沒有根據(jù)已提供的數(shù)據(jù),直接一步就能解出來的方法?
思考:我們知道,在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系。那我們能不能得到關(guān)于邊、角關(guān)系準(zhǔn)確量化的表示呢?
2、歸納命題
我們從特殊的三角形直角三角形中來探討邊與角的數(shù)量關(guān)系:
在如圖Rt三角形ABC中,根據(jù)正弦函數(shù)的定義
高中數(shù)學(xué)教學(xué)教案精選篇6
一、單元教學(xué)內(nèi)容
(1)算法的基本概念
(2)算法的基本結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)
(3)算法的基本語句:輸入、輸出、賦值、條件、循環(huán)語句
二、單元教學(xué)內(nèi)容分析
算法是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計(jì)算科學(xué)的重要基礎(chǔ)。隨著現(xiàn)代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會(huì)發(fā)展中發(fā)揮著越來越大的作用,并日益融入社會(huì)生活的許多方面,算法思想已經(jīng)成為現(xiàn)代人應(yīng)具備的一種數(shù)學(xué)素養(yǎng)。需要特別指出的是,中國古代數(shù)學(xué)中蘊(yùn)涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對(duì)具體數(shù)學(xué)實(shí)例的分析,體驗(yàn)程序框圖在解決問題中的作用;通過模仿、操作、探索,學(xué)習(xí)設(shè)計(jì)程序框圖表達(dá)解決問題的過程;體會(huì)算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達(dá)的能力,提高邏輯思維能力。
三、單元教學(xué)課時(shí)安排:
1、算法的基本概念3課時(shí)
2、程序框圖與算法的基本結(jié)構(gòu)5課時(shí)
3、算法的基本語句2課時(shí)
四、單元教學(xué)目標(biāo)分析
1、通過對(duì)解決具體問題過程與步驟的分析體會(huì)算法的思想,了解算法的含義
2、通過模仿、操作、探索,經(jīng)歷通過設(shè)計(jì)程序框圖表達(dá)解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)。
3、經(jīng)歷將具體問題的程序框圖轉(zhuǎn)化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環(huán)語句,進(jìn)一步體會(huì)算法的基本思想。
4、通過閱讀中國古代數(shù)學(xué)中的算法案例,體會(huì)中國古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。
五、單元教學(xué)重點(diǎn)與難點(diǎn)分析
1、重點(diǎn)
(1)理解算法的含義
(2)掌握算法的基本結(jié)構(gòu)
(3)會(huì)用算法語句解決簡(jiǎn)單的實(shí)際問題
2、難點(diǎn)
(1)程序框圖
(2)變量與賦值
(3)循環(huán)結(jié)構(gòu)
(4)算法設(shè)計(jì)
六、單元總體教學(xué)方法
本章教學(xué)采用啟發(fā)式教學(xué),輔以觀察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強(qiáng),只能通過對(duì)實(shí)例的認(rèn)真領(lǐng)會(huì)及一定的練習(xí)才能掌握本節(jié)知識(shí)。
七、單元展開方式與特點(diǎn)
1、展開方式
自然語言→程序框圖→算法語句
2、特點(diǎn)
(1)螺旋上升分層遞進(jìn)
(2)整合滲透前呼后應(yīng)
(3)三線合一橫向貫通
(4)彈性處理多樣選擇
八、單元教學(xué)過程分析
1、算法基本概念教學(xué)過程分析
對(duì)生活中的實(shí)際問題通過對(duì)解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會(huì)算法的思想,了解算法的含義,能用自然語言描述算法。
2、算法的流程圖教學(xué)過程分析
對(duì)生活中的實(shí)際問題通過模仿、操作、探索,經(jīng)歷通過設(shè)計(jì)流程圖表達(dá)解決問題的過程,了解算法和程序語言的區(qū)別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán),會(huì)用流程圖表示算法。
3、基本算法語句教學(xué)過程分析
經(jīng)歷將具體生活中問題的流程圖轉(zhuǎn)化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環(huán)語句,進(jìn)一步體會(huì)算法的基本思想。能用自然語言、流程圖和基本算法語句表達(dá)算法,
4、通過閱讀中國古代數(shù)學(xué)中的算法案例,體會(huì)中國古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。
九、單元評(píng)價(jià)設(shè)想
1、重視對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)過程的評(píng)價(jià)
關(guān)注學(xué)生在數(shù)學(xué)語言的學(xué)習(xí)過程中,是否對(duì)用集合語言描述數(shù)學(xué)和現(xiàn)實(shí)生活中的問題充滿興趣;在學(xué)習(xí)過程中,能否體會(huì)集合語言準(zhǔn)確、簡(jiǎn)潔的特征;是否能積極、主動(dòng)地發(fā)展自己運(yùn)用數(shù)學(xué)語言進(jìn)行交流的能力。
2、正確評(píng)價(jià)學(xué)生的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能
關(guān)注學(xué)生在本章(節(jié))及今后學(xué)習(xí)中,讓學(xué)生集中學(xué)習(xí)算法的初步知識(shí),主要包括算法的基本結(jié)構(gòu)、基本語句、基本思想等。算法思想將貫穿高中數(shù)學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習(xí)算法
高中數(shù)學(xué)教學(xué)教案精選篇7
學(xué)習(xí)目標(biāo)
明確排列與組合的聯(lián)系與區(qū)別,能判斷一個(gè)問題是排列問題還是組合問題;能運(yùn)用所學(xué)的排列組合知識(shí),正確地解決的實(shí)際問題.
學(xué)習(xí)過程
一、學(xué)前準(zhǔn)備
復(fù)習(xí):
1.(課本P28A13)填空:
(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是 ;
(2)要從5件不同的禮物中選出3件分送3為同學(xué),不同方法的種數(shù)是 ;
(3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是 ;
(4)集合A有個(gè) 元素,集合B有 個(gè)元素,從兩個(gè)集合中各取1個(gè)元素,不同方法的種數(shù)是 ;
二、新課導(dǎo)學(xué)
探究新知(復(fù)習(xí)教材P14~P25,找出疑惑之處)
問題1:判斷下列問題哪個(gè)是排列問題,哪個(gè)是組合問題:
(1)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè)安排游覽,有多少種不同的方法?
(2)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè),并確定這2個(gè)風(fēng)景點(diǎn)的游覽順序,有多少種不同的方法?
應(yīng)用示例
例1.從10個(gè)不同的文藝節(jié)目中選6個(gè)編成一個(gè)節(jié)目單,如果某女演員的獨(dú)唱節(jié)目一定不能排在第二個(gè)節(jié)目的位置上,則共有多少種不同的排法?
例2.7位同學(xué)站成一排,分別求出符合下列要求的不同排法的種數(shù).
(1) 甲站在中間;
(2)甲、乙必須相鄰;
(3)甲在乙的左邊(但不一定相鄰);
(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;
(5)甲、乙、丙相鄰;
(6)甲、乙不相鄰;
(7)甲、乙、丙兩兩不相鄰。