高中數(shù)學必修一教案
數(shù)學起源于人類早期的生產(chǎn)活動。巴比倫人自古以來就積累了一定的數(shù)學知識,能夠應(yīng)用實際問題。下面是小編為大家?guī)淼母咧袛?shù)學必修一教案七篇,希望大家能夠喜歡!
高中數(shù)學必修一教案篇1
一、教學內(nèi)容分析
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象.恰當?shù)乩枚x解題,許多時候能以簡馭繁.因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質(zhì)后,再一次強調(diào)定義,學會利用圓錐曲線定義來熟練的解題”。
二、學生學習情況分析
我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學語言的表達能力也略顯不足。
三、設(shè)計思想
由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情.在教學時,借助多媒體動畫,引導(dǎo)學生主動發(fā)現(xiàn)問題、解決問題,主動參與教學,在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學效率.
四、教學目標
1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。
2.通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學生學習解題的一般方法。
3.借助多媒體輔助教學,激發(fā)學習數(shù)學的興趣.
五、教學重點與難點:
教學重點
1.對圓錐曲線定義的理解
2.利用圓錐曲線的定義求“最值”
3.“定義法”求軌跡方程
教學難點:
巧用圓錐曲線定義解題
六、教學過程設(shè)計
【設(shè)計思路】
(一)開門見山,提出問題
一上課,我就直截了當?shù)亟o出——
例題1:(1) 已知A(-2,0), B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是( )。
(A)橢圓 (B)雙曲線 (C)線段 (D)不存在
(2)已知動點 M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是( )。
(A)橢圓 (B)雙曲線 (C)拋物線 (D)兩條相交直線
【設(shè)計意圖】
定義是揭示概念的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數(shù)學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。
為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。
【學情預(yù)設(shè)】
估計多數(shù)學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折—— 如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2
5這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5
入手,考慮通過適當?shù)淖冃危D(zhuǎn)化為學生們熟知的兩個距離公式。
在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是 ,實軸長為 ,焦距為 。以深化對概念的理解。
(二)理解定義、解決問題
例2 (1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內(nèi)切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點P(-2,2), 求|PA|
【設(shè)計意圖】
運用圓錐曲線定義中的數(shù)量關(guān)系進行轉(zhuǎn)化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學生們比較容易混淆的一類問題。例2的設(shè)置就是為了方便學生的辨析。
【學情預(yù)設(shè)】
根據(jù)以往的經(jīng)驗,多數(shù)學生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關(guān)鍵在于能準確寫出點A的軌跡,有了練習題1的鋪墊,這個問題對學生們來講就顯得頗為簡單,因此面對例2(1),多數(shù)學生應(yīng)該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學生就無從下手。我提醒學生把3/5和離心率聯(lián)系起來,這樣就容易和第二定義聯(lián)系起來,從而找到解決本題的突破口。
(三)自主探究、深化認識
如果時間允許,練習題將為學生們提供一次數(shù)學猜想、試驗的機會——
練習:設(shè)點Q是圓C:(x1)2225|AB|的最小值。 3y225上動點,點A(1,0)是圓內(nèi)一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。
引申:若將點A移到圓C外,點M的軌跡會是什么?
【設(shè)計意圖】 練習題設(shè)置的目的是為學生課外自主探究學習提供平臺,當然,如果課堂上時間允許的話,
可借助“多媒體課件”,引導(dǎo)學生對自己的結(jié)論進行驗證。
【知識鏈接】
(一)圓錐曲線的定義
1. 圓錐曲線的第一定義
2. 圓錐曲線的統(tǒng)一定義
(二)圓錐曲線定義的應(yīng)用舉例
x2y2
1.雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P169
到右準線的距離。
|PF1||PF2|2.P為等軸雙曲線x2y2a2上一點, F1、F2為兩焦點,O為雙曲線的中心,求的|PO|
取值范圍。
3.在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的坐標。
x2y2
4.(1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求259
|MA|+|MF|的最小值。
x2y211(2)已知A(,3)為一定點,F(xiàn)為雙曲線1的右焦點,M在雙曲線右支上移動,當9272
1|AM||MF|最小時,求M點的坐標。 2
x2
(3)已知點P(-2,3)及焦點為F的拋物線y,在拋物線上求一點M,使|PM|+|FM|最小。 8
x2y2
5.已知A(4,0),B(2,2)是橢圓1內(nèi)的點,M是橢圓上的動點,求|MA|+|MB|的最259
小值與最大值。
七、教學反思
1.本課將借助于,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數(shù)學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節(jié)省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發(fā)揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結(jié)合的教學優(yōu)勢。
2.利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結(jié)果的檢測研究,培養(yǎng)學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法. 循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。
總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節(jié)奏仍是我今后工作中的一個重要研究課題.而要能真正進行素質(zhì)教育,培養(yǎng)學生的創(chuàng)新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術(shù),讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質(zhì),提高了數(shù)學思維能力。
高中數(shù)學必修一教案篇2
教學目標
1.理解等比數(shù)列的概念,掌握等比數(shù)列的通項公式,并能運用公式解決簡單的問題。
(1)正確理解等比數(shù)列的定義,了解公比的概念,明確一個數(shù)列是等比數(shù)列的限定條件,能根據(jù)定義判斷一個數(shù)列是等比數(shù)列,了解等比中項的概念;
(2)正確認識使用等比數(shù)列的表示法,能靈活運用通項公式求等比數(shù)列的首項、公比、項數(shù)及指定的項;
(3)通過通項公式認識等比數(shù)列的性質(zhì),能解決某些實際問題。
2.通過對等比數(shù)列的研究,逐步培養(yǎng)學生觀察、類比、歸納、猜想等思維品質(zhì)。
3.通過對等比數(shù)列概念的歸納,進一步培養(yǎng)學生嚴密的思維習慣,以及實事求是的科學態(tài)度。
教材分析
(1)知識結(jié)構(gòu)
等比數(shù)列是另一個簡單常見的數(shù)列,研究內(nèi)容可與等差數(shù)列類比,首先歸納出等比數(shù)列的定義,導(dǎo)出通項公式,進而研究圖像,又給出等比中項的概念,最后是通項公式的應(yīng)用.
(2)重點、難點分析
教學重點是等比數(shù)列的定義和對通項公式的認識與應(yīng)用,教學難點在于等比數(shù)列通項公式的推導(dǎo)和運用.
①與等差數(shù)列一樣,等比數(shù)列也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項公式得出等比數(shù)列的特性,這些是教學的重點.
②雖然在等差數(shù)列的學習中曾接觸過不完全歸納法,但對學生來說仍然不熟悉;在推導(dǎo)過程中,需要學生有一定的觀察分析猜想能力;第一項是否成立又須補充說明,所以通項公式的推導(dǎo)是難點.
③對等差數(shù)列、等比數(shù)列的綜合研究離不開通項公式,因而通項公式的靈活運用既是重點又是難點.
教學建議
(1)建議本節(jié)課分兩課時,一節(jié)課為等比數(shù)列的概念,一節(jié)課為等比數(shù)列通項公式的應(yīng)用.
(2)等比數(shù)列概念的引入,可給出幾個具體的例子,由學生概括這些數(shù)列的相同特征,從而得到等比數(shù)列的定義.也可將幾個等差數(shù)列和幾個等比數(shù)列混在一起給出,由學生將這些數(shù)列進行分類,有一種是按等差、等比來分的,由此對比地概括等比數(shù)列的定義.
(3)根據(jù)定義讓學生分析等比數(shù)列的公比不為0,以及每一項均不為0的特性,加深對概念的理解.
(4)對比等差數(shù)列的表示法,由學生歸納等比數(shù)列的各種表示法. 啟發(fā)學生用函數(shù)觀點認識通項公式,由通項公式的結(jié)構(gòu)特征畫數(shù)列的圖象.
(5)由于有了等差數(shù)列的研究經(jīng)驗,等比數(shù)列的研究完全可以放手讓學生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn).
(6)可讓學生相互出題,解題,講題,充分發(fā)揮學生的主體作用.
教學設(shè)計示例
課題:等比數(shù)列的概念
教學目標
1.通過教學使學生理解等比數(shù)列的概念,推導(dǎo)并掌握通項公式.
2.使學生進一步體會類比、歸納的思想,培養(yǎng)學生的觀察、概括能力.
3.培養(yǎng)學生勤于思考,實事求是的精神,及嚴謹?shù)目茖W態(tài)度.
教學重點,難點
重點、難點是等比數(shù)列的定義的歸納及通項公式的推導(dǎo).
教學用具
投影儀,多媒體軟件,電腦.
教學方法
討論、談話法.
教學過程
一、提出問題
給出以下幾組數(shù)列,將它們分類,說出分類標準.(幻燈片)
①-2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
④243,81,27,9,3,1,,,…
⑤31,29,27,25,23,21,19,…
⑥1,-1,1,-1,1,-1,1,-1,…
⑦1,-10,100,-1000,10000,-100000,…
⑧0,0,0,0,0,0,0,…
由學生發(fā)表意見(可能按項與項之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學生看不出③的情況也無妨,得出定義后再考察③是否為等比數(shù)列).
二、講解新課
請學生說出數(shù)列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題.假設(shè)每經(jīng)過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設(shè)開始有一個變形蟲,經(jīng)過一個單位時間它分裂為兩個變形蟲,經(jīng)過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數(shù)得到了一列數(shù)
這個數(shù)列也具有前面的幾個數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列. (這里播放變形蟲分裂的多媒體軟件的第一步)
等比數(shù)列(板書)
1.等比數(shù)列的定義(板書)
根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義.學生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學生概括出來的.教師寫出等比數(shù)列的定義,標注出重點詞語.
請學生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是等比數(shù)列.學生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學生再舉兩例.而后請學生概括這類數(shù)列的一般形式,學生可能說形如的數(shù)列都滿足既是等差又是等比數(shù)列,讓學生討論后得出結(jié)論:當時,數(shù)列既是等差又是等比數(shù)列,當時,它只是等差數(shù)列,而不是等比數(shù)列.教師追問理由,引出對等比數(shù)列的認識:
2.對定義的認識(板書)
(1)等比數(shù)列的首項不為0;
(2)等比數(shù)列的每一項都不為0,即
問題:一個數(shù)列各項均不為0是這個數(shù)列為等比數(shù)列的什么條件?
(3)公比不為0.
用數(shù)學式子表示等比數(shù)列的定義.
是等比數(shù)列
①.在這個式子的寫法上可能會有一些爭議,如寫成
,可讓學生研究行不行,好不好;接下來再問,能否改寫為
是等比數(shù)列?為什么不能? 式子給出了數(shù)列第項與第
項的數(shù)量關(guān)系,但能否確定一個等比數(shù)列?(不能)確定一個等比數(shù)列需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式.
3.等比數(shù)列的通項公式(板書)
問題:用和表示第項
①不完全歸納法
②疊乘法
,…,,這個式子相乘得,所以
(板書)(1)等比數(shù)列的通項公式
得出通項公式后,讓學生思考如何認識通項公式.
(板書)(2)對公式的認識
由學生來說,最后歸結(jié):
①函數(shù)觀點;
②方程思想(因在等差數(shù)列中已有認識,此處再復(fù)習鞏固而已).
這里強調(diào)方程思想解決問題.方程中有四個量,知三求一,這是公式最簡單的應(yīng)用,請學生舉例(應(yīng)能編出四類問題).解題格式是什么?(不僅要會解題,還要注意規(guī)范表述的訓練)
如果增加一個條件,就多知道了一個量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學可以試著編幾道題。
三、小結(jié)
1.本節(jié)課研究了等比數(shù)列的概念,得到了通項公式;
2.注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;
3.用方程的思想認識通項公式,并加以應(yīng)用。
探究活動
將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米。
參考答案:
30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙再薄一些,比如紙厚0.001毫米,對折34次就超過珠穆朗瑪峰的高度了.還記得國王的承諾嗎?第31個格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應(yīng)是 粒,用計算器算一下吧(對數(shù)算也行)。
高中數(shù)學必修一教案篇3
《充分條件與必要條件》
教學準備
教學目標
運用充分條件、必要條件和充要條件
教學重難點
運用充分條件、必要條件和充要條件
教學過程
一、基礎(chǔ)知識
(一)充分條件、必要條件和充要條件
1.充分條件:如果A成立那么B成立,則條件A是B成立的充分條件。
2.必要條件:如果A成立那么B成立,這時B是A的必然結(jié)果,則條件B是A成立的必要條件。
3.充要條件:如果A既是B成立的充分條件,又是B成立的必要條件,則A是B成立的充要條件;同時B也是A成立的充要條件。
(二)充要條件的判斷
1若成立則A是B成立的充分條件,B是A成立的必要條件。
2.若且BA,則A是B成立的充分且不必要條件,B是A成立必要且非充分條件。
3.若成立則A、B互為充要條件。
證明A是B的充要條件,分兩步:
_
(1)充分性:把A當作已知條件,結(jié)合命題的前提條件推出B;
(2)必要性:把B當作已知條件,結(jié)合命題的前提條件推出A。
二、范例選講
例1.(充分必要條件的判斷)指出下列各組命題中,p是q的什么條件?
(1)在△ABC中,p:A>B q:BC>AC;
(2)對于實數(shù)x、y,p:x+y≠8 q:x≠2或y≠6;
(3)在△ABC中,p:SinA>SinB q:tanA>tanB;
(4)已知x、y∈R,p:(x-1)2+(y-2)2=0 q:(x-1)(y-2)=0
解:(1)p是q的充要條件 (2)p是q的充分不必要條件
(3)p是q的既不充分又不必要條件 (4)p是q的充分不必要條件
練習1(變式1)設(shè)f(x)=x2-4x(x∈R),則f(x)>0的一個必要而不充分條件是( C )
A、x<0 B、x<0或x>4 C、│x-1│>1 D、│x-2│>3
例2.填空題
(3)若A是B的充分條件,B是C的充要條件,D是C的必要條件,則A是D的 條件.
答案:(1)充分條件 (2)充要、必要不充分 (3)A=> B <=> C=> D故填充分。
練習2(變式2)若命題甲是命題乙的充分不必要條件,命題丙是命題乙的必要不充分條件,命題丁是命題丙的充要條件,則命題丁是命題甲的( )
A、充分不必要條件 B、必要不充分條件 C、充要條件 D、既不充分又不必要條件
例4.(證明充要條件)設(shè)x、y∈R,求證:|x+y|=|x|+∣y∣成立的充要條件是xy≥0.
證明:先證必要性:即|x+y|=|x|+∣y∣成立則xy≥0,
由|x+y|=|x|+∣y∣及x、y∈R得(x+y)2=(|x|+∣y∣)2即|xy|=xy,∴ xy≥0;
再證充分性即:xy≥0則|x+y|=|x|+∣y∣
若xy≥0即xy>0或xy=0
下面分類證明
(Ⅰ)若x>0,y>0則|x+y|=x+y=|x|+∣y∣
(Ⅱ)若x<0,y<0則|x+y|=(-x)+(-y)=|x|+∣y∣
(Ⅲ)若xy=0,不妨設(shè)x=0則|x+y|=∣y∣=|x|+∣y∣
綜上所述: |x+y|=|x|+∣y∣
∴|x+y|=|x|+∣y∣成立的充要條件是xy≥0.
例5.已知拋物線y=-x2+mx-1 點A(3,0) B(0,3),求拋物線與線段AB有兩個不同交點的充要條件.
解:線段AB:y=-x+3(0≤x≤3)-----------(1)
拋物線: y=-x2+mx-1---------------(2)
(1)代入(2)得:x2-(1+m)x+4=0--------(3)
拋物線y=-x2+mx-1與線段AB有兩個不同交點,等價于方程(3)在[0,3]上有兩個不同的解.
高中數(shù)學必修一教案篇4
集合的含義與表示
一.教材分析:集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學的一個重要的基礎(chǔ),
一方面,許多重要的數(shù)學分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合
論及其所反映的數(shù)學思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。
二.目標分析:
教學重點.難點
重點:集合的含義與表示方法. 難點:表示法的恰當選擇.
教學目標
l.知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系;
(2)知道常用數(shù)集及其專用記號; (3)了解集合中元素的確定性.互異性.無序性;
(4)會用集合語言表示有關(guān)數(shù)學對象;
2. 過程與方法
(1)讓學生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.
(2)讓學生歸納整理本節(jié)所學知識.
3. 情感.態(tài)度與價值觀
使學生感受到學習集合的必要性,增強學習的積極性.
三. 教法分析
1. 教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節(jié)課的教學目標.2. 教學手段:在教學中使用投影儀來輔助教學.
四.過程分析
(一)創(chuàng)設(shè)情景,揭示課題
1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現(xiàn)在的班級。
(2)問題:像“家庭”、“學校”、“班級”等,有什么共同特征?
引導(dǎo)學生互相交流. 與此同時,教師對學生的活動給予評價.
2.活動:(1)列舉生活中的集合的例子;(2)分析、概括各實例的共同特征
由此引出這節(jié)要學的內(nèi)容。
設(shè)計意圖:既激發(fā)了學生濃厚的學習興趣,又為新知作好鋪墊
(二)研探新知,建構(gòu)概念
1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個實例:
(1)1—20以內(nèi)的所有質(zhì)數(shù);(2)我國古代的四大發(fā)明;
(3)所有的安理會常任理事國; (4)所有的正方形;
(5)海南省在20__年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
(7)國興中學20__年9月入學的高一學生的全體.
2.教師組織學生分組討論:這7個實例的共同特征是什么?
3.每個小組選出——位同學發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.
4.教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母a,b,c,d?表示.
設(shè)計意圖:通過實例讓學生感受集合的概念,激發(fā)學習的興趣,培養(yǎng)學生樂于求索的精神
(三)質(zhì)疑答辯,發(fā)展思維
1.教師引導(dǎo)學生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導(dǎo),解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等.
2.教師組織引導(dǎo)學生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數(shù);(2)我國的小河流. 讓學生充分發(fā)表自己的建解.
3. 讓學生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.
4.教師提出問題,讓學生思考
b是 (1)如果用A表示高—(3)班全體學生組成的集合,用a表示高一(3)班的一位同學,
高一(4)班的一位同學,那么a,b與集合A分別有什么關(guān)系?由此引導(dǎo)學生得出元素與集合的關(guān)系有兩種:屬于和不屬于.
如果a是集合A的元素,就說a屬于集合A,記作a?A.
如果a不是集合A的元素,就說a不屬于集合A,記作a?A.
(2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合A的關(guān)系分別是什么?請用數(shù)學符號分別表示.
(3)讓學生完成教材第6頁練習第1題.
5.教師引導(dǎo)學生回憶數(shù)集擴充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號.并讓學生完成習題1.1A組第1題.
6.教師引導(dǎo)學生閱讀教材中的相關(guān)內(nèi)容,并思考.討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
(3)如何根據(jù)問題選擇適當?shù)募媳硎痉?
使學生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。
設(shè)計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學習:
(1)用自然語言描述集合{1,3,5,7,9}; (2)用例舉法表示集合A?{x?N|1?x?8}
(3)試選擇適當?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習第2題.
設(shè)計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象
(五)歸納小結(jié),布置作業(yè)
小結(jié):在師生互動中,讓學生了解或體會下例問題:
1.本節(jié)課我們學習了哪些知識內(nèi)容? 2.你認為學習集合有什么意義?
3.選擇集合的表示法時應(yīng)注意些什么?
設(shè)計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè): 1.課后書面作業(yè):第13頁習題1.1A組第4題.
2. 元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種
呢?如何表示?請同學們通過預(yù)習教材.
五.板書分析
高中數(shù)學必修一教案篇5
概率統(tǒng)計
一、 知識梳理
1.三種抽樣方法的聯(lián)系與區(qū)別:
類別 共同點 不同點 相互聯(lián)系 適用范圍
簡單隨機抽樣 都是等概率抽樣 從總體中逐個抽取 總體中個體比較少
系統(tǒng)抽樣 將總體均勻分成若干部分;按事先確定的規(guī)則在各部分抽取 在起始部分采用簡單隨機抽樣 總體中個體比較多
分層抽樣 將總體分成若干層,按個體個數(shù)的比例抽取 在各層抽樣時采用簡單隨機抽樣或系統(tǒng)抽樣 總體中個體有明顯差異
(1)從含有N個個體的總體中抽取n個個體的樣本,每個個體被抽到的概率為
(2)系統(tǒng)抽樣的步驟: ①將總體中的個體隨機編號;②將編號分段;③在第1段中用簡單隨機抽樣確定起始的個體編號;④按照事先研究的規(guī)則抽取樣本.
(3)分層抽樣的步驟:①分層;②按比例確定每層抽取個體的個數(shù);③各層抽樣;④匯合成樣本.
(4) 要懂得從圖表中提取有用信息
如:在頻率分布直方圖中①小矩形的面積=組距 =頻率②眾數(shù)是矩形的中點的橫坐標③中位數(shù)的左邊與右邊的直方圖的面積相等,可以由此估計中位數(shù)的值
2.方差和標準差都是刻畫數(shù)據(jù)波動大小的數(shù)字特征,一般地,設(shè)一組樣本數(shù)據(jù) , ,…, ,其平均數(shù)為 則方差 ,標準差
3.古典概型的概率公式:如果一次試驗中可能出現(xiàn)的結(jié)果有 個,而且所有結(jié)果都是等可能的,如果事件 包含 個結(jié)果,那么事件 的概率P=
特別提醒:古典概型的兩個共同特點:
○1 ,即試中有可能出現(xiàn)的基本事件只有有限個,即樣本空間Ω中的元素個數(shù)是有限的;
○2 ,即每個基本事件出現(xiàn)的可能性相等。
4. 幾何概型的概率公式: P(A)=
特別提醒:幾何概型的特點:試驗的結(jié)果是無限不可數(shù)的;○2每個結(jié)果出現(xiàn)的可能性相等。
二、夯實基礎(chǔ)
(1)某單位有職工160名,其中業(yè)務(wù)人員120名,管理人員16名,后勤人員24名.為了解職工的某種情況,要從中抽取一個容量為20的樣本.若用分層抽樣的方法,抽取的業(yè)務(wù)人員、管理人員、后勤人員的人數(shù)應(yīng)分別為____________.
(2)某賽季,甲、乙兩名籃球運動員都參加了
11場比賽,他們所有比賽得分的情況用如圖2所示的莖葉圖表示,
則甲、乙兩名運動員得分的中位數(shù)分別為( )
A.19、13 B.13、19 C.20、18 D.18、20
(3)統(tǒng)計某校1000名學生的數(shù)學會考成績,
得到樣本頻率分布直方圖如右圖示,規(guī)定不低于60分為
及格,不低于80分為優(yōu)秀,則及格人數(shù)是 ;
優(yōu)秀率為 。
(4)在一次歌手大獎賽上,七位評委為歌手打出的分數(shù)如下:
9.4 8.4 9.4 9.9 9.6 9.4 9.7
去掉一個分和一個最低分后,所剩數(shù)據(jù)的平均值
和方差分別為( )
A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016
(5)將一顆骰子先后拋擲2次,觀察向上的點數(shù),則以第一次向上點數(shù)為橫坐標x,第二次向上的點數(shù)為縱坐標y的點(x,y)在圓x2+y2=27的內(nèi)部的概率________.
(6)在長為12cm的線段AB上任取一點M,并且以線段AM為邊的正方形,則這正方形的面積介于36cm2與81cm2之間的概率為( )
三、高考鏈接
07、某班50名學生在一次百米測試中,成績?nèi)拷橛?3秒與19秒之間,將測試結(jié)果按如下方式分成六組:第一組,成績大于等于13秒且小于14秒;第二組,成績大于等于14秒且小于15秒
; 第六組,成績大于等于18秒且小于等于19秒.右圖
是按上述分組方法得到的頻率分布直方圖.設(shè)成績小于17秒
的學生人數(shù)占全班總?cè)藬?shù)的百分比為 ,成績大于等于15秒
且小于17秒的學生人數(shù)為 ,則從頻率分布直方圖中可分析
出 和 分別為( )
08、從某項綜合能力測試中抽取100人的成績,統(tǒng)計如表,則這100人成績的標準差為( )
分數(shù) 5 4 3 2 1
人數(shù) 20 10 30 30 10
09、在區(qū)間 上隨機取一個數(shù)x, 的值介于0到 之間的概率為( ).
08、現(xiàn)有8名奧運會志愿者,其中志愿者 通曉日語, 通曉俄語, 通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.
(Ⅰ)求 被選中的概率;(Ⅱ)求 和 不全被選中的概率.
高中數(shù)學必修一教案篇6
組合
教學目標
(1)使學生正確理解組合的意義,正確區(qū)分排列、組合問題;
(2)使學生掌握組合數(shù)的計算公式、組合數(shù)的性質(zhì)用組合數(shù)與排列數(shù)之間的關(guān)系;
(3)通過學習組合知識,讓學生掌握類比的學習方法,并提高學生分析問題和解決問題的能力;
(4)通過對排列、組合問題求解與剖析,培養(yǎng)學生學習興趣和思維深刻性,學生具有嚴謹?shù)膶W習態(tài)度。
教學建議
一、知識結(jié)構(gòu)
二、重點難點分析
本小節(jié)的重點是組合的定義、組合數(shù)及組合數(shù)的公式,組合數(shù)的性質(zhì)。難點是解組合的應(yīng)用題。突破重點、難點的關(guān)鍵是對加法原理與乘法原理的掌握和應(yīng)用,并將這兩個原理的基本思想貫穿在解決組合應(yīng)用題當中。
組合與組合數(shù),也有上面類似的關(guān)系。從n個不同元素中任取m(m≤n)個元素并成一組,叫做從n個不同元素中任取m個元素的一個組合。所有這些不同的組合的個數(shù)叫做組合數(shù)。從集合的角度看,從n個元素的有限集中取出m個組成的一個集合(無序集),相當于一個組合,而這種集合的個數(shù),就是相應(yīng)的組合數(shù)。
解排列組合應(yīng)用題時主要應(yīng)抓住是排列問題還是組合問題,其次要搞清需要分類,還是需要分步.切記:排組分清(有序排列、無序組合),加乘明確(分類為加、分步為乘).
三、教法設(shè)計
1.對于基礎(chǔ)較好的學生,建議把排列與組合的概念進行對比的進行學習,這樣有利于搞請這兩組概念的區(qū)別與聯(lián)系.
2.學生與老師可以合編一些排列組合問題,如“45人中選出5人當班干部有多少種選法?”與“45人中選出5人分別擔任班長、副班長、體委、學委、生委有多少種選法?”這是兩個相近問題,同學們會根據(jù)自己身邊的實際可以編出各種各樣的具有特色的問題,教師要引導(dǎo)學生辨認哪個是排列問題,哪個是組合問題.這樣既調(diào)動了學生學習的積極性,又在編題辨題中澄清了概念.
為了理解排列與組合的概念,建議大家學會畫排列與組合的樹圖.如,從a,b,c,d 4個元素中取出3個元素的排列樹圖與組合樹圖分別為:
排列樹圖
由排列樹圖得到,從a,b,c,d 取出3個元素的所有排列有24個,它們分別是:abc,abd,acb.abd,adc,adb,bac,bad,bca,bcd,bda,bdc.……dca,dcb.
組合樹圖
由組合樹圖可得,從a,b,c,d中取出3個元素的組合有4個,它們是(abc),(abd),(acd),(bcd).
從以上兩組樹圖清楚的告訴我們,排列樹圖是對稱的,組合圖式不是對稱的,之所以排列樹圖具有對稱性,是因為對于a,b,c,d四個字母哪一個都有在第一位的機會,哪一個都有在第二位的機會,哪一個都有在第三位的機會,而組合只考慮字母不考慮順序,為實現(xiàn)無順序的要求,我們可以限定a,b,c,d的順序是從前至后,固定了死順序等于無順序,這樣組合就有了自己的樹圖.
學會畫組合樹圖,不僅有利于理解排列與組合的概念,還有助于推導(dǎo)組合數(shù)的計算公式.
3.排列組合的應(yīng)用問題,教師應(yīng)從簡單問題問題入手,逐步到有一個附加條件的單純排列問題或組合問題,最后在設(shè)及排列與組合的綜合問題.
對于每一道題目,教師必須先讓學生獨立思考,在進行全班討論,對于學生的每一種解法,教師要先讓學生判斷正誤,在給予點播.對于排列、組合應(yīng)用問題的解決我們提倡一題多解,這樣有利于培養(yǎng)學生的分析問題解決問題的能力,在學生的多種解法基礎(chǔ)上教師要引導(dǎo)學生選擇方案,總結(jié)解題規(guī)律.對于學生解題中的常見錯誤,教師一定要講明道理,認真分析錯誤原因,使學生在是非的判斷得以提高.
4.兩個性質(zhì)定理教學時,對定理1,可以用下例來說明:從4個不同的元素a,b,c,d里每次取出3個元素的組合及每次取出1個元素的組合分別是
這就說明從4個不同的元素里每次取出3個元素的組合與從4個元素里每次取出1個元素的組合是—一對應(yīng)的.
對定理2,可啟發(fā)學生從下面問題的討論得出.從n個不同元素 , ,…, 里每次取出m個不同的元素( ),問:(1)可以組成多少個組合;(2)在這些組合里,有多少個是不含有 的; (3)在這些組合里,有多少個是含有 的;(4)從上面的結(jié)果,可以得出一個怎樣的公式.在此基礎(chǔ)上引出定理2.
對于 ,和 一樣,是一種規(guī)定.而學生常常誤以為是推算出來的,因此,教學時要講清楚.
教學設(shè)計示例
教學目標
(1)使學生正確理解組合的意義,正確區(qū)分排列、組合問題;
(2)使學生掌握組合數(shù)的計算公式;
(3)通過學習組合知識,讓學生掌握類比的學習方法,并提高學生分析問題和解決問題的能力;
教學重點難點
重點是組合的定義、組合數(shù)及組合數(shù)的公式;
難點是解組合的應(yīng)用題.
教學過程設(shè)計
(-)導(dǎo)入新課
(教師活動)提出下列思考問題,打出字幕.
[字幕]一條鐵路線上有6個火車站,(1)需準備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?
(學生活動)討論并回答.
答案提示:(1)排列;(2)組合.
[評述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.
設(shè)計意圖:組合與排列所研究的問題幾乎是平行的.上面設(shè)計的問題目的是從排列知識中發(fā)現(xiàn)并提出新的問題.
(二)新課講授
[提出問題 創(chuàng)設(shè)情境]
(教師活動)指導(dǎo)學生帶著問題閱讀課文.
[字幕]1.排列的定義是什么?
2.舉例說明一個組合是什么?
3.一個組合與一個排列有何區(qū)別?
(學生活動)閱讀回答.
(教師活動)對照課文,逐一評析.
設(shè)計意圖:激活學生的思維,使其將所學的知識遷移過渡,并盡快適應(yīng)新的環(huán)境.
【歸納概括 建立新知】
(教師活動)承接上述問題的回答,展示下面知識.
[字幕]模型:從 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合.
組合數(shù):從 個不同元素中取出 個元素的所有組合的個數(shù),稱之,用符號 表示,如從6個元素中取出2個元素的組合數(shù)為 .
[評述]區(qū)分一個排列與一個組合的關(guān)鍵是:該問題是否與順序有關(guān),當取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.
(學生活動)傾聽、思索、記錄.
(教師活動)提出思考問題.
[投影] 與 的關(guān)系如何?
(師生活動)共同探討.求從 個不同元素中取出 個元素的排列數(shù) ,可分為以下兩步:
第1步,先求出從這 個不同元素中取出 個元素的組合數(shù)為 ;
第2步,求每一個組合中 個元素的全排列數(shù)為 .
根據(jù)分步計數(shù)原理,得到
[字幕]公式1:
公式2:
(學生活動)驗算 ,即一條鐵路上6個火車站有15種不同的票價的普通客車票.
設(shè)計意圖:本著以認識概念為起點,以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識的形成過程,使學生思維層層被激活、逐漸深入到問題當中去.
【例題示范 探求方法】
(教師活動)打出字幕,給出示范,指導(dǎo)訓練.
[字幕]例1 列舉從4個元素 中任取2個元素的所有組合.
例2 計算:(1) ;(2) .
(學生活動)板演、示范.
(教師活動)講評并指出用兩種方法計算例2的第2小題.
[字幕]例3 已知 ,求 的所有值.
(學生活動)思考分析.
解 首先,根據(jù)組合的定義,有
①
其次,由原不等式轉(zhuǎn)化為
即
解得 ②
綜合①、②,得 ,即
[點評]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.
設(shè)計意圖:例題教學循序漸進,讓學生鞏固知識,強化公式的應(yīng)用,從而培養(yǎng)學生的綜合分析能力.
【反饋練習 學會應(yīng)用】
(教師活動)給出練習,學生解答,教師點評.
[課堂練習]課本P99練習第2,5,6題.
[補充練習]
[字幕]1.計算:
2.已知 ,求 .
(學生活動)板演、解答.
設(shè)計意圖:課堂教學體現(xiàn)以學生為本,讓全體學生參與訓練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.
【點評矯正 交流提高】
(教師活動)依照學生的板演,給予指正并總結(jié).
補充練習答案:
1.解:原式:
2.解:由題設(shè)得
整理化簡得 ,
解之,得 或 (因 ,舍去),
所以 ,所求
[字幕]小結(jié):
1.前一個公式主要用于計算具體的組合數(shù),而后一個公式則主要用于對含有字母的式子進行化簡和論證.
2.在解含組合數(shù)的方程或不等式時,一定要注意組合數(shù)的上、下標的限制條件.
(學生活動)交流討論,總結(jié)記錄.
設(shè)計意圖:由“實踐——認識——一實踐”的認識論,教學時抓住“學習—一練習——反饋———小結(jié)”這些環(huán)節(jié),使教學目標得以強化和落實.
(三)小結(jié)
(師生活動)共同小結(jié).
本節(jié)主要內(nèi)容有
1.組合概念.
2.組合數(shù)計算的兩個公式.
(四)布置作業(yè)
1.課本作業(yè):習題10 3第1(1)、(4),3題.
2.思考題:某學習小組有8個同學,從男生中選2人,女生中選1人參加數(shù)學、物理、化學三種學科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學各有多少人?
3.研究性題:
在 的 邊上除頂點 外有 5個點,在 邊上有 4個點,由這些點(包括 )能組成多少個四邊形?能組成多少個三角形?
(五)課后點評
在學習了排列知識的基礎(chǔ)上,本節(jié)課引進了組合概念,并推導(dǎo)出組合數(shù)公式,同時調(diào)控進行訓練,從而培養(yǎng)學生分析問題、解決問題的能力.
作業(yè)參考答案
2.解;設(shè)有男同學 人,則有女同學 人,依題意有 ,由此解得 或 或2.即男同學有5人或6人,女同學相應(yīng)為3人或2人.
3.能組成 (注意不能用 點為頂點)個四邊形, 個三角形.
探究活動
同室四人各寫一張賀年卡,先集中起來,然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬式可有多少種?
解 設(shè)四人分別為甲、乙、丙、丁,可從多種角度來解.
解法一 可將拿賀卡的情況,按甲分別拿乙、丙、丁制作的賀卡的情形分為三類,即:
甲拿乙制作的賀卡時,則賀卡有3種分配方法.
甲拿丙制作的賀卡時,則賀卡有3種分配方法.
甲拿丁制作的賀卡時,則賀卡有3種分配方法.
由加法原理得,賀卡分配方法有3+3+3=9種.
解法二 可從利用排列數(shù)和組合數(shù)公式角度來考慮.這時還存在正向與逆向兩種思考途徑.
正向思考,即從滿足題設(shè)條件出發(fā),分步完成分配.先可由甲從乙、丙、丁制作的賀卡中選取1張,有 種取法,剩下的乙、丙、丁中所制作賀卡被甲取走后可在剩下的3張賀卡中選取1張,也有 種,最后剩下2人可選取的賀卡即是這2人所制作的賀卡,其取法只有互取對方制作賀卡1種取法.根據(jù)乘法原理,賀卡的分配方法有 (種).
逆向思考,即從4人取4張不同賀卡的所有取法中排除不滿足題設(shè)條件的取法.不滿足題設(shè)條件的取法為,其中只有1人取自己制作的賀卡,其中有2人取自己制作的賀卡,其中有3人取自己制作的賀卡(此時即為4人均拿自己制作的賀卡).其取法分別為 1.故符合題設(shè)要求的取法共有 (種).
說明(1)對一類元素不太多而利用排列或組合計算公式計算比較復(fù)雜,且容易重復(fù)遺漏計算的排列組合問題,常可采用直接分類后用加法原理進行計算,如本例采用解法一的做法.
(2)設(shè)集合 ,如果S中元素的一個排列 滿足 ,則稱該排列為S的一個錯位排列.本例就屬錯位排列問題.如將S的所有錯位排列數(shù)記為 ,則 有如下三個計算公式(李宇襄編著《組合數(shù)學》,北京師范大學出版社出版):
①
②
③
高中數(shù)學必修一教案篇7
教學目標
1.掌握等差數(shù)列前 項和的公式,并能運用公式解決簡單的問題.
(1)了解等差數(shù)列前 項和的定義,了解逆項相加的原理,理解等差數(shù)列前 項和公式推導(dǎo)的過程,記憶公式的兩種形式;
(2)用方程思想認識等差數(shù)列前 項和的公式,利用公式求 ;等差數(shù)列通項公式與前 項和的公式兩套公式涉及五個字母,已知其中三個量求另兩個值;
(3)會利用等差數(shù)列通項公式與前 項和的公式研究 的最值.
2.通過公式的推導(dǎo)和公式的運用,使學生體會從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認識問題,解決問題的一般思路和方法.
3.通過公式推導(dǎo)的過程教學,對學生進行思維靈活性與廣闊性的訓練,發(fā)展學生的思維水平.
4.通過公式的推導(dǎo)過程,展現(xiàn)數(shù)學中的對稱美;通過有關(guān)內(nèi)容在實際生活中的應(yīng)用,使學生再一次感受數(shù)學源于生活,又服務(wù)于生活的實用性,引導(dǎo)學生要善于觀察生活,從生活中發(fā)現(xiàn)問題,并數(shù)學地解決問題.
教學建議
(1)知識結(jié)構(gòu)
本節(jié)內(nèi)容是等差數(shù)列前 項和公式的推導(dǎo)和應(yīng)用,首先通過具體的例子給出了求等差數(shù)列前 項和的思路,而后導(dǎo)出了一般的公式,并加以應(yīng)用;再與等差數(shù)列通項公式組成方程組,共同運用,解決有關(guān)問題.
(2)重點、難點分析
教學重點是等差數(shù)列前 項和公式的推導(dǎo)和應(yīng)用,難點是公式推導(dǎo)的思路.
推導(dǎo)過程的展示體現(xiàn)了人類解決問題的一般思路,即從特殊問題的解決中提煉一般方法,再試圖運用這一方法解決一般情況,所以推導(dǎo)公式的過程中所蘊含的思想方法比公式本身更為重要.等差數(shù)列前 項和公式有兩種形式,應(yīng)根據(jù)條件選擇適當?shù)男问竭M行計算;另外反用公式、變用公式、前 項和公式與通項公式的綜合運用體現(xiàn)了方程(組)思想.
高斯算法表現(xiàn)了大數(shù)學家的智慧和巧思,對一般學生來說有很大難度,但大多數(shù)學生都聽說過這個故事,所以難點在于一般等差數(shù)列求和的思路上.
(3)教法建議
①本節(jié)內(nèi)容分為兩課時,一節(jié)為公式推導(dǎo)及簡單應(yīng)用,一節(jié)側(cè)重于通項公式與前 項和公式綜合運用.
②前 項和公式的推導(dǎo),建議由具體問題引入,使學生體會問題源于生活.
③強調(diào)從特殊到一般,再從一般到特殊的思考方法與研究方法.
④補充等差數(shù)列前 項和的值、最小值問題.
⑤用梯形面積公式記憶等差數(shù)列前 項和公式.
等差數(shù)列的前項和公式教學設(shè)計示例
教學目標
1.通過教學使學生理解等差數(shù)列的前 項和公式的推導(dǎo)過程,并能用公式解決簡單的問題.
2.通過公式推導(dǎo)的教學使學生進一步體會從特殊到一般,再從一般到特殊的思想方法,通過公式的運用體會方程的思想.
教學重點,難點
教學重點是等差數(shù)列的前 項和公式的推導(dǎo)和應(yīng)用,難點是獲得推導(dǎo)公式的思路.
教學用具
實物投影儀,多媒體軟件,電腦.
教學方法
講授法.
教學過程
一.新課引入
提出問題(播放媒體資料):一個堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支.這個V形架上共放著多少支鉛筆?(課件設(shè)計見課件展示)
問題就是(板書)“ ”
這是小學時就知道的一個故事,高斯的算法非常高明,回憶他是怎樣算的.(由一名學生回答,再由學生討論其高明之處)高斯算法的高明之處在于他發(fā)現(xiàn)這100個數(shù)可以分為50組,第一個數(shù)與最后一個數(shù)一組,第二個數(shù)與倒數(shù)第二個數(shù)一組,第三個數(shù)與倒數(shù)第三個數(shù)一組,…,每組數(shù)的和均相等,都等于101,50個101就等于5050了.高斯算法將加法問題轉(zhuǎn)化為乘法運算,迅速準確得到了結(jié)果.
我們希望求一般的等差數(shù)列的和,高斯算法對我們有何啟發(fā)?
二.講解新課
(板書)等差數(shù)列前 項和公式
1.公式推導(dǎo)(板書)
問題(幻燈片):設(shè)等差數(shù)列 的首項為 ,公差為 , 由學生討論,研究高斯算法對一般等差數(shù)列求和的指導(dǎo)意義.
思路一:運用基本量思想,將各項用 和 表示,得
,有以下等式
,問題是一共有多少個 ,似乎與 的奇偶有關(guān).這個思路似乎進行不下去了.
思路二:
上面的等式其實就是 ,為回避個數(shù)問題,做一個改寫 , ,兩式左右分別相加,得
,
于是有: .這就是倒序相加法.
思路三:受思路二的啟發(fā),重新調(diào)整思路一,可得 ,于是 .
于是得到了兩個公式(投影片): 和 .
2.公式記憶
用梯形面積公式記憶等差數(shù)列前 項和公式,這里對圖形進行了割、補兩種處理,對應(yīng)著等差數(shù)列前 項和的兩個公式.
3.公式的應(yīng)用
公式中含有四個量,運用方程的思想,知三求一.
例1.求和:(1) ;
(2) (結(jié)果用 表示)
解題的關(guān)鍵是數(shù)清項數(shù),小結(jié)數(shù)項數(shù)的方法.
例2.等差數(shù)列 中前多少項的和是9900?
本題實質(zhì)是反用公式,解一個關(guān)于 的一元二次函數(shù),注意得到的項數(shù) 必須是正整數(shù).
三.小結(jié)
1.推導(dǎo)等差數(shù)列前 項和公式的思路;
2.公式的應(yīng)用中的數(shù)學思想.
四.板書設(shè)計