關于八年級數學教案
關于八年級數學教案篇1
教學目標:
1、理解運用平方差公式分解因式的方法。
2、掌握提公因式法和平方差公式分解因式的綜合運用。
3、進一步培養學生綜合、分析數學問題的能力。
教學重點:
運用平方差公式分解因式。
教學難點:
高次指數的轉化,提公因式法,平方差公式的靈活運用。
教學案例:
我們數學組的觀課議課主題:
1、關注學生的合作交流
2、如何使學困生能積極參與課堂交流。
在精心備課過程中,我設計了這樣的自學提示:
1、整式乘法中的平方差公式是___,如何用語言描述?把上述公式反過來就得到_____,如何用語言描述?
2、下列多項式能用平方差公式分解因式嗎?若能,請寫出分解過程,若不能,說出為什么?
①-x2+y2②-x2-y2③4-9x2
④(x+y)2-(x-y)2⑤a4-b4
3、試總結運用平方差公式因式分解的條件是什么?
4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?
5、試總結因式分解的步驟是什么?
師巡回指導,生自主探究后交流合作。
生交流熱情很高,但把全部問題分析完已用了30分鐘。
生展示自學成果。
生1:-x2+y2能用平方差公式分解,可分解為(y+x)(y-x)
生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)
師:這兩種方法都可以,但第二種方法提出負號后,一定要注意括號里的各項要變號。
生3:4-9x2也能用平方差公式分解,可分解為(2+9x)(2-9x)
生4:不對,應分解為(2+3x)(2-3x),要運用平方差公式必須化為兩個數或整式的平方差的形式。
生5:a4-b4可分解為(a2+b2)(a2-b2)
生6:不對,a2-b2還能繼續分解為a+b)(a-b)
師:大家爭論的很好,運用平方差公式分解因式,必須化為兩個數或兩個整式的平方的差的形式,另因式分解必須分解到不能再分解為止。……
反思:這節課我備課比較認真,自學提示的設計也動了一番腦筋,為讓學生順利得出運用平方差公式因式分解的'條件,我設計了問題2,為讓學生能更容易總結因式分解的步驟,我又設計了問題4,自認為,本節課一定會上的非常成功,學生的交流、合作,自學展示一定會很精彩,結果卻出乎我的意料,本節課沒有按計劃完成教學任務,學生練習很少,作業有很大一部分同學不能獨立完成,反思這節課主要有以下幾個問題:
(1)我在備課時,過高估計了學生的能力,問題2中的③、④、⑤多數學生剛預習后不能熟練解答,導致在小組交流時,多數學生都在交流這幾題該怎樣分解,耽誤了寶貴的時間,也分散了學生的注意力,導致難點、重點不突出,若能把問題2改為:
下列多項式能用平方差公式因式分解嗎?為什么?可能效果會更好。
(2)教師備課時,要考慮學生的知識層次,能力水平,真正把學生放在第一位,要考慮學生的接受能力,安排習題要循序漸進,切莫過于心急,過分追求課堂容量、習題類型全等等,例如在問題2的設計時可寫一些簡單的,像④、⑤可到練習時再出現,發現問題后再強調、歸納,效果也可能會更好。
我及時調整了自學提示的內容,在另一個班也上了這節課。果然,學生的討論有了重點,很快(大約10分鐘)便合作得出了結論,課堂氣氛非常活躍,練習量大,準確率高,但隨之我又發現我在處理課后練習時有點不能應對自如。例如:師:下面我們把課后練習做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來:“我們再做幾題試試。”生又開始緊張地練習……下課后,無意間發現竟還有好幾個同學課后題沒做。原因是預習時不會,上課又沒時間,還有幾位同學練習題竟然有誤,也沒改正,原因是上課慌著展示自己,沒顧上改……。看來,以后上課不能單聽學生的齊答,要發揮組長的職責,注重過關落實。給學生一點機動時間,讓學習有困難的學生有機會釋疑,練習不在于多,要注意融會貫通,會舉一反三。
確實,“學海無涯,教海無邊”。我們備課再認真,預設再周全,面對不同的學生,不同的學情,仍然會產生新的問題,“沒有,只有更好!”我會一直探索、努力,不斷完善教學設計,更新教育觀念,直到永遠……
關于八年級數學教案篇2
一.教學目標:
1.了解方差的定義和計算公式。
2.理解方差概念的產生和形成的過程。
3.會用方差計算公式來比較兩組數據的波動大小。
二.重點、難點和難點的突破方法:
1.重點:方差產生的必要性和應用方差公式解決實際問題。
2.難點:理解方差公式
3.難點的突破方法:
方差公式:S=[(-)+(-)+…+(-)]比較復雜,學生理解和記憶這個公式都會有一定困難,以致應用時常常出現計算的錯誤,為突破這一難點,我安排了幾個環節,將難點化解。
(1)首先應使學生知道為什么要學習方差和方差公式,目的不明確學生很難對本節課內容產生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運動員、選擇質量穩定的電器等。學生從中可以體會到生活中為了更好的做出選擇判斷經常要去了解一組數據的波動程度,僅僅知道平均數是不夠的。
(2)波動性可以通過什么方式表現出來?第一環節中點明了為什么去了解數據的波動性,第二環節則主要使學生知道描述數據,波動性的方法。可以畫折線圖方法來反映這種波動大小,可是當波動大小區別不大時,僅用畫折線圖方法去描述恐怕不會準確,這自然希望可以出現一種數量來描述數據波動大小,這就引出方差產生的必要性。
(3)第三環節教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數之間差異,那么用每個數據與平均值的差完全平方后便可以反映出每個數據的波動大小,整體的波動大小可以通過對每個數據的波動大小求平均值得到。所以方差公式是能夠反映一組數據的波動大小的一個統計量,教師也可以根據學生程度和課堂時間決定是否介紹平均差等可以反映數據波動大小的其他統計量。
三.例習題的意圖分析:
1.教材P125的討論問題的意圖:
(1).創設問題情境,引起學生的學習興趣和好奇心。
(2).為引入方差概念和方差計算公式作鋪墊。
(3).介紹了一種比較直觀的衡量數據波動大小的方法——畫折線法。
(4).客觀上反映了在解決某些實際問題時,求平均數或求極差等方法的局限性,使學生體會到學習方差的意義和目的。
2.教材P154例1的設計意圖:
(1).例1放在方差計算公式和利用方差衡量數據波動大小的規律之后,不言而喻其主要目的是及時復習,鞏固對方差公式的掌握。
(2).例1的解題步驟也為學生做了一個示范,學生以后可以模仿例1的格式解決其他類似的實際問題。
四.課堂引入:
除采用教材中的引例外,可以選擇一些更時代氣息、更有現實意義的引例。例如,通過學生觀看20__年奧運會劉翔勇奪110米欄冠軍的錄像,進而引導教練員根據平時比賽成績選擇參賽隊員這樣的實際問題上,這樣引入自然而又真實,學生也更感興趣一些。
五.例題的分析:
教材___例_在分析過程中應抓住以下幾點:
1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數據的什么?學生通過思考可以回答出整齊即波動小,所以要研究兩組數據波動大小,這一環節是明確題意。
2.在求方差之前先要求哪個統計量,為什么?學生也可以得出先求平均數,因為公式中需要平均值,這個問題可以使學生明確利用方差計算步驟。
3.方差怎樣去體現波動大小?
這一問題的提出主要復習鞏固方差,反映數據波動大小的規律。
六.隨堂練習:
1.從甲、乙兩種農作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
問:(1)哪種農作物的苗長的比較高?
(2)哪種農作物的苗長得比較整齊?
2.段巍和金志強兩人參加體育項目訓練,近期的5次測試成績如下表所示,誰的成績比較穩定?為什么?
測試次數12345
段巍1314131213
金志強1013161412
參考答案:1.(1)甲、乙兩種農作物的苗平均高度相同;(2)甲整齊
2.__的成績比__的成績要穩定。
七.課后練習:
關于八年級數學教案篇3
教學目標
1.使學生正確理解不等式的解,不等式的解集,解不等式的概念,掌握在數軸上表示不等式的解的集合的方法;
2.培養學生觀察、分析、比較的能力,并初步掌握對比的思想方法;
3.在本節課的教學過程中,滲透數形結合的思想,并使學生初步學會運用數形結合的觀點去分析問題、解決問題.
教學重點和難點
重點:不等式的解集的概念及在數軸上表示不等式的解集的方法.
難點:不等式的解集的概念.
課堂教學過程設計
一、從學生原有的認知結構提出問題
1.什么叫不等式?什么叫方程?什么叫方程的解?(請學生舉例說明)
2.用不等式表示:
(1)x的3倍大于1; (2)y與5的差大于零;
(3)x與3的和小于6; (4)x的小于2.
(3)當x取下列數值時,不等式x+3<6是否成立?
-4,3.5,-2.5,3,0,2.9.
((2)、(3)兩題用投影儀打在屏幕上)
一、講授新課
1.引導學生運用對比的方法,得出不等式的解的概念
2.不等式的解集及解不等式
首先,向學生提出如下問題:
不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,還有沒有其它的解?若有,解的個數是多少?它們的分布是有什么規律?
(啟發學生利用試驗的方法,結合數軸直觀研究.具體作法是,在數軸上將是x+3<6的解的數值-4,-2.5,0,2.9用實心圓點畫出,將不是x+3<6的解的數值3.5,4,3用空心圓圈畫出,好像是“挖去了”一樣.如下圖所示)
然后,啟發學生,通過觀察這些點在數軸上的分布情況,可看出尋求不等式x+3<6的解的關鍵值是“3”,用小于3的任何數替代x,不等式x+3<6均成立;用大于或等于3的任何數替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知數x的值是小于3的所有數,用不等式表示為x<3.把能夠使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的集合.簡稱不等式x+3<6的解集,記作x<3.
最后,請學生總結出不等式的解集及解不等式的概念.(若學生總結有困難,教師可作適當的啟發、補充)
一般地說,一個含有未知數的不等式的所有解,組成這個不等式的解的集合.簡稱為這個不等式的解集.
不等式一般有無限多個解.
求不等式的解集的過程,叫做解不等式.
3.啟發學生如何在數軸上表示不等式的解集
我們知道解不等式不能只求個別解,而應求它的解集,一般而言,不等式的解集不是由一個數或幾個數組成的,而是由無限多個數組成的,如x<3.那么如何在數軸上直觀地表示不等式x+3<6的解集x<3呢?(先讓學生想一想,然后請一名學生到黑板上試著用數軸表示一下,其余同學在下面自行完成,教師巡視,并針對黑板上板演的結果做講解)
在數軸上表示3的點的左邊部分,表示解集x<3.如下圖所示.
由于x=3不是不等式x+3<6的解,所以其中表示3的點用空心圓圈標出來.(表示挖去x=3這個點)
記號“≥”讀作大于或等于,既不小于;記號“≤”讀作小于或等于,即不大于.
例如不等式x+5≥3的解集是x≥-2(想一想,為什么?并請一名學生回答)在數軸上表示如下圖.
即用數軸上表示-2的點和它的右邊部分表示出來.由于解中包含x=-2,故其中表示-2的點用實心圓點表示.
此處,教師應強調,這里特別要注意區別是用空心圓圈“。”還是用實心圓點“.”,是左邊部分,還是右邊部分.
三、應用舉例,變式練習
例1 在數軸上表示下列不等式的解集:
(1)x≤-5; (2)x≥0; (3)x>-1;
(4)1≤X≤4; (5)-2<x≤3; p="" (6)-2≤x<3.
解(1),(2),(3)略.
(4)在數軸上表示1≤x≤4,如下圖
(5)在數軸上表示-2<x≤3,如下圖< p="">
(此題在講解時,教師要著重強調:注意所給題目中的解集是否包含分界點,是左邊部分還是右邊部分.本題應分別讓6名學生板演,其余學生自行完成,教師巡視遇到問題,及時糾正)
例2 用不等式表示下列數量關系,再用數軸表示出來:
(1)x小于-1; (2)x不小于-1;
(3)a是正數; (4)b是非負數.
解:(1)x小于-1表示為x<-1;(用數軸表示略)
(2)x不小于-1表示為x≥-1;(用數軸表示略)
(3)a是正數表示為a>0;(用數軸表示略)
(4)b是非負數表示為b≥0.(用數軸表示略)
(以上各小題分別請四名學生回答,教師板書,最后,請學生在筆記本上畫數軸表示)
例3 用不等式的解集表示出下列各數軸所表示的數的范圍.(投影,請學生口答,教師板演)
解:(1)x<2; (2)x≥-1.5; (3)-2≤x<1.
(本題從另一例面來揭示不等式的解集與數軸上表示數的范圍的一種對應關系,從而進一步加深學生對不等式解集的理解,以使學生進一步領會到數形結合的方法具有形象,直觀,易于說明問題的優點)
練習(1)用簡明語言敘述下列不等式表示什么數:①x>0;②x<0;③x>-1;④x≤-1.
(2)在數軸上表示下列不等式的解集:
①x>3; ②x≥-1; ③x≤-1.5;
④0≤x<5; ⑤-2<x≤2; p="" ⑥-2<x<.
(3)用觀察法求不等式<1的解集,并用不等式和數軸分別表示出來.
(4)觀察不等式<1的解集,并用不等式和數軸分別表示出來,它的正數解是什么?
自然數解是什么?(表示選作題)
四、師生共同小結
針對本節課所學內容,請學生回答以下問題:
1.如何區別不等式的解,不等式的解集及解不等式這幾個概念?
2.找出一元一次方程與不等式在“解”,“求解”等概念上的異同點.
3.記號“≥”、“≤”各表示什么含義?
4.在數軸上表示不等式解集時應注意什么?
結合學生的回答,教師再強調指出,不等式的解、不等式的解集及解不等式這三者的定義是區別它們的標準;在數軸上表示不等式解集時,需特別注意解的范圍的分界點,以便在數軸上正確使用空心圓圈“。”和實心圓點“·”.
五、作業
1.不等式x+3≤6的解集是什么?
2.在數軸上表示下列不等式的解集:
(1)x≤1; (2)x≤0; (3)-1<x≤5;< p="">
(4)-3≤x≤2; (5)-2<x<; p="" (6)-≤x<.
3.求不等式x+2<5的正整數解.
課堂教學設計說明由于本節課的知識點比較多,因此,在設計教學過程時,緊緊抓住不等式的解集這一重點知識.通過對方程的解的電義的回憶,對比學習不等式的解及解集.同時,為了進一步加深學生對不等式的解集的理解,教學中注意運用以下幾種教學方法:(1)啟發學生用試驗的方法,結合數軸直觀形象來研究不等式的解和解集;(2)比較方程與不等式的解的異同點;(3)通過例題與練習,加深理解.
在數軸上表示數是數形結合的具體體現.而在數軸上表示不等式的解集則又進了一步.因此,在設計教學過程時,就充分考慮到應使學生通過本節課的學習,進一步領會數形結合的思想方法具有形象、直觀、易于說明問題的優點,并初步學會用數形結合的觀念去處理問題、解決問題.
關于八年級數學教案篇4
《反比例函數》知識點整理
1、定義:形如y=(k為常數,k≠0)的函數稱為反比例函數。
2、其他形式xy=k(k為常數,k≠0)都是。
3、圖像:反比例函數的圖像屬于雙曲線。
反比例函數的圖象既是軸對稱圖形又是中心對稱圖形。
有兩條對稱軸:直線y=x和y=—x。對稱中心是:原點。
4、性質:當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內y值隨x值的增大而減小。
當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內y值隨x值的增大而增大。
5、k的幾何意義:表示反比例函數圖像上的點向兩坐標軸
所作的垂線段與兩坐標軸圍成的矩形的面積。
勾股定理
1、勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2。
2、勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。那么這個三角形是直角三角形。
3、經過證明被確認正確的命題叫做定理。
我們把題設、結論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)
四邊形
平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
平行四邊形的性質:平行四邊形的對邊相等;
平行四邊形的對角相等。
平行四邊形的對角線互相平分。
平行四邊形的判定
1、兩組對邊分別相等的四邊形是平行四邊形
2、對角線互相平分的四邊形是平行四邊形;
3、兩組對角分別相等的四邊形是平行四邊形;
4、一組對邊平行且相等的四邊形是平行四邊形。
三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。
直角三角形斜邊上的中線等于斜邊的一半。
矩形的定義:有一個角是直角的平行四邊形。
矩形的性質:矩形的四個角都是直角;
矩形的對角線平分且相等。AC=BD
矩形判定定理:
1、有一個角是直角的平行四邊形叫做矩形。
2、對角線相等的平行四邊形是矩形。
3、有三個角是直角的四邊形是矩形。
菱形的定義:鄰邊相等的平行四邊形。
菱形的性質:菱形的四條邊都相等;
菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
菱形的判定定理:
1、一組鄰邊相等的平行四邊形是菱形。
2、對角線互相垂直的平行四邊形是菱形。
3、四條邊相等的四邊形是菱形。
S菱形=1/2×ab(a、b為兩條對角線)
正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
正方形的性質:四條邊都相等,四個角都是直角。正方形既是矩形,又是菱形。
正方形判定定理:1、鄰邊相等的矩形是正方形。2、有一個角是直角的菱形是正方形。
梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
直角梯形的定義:有一個角是直角的梯形
等腰梯形的定義:兩腰相等的梯形。
等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;
等腰梯形的兩條對角線相等。
等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
解梯形問題常用的輔助線:如圖
線段的重心就是線段的中點。平行四邊形的重心是它的兩條對角線的交點。三角形的三條中線交于疑點,這一點就是三角形的重心。寬和長的比是(約為0.618)的矩形叫做黃金矩形。
數據的分析
1、算術平均數:
2、加權平均數:加權平均數的計算公式。
權的理解:反映了某個數據在整個數據中的重要程度。
而是以比的或百分比的形式出現及頻數分布表求加權平均數的方法。
3、將一組數據按照由小到大(或由大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數(median);如果數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數。
4、一組數據中出現次數最多的數據就是這組數據的眾數(mode)。
5、一組數據中的數據與最小數據的差叫做這組數據的極差(range)。
6、方差越大,數據的波動越大;方差越小,數據的波動越小,就越穩定。
7、平均數受極端值的影響眾數不受極端值的影響,這是一個優勢,中位數的計算很少不受極端值的影響。
關于八年級數學教案篇5
一、學習目標:
1、會推導兩數差的平方公式,會用式子表示及用文字語言敘述;
2、會運用兩數差的平方公式進行計算。
二、學習過程:
請同學們快速閱讀課本第27—28頁的內容,并完成下面的練習題:
(一)探索
1、計算:(a-b)=
方法一:方法二:
方法三:
2、兩數差的平方用式子表示為_________________________;
用文字語言敘述為___________________________。
3、兩數差的平方公式結構特征是什么?
(二)現學現用
利用兩數差的平方公式計算:
1、(3-a)2、(2a-1)3、(3y-x)
4、(2x–4y)5、(3a-)
(三)合作攻關
靈活運用兩數差的平方公式計算:
1、(999)2、(a–b–c)
3、(a+1)-(a-1)
(四)達標訓練
1、、選擇:下列各式中,與(a-2b)一定相等的是()
A、a-2ab+4bB、a-4b
C、a+4bD、a-4ab+4b
2、填空:
(1)9x++16y=(4y-3x)
(2)()=m-8m+16
2、計算:
(a-b)(x-2y)
3、有一邊長為a米的正方形空地,現準備將這塊空地四周均留出b米寬修筑圍壩,中間修建噴泉水池,你能計算出噴泉水池的面積嗎?
(四)提升
1、本節課你學到了什么?
2、已知a–b=1,a+b=25,求ab的值
關于八年級數學教案篇6
【教學目標】
1.了解分式概念.
2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學重難點】
重點:理解分式有意義的條件,分式的值為零的條件.
難點:能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學過程】
一、課堂導入
1.讓學生填寫[思考],學生自己依次填出:,,,.
2.問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?
設江水的流速為x千米/時.
輪船順流航行100千米所用的時間為小時,逆流航行60千米所用時間小時,所以=.
3.以上的式子,,,,有什么共同點?它們與分數有什么相同點和不同點?可以發現,這些式子都像分數一樣都是A÷B的形式.分數的分子A與分母B都是整數,而這些式子中的A、B都是整式,并且B中都含有字母.
[思考]引發學生思考分式的分母應滿足什么條件,分式才有意義?由分數的分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個條件,分式才有意義.即當B≠0時,分式才有意義.
二、例題講解
例1:當x為何值時,分式有意義.
【分析】已知分式有意義,就可以知道分式的分母不為零,進一步解出字母x的取值范圍.
(補充)例2:當m為何值時,分式的值為0?
(1);(2);(3).
【分析】分式的值為0時,必須同時滿足兩個條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.
三、隨堂練習
1.判斷下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.當x取何值時,下列分式有意義?
3.當x為何值時,分式的值為0?
四、小結
談談你的收獲.
五、布置作業
課本128~129頁練習.
關于八年級數學教案篇7
《正弦和余弦(二)》
一、素質教育目標
(一)知識教學點
使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系。
(二)能力訓練點
逐步培養學生觀察、比較、分析、綜合、抽象、概括的邏輯思維能力。
(三)德育滲透點
培養學生獨立思考、勇于創新的精神。
二、教學重點、難點
1.重點:使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系并會應用。
2.難點:一個銳角的正弦(余弦)與它的余角的余弦(正弦)之間的關系的應用。
三、教學步驟
(一)明確目標
1.復習提問
(1)什么是∠A的正弦、什么是∠A的余弦,結合圖形請學生回答.因為正弦、余弦的概念是研究本課內容的知識基礎,請中下學生回答,從中可以了解教學班還有多少人不清楚的,可以采取適當的補救措施.
(2)請同學們回憶30°、45°、60°角的正、余弦值(教師板書).
(3)請同學們觀察,從中發現什么特征?學生一定會回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,這三個角的正弦值等于它們余角的余弦值”。
2.導入新課
根據這一特征,學生們可能會猜想“一個銳角的正弦(余弦)值等于它的余角的余弦(正弦)值.”這是否是真命題呢?引出課題。
(二)整體感知
關于銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系,是通過30°、45°、60°角的正弦、余弦值之間的關系引入的,然后加以證明。引入這兩個關系式是為了便于查“正弦和余弦表”,關系式雖然用黑體字并加以文字語言的證明,但不標明是定理,其證明也不要求學生理解,更不應要求學生利用這兩個關系式去推證其他三角恒等式.在本章,這兩個關系式的用處僅僅限于查表和計算,而不是證明。
(三)重點、難點的學習和目標完成過程
1.通過復習特殊角的三角函數值,引導學生觀察,并猜想“任一銳角的正弦(余弦)值等于它的余角的余弦(正弦)值嗎?”提出問題,激發學生的學習熱情,使學生的思維積極活躍。
2.這時少數反應快的學生可能頭腦中已經“畫”出了圖形,并有了思路,但對部分學生來說仍思路凌亂.因此教師應進一步引導:sinA=cos(90°-A),cosA=sin(90°-A)(A是銳角)成立嗎?這時,學生結合正、余弦的概念,完全可以自己解決,教師要給學生足夠的研究解決問題的時間,以培養學生邏輯思維能力及獨立思考、勇于創新的精神。
3.教師板書:
任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。
sinA=cos(90°-A),cosA=sin(90°-A)。
4.在學習了正、余弦概念的基礎上,學生了解以上內容并不困難,但是,由于學生初次接觸三角函數,還不熟練,而定理又涉及余角、余函數,使學生極易混淆.因此,定理的應用對學生來說是難點、在給出定理后,需加以鞏固。
已知∠A和∠B都是銳角,
(1)把cos(90°-A)寫成∠A的正弦。
(2)把sin(90°-A)寫成∠A的余弦。
這一練習只能起到鞏固定理的作用.為了運用定理,教材安排了例3。
學生獨立完成練習2,就說明定理的教學較成功,學生基本會運用。
教材中3的設置,實際上是對前二節課內容的綜合運用,既考察學生正、余弦概念的掌握程度,同時又對本課知識加以鞏固練習,因此例3的安排恰到好處.同時,做例3也為下一節查正余弦表做了準備。
(四)小結與擴展
1.請學生做知識小結,使學生對所學內容進行歸納總結,將所學內容變成自己知識的組成部分。
2.本節課我們由特殊角的正弦(余弦)和它的余角的余弦(正弦)值間關系,以及正弦、余弦的概念得出的結論:任意一個銳角的正弦值等于它的余角的余弦值,任意一個銳角的余弦值等于它的余角的正弦值。