八年級數學創新設計教案
八年級數學創新設計教案篇1
極差
一、教學目標:
1、理解極差的定義,知道極差是用來反映數據波動范圍的一個量
2、會求一組數據的極差
二、重點、難點和難點的突破方法
1、重點:會求一組數據的極差
2、難點:本節課內容較容易接受,不存在難點。
三、例習題的意圖分析
教材P151引例的意圖
(1)、主要目的是用來引入極差概念的
(2)、可以說明極差在統計學家族的角色——反映數據波動范圍的量
(3)、交待了求一組數據極差的方法。
四、課堂引入:
引入問題可以仍然采用教材上的“烏魯木齊和廣州的氣溫情”為了更加形象直觀一些的反映極差的意義,可以畫出溫度折線圖,這樣極差之所以用來反映數據波動范圍就不言而喻了。
五、例習題分析
本節課在教材中沒有相應的例題,教材P152習題分析
問題1 可由極差計算公式直接得出,由于差值較大,結合本題背景可以說明該村貧富差距較大。問題2 涉及前一個學期統計知識首先應回憶復習已學知識。問題3答案并不,合理即可。
六、隨堂練習:
1、一組數據:473、865、368、774、539、474的極差是 ,一組數據1736、1350、-2114、-1736的極差是 .
2、一組數據3、-1、0、2、X的極差是5,且X為自然數,則X= .
3、下列幾個常見統計量中能夠反映一組數據波動范圍的是( )
A.平均數 B.中位數 C.眾數 D.極差
4、一組數據X 、X …X 的極差是8,則另一組數據2X +1、2X +1…,2X +1的極差是( )
A. 8 B.16 C.9 D.17
答案:1. 497、3850 2. 4 3. D 4.B
八年級數學創新設計教案篇2
一、業務學習
加強學習,提高思想認識,樹立新的理念.堅持每周的政治學習和業務學習,緊緊圍繞學習新課程,構建新課程,嘗試新教法的目標,不斷更新教學觀念。注重把學習新課程標準與構建新理念有機的結合起來。通過學習新的《課程標準》,認識到新課程改革既是挑戰,又是機遇。將理論聯系到實際教學工作中,解放思想,更新觀念,豐富知識,提高能力,以全新的素質結構接受新一輪課程改革浪潮的“洗禮”。另外,抽時間學習,并作學習筆記,以豐富自己的頭腦,提高業務水平。
二、教學方面
教學工作是學校各項工作的中心,一學期來,在堅持抓好新課程理念學習和應用的同時,我積極探索教育教學規律,充分運用學校現有的教育教學資源,大膽改革課堂教學,加大新型教學方法使用力度,取得了明顯效果,具體表現在:
1、備課深入細致。平時認真研究教材,多方參閱各種資料,力求深入理解教材,準確把握難重點。在制定教學目的時,非常注意學生的實際情況。
2、注重課堂教學效果。針對初一年級學生特點,堅持學生為主體,教師為主導、教學為主線,注重講練結合。在教學中注意抓住重點,突破難點。注意和學生一起探索各種題型,我發現學生都有探求未知的特點,只要勾起他們的求知欲與興趣,學習勁頭就上來了,如每節課后如有時間,我都出幾題有新意,又不難的相關題型,與學生一起研究。
3、要進行一定數量的練習,相當數量的練習是必要的,練習時要有目的,抓基礎與重難點,滲透數學思維,在練習時注重學生數學思維的形成與鍛煉,有了一定的思維能力與打好基礎,可以做到用一把鑰匙開多道門。
4、考前復習中要認真研究與整理出考試要考的知識點,重難點,要重點復習的題目類型,難度,深度。這樣復習時才有的放矢,復習中什么要多抓多練,什么可暫時忽略,這一點很重要,會直接影響復習效果與成績。另外還要抓好后進生工作,后進生會影響全班成績與平均分,所以要花力氣使大部分有希望的后進生跟得上。例如在課堂上,多到他們身邊站一站,多問一句:會不會,懂不懂,課后,對他們的不足及時幫助,使他們感受到老師的關心,從而能夠主動學習。
5、堅持參加校內外教學研討活動,不斷汲取他人的寶貴經驗,提高自己的教學水平。向經驗豐富的教師請教并經常在一起討論教學問題。聽公開課多次,學習他人的先進教學方法。
6、在作業批改上,認真及時,力求做到全批全改,重在訂正,及時了解學生的學習情況,以便在輔導中做到有的放矢。
三、工作中存在的問題
1、教材挖掘不深入。
2、教法不夠靈活,不能總是吸引學生學習,對學生的引導、啟發不足。
3、新課標下新的教學思想學習不深入。對學生的自主學習,合作學習,缺乏理論指導.
4、后進生的輔導不夠,由于對學生的基礎知識掌握情況了解不夠,對學生的學習態度、思維能力不太清楚。上課和復習時該講的都講了,學生掌握的情況怎樣,教師心中也知道,有的學生只是做表面文章,“出工不出力”
5、教學反思不夠。
四、今后努力的方向
1、加強學習,學習新課標下新的教學思想。
2、學習新課標,挖掘教材,進一步把握知識點和考點。
3、多聽課,學習同科目教師先進的教學方法和教學理念。
4、加強轉差培優力度。
5、加強教學反思,加大教學投入。
12.3.1.1等腰三角形(一)
教學目標
1.等腰三角形的概念。2.等腰三角形的性質。3.等腰三角形的概念及性質的應用。
教學重點:1.等腰三角形的概念及性質。2.等腰三角形性質的應用。
教學難點:等腰三角形三線合一的性質的理解及其應用。
教學過程
Ⅰ.提出問題,創設情境
在前面的學習中,我們認識了軸對稱圖形,探究了軸對稱的性質,并且能夠作出一個簡單平面圖形關于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設計一些美麗的圖案.這節課我們就是從軸對稱的角度來認識一些我們熟悉的幾何圖形.來研究:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?
有的三角形是軸對稱圖形,有的三角形不是。
問題:那什么樣的三角形是軸對稱圖形?
滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形。
我們這節課就來認識一種成軸對稱圖形的三角形──等腰三角形。
Ⅱ.導入新課:要求學生通過自己的思考來做一個等腰三角形。
作一條直線L,在L上取點A,在L外取點B,作出點B關于直線L的對稱點C,連結AB、BC、CA,則可得到一個等腰三角形。
等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角。
思考:
1.等腰三角形是軸對稱圖形嗎?請找出它的對稱軸。
2.等腰三角形的兩底角有什么關系?
3.頂角的平分線所在的直線是等腰三角形的對稱軸嗎?
4.底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?
結論:等腰三角形是軸對稱圖形.它的對稱軸是頂角的平分線所在的直線.因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線。
要求學生把自己做的等腰三角形進行折疊,找出它的對稱軸,并看它的兩個底角有什么關系。
沿等腰三角形的頂角的平分線對折,發現它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高。
由此可以得到等腰三角形的性質:
1.等腰三角形的兩個底角相等。(簡寫成“等邊對等角”)
2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合。(通常稱作“三線合一”)
由上面折疊的過程獲得啟發,我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質。同學們現在就動手來寫出這些證明過程。
如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因為
所以△BAD≌△CAD(SSS).
所以∠B=∠C.
]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因為
所以△BAD≌△CAD.
所以BD=CD,∠BDA=∠CDA=∠BDC=90°.
[例1]如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,
求:△ABC各角的度數.
分析:根據等邊對等角的性質,我們可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.
再由三角形內角和為180°,就可求出△ABC的三個內角.
把∠A設為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷.
解:因為AB=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC.
∠A=∠ABD(等邊對等角).
設∠A=x,則∠BDC=∠A+∠ABD=2x,
從而∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.
[師]下面我們通過練習來鞏固這節課所學的知識.
Ⅲ.隨堂練習:1.課本P51練習1、2、3。2.閱讀課本P49~P51,然后小結。
Ⅳ.課時小結
這節課我們主要探討了等腰三角形的性質,并對性質作了簡單的應用.等腰三角形是軸對稱圖形,它的兩個底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高。
我們通過這節課的學習,首先就是要理解并掌握這些性質,并且能夠靈活應用它們。
Ⅴ.作業:課本P56習題12.3第1、2、3、4題。
板書設計
12.3.1.1等腰三角形
一、設計方案作出一個等腰三角形
二、等腰三角形性質:1.等邊對等角2.三線合一
12.3.1.1等腰三角形(二)
教學目標
1.理解并掌握等腰三角形的判定定理及推論
2.能利用其性質與判定證明線段或角的相等關系.
教學重點:等腰三角形的判定定理及推論的運用
教學難點:正確區分等腰三角形的判定與性質,能夠利用等腰三角形的判定定理證明線段的相等關系.
教學過程:
一、復習等腰三角形的性質
二、新授:
I、提出問題,創設情境
出示投影片.某地質專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點)為B標,然后在這棵樹的正南方(南岸A點抽一小旗作標志)沿南偏東60°方向走一段距離到C處時,測得∠ACB為30°,這時,地質專家測得AC的長度就可知河流寬度.
學生們很想知道,這樣估測河流寬度的根據是什么?帶著這個問題,引導學生學習“等腰三角形的判定”.
II、引入新課
1.由性質定理的題設和結論的變化,引出研究的內容——在△ABC中,苦∠B=∠C,則AB=AC嗎?
作一個兩個角相等的三角形,然后觀察兩等角所對的邊有什么關系?
2.引導學生根據圖形,寫出已知、求證.
3.小結,通過論證,這個命題是真命題,即“等腰三角形的判定定理”。(板書定理名稱).
強調此定理是在一個三角形中把角的相等關系轉化成邊的相等關系的重要依據,類似于性質定理可簡稱“等角對等邊”。
4.引導學生說出引例中地質專家的測量方法的根據。
III、例題與練習
1.如圖2
其中△ABC是等腰三角形的是[]
2.①如圖3,已知△ABC中,AB=AC.∠A=36°,則∠C______(根據什么?).
②如圖4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據什么?).
③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______.
④若已知AD=4cm,則BC______cm.
3.以問題形式引出推論l______.
4.以問題形式引出推論2______.
例:如果三角形一個外角的平分線平行于三角形的一邊,求證這個三角形是等腰三角形.
分析:引導學生根據題意作出圖形,寫出已知、求證,并分析證明.
練習:5.(1)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點F,過F作DE//BC,交AB于點D,交AC于E.問圖中哪些三角形是等腰三角形?
(2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?
練習:P53練習1、2、3。
IV、課堂小結
1.判定一個三角形是等腰三角形有幾種方法?
2.判定一個三角形是等邊三角形有幾種方法?
3.等腰三角形的性質定理與判定定理有何關系?
4.現在證明線段相等問題,一般應從幾方面考慮?
V、布置作業:P56頁習題12.3第5、6題
八年級數學創新設計教案篇3
課題:一元二次方程實數根錯例剖析課
【教學目的】 精選學生在解一元二次方程有關問題時出現的典型錯例加以剖析,幫助學生找出產生錯誤的原因和糾正錯誤的方法,使學生在解題時少犯錯誤,從而培養學生思維的批判性和深刻性。
【課前練習】
1、關于x的方程ax2+bx+c=0,當a_____時,方程為一元一次方程;當a_____時,方程為一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當△_______時,方程有兩個相等的實數根,當△_______時,方程有兩個不相等的實數根,當△________時,方程沒有實數根。
【典型例題】
例1下列方程中兩實數根之和為2的方程是()
(A)x2+2x+3=0(B)x2-2x+3=0(c)x2-2x-3=0(D)x2+2x+3=0
錯答:B
正解:C
錯因剖析:由根與系數的關系得x1+x2=2,極易誤選B,又考慮到方程有實數根,故由△可知,方程B無實數根,方程C合適。
例2若關于x的方程x2+2(k+2)x+k2=0兩個實數根之和大于-4,則k的取值范圍是()
(A)k>-1(B)k<0(c)-1<k<0(D)-1≤k<0
錯解:B
正解:D
錯因剖析:漏掉了方程有實數根的前提是△≥0
例3(20__廣西中考題)已知關于x的一元二次方程(1-2k)x2-2x-1=0有兩個不相等的實根,求k的取值范圍。
錯解:由△=(-2)2-4(1-2k)(-1)=-4k+8>0得k<2又∵k+1≥0∴k≥-1。即k的取值范圍是-1≤k<2
錯因剖析:漏掉了二次項系數1-2k≠0這個前提。事實上,當1-2k=0即k=時,原方程變為一次方程,不可能有兩個實根。
正解:-1≤k<2且k≠
例4(20__山東太原中考題)已知x1,x2是關于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數根,當x12+x22=15時,求m的值。
錯解:由根與系數的關系得
x1+x2=-(2m+1),x1x2=m2+1,
∵x12+x22=(x1+x2)2-2x1x2
=[-(2m+1)]2-2(m2+1)
=2m2+4m-1
又∵x12+x22=15
∴2m2+4m-1=15
∴m1=-4m2=2
錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當m=-4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1=-19<0,方程無實數根,不符合題意。
正解:m=2
例5若關于x的方程(m2-1)x2-2(m+2)x+1=0有實數根,求m的取值范圍。
錯解:△=[-2(m+2)]2-4(m2-1)=16m+20
∵△≥0
∴16m+20≥0,
∴m≥-5/4
又∵m2-1≠0,
∴m≠±1
∴m的取值范圍是m≠±1且m≥-
錯因剖析:此題只說(m2-1)x2-2(m+2)x+1=0是關于未知數x的方程,而未限定方程的次數,所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當m2-1=0時,即m=±1時,方程變為一元一次方程,仍有實數根。
正解:m的取值范圍是m≥-
例6已知二次方程x2+3x+a=0有整數根,a是非負數,求方程的整數根。
錯解:∵方程有整數根,
∴△=9-4a>0,則a<2.25
又∵a是非負數,∴a=1或a=2
令a=1,則x=-3±,舍去;令a=2,則x1=-1、x2=-2
∴方程的整數根是x1=-1,x2=-2
錯因剖析:概念模糊。非負整數應包括零和正整數。上面答案僅是一部分,當a=0時,還可以求出方程的另兩個整數根,x3=0,x4=-3
正解:方程的整數根是x1=-1,x2=-2,x3=0,x4=-3
【練習】
練習1、(01濟南中考題)已知關于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數根x1、x2。
(1)求k的取值范圍;
(2)是否存在實數k,使方程的兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由。
解:(1)根據題意,得△=(2k-1)2-4k2>0解得k<
∴當k<時,方程有兩個不相等的實數根。
(2)存在。
如果方程的兩實數根x1、x2互為相反數,則x1+x2=-=0,得k=。經檢驗k=是方程-的解。
∴當k=時,方程的兩實數根x1、x2互為相反數。
讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。
解:上面解法錯在如下兩個方面:
(1)漏掉k≠0,正確答案為:當k<時且k≠0時,方程有兩個不相等的實數根。
(2)k=。不滿足△>0,正確答案為:不存在實數k,使方程的兩實數根互為相反數
練習2(02廣州市)當a取什么值時,關于未知數x的方程ax2+4x-1=0只有正實數根?
解:(1)當a=0時,方程為4x-1=0,∴x=
(2)當a≠0時,∵△=16+4a≥0∴a≥-4
∴當a≥-4且a≠0時,方程有實數根。
又因為方程只有正實數根,設為x1,x2,則:
x1+x2=->0;
x1.x2=->0解得:a<0
綜上所述,當a=0、a≥-4、a<0時,即當-4≤a≤0時,原方程只有正實數根。
【小結】
以上數例,說明我們在求解有關二次方程的問題時,往往急于尋求結論而忽視了實數根的存在與“△”之間的關系。
1、運用根的判別式時,若二次項系數為字母,要注意字母不為零的條件。
2、運用根與系數關系時,△≥0是前提條件。
3、條件多面時(如例5、例6)考慮要周全。
【布置作業】
1、當m為何值時,關于x的方程x2+2(m-1)x+m2-9=0有兩個正根?
2、已知,關于x的方程mx2-2(m+2)x+m+5=0(m≠0)沒有實數根。
求證:關于x的方程
(m-5)x2-2(m+2)x+m=0一定有一個或兩個實數根。
考題匯編
1、(20__年廣東省中考題)設x1、x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數的關系,求(x1-x2)2的值。
2、(20__年廣東省中考題)已知關于x的方程x2-2x+m-1=0
(1)若方程的一個根為1,求m的值。
(2)m=5時,原方程是否有實數根,如果有,求出它的實數根;如果沒有,請說明理由。
3、(20__年廣東省中考題)已知關于x的方程x2+2(m-2)x+m2=0有兩個實數根,且兩根的平方和比兩根的積大33,求m的值。
4、(20__年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。
八年級數學創新設計教案篇4
教學目標:
1.知道負整數指數冪=(a≠0,n是正整數).
2.掌握整數指數冪的運算性質.
3.會用科學計數法表示小于1的數.
教學重點:
掌握整數指數冪的運算性質.
難點:
會用科學計數法表示小于1的數.
情感態度與價值觀:
通過學習課堂知識使學生懂得任何事物之間是相互聯系的,理論來源于實踐,服務于實踐.能利用事物之間的類比性解決問題.
教學過程:
一、課堂引入
1.回憶正整數指數冪的運算性質:
(1)同底數的冪的乘法:am?an=am+n(m,n是正整數);
(2)冪的乘方:(am)n=amn(m,n是正整數);
(3)積的乘方:(ab)n=anbn(n是正整數);
(4)同底數的冪的除法:am÷an=am?n(a≠0,m,n是正整數,m>n);
(5)商的乘方:()n=(n是正整數);
2.回憶0指數冪的規定,即當a≠0時,a0=1.
3.你還記得1納米=10?9米,即1納米=米嗎?
4.計算當a≠0時,a3÷a5===,另一方面,如果把正整數指數冪的運算性質am÷an=am?n(a≠0,m,n是正整數,m>n)中的m>n這個條件去掉,那么a3÷a5=a3?5=a?2,于是得到a?2=(a≠0)。
二、總結:一般地,數學中規定:當n是正整數時,=(a≠0)(注意:適用于m、n可以是全體整數)教師啟發學生由特殊情形入手,來看這條性質是否成立.事實上,隨著指數的取值范圍由正整數推廣到全體整數,前面提到的運算性質都可推廣到整數指數冪;am?an=am+n(m,n是整數)這條性質也是成立的.
三、科學記數法:
我們已經知道,一些較大的數適合用科學記數法表示,有了負整數指數冪后,小于1的正數也可以用科學記數法來表示,例如:0.000012=1.2×10?5.即小于1的正數可以用科學記數法表示為a×10?n的形式,其中a是整數位數只有1位的正數,n是正整數.啟發學生由特殊情形入手,比如0.012=1.2×10?2,0.0012=1.2×10?3,0.00012=1.2×10?4,以此發現其中的規律,從而有0.0000000012=1.2×10?9,即對于一個小于1的正數,如果小數點后到第一個非0數字前有8個0,用科學記數法表示這個數時,10的指數是?9,如果有m個0,則10的指數應該是?m?1.
八年級數學創新設計教案篇5
一、教學目標
1.使學生了解判定定理1及直角三角形相似定理的證明方法并會應用,掌握例2的結論.
2.繼續滲透和培養學生對類比數學思想的認識和理解.
3.通過了解定理的證明方法,培養和提高學生利用已學知識證明新命題的能力.
4.通過學習,了解由特殊到一般的唯物辯證法的觀點.
二、教學設計
類比學習,探討發現
三、重點及難點
1.教學重點:是判定定理l及直角三角形相似定理的應用,以及例2的結論.
2.教學難點 :是了解判定定理1的證題方法與思路.
四、課時安排
1課時
五、教具學具準備
多媒體、常用畫圖工具、
六、教學步驟
[復習提問]
1.什么叫相似三角形?什么叫相似比?
2.敘述預備定理.由預備定理的題所構成的三角形是哪兩種情況.
[講解新課]
我們知道,用相似三角形的定義可以判定兩個三角形相似,但涉及的條件較多,需要有
三對對應角相等,三條對應邊的比也都相等,顯然用起來很不方便.那么從本節課開始我們
來研究能不能用較少的幾個條件就能判定三角形相似呢?
上節課講的預備定理實際上就是一個判定三角形相似的方法,現在再來學習幾種方法.
我們已經知道,全等三角形是相似三角形當相似比為1時的特殊情況,判定兩個三角形
全等的三個公理和判定兩個三角形相似的三個定理之間有內在的聯系,不同處僅在于前者是后者相似比等于1的情況,教學時可先指出全等三角形與相似三角形之間的關系,然后引導學生自己用類比的方法找出新的命題,如:
問:判定兩個三角形全等的方法有哪幾種?
答:SAS、ASA(AAS)、SSS、HL.
問:全等三角形判定中的“對應角相等”及“對應邊相等”的語句,用到中應如何說?
答:“對應角相等”不變,“對應邊相等”說成“對應邊成比例”.
問:我們知道,一條邊是寫不出比的,那么你能否由“ASA”或“AAS”,采用類比的方法,引出一個關于三角形相似判定的新的命題呢?
答:如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似.
強調:(1)學生在回答中,如出現問題,教師要予以啟發、引導、糾正.
(2)用類比方法找出的新命題一定要加以證明.
如圖5-53,在△ABC和△ 中, , .
問:△ABC和△ 是否相似?
分析:可采用問答式以啟發學生了解證明方法.
問:我們現在已經學習了哪幾個判定三角形相似的方法?
答:①三角形的定義,②上一節學習的預備定理.
問:根據本命題條件,探討時應采用哪種方法?為什么?
答:預備定理,因為用定義條件明顯不夠.
問:采用預備定理,必須構造出怎樣的圖形?
答: 或 .
問:應如何添加輔助線,才能構造出上一問的圖形?
此問學生回答如有困難,教師可領學生共同探討,注意告訴學生作輔助線一定要合理.
(1)在△ABC邊AB(或延長線)上,截取 ,過D作DE∥BC交AC于E.
“作相似.證全等”.
(2)在△ABC邊AB(或延長線上)上,截取 ,在邊AC(或延長線上)截取AE= ,連結DE,“作全等,證相似”.
(教師向學生解釋清楚“或延長線”的情況)
雖然定理的證明不作要求,但通過剛才的分析讓學生了解定理的證明思路與方法,這樣有利于培養和提高學生利用已學知識證明新命題的能力.
判定定理1:如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似.
簡單說成:兩角對應相等,兩三角形相似.
例1 已知 和 中 , , , .
求證: ∽ .
此例題是判定定理的直拉應用,應使學生熟練掌握.
例2 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似.
已知:如圖5-54,在 中,CD是斜邊上的高.
求證: ∽ ∽ .
該例題很重要,它一方面可以起到鞏固、掌握判定定理1的作用;另一方面它的應用很廣泛,并且可以直接用它判定直角三角形相似,教材上排了黑體字,所以可以當作定理直接使用.
即 ∽△∽△.
[小結]
1判定定理1的引出及證明思路與方法的分析,要求學生掌握兩種輔助線作法的思路.
2.判定定理1的應用以及記住例2的結論并會應用.
七、布置作業
八年級數學創新設計教案篇6
第三十四學時:14.2.1平方差公式
一、學習目標:
1.經歷探索平方差公式的過程。
2.會推導平方差公式,并能運用公式進行簡單的運算。
二、重點難點
重點:平方差公式的推導和應用;
難點:理解平方差公式的結構特征,靈活應用平方差公式。
三、合作學習
你能用簡便方法計算下列各題嗎?
(1)20__×1999(2)998×1002
導入新課:計算下列多項式的積.
(1)(_+1)(_—1);
(2)(m+2)(m—2)
(3)(2_+1)(2_—1);
(4)(_+5y)(_—5y)。
結論:兩個數的和與這兩個數的差的積,等于這兩個數的平方差。
即:(a+b)(a—b)=a2—b2
四、精講精練
例1:運用平方差公式計算:
(1)(3_+2)(3_—2);
(2)(b+2a)(2a—b);
(3)(—_+2y)(—_—2y)。
例2:計算:
(1)102×98;
(2)(y+2)(y—2)—(y—1)(y+5)。
隨堂練習
計算:
(1)(a+b)(—b+a);
(2)(—a—b)(a—b);
(3)(3a+2b)(3a—2b);
(4)(a5—b2)(a5+b2);
(5)(a+2b+2c)(a+2b—2c);
(6)(a—b)(a+b)(a2+b2)。
五、小結
(a+b)(a—b)=a2—b2