小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教案模板 >

八年級數(shù)學的教案

時間: 新華 教案模板

八年級數(shù)學的教案篇1

教學目標:

1.知道負整數(shù)指數(shù)冪=(a≠0,n是正整數(shù)).

2.掌握整數(shù)指數(shù)冪的運算性質(zhì).

3.會用科學計數(shù)法表示小于1的數(shù).

教學重點:

掌握整數(shù)指數(shù)冪的運算性質(zhì)。

難點:

會用科學計數(shù)法表示小于1的數(shù)。

情感態(tài)度與價值觀:

通過學習課堂知識使學生懂得任何事物之間是相互聯(lián)系的,理論來源于實踐,服務于實踐。能利用事物之間的類比性解決問題.

教學過程:

一、課堂引入

1.回憶正整數(shù)指數(shù)冪的運算性質(zhì):

(1)同底數(shù)的冪的乘法:am?an=am+n(m,n是正整數(shù));

(2)冪的乘方:(am)n=amn(m,n是正整數(shù));

(3)積的乘方:(ab)n=anbn(n是正整數(shù));

(4)同底數(shù)的冪的除法:am÷an=am?n(a≠0,m,n是正整數(shù),m>n);

(5)商的乘方:()n=(n是正整數(shù));

2.回憶0指數(shù)冪的規(guī)定,即當a≠0時,a0=1.

3.你還記得1納米=10?9米,即1納米=米嗎?

4.計算當a≠0時,a3÷a5===,另一方面,如果把正整數(shù)指數(shù)冪的運算性質(zhì)am÷an=am?n(a≠0,m,n是正整數(shù),m>n)中的m>n這個條件去掉,那么a3÷a5=a3?5=a?2,于是得到a?2=(a≠0)。

二、總結(jié):一般地,數(shù)學中規(guī)定:當n是正整數(shù)時,=(a≠0)(注意:適用于m、n可以是全體整數(shù))教師啟發(fā)學生由特殊情形入手,來看這條性質(zhì)是否成立.事實上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an=am+n(m,n是整數(shù))這條性質(zhì)也是成立的.

三、科學記數(shù)法:

我們已經(jīng)知道,一些較大的數(shù)適合用科學記數(shù)法表示,有了負整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學記數(shù)法來表示,例如:0.000012=1.2×10?5.即小于1的正數(shù)可以用科學記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù)。啟發(fā)學生由特殊情形入手,比如0.012=1.2×10?2,0.0012=1.2×10?3,0.00012=1.2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012=1.2×10?9,即對于一個小于1的正數(shù),如果小數(shù)點后到第一個非0數(shù)字前有8個0,用科學記數(shù)法表示這個數(shù)時,10的指數(shù)是?9,如果有m個0,則10的指數(shù)應該是?m?1.

八年級數(shù)學的教案篇2

教學任務分析

教學目標

知識技能

探索并掌握梯形的有關概念和基本性質(zhì),探索、了解并掌握等腰梯形的性質(zhì).

數(shù)學思考

能夠運用梯形的有關概念和性質(zhì)進行有關問題的論證和計算,進一步培養(yǎng)學生的分析問題能力和計算能力.

解決問題

通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉(zhuǎn)化的思想.

情感態(tài)度

在應用等腰梯形的性質(zhì)的過程養(yǎng)成獨立思考的習慣,在數(shù)學學習活動中獲得成功的體驗.

重點

等腰梯形的性質(zhì)及其應用.

難點

解決梯形問題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運用輔助線),及梯形有關知識的應用.

教學流程安排

活動流程圖

活動的內(nèi)容和目的

活動1想一想

活動2說一說

活動3畫一畫

活動4做—做

活動5練一練

活動6理一理

觀察梯形圖片,引入本節(jié)課的學習內(nèi)容.

了解梯形定義、各部分名稱及分類.

通過畫圖活動,初步發(fā)現(xiàn)梯形與三角形的轉(zhuǎn)化關系.

探究得到等腰梯形的性質(zhì).

通過解決具體問題,尋找解決梯形問題的方法.

通過整理回顧,鞏固知識、提高能力、滲透思想.

教學過程設計

問題與情景

師生行為

設計意圖

[活動1]

觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點?

演示圖片,學生欣賞.

結(jié)合圖片,教師引導學生注意這些圖片的共同特征:一組對邊平行而另一組對邊不平行.

由現(xiàn)實中實際問題入手,設置問題情境,引出本課主題.通過學生觀察圖片和歸納圖形的特點,培養(yǎng)學生的觀察、概括能力.

[活動2]

梯形定義一組對邊平行而另一組對邊不平行的四邊形叫做梯形.

學生根據(jù)梯形概念畫出圖形,教師可以進一步引導學生類比梯形與平行四邊形的區(qū)別和聯(lián)系.

通過類比,培養(yǎng)學生歸納、總結(jié)的能力.

問題與情景

師生行為

設計意圖

一些基本概念

(1)(如圖):底、腰、高.

(2)等腰梯形:兩腰相等的梯形叫做等腰梯形.

(3)直角梯形:有一個角是直角的梯形叫做直角梯形.

學生在小學已經(jīng)對梯形有一定的感性認識,因此教師讓學生自己介紹(1)中的基本概念,在聆聽學生發(fā)言后,教師可以強調(diào):①梯形與四邊形的關系;

②上、下底的概念是由底的長短來定義的,而并不是指位置來說的.

熟悉圖形,明確概念,為探究圖形性質(zhì)做準備.

[活動3]

畫一畫

在下列所給圖中的每個三角形中畫一條線段,

(1)怎樣畫才能得到一個梯形?

(2)在哪些三角形中,能夠得到一個等腰梯形?

在學生獨立探究的基礎上,學生分組交流.

教師參與小組活動,指導、傾聽學生交流.針對不同認識水平的學生,引導其正確作圖.

本次活動教師應重點關注:

(1)學生在活動過程中能否發(fā)現(xiàn)梯形與三角形之間的聯(lián)系,他們之間的轉(zhuǎn)化方法.

(2)學生能否將等腰三角形轉(zhuǎn)化為等腰梯形.

(3)學生能否主動參與探究活動,在討論中發(fā)表自己的見解,傾聽他人的意見,對不同的觀點進行質(zhì)疑,從中獲益.

等腰梯形的性質(zhì)與等腰三角形相仿,因此在活動3中設計了第(2)題,在推導等腰梯形性質(zhì)或需要添加輔助線時,可以借助等腰三角形來研究.尤其是根據(jù)等腰三角形是軸對稱圖形,可得到等腰梯形是軸對稱圖形這條性質(zhì),為活動4種開展探究奠定了基礎.

問題與情景

師生行為

設計意圖

[活動4]

做—做

探索等腰梯形的性質(zhì)(引入用軸對稱解決問題的思想).

在一張方格紙上作一個等腰梯形,連接兩條對角線.

(1)這個圖形是軸對稱圖形嗎?對稱軸在哪里?你能發(fā)現(xiàn)哪些相等的&39;線段和相等的角?學生畫圖并通過觀察猜想;

(2)這個等腰梯形的兩條對角線的長度有什么關系?

學生按照實驗步驟,獨立完成畫圖過程,觀察圖形,思考教師提出的問題,猜想、驗證、歸納結(jié)論.

針對不同認識水平的學生,教師指導學生活動.

師生共同歸納:

①等腰梯形是軸對稱圖形,上下底的中點連線是對稱軸.

②等腰梯形兩腰相等.

③等腰梯形同一底上的兩個角相等.

④等腰梯形的兩條對角線相等.

教學中要注意引導學生證明等腰梯形的性質(zhì),尤其在證明“等腰梯形同一底上的兩個角相等”這條性質(zhì)時,“平移腰”和“作高”這兩種常見的輔助線,在教學中頭一次出現(xiàn),可以借此機會,給學生介紹這兩種輔助線的添加方法.

[活動5]

練—練

例1(教材P118的例1)略.

例2如圖,梯形ABCD中,AD∥BC,

∠B=70°,∠C=40°,AD=6cm,BC=15cm.

求CD的長.

師生共同分析,尋找解決問題的方法和策略.

例1是等腰梯形性質(zhì)的直接運用,請學生分析、解答,教師聆聽,同時注意指導學生,在證明△EAD是等腰三角形時,要用到梯形的定義“上下底互相平行(AD∥BC)”這一點.

分析:設法把已知中所給的條件都移到一個三角形中,便可以解決問題.

其方法是:平移一腰,過點A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.

解:(略)

通過題目的練習與講解應讓學生知道:解決梯形問題的基本思想和方法就是通過添加適當?shù)妮o助線,把梯形問題轉(zhuǎn)化為已經(jīng)熟悉的平行四邊形和三角形問題來解決.在教學時應讓學生注意它們的作用,掌握這些輔助線的使用對于學好梯形內(nèi)容很有幫助.

問題與情景

師生行為

設計意圖

例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,

BE⊥AC于E.

求證:BE=CD.

分析:要證BE=CD,需添加適當?shù)妮o助線,構(gòu)造全等三角形,其方法是:平移一腰,過點D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.

證明(略)

例2與例3這里給出的輔助線均是“平移一腰”,老師們在教學或練習中可以根據(jù)學生的實際情況,再引導、補充其他輔助線的添加方法,讓學生多了解、多見識.

[活動6]

1.小結(jié)

2.布置作業(yè)

(1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長和面積.

(2)已知:如圖,

梯形ABCD中,CD//AB,,.

求證:AD=AB—DC.

(3)已知,如圖,

梯形ABCD中,AD∥BC,E是AB的中點,DE⊥CE,求證:AD+BC=DC.(延長DE交CB延長線于點F,由全等可得結(jié)論)

師生歸納總結(jié):

解決梯形問題常用的方法:

(1)“平移腰”:把梯形分成一個平行四邊形和一個三角形(圖1);

(2)“作高”:使兩腰在兩個直角三角形中(圖2);

(3)“延腰”:構(gòu)造具有公共角的兩個等腰三角形(圖3);

(4)“平移對角線”:使兩條對角線在同一個三角形中(圖4);

(5)“等積變形”,連結(jié)梯形上底一端點和另一腰中點,并延長與下底延長線交于一點,構(gòu)成三角形(圖5).

盡量多地讓學生參與發(fā)言是一個交流的過程.

梳理本節(jié)課應用過的輔助線添加方法,既可以鍛煉學生思維,又可以留給學生繼續(xù)探究的空間.

學生通過獨立思考,完成課后作業(yè),便于發(fā)現(xiàn)問題,及時查漏補缺.

八年級數(shù)學的教案篇3

教學目標:

1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學生的合情推力意識,主動探究的習慣,進一步體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系。

2、探索并理解直角三角形的三邊之間的數(shù)量關系,進一步發(fā)展學生的說理和簡單的推理的意識及能力。

重點難點:

重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。

難點:勾股定理的發(fā)現(xiàn)

教學過程

一、創(chuàng)設問題的情境,激發(fā)學生的學習熱情,導入課題

出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻,并結(jié)合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學家)在勾股定理方面的貢獻。

出示投影2(書中的P2圖1—2)并回答:

1、觀察圖1-2,正方形A中有_______個小方格,即A的面積為______個單位。

正方形B中有_______個小方格,即A的面積為______個單位。

正方形C中有_______個小方格,即A的面積為______個單位。

2、你是怎樣得出上面的結(jié)果的?在學生交流回答的基礎上教師直接發(fā)問:

3、圖1—2中,A,B,C之間的面積之間有什么關系?

學生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A.B,C的關系呢?

二、做一做

出示投影3(書中P3圖1—4)提問:

1、圖1—3中,A,B,C之間有什么關系?

2、圖1—4中,A,B,C之間有什么關系?

3、從圖1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?

學生討論、交流形成共識后,教師總結(jié):

以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。

三、議一議

1、圖1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?

2、你能發(fā)現(xiàn)直角三角形三邊長度之間的關系嗎?

在同學的交流基礎上,老師板書:

直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”

也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c

那么

我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

3、分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?(回答是肯定的:成立)

四、想一想

這里的29英寸(74厘米)的電視機,指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?

五、鞏固練習

1、錯例辨析:

△ABC的兩邊為3和4,求第三邊

解:由于三角形的兩邊為3、4

所以它的第三邊的c應滿足=25

即:c=5

辨析:(1)要用勾股定理解題,首先應具備直角三角形這個必不可少的條件,可本題△ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。

(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊,綜上所述這個題目條件不足,第三邊無法求得。

2、練習P7§1.11

六、作業(yè)

課本P7§1.12、3、4

八年級數(shù)學的教案篇4

我們常有這樣的困惑:不僅僅是講了,而且是講了多遍,但是學生的解題潛力就是得不到提高!也常聽見學生這樣的埋怨:鞏固題做了千萬遍,數(shù)學成績卻遲遲得不到提高!這就應引起我們的反思了。

一、在解題的方法規(guī)律處反思

例題千萬道,解后拋九霄”難以到達提高解題潛力、發(fā)展思維的目的。善于作解題后的反思、方法的歸類、規(guī)律的小結(jié)和技巧的揣摩,再進一步作一題多變,一題多問,一題多解,挖掘例題的深度和廣度,擴大例題的輻射面,無疑對潛力的提高和思維的發(fā)展是大有裨益的。

透過例題的層層變式,學生對三邊關系定理的認識又深了一步,有利于培養(yǎng)學生從特殊到一般,從具體到抽象地分析問題、解決問題;透過例題解法多變的教學則有利于幫忙學生構(gòu)成思維定勢,而又打破思維定勢;有利于培養(yǎng)思維的變通性和靈活性。

二、在學生易錯處反思

學生的知識背景、思維方式、情感體驗往往和成人不一樣,而其表達方式可能又不準確,這就難免有”錯”。例題教學若能從此切入,進行解后反思,則往往能找到”病根”,進而對癥下藥,常能收到事半功倍的效果!

總之,解后的反思方法、規(guī)律得到了及時的小結(jié)歸納;解后的反思使我們撥開迷蒙,看清”廬山真面目”而逐漸成熟起來;在反思中學會了獨立思考。

八年級數(shù)學的教案篇5

教學目標:

1、知識目標:

(1)掌握已知三邊畫三角形的方法;

(2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等;

(3)會添加較明顯的輔助線.

2、能力目標:

(1)通過尺規(guī)作圖使學生得到技能的訓練;

(2)通過公理的初步應用,初步培養(yǎng)學生的邏輯推理能力.

3、情感目標:

(1)在公理的形成過程中滲透:實驗、觀察、歸納;

(2)通過變式訓練,培養(yǎng)學生“舉一反三”的學習習慣.

教學重點:SSS公理、靈活地應用學過的各種判定方法判定三角形全等。

教學難點:如何根據(jù)題目條件和求證的結(jié)論,靈活地選擇四種判定方法中最適當?shù)姆椒ㄅ卸▋蓚€三角形全等。

教學用具:直尺,微機

教學方法:自學輔導

教學過程:

1、新課引入

投影顯示

問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個數(shù)據(jù)?如果你手頭沒有測量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?

這個問題讓學生議論后回答,他們的答案或許只是一種感覺。于是教師要引導學生,抓住問題的本質(zhì):三角形的三個元素――三條邊。

2、公理的獲得

問:通過上面問題的分析,滿足什么條件的兩個三角形全等?

讓學生粗略地概括出邊邊邊的公理。然后和學生一起畫圖做實驗,根據(jù)三角形全等定義對公理進行驗證。(這里用尺規(guī)畫圖法)

公理:有三邊對應相等的兩個三角形全等。

應用格式:(略)

強調(diào)說明:

(1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結(jié)論。

(2)、在應用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊)

(3)、此公理與前面學過的公理區(qū)別與聯(lián)系

(4)、三角形的穩(wěn)定性:演示三角形的穩(wěn)定性與四邊形的不穩(wěn)定性。在演示中,其實可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結(jié)“三角形全等需要有3全獨立的條件”做好了準備,進行了溝通。

(5)說明AAA與SSA不能判定三角形全等。

3、公理的應用

(1)講解例1。學生分析完成,教師注重完成后的點評。

例1如圖△ABC是一個鋼架,AB=ACAD是連接點A與BC中點D的支架

求證:AD⊥BC

分析:(設問程序)

(1)要證AD⊥BC只要證什么?

(2)要證∠1=只要證什么?

(3)要證∠1=∠2只要證什么?

(4)△ABD和△ACD全等的條件具備嗎?依據(jù)是什么?

證明:(略)

(2)講解例2(投影例2)

例2已知:如圖AB=DC,AD=BC

求證:∠A=∠C

(1)學生思考、分析、討論,教師巡視,適當參與討論。

(2)找學生代表口述證明思路。

思路1:連接BD(如圖)

證△ABD≌△CDB(SSS)先得∠A=∠C

思路2:連接AC證△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

(3)教師共同討論后,說明思路1較優(yōu),讓學生用思路1在練習本上寫出證明,一名學生板書,教師強調(diào)解題格式:在“證明”二字的后面,先將所作的輔助線寫出,再證明。

例3如圖,已知AB=AC,DB=DC

(1)若E、F、G、H分別是各邊的中點,求證:EH=FG

(2)若AD、BC連接交于點P,問AD、BC有何關系?證明你的結(jié)論。

學生思考、分析,適當點撥,找學生代表口述證明思路

讓學生在練習本上寫出證明,然后選擇投影顯示。

證明:(略)

說明:證直線垂直可證兩直線夾角等于,而由兩鄰補角相等證兩直線的夾角等于,又是很重要的一種方法。

例4如圖,已知:△ABC中,BC=2AB,AD、AE分別是△ABC、△ABD的中線,

求證:AC=2AE.

證明:(略)

學生口述證明思路,教師強調(diào)說明:“中線”條件下的常規(guī)作輔助線法。

5、課堂小結(jié):

(1)判定三角形全等的方法:3個公理1個推論(SAS、ASA、AAS、SSS)

在這些方法中,每一個都需要3個條件,3個條件中都至少包含條邊。

(2)三種方法的綜合運用

讓學生自由表述,其它學生補充,自己將知識系統(tǒng)化,以自己的方式進行建構(gòu)。

6、布置作業(yè):

a、書面作業(yè)P7011、12

b、上交作業(yè)P7014P71B組3

八年級數(shù)學的教案篇6

一、復習計劃:

(一)整理本學期學過的知識與方法:

1.每一章節(jié)復習中教師提前讓學生把概念、性質(zhì)進行歸納。然后加入適當?shù)木毩暋Un堂上逐一對易錯題的講解,多強調(diào)解題方法的針對性。最后針對平時練習中存在的問題,查漏補缺。

2.要以與課本同步的訓練題型為主,要列表或作圖的,讓學生積極動手操作,并得出結(jié)論,課堂上教師講評,盡量是精講多練,該動手的要多動手,盡可能的讓學生自己總結(jié)出論證幾何問題的常用分析方法。

3.幾何部分的重點是平行四邊形和特殊平行四邊形的性質(zhì)及其判定定理。所以記住性質(zhì)是關鍵,學會判定是重點。要學會判定方法的選擇,不同圖形之間的區(qū)別和聯(lián)系要非常熟悉,形成一個有機整體。對常見的證明題要多練多總結(jié)。

(二)在自己經(jīng)歷過的解決問題活動中,選擇一個有挑戰(zhàn)問題性的問題,寫下解決它的過程:包括遇到的困難、克服困難的方法與過程及所獲得的體會,并選擇這個問題的原因。

(三)通過本學期的數(shù)學學習,讓同學總結(jié)自己有哪些收獲?有哪些需要改進的地方。

二、復習方法:

1、強化訓練

這個學期計算類和證明類的題目較多,在復習中要加強這方面的訓練。在復習過程中要分類型練習,重點是解題方法的正確選擇同時使學生養(yǎng)成檢查計算結(jié)果的習慣。還有幾何證明題,要通過針對性練習力爭達到少失分,達到證明簡練又嚴謹?shù)男Ч?/p>

2、加強管理嚴格要求

根據(jù)每個學生自身情況、學習水平嚴格要求,對應知應會的內(nèi)容要反復講解、練習,必須做到學一點會一點,對接受能力差的學生課后要加強輔導,及時糾正出現(xiàn)的錯誤,平時多小測多檢查。對能力較強的學生要引導他們多做課外習題,適當提高做題難度。

3、加強證明題的訓練

通過近階段的學習,我發(fā)現(xiàn)學生對證明題掌握不牢,不會找合適的分析方法,部分學生看不懂題意,沒有思路。在今后的復習中我準備拿出一定的時間來專項練習證明題,引導學生如何弄懂題意、怎樣分析、怎樣寫證明過程。

4、加強小組合作

在復習過程中,要充分發(fā)揮學生的學習積極性,在老師的指導下,進行歸納、總結(jié),利用小組一起討論、研究,不放過每一個疑點,不遺漏每一個重點,不忽視每一個考點。

56412 主站蜘蛛池模板: 江西自考网-江西自学考试网 | ETFE膜结构_PTFE膜结构_空间钢结构_膜结构_张拉膜_浙江萬豪空间结构集团有限公司 | 珠宝展柜-玻璃精品展柜-首饰珠宝展示柜定制-鸿钛展柜厂家 | 闪蒸干燥机-喷雾干燥机-带式干燥机-桨叶干燥机-[常州佳一干燥设备] | 数码管_LED贴片灯_LED数码管厂家-无锡市冠卓电子科技有限公司 | 西安耀程造价培训机构_工程预算实训_广联达实作实操培训 | 威廉希尔WilliamHill·足球(中国)体育官方网站 | 打包钢带,铁皮打包带,烤蓝打包带-高密市金和金属制品厂 | ORP控制器_ORP电极价格-上优泰百科| 中直网_行业门户-行业人专业的交流平台!| 内窥镜-工业内窥镜厂家【上海修远仪器仪表有限公司】 | 风电变桨伺服驱动器-风电偏航变桨系统-深圳众城卓越科技有限公司 | 卫生纸复卷机|抽纸机|卫生纸加工设备|做卫生纸机器|小型卫生纸加工需要什么设备|卫生纸机器设备多少钱一台|许昌恒源纸品机械有限公司 | 理化生实验室设备,吊装实验室设备,顶装实验室设备,实验室成套设备厂家,校园功能室设备,智慧书法教室方案 - 东莞市惠森教学设备有限公司 | OLChemim试剂-ABsciex耗材-广州市自力色谱科仪有限公司 | 档案密集架_电动密集架_移动密集架_辽宁档案密集架-盛隆柜业厂家现货批发销售价格公道 | 手术室净化厂家-成都做医院净化工程的公司-四川华锐-15年特殊科室建设经验 | 走心机厂家,数控走心机-台州博城智能科技有限公司 | 防火板_饰面耐火板价格、厂家_品牌认准格林雅 | 对夹式止回阀厂家,温州对夹式止回阀制造商--永嘉县润丰阀门有限公司 | 压片机_高速_单冲_双层_花篮式_多功能旋转压片机-上海天九压片机厂家 | 扒渣机厂家_扒渣机价格_矿用扒渣机_铣挖机_撬毛台车_襄阳永力通扒渣机公司 | 东莞市超赞电子科技有限公司 全系列直插/贴片铝电解电容,电解电容,电容器 | 山东信蓝建设有限公司官网 | 阻燃剂-氢氧化镁-氢氧化铝-沥青阻燃剂-合肥皖燃新材料 | 服务器之家 - 专注于服务器技术及软件下载分享 | 机构创新组合设计实验台_液压实验台_气动实训台-戴育教仪厂 | 企业管理培训,企业培训公开课,企业内训课程,企业培训师 - 名课堂企业管理培训网 | 四川成都干燥设备_回转筒干燥机_脉冲除尘器_输送设备_热风炉_成都川工星科机电设备有限公司 | 专业广州网站建设,微信小程序开发,一物一码和NFC应用开发、物联网、外贸商城、定制系统和APP开发【致茂网络】 | 全自动烧卖机厂家_饺子机_烧麦机价格_小笼汤包机_宁波江北阜欣食品机械有限公司 | 小型气象站_便携式自动气象站_校园气象站-竞道气象设备网 | 伟秀电气有限公司-10kv高低压开关柜-高低压配电柜-中置柜-充气柜-欧式箱变-高压真空断路器厂家 | 煤机配件厂家_刮板机配件_链轮轴组_河南双志机械设备有限公司 | 宏源科技-房地产售楼系统|线上开盘系统|售楼管理系统|线上开盘软件 | 福兰德PVC地板|PVC塑胶地板|PVC运动地板|PVC商用地板-中国弹性地板系统专业解决方案领先供应商! 福建成考网-福建成人高考网 | 【甲方装饰】合肥工装公司-合肥装修设计公司,专业从事安徽办公室、店面、售楼部、餐饮店、厂房装修设计服务 | 硅PU球场、篮球场地面施工「水性、环保、弹性」硅PU材料生产厂家-广东中星体育公司 | 电地暖-电采暖-发热膜-石墨烯电热膜品牌加盟-暖季地暖厂家 | 福建自考_福建自学考试网 | 影视模板素材_原创专业影视实拍视频素材-8k像素素材网 |