八年級數(shù)學教案有哪些
八年級數(shù)學教案有哪些篇1
1、定義:
兩組對邊分別平行的四邊形叫平行四邊形
2、平行四邊形的性質
(1)平行四邊形的對邊平行且相等;
(2)平行四邊形的鄰角互補,對角相等;
(3)平行四邊形的&39;對角線互相平分;
3、平行四邊形的判定
平行四邊形是幾何中一個重要內容,如何根據(jù)平行四邊形的性質,判定一個四邊形是平行四邊形是個重點,下面就對平行四邊形的五種判定方法,進行劃分:
第一類:與四邊形的對邊有關
(1)兩組對邊分別平行的四邊形是平行四邊形;
(2)兩組對邊分別相等的四邊形是平行四邊形;
(3)一組對邊平行且相等的四邊形是平行四邊形;
第二類:與四邊形的對角有關
兩組對角分別相等的四邊形是平行四邊形;
第三類:與四邊形的對角線有關
對角線互相平分的四邊形是平行四邊形
八年級數(shù)學教案有哪些篇2
一次函數(shù)
1、函數(shù)
一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
2、自變量取值范圍
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負數(shù))、實際意義幾方面考慮。
3、函數(shù)的三種表示法及其優(yōu)缺點
關系式(解析)法兩個變量間的函數(shù)關系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做關系式(解析)法。
列表法把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關系,這種表示法叫做列表法。
圖象法用圖象表示函數(shù)關系的方法叫做圖象法。
4、由函數(shù)關系式畫其圖像的一般步驟
列表:列表給出自變量與函數(shù)的一些對應值。
描點:以表中每對對應值為坐標,在坐標平面內描出相應的點。
連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
5、正比例函數(shù)和一次函數(shù)
①正比例函數(shù)和一次函數(shù)的概念
一般地,若兩個變量x,y間的關系可以表示成y=kx+b(k,b為常數(shù),k不等于0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。
特別地,當一次函數(shù)y=kx+b中的b=0時(k為常數(shù),k不等于0),稱y是x的正比例函數(shù)。
②一次函數(shù)的圖像:
所有一次函數(shù)的圖像都是一條直線。
③一次函數(shù)、正比例函數(shù)圖像的主要特征
一次函數(shù)y=kx+b的圖像是經過點(0,b)的直線;
八年級數(shù)學教案有哪些篇3
教材分析
1、本節(jié)課首先從最簡單的正比例函數(shù)入手.從正比例函數(shù)的定義、函數(shù)關系式、引入次函數(shù)的概念。
2、八年級數(shù)學中的一次函數(shù)是中學數(shù)學中的一種最簡單、最基本的函數(shù),是反映現(xiàn)實世界的數(shù)量關系和變化規(guī)律的常見數(shù)學模型之一,也是學生今后進一步學習初、高中其它函數(shù)和高中解析幾何中的直線方程的基礎。
學情分析
1、雖然這是一節(jié)全新的數(shù)學概念課,學生沒有接觸過。但是,孩子們已經具備了函數(shù)的一些知識,如正比例函數(shù)的概念及性質,這些都為學習本節(jié)內容做好了鋪墊。
2、八年級數(shù)學中的一次函數(shù)是中學數(shù)學中的一種最簡單、最基本的函數(shù),是反映現(xiàn)實世界的數(shù)量關系和變化規(guī)律的常見數(shù)學模型之一,也是學生今后進一步學習其它函數(shù)的基礎。
3、學生認知障礙點:根據(jù)問題信息寫出一次函數(shù)的表達式。
教學目標
1、理解一次函數(shù)與正比例函數(shù)的概念以及它們的關系,在探索過程中,發(fā)展抽象思維及概括能力,體驗特殊和一般的辯證關系。
2、能根據(jù)問題信息寫出一次函數(shù)的表達式。能利用一次函數(shù)解決簡單的實際問題。
3、經歷利用一次函數(shù)解決實際問題的過程,逐步形成利用函數(shù)觀點認識現(xiàn)實世界的意識和能力。
教學重點和難點
1、一次函數(shù)、正比例函數(shù)的概念及關系。
2、會根據(jù)已知信息寫出一次函數(shù)的表達式。
八年級數(shù)學教案有哪些篇4
教學目標:
1.知道負整數(shù)指數(shù)冪=(a≠0,n是正整數(shù)).
2.掌握整數(shù)指數(shù)冪的運算性質.
3.會用科學計數(shù)法表示小于1的數(shù).
教學重點:
掌握整數(shù)指數(shù)冪的運算性質.
難點:
會用科學計數(shù)法表示小于1的數(shù).
情感態(tài)度與價值觀:
通過學習課堂知識使學生懂得任何事物之間是相互聯(lián)系的,理論來源于實踐,服務于實踐.能利用事物之間的類比性解決問題.
教學過程:
一、課堂引入
1.回憶正整數(shù)指數(shù)冪的運算性質:
(1)同底數(shù)的冪的乘法:am?an=am+n(m,n是正整數(shù));
(2)冪的乘方:(am)n=amn(m,n是正整數(shù));
(3)積的乘方:(ab)n=anbn(n是正整數(shù));
(4)同底數(shù)的冪的除法:am÷an=am?n(a≠0,m,n是正整數(shù),m>n);
(5)商的乘方:()n=(n是正整數(shù));
2.回憶0指數(shù)冪的規(guī)定,即當a≠0時,a0=1.
3.你還記得1納米=10?9米,即1納米=米嗎?
4.計算當a≠0時,a3÷a5===,另一方面,如果把正整數(shù)指數(shù)冪的運算性質am÷an=am?n(a≠0,m,n是正整數(shù),m>n)中的m>n這個條件去掉,那么a3÷a5=a3?5=a?2,于是得到a?2=(a≠0).
二、總結:一般地,數(shù)學中規(guī)定:當n是正整數(shù)時,=(a≠0)(注意:適用于m、n可以是全體整數(shù))教師啟發(fā)學生由特殊情形入手,來看這條性質是否成立.事實上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運算性質都可推廣到整數(shù)指數(shù)冪;am?an=am+n(m,n是整數(shù))這條性質也是成立的.
三、科學記數(shù)法:我們已經知道,一些較大的數(shù)適合用科學記數(shù)法表示,有了負整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學記數(shù)法來表示,例如:0.000012=1.2×10?5.即小于1的正數(shù)可以用科學記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù).啟發(fā)學生由特殊情形入手,比如0.012=1.2×10?2,0.0012=1.2×10?3,0.00012=1.2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012=1.2×10?9,即對于一個小于1的正數(shù),如果小數(shù)點后到第一個非0數(shù)字前有8個0,用科學記數(shù)法表示這個數(shù)時,10的指數(shù)是?9,如果有m個0,則10的指數(shù)應該是?m?1.
八年級數(shù)學教案有哪些篇5
教學目標
知識與技能
用二元一次方程組解決有趣場景中的數(shù)字問題和行程問題,歸納用方程(組)解決實際問題的一般步驟。
過程與方法
1.通過設置問題串,讓學生體會分析復雜問題的思考方法。
2.讓學生進一步經歷和體驗列方程組解決實際問題的過程,體會方程組是刻畫現(xiàn)實世界的有效數(shù)學模型。
情感態(tài)度與價值觀
在學習過程中讓學生體驗把復雜問題化為簡單問題的策略,體驗成功感,同時培養(yǎng)學生克服困難的意志和勇氣,樹立自信心,并鼓勵學生合作交流,培養(yǎng)學生的團隊精神.
教學重點
1.初步體會列方程組解決實際問題的步驟。
2.學會用圖表分析較復雜的數(shù)量關系問題。
教學難點
將實際問題轉化成二元一次方程組的數(shù)學模型;會用圖表分析數(shù) 量關系。
教學準備:
教具:教材,課件,電腦(視頻播放器)
學具:教材,練習本
教學過程
第一環(huán)節(jié):復習提問(5分鐘,學生口答)
內容:填空:
(1)一個兩位數(shù),個位數(shù)字是,十位數(shù)字是,則這個兩位數(shù)用代數(shù)式表示為;若交換個位和十位上的數(shù)字得到一個新的兩位數(shù),用代數(shù)式表示為。
(2)一個兩位數(shù),個位上的數(shù)為,十位上的數(shù)為,如果在它們之間添上一個0,就得到一個三位數(shù),這個三位數(shù)用代數(shù)式可以表示為。
(3)有兩個兩位數(shù) 和,如果將放在的左邊,就得到一個四位數(shù),那么這個四位數(shù)用代數(shù)式表示為;如果將放在的右邊,將得到一個新的四位數(shù),那么這個四位數(shù)用代數(shù)式可表示為。
第二環(huán)節(jié):情境引入(10分鐘,學生動腦思考,全班交流)
內容:小明爸爸騎著摩托車帶著小明在公路上勻速行駛,下圖是小明每隔1小時看到的里程情況。你能確定小明在12:00時看到的里程碑上的數(shù)嗎?
第三環(huán)節(jié):合作學習(10分鐘,小組討論,找等量關系,解決問題)
內容:例1
兩個兩位數(shù)的和是68,在較大的兩位數(shù)的右邊接著寫較小的兩位數(shù),得到一個四位數(shù);在較大的兩位數(shù)的左邊寫上較小的兩位數(shù),也得到一個四位數(shù)。已知前一個四位數(shù)比后一個四位數(shù)大2178,求這兩個兩位數(shù)。
學生先獨立思考例1,在此基礎上,教師根據(jù)學生思考情況組織交流與討論。
第四環(huán)節(jié):鞏固練習(10分鐘,學生嘗試獨立解決問題,全班交流)
內容:練習
1.一個兩位數(shù),減去它的各位數(shù)字之和的3倍,結果是23;這個兩位數(shù)除以它的各位數(shù)字之和,商是5,余數(shù)是1。這個兩位數(shù)是多少?
2.一個兩位數(shù)是另一個兩位數(shù)的3倍,如果把這個兩位數(shù)放在另一個兩位數(shù)的左邊與放在右邊所得的數(shù)之和為8484.求這個兩位數(shù)。
第五環(huán)節(jié):課堂小結(5分鐘,教師引導學生總結一般步驟)
內容:
1.教師提問:本節(jié)課我們學習了那些內容,對這些內容你有什么體會和想法?請與同伴交流。
2.師生互相交流總結出列方程(組)解決實際問題的一般步驟。
第六環(huán)節(jié):布置作業(yè)
內容:習題7.6
A組(優(yōu)等生)2,3,4
B組(中等生)2、3
C組(后三分之一生)2
八年級數(shù)學教案有哪些篇6
八年級下數(shù)學教案-變量與函數(shù)(2)
一、教學目的
1.使學生理解自變量的取值范圍和函數(shù)值的意義。
2.使學生理解求自變量的取值范圍的兩個依據(jù)。
3.使學生掌握關于解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并會求其函數(shù)值。
4.通過求函數(shù)中自變量的取值范圍使學生進一步理解函數(shù)概念。
二、教學重點、難點
重點:函數(shù)自變量取值的求法。
難點:函靈敏處變量取值的確定。
三、教學過程
復習提問
1.函數(shù)的定義是什么?函數(shù)概念包含哪三個方面的內容?
2.什么叫分式?當x取什么數(shù)時,分式x+2/2x+3有意義?
(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)
3.什么叫二次根式?使二次根式成立的條件是什么?
(答:根指數(shù)是2的根式叫二次根式,使二次根式成立的條件是被開方數(shù)≥0。)
4.舉出一個函數(shù)的實例,并指出式中的變量與常量、自變量與函數(shù)。
新課
1.結合同學舉出的實例說明解析法的意義:用教學式子表示函數(shù)方法叫解析法。并指出,函數(shù)表示法除了解析法外,還有圖象法和列表法。
2.結合同學舉出的實例,說明函數(shù)的自變量取值范圍有時要受到限制這就可以引出自變量取值范圍的意義,并說明求自變量的取值范圍的兩個依據(jù)是:
(1)自變量取值范圍是使函數(shù)解析式(即是函數(shù)表達式)有意義。
(2)自變量取值范圍要使實際問題有意義。
3.講解P93中例2。并指出例2四個小題代表三類題型:(1),(2)題給出的是只含有一個自變量的整式;(3)題給出的是只含有一個自變量的分式;(4)題給出的是只含有一個自變量的二次根式。
推廣與聯(lián)想:請同學按上述三類題型自編3個題,并寫出解答,同桌互對答案,老師評講。
4.講解P93中例3。結合例3引出函數(shù)值的意義。并指出兩點:
(1)例3中的4個小題歸納起來仍是三類題型。
(2)求函數(shù)值的問題實際是求代數(shù)式值的問題。
補充例題
求下列函數(shù)當x=3時的函數(shù)值:
(1)y=6x-4;(2)y=--5x2;(3)y=3/7x-1;(4)。
(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)
小結
1.解析法的意義:用數(shù)學式子表示函數(shù)的方法叫解析法。
2.求函數(shù)自變量取值范圍的兩個方法(依據(jù)):
(1)要使函數(shù)的解析式有意義。
①函數(shù)的解析式是整式時,自變量可取全體實數(shù);
②函數(shù)的解析式是分式時,自變量的取值應使分母≠0;
③函數(shù)的解析式是二次根式時,自變量的取值應使被開方數(shù)≥0。
(2)對于反映實際問題的函數(shù)關系,應使實際問題有意義。
3.求函數(shù)值的方法:把所給出的自變量的值代入函數(shù)解析式中,即可求出相慶原函數(shù)值。
練習:P94中1,2,3。
作業(yè):P95~P96中A組3,4,5,6,7。B組1,2。
四、教學注意問題
1.注意滲透與訓練學生的歸納思維。比如例2、例3中各是4個小題,對每一個例題均可歸納為三類題型。而對于例2、例3這兩道例題,雖然要求各異,但題目結構仍是三類題型:整式、分式、二次根式。
2.注意訓練與培養(yǎng)學生的優(yōu)質聯(lián)想能力。要求學生仿照例題自編題目是有效手段。
3.注意培養(yǎng)學生對于“具體問題要具體分析”的良好學習方法。比如對于有實際意義來確定,由于實際問題千差萬別,所以我們就要具體分析,靈活處置。
八年級數(shù)學教案有哪些篇7
一、復習目標:
(一)整理本學期學過數(shù)學知識與方法。
1、知識要點復習。力求融會貫通,形成體系。進行適當?shù)木毩暋Un堂上對易錯題進行逐一詳細講解。多強調有針對性的解題方法。根據(jù)平時作業(yè)和測試情況,找出存在的問題,查漏補缺。
2、考試熱點歸納。要以與課本同步的訓練題型為主。讓學生積極動手操作,得出結論。對新題型,復習時,要詳細講解方法和步驟。課堂上,做到精講精練,引導學生自己總結,自己歸納。
3、幾何部分。重點是平行四邊形的性質及其判定定理。記住性質是關鍵,學會判定是重點。學會判定方法的選擇,熟悉不同圖形之間的區(qū)別和聯(lián)系。掌握添加常用輔助線的方法,對常規(guī)題型要多練多總結。
(二)在學生自己經歷解決問題的活動中,選擇一個挑戰(zhàn)性的問題,寫下解決它的過程,包括遇到的困難、克服困難的方法及獲得的體會。
(三)進一步培養(yǎng)學生的應用意識,建立數(shù)形結合的思想、化歸思想、統(tǒng)計思想,培養(yǎng)歸納推理能力和演繹推理能力。
(四)通過本期的學習,讓學生總結自己有哪些收獲?有哪些需要改進的地方。
二、具體措施:
1、強化訓練。本學期計算類和證明類的題型較多。在復習中要加強這方面的訓練。特別是有關二次根式的計算,幾何證明題要通過一定的練習,達到證明的過程簡潔而又嚴謹。
2、嚴格要求。根據(jù)不同學生的學習情況,既要嚴格要求,又要區(qū)別分層對待。對基礎較差的學生,盡量以課本為主,過好課本關,多鼓勵多表揚,調動其學習數(shù)學的積極性,課后加強個別輔導;對基礎較好的學生,適當提高難度,加大訓練量。
3、加強證明題的訓練。指導學生認真審題,對照圖形弄清已知條件和結論,采用執(zhí)果索因(或執(zhí)因索果)的方法,探尋證題的方法與思路。引導學生如何弄清題意,怎樣分析,怎樣規(guī)范寫出證明的過程。
八年級數(shù)學教案有哪些篇8
課型:
復習課
學習目標(學習重點):
1.針對函數(shù)及其圖象一章,查漏補缺,答疑解惑;
2.一次函數(shù)應用的復習.
補充例題:
例1.如圖,lAlB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關系
(1)B出發(fā)時與A相距千米;
(2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是小時;
(3)B出發(fā)后小時與A相遇;
(4)求出A行走的路程S與時間t的函數(shù)關系式;
(5)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,小時與A相遇,相遇點離B的出發(fā)點千米,在圖中表示出這個相遇點C.
例2.在平面直角坐標系中,過一點分別作坐標軸的垂線,若與坐標軸圍成矩形的周長與面積相等,則這個點叫做和諧點.例如,圖中過點P分別作x軸,y的垂線,與坐標軸圍成矩形OAPB的周長與面積相等,則點P是和諧點.
(1)判斷點M(1,2),N(4,4)是否為和諧點,并說明理由;
(2)若和諧點P(a,3)在直線y=-x+b(b為常數(shù))上,求點a,b的值.
例3.在平面直角坐標系中,一動點P(x,y)從M(1,0)出發(fā),沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點組成的正方形邊線(如圖①)按一定方向運動.圖②是P點運動的路程s(個單位)與運動時間(秒)之間的函數(shù)圖象,圖③是P點的縱坐標y與P點運動的路程s之間的函數(shù)圖象的一部分.
(1)求s與t之間的函數(shù)關系式.
(2)與圖③相對應的P點的運動路徑是:;P點出發(fā)秒首次到達點B;
(3)寫出當38時,y與s之間的函數(shù)關系式,并在圖③中補全函數(shù)圖象.
課后續(xù)助:
1.某市自來水公司為限制單位用水,每月只給某單位計劃內用水3000噸,計劃內用水每噸收費0.5元,超計劃部分每噸按0.8元收費.
(1)寫出該單位水費y(元)與每月用水量x(噸)之間的函數(shù)關系式
①用水量小于等于3000噸;②用水量大于3000噸.
(2)某月該單位用水3200噸,水費是元;若用水2800噸,水費元.
(3)若某月該單位繳納水費1540元,則該單位用水多少噸?
2.某通訊公司推出①、②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分鐘)與收費y(元)之間的函數(shù)關系如圖所示.
(1)有月租費的收費方式是(填①或②),月租費是元;
(2)分別求出①、②兩種收費方式中y與自變量x之間的函數(shù)關系式;
(3)請你根據(jù)用戶通訊時間的多少,給出經濟實惠的選擇建議.
3.某氣象研究中心觀測一場沙塵暴從發(fā)生到結束全過程,開始時風暴平均每小時增加2千米/時,4小時后,沙塵暴經過開闊荒漠地,風速變?yōu)槠骄啃r增加4千米/時,一段時間,風暴保持不變,當沙塵暴遇到綠色植被區(qū)時,其風速平均每小時減小1千米/時,最終停止。結合風速與時間的圖像,回答下列問題:
(1)在y軸()內填入相應的數(shù)值;
(2)沙塵暴從發(fā)生到結束,共經過多少小時?
(3)求出當x25時,風速y(千米/時)與時間x(小時)之間的函數(shù)關系式.
(4)若風速達到或超過20千米/時,稱為強沙塵暴,則強沙塵暴持續(xù)多長時間?