八年級數(shù)學下冊教案課件
八年級數(shù)學下冊教案課件篇1
教學目標
1.知識與技能
了解因式分解的意義,以及它與整式乘法的關系.
2.過程與方法
經(jīng)歷從分解因數(shù)到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用.
3.情感、態(tài)度與價值觀
在探索因式分解的方法的活動中,培養(yǎng)學生有條理的思考、表達與交流的能力,培養(yǎng)積極的進取意識,體會數(shù)學知識的內(nèi)在含義與價值.
重、難點與關鍵
1.重點:了解因式分解的意義,感受其作用.
2.難點:整式乘法與因式分解之間的關系.
3.關鍵:通過分解因數(shù)引入到分解因式,并進行類比,加深理解.
教學方法
采用“激趣導學”的教學方法.
教學過程
一、創(chuàng)設情境,激趣導入
【問題牽引】
請同學們探究下面的2個問題:
問題1:720能被哪些數(shù)整除?談談你的想法.
問題2:當a=102,b=98時,求a2-b2的值.
二、豐富聯(lián)想,展示思維
探索:你會做下面的填空嗎?
1.ma+mb+mc=()();
2.x2-4=()();
3.x2-2xy+y2=()2.
【師生共識】把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做分解因式.
三、小組活動,共同探究
【問題牽引】
(1)下列各式從左到右的變形是否為因式分解:
①(x+1)(x-1)=x2-1;
②a2-1+b2=(a+1)(a-1)+b2;
③7x-7=7(x-1).
(2)在下列括號里,填上適當?shù)捻?,使等式成?
①9x2(______)+y2=(3x+y)(_______);
②x2-4xy+(_______)=(x-_______)2.
四、隨堂練習,鞏固深化
課本練習.
【探研時空】計算:993-99能被100整除嗎?
五、課堂總結,發(fā)展?jié)撃?/p>
由學生自己進行小結,教師提出如下綱目:
1.什么叫因式分解?
2.因式分解與整式運算有何區(qū)別?
六、布置作業(yè),專題突破
選用補充作業(yè).
板書設計
八年級數(shù)學下冊教案課件篇2
教學目標:
1.知道負整數(shù)指數(shù)冪=(a≠0,n是正整數(shù)).
2.掌握整數(shù)指數(shù)冪的運算性質(zhì).
3.會用科學計數(shù)法表示小于1的數(shù).
教學重點:
掌握整數(shù)指數(shù)冪的運算性質(zhì)。
難點:
會用科學計數(shù)法表示小于1的數(shù)。
情感態(tài)度與價值觀:
通過學習課堂知識使學生懂得任何事物之間是相互聯(lián)系的,理論來源于實踐,服務于實踐。能利用事物之間的類比性解決問題.
教學過程:
一、課堂引入
1.回憶正整數(shù)指數(shù)冪的運算性質(zhì):
(1)同底數(shù)的冪的乘法:am?an=am+n(m,n是正整數(shù));
(2)冪的乘方:(am)n=amn(m,n是正整數(shù));
(3)積的乘方:(ab)n=anbn(n是正整數(shù));
(4)同底數(shù)的冪的除法:am÷an=am?n(a≠0,m,n是正整數(shù),m>n);
(5)商的乘方:()n=(n是正整數(shù));
2.回憶0指數(shù)冪的規(guī)定,即當a≠0時,a0=1.
3.你還記得1納米=10?9米,即1納米=米嗎?
4.計算當a≠0時,a3÷a5===,另一方面,如果把正整數(shù)指數(shù)冪的運算性質(zhì)am÷an=am?n(a≠0,m,n是正整數(shù),m>n)中的m>n這個條件去掉,那么a3÷a5=a3?5=a?2,于是得到a?2=(a≠0)。
二、總結:一般地,數(shù)學中規(guī)定:當n是正整數(shù)時,=(a≠0)(注意:適用于m、n可以是全體整數(shù))教師啟發(fā)學生由特殊情形入手,來看這條性質(zhì)是否成立.事實上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an=am+n(m,n是整數(shù))這條性質(zhì)也是成立的.
三、科學記數(shù)法:
我們已經(jīng)知道,一些較大的數(shù)適合用科學記數(shù)法表示,有了負整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學記數(shù)法來表示,例如:0.000012=1.2×10?5.即小于1的正數(shù)可以用科學記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù)。啟發(fā)學生由特殊情形入手,比如0.012=1.2×10?2,0.0012=1.2×10?3,0.00012=1.2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012=1.2×10?9,即對于一個小于1的正數(shù),如果小數(shù)點后到第一個非0數(shù)字前有8個0,用科學記數(shù)法表示這個數(shù)時,10的指數(shù)是?9,如果有m個0,則10的指數(shù)應該是?m?1.
八年級數(shù)學下冊教案課件篇3
第三十四學時:14、2、1平方差公式
一、學習目標:
1、經(jīng)歷探索平方差公式的過程。
2、會推導平方差公式,并能運用公式進行簡單的運算。
二、重點難點
重點:平方差公式的推導和應用;
難點:理解平方差公式的結構特征,靈活應用平方差公式。
三、合作學習
你能用簡便方法計算下列各題嗎?
(1)20_×1999(2)998×1002
導入新課:計算下列多項式的積、
(1)(x+1)(x—1);
(2)(m+2)(m—2)
(3)(2x+1)(2x—1);
(4)(x+5y)(x—5y)。
結論:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。
即:(a+b)(a—b)=a2—b2
四、精講精練
例1:運用平方差公式計算:
(1)(3x+2)(3x—2);
(2)(b+2a)(2a—b);
(3)(—x+2y)(—x—2y)。
例2:計算:
(1)102×98;
(2)(y+2)(y—2)—(y—1)(y+5)。
隨堂練習
計算:
(1)(a+b)(—b+a);
(2)(—a—b)(a—b);
(3)(3a+2b)(3a—2b);
(4)(a5—b2)(a5+b2);
(5)(a+2b+2c)(a+2b—2c);
(6)(a—b)(a+b)(a2+b2)。
五、小結
(a+b)(a—b)=a2—b2
八年級數(shù)學下冊教案課件篇4
【教學目標】
1.了解分式概念.
2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學重難點】
重點:理解分式有意義的條件,分式的值為零的條件.
難點:能熟練地求出分式有意義的條件,分式的值為零的條件.
【教學過程】
一、課堂導入
1.讓學生填寫[思考],學生自己依次填出:,,,.
2.問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?
設江水的流速為x千米/時.
輪船順流航行100千米所用的時間為小時,逆流航行60千米所用時間小時,所以=.
3.以上的式子,,,,有什么共同點?它們與分數(shù)有什么相同點和不同點?可以發(fā)現(xiàn),這些式子都像分數(shù)一樣都是A÷B的形式.分數(shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母.
[思考]引發(fā)學生思考分式的分母應滿足什么條件,分式才有意義?由分數(shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個條件,分式才有意義.即當B≠0時,分式才有意義.
二、例題講解
例1:當x為何值時,分式有意義.
【分析】已知分式有意義,就可以知道分式的分母不為零,進一步解出字母x的取值范圍.
(補充)例2:當m為何值時,分式的值為0?
(1);(2);(3).
【分析】分式的值為0時,必須同時滿足兩個條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.
三、隨堂練習
1.判斷下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.當x取何值時,下列分式有意義?
3.當x為何值時,分式的值為0?
四、小結
談談你的收獲.
五、布置作業(yè)
課本128~129頁練習.
八年級數(shù)學下冊教案課件篇5
第三十四學時:14.2.1平方差公式
一、學習目標:
1.經(jīng)歷探索平方差公式的過程。
2.會推導平方差公式,并能運用公式進行簡單的運算。
二、重點難點
重點:平方差公式的推導和應用;
難點:理解平方差公式的結構特征,靈活應用平方差公式。
三、合作學習
你能用簡便方法計算下列各題嗎?
(1)20_×1999(2)998×1002
導入新課:計算下列多項式的積.
(1)(x+1)(x—1);
(2)(m+2)(m—2)
(3)(2x+1)(2x—1);
(4)(x+5y)(x—5y)。
結論:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。
即:(a+b)(a—b)=a2—b2
四、精講精練
例1:運用平方差公式計算:
(1)(3x+2)(3x—2);
(2)(b+2a)(2a—b);
(3)(—x+2y)(—x—2y)。
例2:計算:
(1)102×98;
(2)(y+2)(y—2)—(y—1)(y+5)。
隨堂練習
計算:
(1)(a+b)(—b+a);
(2)(—a—b)(a—b);
(3)(3a+2b)(3a—2b);
(4)(a5—b2)(a5+b2);
(5)(a+2b+2c)(a+2b—2c);
(6)(a—b)(a+b)(a2+b2)。
五、小結
(a+b)(a—b)=a2—b2
八年級數(shù)學下冊教案課件篇6
一、教學目標
1.使學生了解判定定理1及直角三角形相似定理的證明方法并會應用,掌握例2的結論.
2.繼續(xù)滲透和培養(yǎng)學生對類比數(shù)學思想的認識和理解.
3.通過了解定理的證明方法,培養(yǎng)和提高學生利用已學知識證明新命題的能力.
4.通過學習,了解由特殊到一般的唯物辯證法的觀點.
二、教學設計
類比學習,探討發(fā)現(xiàn)
三、重點及難點
1.教學重點:是判定定理l及直角三角形相似定理的應用,以及例2的結論.
2.教學難點 :是了解判定定理1的證題方法與思路.
四、課時安排
1課時
五、教具學具準備
多媒體、常用畫圖工具、
六、教學步驟
[復習提問]
1.什么叫相似三角形?什么叫相似比?
2.敘述預備定理.由預備定理的題所構成的三角形是哪兩種情況.
[講解新課]
我們知道,用相似三角形的定義可以判定兩個三角形相似,但涉及的條件較多,需要有
三對對應角相等,三條對應邊的比也都相等,顯然用起來很不方便.那么從本節(jié)課開始我們
來研究能不能用較少的幾個條件就能判定三角形相似呢?
上節(jié)課講的預備定理實際上就是一個判定三角形相似的方法,現(xiàn)在再來學習幾種方法.
我們已經(jīng)知道,全等三角形是相似三角形當相似比為1時的特殊情況,判定兩個三角形
全等的三個公理和判定兩個三角形相似的三個定理之間有內(nèi)在的聯(lián)系,不同處僅在于前者是后者相似比等于1的情況,教學時可先指出全等三角形與相似三角形之間的關系,然后引導學生自己用類比的方法找出新的命題,如:
問:判定兩個三角形全等的方法有哪幾種?
答:SAS、ASA(AAS)、SSS、HL.
問:全等三角形判定中的“對應角相等”及“對應邊相等”的語句,用到中應如何說?
答:“對應角相等”不變,“對應邊相等”說成“對應邊成比例”.
問:我們知道,一條邊是寫不出比的,那么你能否由“ASA”或“AAS”,采用類比的方法,引出一個關于三角形相似判定的新的命題呢?
答:如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似.
強調(diào):(1)學生在回答中,如出現(xiàn)問題,教師要予以啟發(fā)、引導、糾正.
(2)用類比方法找出的新命題一定要加以證明.
如圖5-53,在△ABC和△ 中, , .
問:△ABC和△ 是否相似?
分析:可采用問答式以啟發(fā)學生了解證明方法.
問:我們現(xiàn)在已經(jīng)學習了哪幾個判定三角形相似的方法?
答:①三角形的定義,②上一節(jié)學習的預備定理.
問:根據(jù)本命題條件,探討時應采用哪種方法?為什么?
答:預備定理,因為用定義條件明顯不夠.
問:采用預備定理,必須構造出怎樣的圖形?
答: 或 .
問:應如何添加輔助線,才能構造出上一問的圖形?
此問學生回答如有困難,教師可領學生共同探討,注意告訴學生作輔助線一定要合理.
(1)在△ABC邊AB(或延長線)上,截取 ,過D作DE∥BC交AC于E.
“作相似.證全等”.
(2)在△ABC邊AB(或延長線上)上,截取 ,在邊AC(或延長線上)截取AE= ,連結DE,“作全等,證相似”.
(教師向?qū)W生解釋清楚“或延長線”的情況)
雖然定理的證明不作要求,但通過剛才的分析讓學生了解定理的證明思路與方法,這樣有利于培養(yǎng)和提高學生利用已學知識證明新命題的能力.
判定定理1:如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似.
簡單說成:兩角對應相等,兩三角形相似.
例1 已知 和 中 , , , .
求證: ∽ .
此例題是判定定理的直拉應用,應使學生熟練掌握.
例2 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似.
已知:如圖5-54,在 中,CD是斜邊上的高.
求證: ∽ ∽ .
該例題很重要,它一方面可以起到鞏固、掌握判定定理1的作用;另一方面它的應用很廣泛,并且可以直接用它判定直角三角形相似,教材上排了黑體字,所以可以當作定理直接使用.
即 ∽△∽△.
[小結]
1判定定理1的引出及證明思路與方法的分析,要求學生掌握兩種輔助線作法的思路.
2.判定定理1的應用以及記住例2的結論并會應用.
七、布置作業(yè)
八年級數(shù)學下冊教案課件篇7
一、學習目標:
1.使學生會用完全平方公式分解因式.
2.使學生學習多步驟,多方法的分解因式
二、重點難點:
重點: 讓學生掌握多步驟、多方法分解因式方法
難點: 讓學生學會觀察多項式特點,恰當安排步驟,恰當?shù)剡x用不同方法分解因式
三、合作學習
創(chuàng)設問題情境,引入新課
完全平方公式(a±b)2=a2±2ab+b2
講授新課
1.推導用完全平方公式分解因式的公式以及公式的特點.
將完全平方公式倒寫:
a2+2ab+b2=(a+b)2;
a2-2ab+b2=(a-b)2.
凡具備這些特點的三項式,就是一個二項式的完全平方,將它寫成平方形式,便實現(xiàn)了因式分解
用語言敘述為:兩個數(shù)的平方和,加上(或減去)這兩數(shù)的積的2倍,等于這兩個數(shù)的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式.
由分解因式與整式乘法的關系可以看出,如果把乘法公式反過來,那么就可以用來把某些多項式分解因式,這種分解因式的方法叫做運用公式法.